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Abstract—In this paper, we propose a reconfigurable neural 

spike classifier based on neuromorphic event-based networks 

that can be directly interfaced to neural signal conditioning and 

quantization circuits. The classifier is set as a heterogeneity 

based, multi-layer computational network to offer wide 

flexibility in the implementation of plastic and metaplastic 

interactions, and to increase efficacy in neural signal 

processing. Built-in temporal control mechanisms allow the 

implementation of homeostatic regulation in the resulting 

network. The results obtained in a 90 nm CMOS technology 

show that an efficient neural spike data classification can be 

obtained with a low power (9.4 μW/core) and compact (0.54 

mm2 per core) structure. 

I. INTRODUCTION 

Neural spike patterns are the fundamental means by which 
neurons process and transmit information in the nervous 
system. Consequently, extracting information from neural 
recordings is prerequisite for understanding the cortical 
structures, a better perception of stark brain disorders such as 
Alzheimer’s and Parkinson’s diseases, epilepsy and autism, 
or for reestablishment of sensory (e.g., hearing and vision) 
and motor (e.g., movement and speech) functions. However, 
very frequently a high-density microelectrode arrays in 
multichannel brain-machine interface (BMI) record the 
patterns from multiple surrounding neurons, e.g., due to the 
background activity of other neurons, slight perturbations in 
electrode position, external electrical or mechanical 
interference.  

Subsequently, clustering spike-derived features is a 
challenging task due to the contaminating noise and 
superimposed potentials in the recorded patterns [1]; the 
degree of overlap between the annotated clusters increases as 
a function of the noise variance. In addition, classifier 
performance could deteriorate over time due to the changes 
in task conditions and the surrounding environment. 
Similarly, convenience and usability of BMI technologies are 
severely limited due to the required extensive individualized 
calibration. The neuromorphic event-based neuron network, 
however, due to ability to learn by example, parallelism of 
the operation, associative memory, multifactorial 
optimization, and extensibility, is inherent choice for 
compact and low power cognitive systems that learn and 
adapt to the changes in the statistics of the complex neural 
signals [2].  
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In this paper, we propose a 64-channel, cognitive, kernel-
based neural spike classifier based on neuromorphic event-
based networks. The power-efficient, reconfigurable, neural-
inspired clustering in BMI is achieved with heterogeneity 
based multi-layer computation network configuration. Built-
in temporal control mechanisms allow the implementation of 
homeostatic regulation in the resulting network. The results 
obtained in a 90 nm CMOS technology show that an efficient 
neural spike data classification can be obtained with a low 
power (less than 9.4 μW/core, corresponding to a 16.7 
μW/mm

2
 of power density), in the compact, a low resource 

usage (0.54 mm
2
/core area) structure. 

II. NEUROMORPHIC SPIKE DATA CLASSIFIER 

A. Neural Spike Pattern Classification 

Signal information in the brain is encoded by patterns of 
neural spike activity occurring over populations of neurons. 
The synapses, i.e. connection to the subsequent neurons, 
adjust their weight (synaptic conductance), and subsequently 
their task, in accordance with the neural spikes they receive. 
Let K(t) be a fixed kernel that includes both pre- and 
postsynaptic factors. We consider Λ

+
={λ

+
} (target neural 

spike patterns) that have to be separated from Λ
-
={λ

-
} 

(background patterns). We define tij as the time at which 
spike arrive at the synapse, i.e. the delay of the j-th spike of 
the i-th neuron. At each discrete point in time tη=Δη, we 
evaluate f(t)=[f1(t),f2(t),...,fN(t)], where fi(t)=ΣjK(t-tij). The 
objective of classification (Fig. 1) is to find a hyperplane 
H(w,b) specified by w1f1+w2f2+…+wNfN-b=0 that separates at 

least one point of each pattern from all the points f(tη) [3]-[4] 
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where coefficients of the corresponding hyperplane are 
designated as synaptic weights on the dendrite of an 
integrate-and-fire neuron. For rate and synchrony encoded 
input spike patterns, the average synaptic activation 1/T       

