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a b s t r a c t

Fault-tolerance analysis reveals possible system behavior under the influence of faults. Such analysis is
essential for satellites where faults might be caused by space radiation and autonomous recovery is
needed. In this paper we present a statistical simulation approach for fault-tolerance analysis of satellite
On-Board Computers (OBCs) that are based on Commercial Off-The-Shelf (COTS) components. Since the
logic level of COTS electronics is unknown to satellite designers, a new higher-level fault-tolerance
analysis is required. We propose such technique that relies on OBC modeling and fault modeling, based
on the modeling principle of Single-Event Upsets (SEUs). For the first time we can compare the efficiency
of fault-tolerance techniques implemented in software and Field-Programmable Gate Array (FPGA).
In addition, our approach enables to analyze system fault-tolerance at early development stages. In a case
study the approach is applied to an OBC with a Microsemi SmartFusion SoC, that executes a satellite
attitude control algorithm. The gained statistical simulation results enabled 50% reduction in the
hardware overhead of the implemented memory scrubbing technique without loss in fault-tolerance.
Our method revealed critical fault-tolerance drawbacks of the initial system design that could have lead
to satellite mission failure.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The main requirement for COTS-based satellite OBCs is their
tolerance towards radiation-induced faults. Since COTS-based
satellites are sensitive to radiation due to the low radiation
tolerance of COTS components, the satellite designers have to
use fault-tolerance techniques. However, the benefits and correct-
ness of the applied fault-tolerance techniques are checked only
under radiation tests at the latest development stage. If the system
fails under a radiation test, expensive and time-consuming re-
design is required. The comparative fault-tolerance analysis and
system-level debugging are impossible with such system testing
due to its high cost and the uncontrollable fault-injection proce-
dure [1].

An alternative approach for the system-level fault-tolerance
analysis is system simulation. In addition to the growing complex-
ity of electronic components, the existing methods are limited by
the fact that the logic level of COTS electronics is unknown to
satellite designers. A new higher-level simulation-based approach

for fault-tolerance analysis is needed. This paper proposes such a
SystemC-based [2] approach and presents how it was applied to
an OBC with a SmartFusion SoC [3] that executes the satellite
attitude determination and control algorithm.

The remainder of the paper is organized as follows: Section 2
describes related work. Our proposed method is twofold: a system
model and a fault model. Correspondingly, Section 3 explains the
OBC modeling approach and Section 4 explains the chosen fault
model. Section 5 introduces our statistical analysis that joins the
OBC model and the fault model. Section 6 presents our case study.
Section 7 summarizes the results.

2. Related work

A simulation-based approach for fault-tolerance analysis has
already been used to study satellite sub-systems [4,5]. They
investigate the fault tolerance through faults injection procedures.
However, these approaches are based on the assumption that the
logic circuit level of the used electronic components is known,
which is not the case when COTS electronics are utilized. More-
over, low-level simulation is time-consuming and cannot be used
for an extensive statistical analysis of complex heterogeneous
systems.

The usage of high-level abstraction modeling language, such as
SystemC [2], is imperative to simulate modern satellite sub-systems.
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A common approach for fault-tolerance analysis is based on the
insertion of a Fault Injection Module (FIM) into the interconnections
between functional blocks of a system model [6–8]. However, these
approaches have been investigated without the consideration of
hardware–software co-design and the comparative analysis of fault-
tolerance techniques, which are covered in this paper.

3. Proposed system model

The systemmodel consists of the model of an electronic device/
OBC and supporting mechanisms.

The model of OBC is based on a Transient-Level Modeling
(TLM) methodology [2] (Fig. 1, the green section). The TLM
approach simplifies the system model, shortens the simulation
run time, and allows the system hardware–software co-design and
co-simulation. TLM is used to interconnect functional blocks (CPU,
FPGA, Memory blocks, Timers, Decoder/central bus, etc.) that have
to be considered as ‘black boxes’ because their full configurations
in COTS components are unknown to satellite designers.