∫T 
∑tijK(t-tij) dt is directly proportional to the input arriving at 

that synapse, xij, where T is the pattern duration [4]. The 
kernel functions K(t-tij) (double exponential kernel) is defined 
as 

)]/)(exp()/)([exp()( 0 rijfijij ttttttK      (2) 

where κ0 is the normalization constant, and τf and τr are the 
fall and rise time constants, respectively.  
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Figure 1: Time-encoded, event-based spike processing network structure. 
Inputs are connected to a postsynaptic neuron through weighted synapses. 
The kernels acts as a hidden layer element, and integrate the synaptic signals. 
Dendritic signals are summed at the soma; if the signals exceed a threshold, 
the axon releases a spike. 

Classification of λ patterns for one-versus-all case is 
completed with a winner-takes-all scheme (in combination 
with spike timing dependent plasticity learning), which 
indicates that the neurons inhibit each other having only one 
winner, i.e. a group of recurrent neurons cooperate and 
compete with each other, and the classifier with the highest 
output function allocates the class. The neuron responds to a 
λ

+
 pattern by firing at least one action potential, and remains 

inactive when driven by a λ
-
 pattern. The inputs to the 

neurons for each class are received from a pair of excitatory 
and inhibitory dendrites.  

B. Neuromorphic Core 

Reconfigurable neuromorphic networks, typically, consist 
of the circuits that only partially include dendritic, and 
subsequently, synaptic properties. However, increased 
experimental evidence indicates existence of a large variety 
of dendritic channels [5], which alter synaptic response by 
amplification, regulation, the dendritic structure scaling, etc. 
Accordingly, a synaptic circuit can be computationally much 
more powerful [6] than just as a simple point processing unit. 
A typical synaptic learning-array [7] is illustrated in Fig. 2a). 
The changes in synaptic morphology affect synaptic 
dynamics and efficacy, and consequently, lead to alterations 
in network signal processing capabilities. Each synapse 
multiplies its column input with its weight, and outputs a 
current. The synapse output currents are summed along the 
row. The error signal compels the time-averaged sum of the 
row-synapse weights to be a constant, and forms a bound on 
the row weights by forcing the synapses to contend for 
weight value.  

In contrast, implemented synapse circuit [8] (Fig. 2b) 
includes, additionally, multi-compartment dendrites [6], and 
two postsynaptic back propagating signals [8]-[9] to model 
local and global (lateral) postsynaptic influences, 
respectively. This increase in dimensionality allows more 
states and transitions, offering more flexibility in the 
implementation of plastic and metaplastic interactions. The 
model allows assignment of various neuronal characteristics, 
e.g. axonal and dendritic delays, synaptic transfer functions, 
offers computation of the optimal input-output transfer 
function by means of calculated dendritic weights, allows 
spike train kernel convolution in the time domain. 
Consequently, by using structural plasticity we reduce the 
memory requirement to read, to store and access connection 
information, respectively.  

At the circuit input, two receptors are available: NMDA 
receptor offers activity-dependent modifications of synaptic 
weight w, denoted as conductance gm, while AMPA receptor 
mediates a fast (glutamatergic) synaptic current to drive the 
soma. The NMDA conductance is a filtered version of the 
AMPA conductance with a slower rise and a longer tail. In 
the post-synaptic part, the temporal summation of a back 
propagating spikes, i.e. dendrite and soma spikes [10], 
respectively, is completed. If groups (bursts) of dendritic 
spikes are sufficiently strong to drive the soma, the neuron 
will generate action potentials; resulting spike is back 
propagated into the dendrite [9]. We model this global 
(lateral) inhibitory back propagated current signal as Kbp,inh 

(t-tn
last), where the last postsynaptic spike is generated by the 

n-th synapse at tn
last. The back propagated dendrite and soma 

signals are multiplied and added to NMDA receptor signals 
to form the weight control signal.  