Fig. 2 shows the interconnection between the Decoder/central
SoC bus (e.g. AMBA bus) and the FPGA in details. Their interface is
implemented through an intermediate layer to support the FPGA

co-processor portability from the simulation environment to a real
device. The layer is named Fabric Controller Model. It commu-
nicates with the co-processor using signals according to a parti-
cular protocol (e.g. AMBA protocol). On the opposite side, the
Fabric Controller Model is connected to the Decoder/central bus
through a TLM channel. The FPGA co-processor configuration
(Fig. 2, blue section) is described in Register-Transfer Level (RTL)
SystemC.

The supporting modules of the system model do not represent
an electronic device but provide supporting functions for the
radiation environment modeling and system state observability
(Fig. 1, Injector.obj and Observer.obj). In particular, a simulation
tracking mechanism (hereafter ‘the Observer’) and a fault-injec-
tion mechanism (hereafter ‘the Injector’) are two main supporting
components interconnected with the OBC model (Fig. 1). The
Observer provides information about the system state (memory
content, bus transactions, etc.) at different moments of simulation
to a user. The Injector controls the fault injection procedure
according to the created time schedule and the pre-defined fault
models.

The proposed fault injection technique mainly operates with
object pointers. The Injector associates the fault models with
functional blocks where particular faults can occur. It creates a
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Fig. 1. The system model structure. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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this article.)
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fault-injection time schedule (e.g. Fig. 3) according to the pre-
defined fault rates either uses the schedule written by a user.

The presented system model supports software–hardware co-
design and is applicable for a system performance analysis.
However, a proper fault-model has to be chosen to assess the
influence of radiation environment on COTS electronic compo-
nents. The fault modeling relies on the radiation environment
estimation for a satellite mission and is explained in the next
section.

4. Radiation environment and fault modeling

The inside of COTS components is unknown to satellite designers.
Consequently, the only way to simulate radiation-induced errors is to

change the outputs or/and the states of its functional blocks in the
proposed high-level OBC model (Section 3).

The accuracy of the fault-tolerance analysis depends on the
accuracy of the fault models with regard to the real system
behavior. Since the utilization of COTS-based components is
popular in the small satellite industry, the fault models and fault
rates have been built particularly for satellites with 3-years
mission at orbits lower than 750 km. The total amount of radiation
absorbed during the mission time (Total Ionised Dose, TID [9–11])
is presented in Fig. 4 and was estimated by SPENVIS [12]. SPENVIS
also provided the Linear Energy Transfer (LET) spectrum [13] for
space radiation particles, see Fig. 5.

For the small satellites, the following fault models are valid
[14–17]:

1. SEU – Single Event Upset or bit-flip in a memory cell (CPU
registers, memory arrays, block outputs, etc.).

2. MCU – Multiple-Cells Upset or multiple SEU in adjacent memory
cells (CPU registers, memory arrays, block outputs, etc.).

3. SEFI – Single Event Functional Interrupt, the functional block/
electronic component is put into an unknown state or frozen. SEFIFig. 3. An example of the fault time schedule.

Fig. 4. Simulation results: TID vs aluminium shielding width for satellite missions characterized with their altitudes (km) and inclination angles (deg).

Fig. 5. Simulation results: spacecraft shielded linear energy transfer-LET(Si) spectrum.
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corresponds to a SEU/MCU error in the control circuit of an
electronic component.

Using the LET spectrum (Fig. 5), the fault rates have been
calculated [18] and presented in Table 1.

According to Table 1, only a TID of 15 krad or more may cause
the permanent functionality loss of heterogenous SoCs. But by
using an affordable 1.5 mm aluminium shielding, a small satellite
will not reach such high TID levels during its typical 3-years
mission (Fig. 4). As a result, only temporal effects, such as SEFIs
and bit-flips (SEU/MCU), should be taken into account.