Synaptic dynamics is reproduced in real-time using arrays 
of pulse (spike) integrators. The log domain integrator [11] 
circuit models slow NMDA receptor-mediated currents, 
while the differential pair integrator circuit [12] models fast 
AMPA mediated current. This sub-circuit is functionally 
equivalent to the one described in theoretical models [5], and 
often used in computational neuroscience. The 
transconductance amplifier in the synapse is a typical 
differential pair amplifier with active loading, and 
enable/disable capability for power-efficient operation. 
Employed hysteretic differentiator circuit with an exponential 
resistive element offers large range of the time-constants of 
the feedback loop (over several orders of magnitude). The 
soma and axon hillock are implemented as the adaptive 
conductance-based integrate-and-fire neuron circuit [12] for 
compact description of neuronal firing dynamics. Repeating 
synapse and neuron units form a neuromorphic core (Fig. 2c) 
for a learning network. The array structure includes electronic 
synapses at the junctions, and the row of the circuits at the 
periphery of the array, which mimic the action of the soma 
and axon hillock of biological neurons.  

III. EXPERIMENTAL RESULTS 

Design simulations on the transistor level were performed 
at body temperature (37 ºC) on Cadence Virtuoso using 
industrial hardware-calibrated TSMC 90nm CMOS 
technology. The synapse circuit consumes 53 pW at 300 Hz 
(e.g. in the range of local-field potentials), leading to an 
energy of 180 fJ per synaptic event. Higher speed version at 
20 kHz (e.g. action potentials indicating single-cell activity) 
consumes 3.2 nW, which corresponds to 160 fJ per synaptic 
event. The active area of the synapse circuit is 15 μm×9 μm. 
The area of the synapse including capacitors and dendrites is 
15 μm×14 μm. The soma necessitates significant current to 
create adequate positive feedback; the level is defined by the 
maximum synaptic current multiplied with the square root of 
the number of inputs. The digital spikes generated by the 
conductance-based neuron circuit are very narrow (~250 ns). 
The circuit average power consumption during this period is 
2.1 pJ/spike. The average power dissipation measured 
throughout the whole current integration and action-potential 
generation phase is 147 pJ over 100 ms (for an average firing 
rate of 10 Hz). The neuron circuit has an area of 54 μm

2
. 
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Figure 2: a) Typical learning-array block diagram [7], b) conceptual diagram of the implemented neuromorphic synapse, and a dendrite (input) and an axon 
soma (output) of a biological neuron, c) internal blocks of the neuromorphic core with dedicated synapse. 

The reconfigurable network with a neuromorphic core, 
which includes 64 integrate-and-fire neurons and 2048 
synapses (32 pre neuron), occupies an area of 0.56 mm

2
. 

With all neurons active (i.e. worst case scenario) at 20 kHz 
firing rate, with each event broadcast within one 
neuromorphic core, the classifier (including communication) 
consumes 9.4 μW of power from an 1 V supply voltage. In 
Table I, we compare the state of the spike sorting systems to 
this work. 

The classifier training is performed by offering multiple 
trials, which comprise signals attained from grouped neural 
recordings, conjointly with teacher (Poisson spike trains) 
signals generated externally. The test dataset is based on BMI 
recordings from the human neocortex and basal ganglia (Fig. 
3a). We designed a model-based analysis to calculate the rate 
of patterns in spiking activity. Expending a maximum 
entropy principle [13] with a Markovian assumption, we 
obtain a model that accounts for temporal pairwise 
correlations among neurons (Fig. 3b and Fig. 3c). In network 
simulations, the synaptic weight matrices are initialized to the 
values derived from the state of the learning synapses at the 
end of training procedure. External input is then applied to 
the network with learning rule mediating synaptic plasticity; 
synapses contain active channels, which respond to the local 
conditions offering the apparatus to perform non-linear local 
computation. The spiking activity of the network consists of a 
superposition of all temporal spike sequences, which it is 
concurrently recalling. After encoding (through spike timing 
dependent plasticity in synapses), a pattern of active neurons 
is formed in a winner-take-all arrangement (due to the strong 
recurrent inhibition). Synchrony of the network is illustrated 
in Fig. 4a) and Fig. 4b). When synchronized at 300 Hz, the 
network receive approximately 600k events per second, and 
transmit 18.75k events/s.  

 [14]  [15] [16] [17] [this work] 

Technology [nm] 65 90 65 65 90 

Programmability no yes no yes yes 

VDD [V] 0.27 1 0.3 0.4 1 

# channels 16 128 1 128 64 

P. Dens. [μW/mm2] 60.9 9.8 43.4 15.5 16.7/core 

Power [μW] 75 87 2.17 41 9.4/core 

Area [mm2] 1.23 8.9 0.05 2.64 0.56/core 

TABLE I- COMPARISON WITH PRIOR ART.  

 

The information encoded in the spike trains is classified 
with a reconfigurable learning network as illustrated in Fig. 
4c), where the bold line represent decision boundary. Positive 
and negative classification outputs in (1) are separated based 
on the discrimination threshold determined by maximizing 
classifiers performance. The classifier size, i.e. required 
number of the synapses and the neurons, is (partly) governed 
by the complexity and adaptability of the classification task. 
Additionally, the kernel dynamics, i.e. the response of the 
membrane potential to spike arrival at an excitatory or 
inhibitory synapse, influence spike pattern classification. We 
compared the classification accuracy, and the energy 
consumption of the neuromorphic classifier (Fig. 5a and Fig. 
5b) with the general (primal) support vector machines 
(SVM), and with the optimized multiclass SVM [17]. The 
performance is quantified using the effective accuracy, i.e., 
total spikes classified versus spikes correctly classified 
(excluding spike detection). The SVM spike sorting 
performance has been summarized and benchmarked (Fig. 
5c) versus four different, relatively computationally-efficient 
methods for spike sorting. The number of support vectors 
(typically) scales linearly with the size of the training set, i.e. 
the number of operations to perform, and, accordingly, the 
energy per classification scales with the size of the training 
set. Subsequently, for large-scale tasks such as multi-channel 
EEG with preserved spatiotemporal information, SVMs can 
be computationally (and qua energy consumed) demanding. 
In contrast, neuromorphic network with ν neurons and ι 
inputs evaluates a test sample with the weighted (synaptic) 
coding requiring only O(ν×ι) synaptic events, i.e. the number 

is effectively independent of the size of training set. 

IV. CONCLUSION 

In this paper, we propose a programmable neural spike 
classifier based on neuromorphic event-based networks for 
64-channel spike sorting system that tracks the evolution of 
clusters in real-time, offers high re-configurability, and can 
be directly interfaced locally to neural signal conditioning 
and quantization circuits. The results obtained in a 90 nm 
CMOS technology show that an efficient neural spike data 
classification can be obtained with a low power (less than 9.4 
μW/core, corresponding to a 16.7 μW/mm

2
 of power 

density), in the compact, a low resource usage (0.54 
mm

2
/core area) structure. 
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Figure 3: a) Spike detection from continuously acquired data, the y axis is arbitrary; top: raw signal, middle: threshold (line) crossings of a local energy 
measurement with a running window of 1ms, and bottom: detected spikes, b) population patterns in distributed pattern activity of the acquired data,                   
c) trajectory (black) with spike locations superimposed (red). 
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Figure 4: a) Asynchronous irregular regime in the network (with fast synaptic rise time) consisting of 64 neurons and 2048 synapses, b) synchrony in the 
network (with slow synaptic rise time), c) the separation hypersurface - two classes graphical representation example; bold line represent decision boundaries. 
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Figure 5: a) Classification performance versus required number of synapses in neuromorphic implementation, and required number of the support vectors in 
the general primal SVM and the optimized multiclass SVM, b) classification performance versus required average energy per pattern, c) effect of SNR on spike 
sorting accuracy of the BMI system. 
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