According to the observations in [19], SEFI in CPU can be
modeled by CPU freezing; SEFI in memory can be simulated by
the memory block that stopped responding. However, the knowl-
edge about all possible SEFI consequences is limited since the logic
level of the control logic is unknown.

Single-Event Transient (SET) faults are also expected in COTS
components in space radiation environment. However, a SET fault
or its propagation may cause the change of memory cells’ content
which also corresponds to SEU/MCU fault models. Thus, additional
SET fault models are not required on the high abstraction level we
discuss.

Both SEU and MCU can be modeled by flipping the content of
memory cells (e.g. in registers, Memory blocks) or by changing
TLM transaction objects (e.g. of tlm_generic_payload type). TLM
transaction objects also correspond to the data saved in memory
cells in real hardware. Due to the spatial nature of a MCU and
limited knowledge about the logic-level implementation, MCU
fault models are simplified and correspond to the adjacent multi-
ple bit-flips in the same register or memory array. Such MCU
simplification may lead to incorrect results since simultaneous
multiple upsets of different but physically adjacent registers
(memory arrays) are not taken into account by the model. In this
case, additional information is needed to assure the negligible
probability of such multiple upset or to simulate possible combi-
nations of bit-flips in physically adjacent registers (memory arrays)
to obtain more accurate simulation results.

The presented fault modeling is complicated when not all used
memory resources are known. The limited information about the
logic level of COTS components may lead to such absence of
knowledge. In such cases, the fault injection can be applied to the
outputs of the corresponding functional blocks (in particular,
corrupting the content of TLM transaction objects). We model
radiation-induced errors inside the user memory of Flash-based or
Anti-fuse FPGAs through the use of the Fabric Controller Model as
a FIM. SRAM-based FPGA type is not considered in this work.

In Section 5 we propose the generalized simulation approach
for the fault-tolerance analysis with SEU fault-model.

5. Proposed statistical fault-tolerance analysis

Our fault-tolerance analysis is built upon two discussed com-
ponents: an OBC model (Section 3) and a fault model (Section 4).
This section describes how to use them in a single simulation
procedure to investigate the fault-tolerance properties of an OBC.

During the instantiation of the OBC model we identify and
collect OBC memory regions used in an application (e.g. memory
ranges, list of registers, and TLM objects). They are used as the
memory address axis (Fig. 6). The second horizontal axis corre-
sponds to the time of the memory error injection. Thus, any error
injection can be characterized by its memory location and the time
of occurrence. Other dimensions are named as quality measure-
ments and represent the correctness of the OBC computation
output. For different programs the quality measurements can
be different (introduced by OBC designers): a total execution time,
the deviation of an output value from the correct result, the
final computation fault mode [20,7], etc. The quality measure-
ments allow the fault-tolerance comparison of different OBC
implementations.

For small satellites at typical orbits less than 750 km, the fault
rates are negligible in comparison with CPU execution speed (see
Table 1). As a result, one fault injection per algorithm execution is
a justified assumption that we made in this paper, in particular one
fault per an attitude control algorithm iteration.

OBC software can be divided into sub-programs that are
executed sequentially by a CPU. The sub-programs occupy mem-
ory resources (e.g. registers R0-R1, stack, RAM 0x…�0x…– see
Memory axis, Fig. 6) and the CPU execution time (see Time axis,
Fig. 6).

If there is a program flow dependency between the execution
of the previous sub-program f1 and the next sub-program f2 (e.g.
the shared data in a stack, Fig. 6), the influence of a fault that
happened during the execution of f1 on the f2 sub-program can be
investigated by the fault injection to the commonly used memory
locations just before f2 is being executed. It makes the approach
modular, scalable, and parallelizable.

The iterative simulation of the OBC is performed with one fault
injection procedure per iteration. The simulation result of each
iteration is mapped to the multidimensional space to see the
overall picture of faults’ effects. A case study of the presented
methodology is given in the next section.

6. SmartFusion SoC: case study

A model of an OBC with the SmartFusion device [3] has been
created to apply the proposed fault-tolerance analysis. The
instruction-accurate model of a Cortex-M3 CPU is obtained from
the Open-Virtual Platforms project [21] and used as a CPU
functional block. One SEU (bit-flip) per simulation iteration is
injected to the memory region where the program of an adaptive
filter is located.

The CPU executes the code of an adaptive filter used in a
satellite attitude determination and control algorithm for filtering
the measurements of solar sensors and magnetometers. The
adaptive filter during one simulation iteration calculates 30 results
for 3 axis: 90 double values in total. The chosen quality measure-
ment is the average relative deviation of 90 output values (calcu-
lated with a bit-flip introduction) from 90 correct values. The
result of the simulation is presented in Fig. 7. This figure is an
experimentally gained example of Fig. 6 as discussed in the pre-
vious section.

Fig. 7 shows that a bit-flip injection to only particular memory
locations leads to incorrect output values; colored dots represent
these cases. At the same time, a bit-flip injection to other memory
regions, e.g. the address range 0x0–0x19a, did not corrupt the
calculation output. It can be explained by the interrupt vectors
that are located there and not directly used during the performed
CPU computation. The main function code is located from the
address 0x19a where the first erroneous outputs can be observed
after SEU injection (represented by colored dots).

Table 1
Radiation sensitivity of COTS components, the worst case.

Component
type

Malfunction at TID
(krad(Si))

bit-flip rate (upset/
bit/day)

SEFI rate (event/
device/day)

DRAM 420 1.45�10�8 0.26
SRAM 20 1.27�10�4 Not observed
Flash NAND 15 1.38�10�9 0.013
Flash NOR 10–20 Tolerant 0.0013
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6.1. Hardware-based fault-tolerance technique

Since a SmartFusion SoC includes a FPGA fabric, some fault-
tolerance techniques can be implemented in the FPGA. Memory
scrubbing, based on Hamming encoding, is chosen as an example.
Since .text and .rodata sections of the filtering program are static,
they can be protected with the chosen memory scrubbing techni-
que. In total, 4.1 Kilobytes of memory are protected.

Before the program execution, the CPU sends to the FPGA
co-processor the beginning and end addresses of memory ranges
that should be protected. The co-processor encodes the data of
these ranges saving Hamming syndrome vectors. When it finishes,
the co-processor sends to the CPU a message indicating that the
CPU can continue the algorithm execution. Since the syndrome
vectors are known now, the co-processor starts scrubbing the
protected memory checking its correctness. However, the syn-
drome vectors can also be damaged by SEU; so their additional
backup version is used to check if the syndrome or the protected
region is damaged. The size of the syndrome vectors (as well as
their backup version) is 245 bytes; the codeword length for such
Hamming encoding equals 127 bits.

Since an OBC has limited hardware resources, the optimization
of the fault-tolerance technique is required. As mentioned before,
the corruptions of different memory regions have different influ-
ence on the whole program execution. A clustering algorithm can
find the most influential memory regions taking Fig. 7 as an input
data. We created the clustering algorithm that is based on the

Euclidian distances in the multidimensional space. Fig. 8 shows
the output of the clustering algorithm applied to 500 simulation
iterations (500 dots). The output presents three memory clusters:
red, blue, and green.

Fig. 6. The representation of multidimensional fault-tolerance analysis.

Fig. 7. The simulation result of the adaptive filtering computation with one SEU introduction (20,000 iterations). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

Fig. 8. Clustering algorithm output applied to 500 test cases. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this article.)
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The approach helps to group important memory regions into
clusters to be protected as continuous memory ranges with
memory encoding techniques. In the observed case study 45% of
.text and .rodata regions can be kept unprotected since their
corruption does not have such detrimental effect as other regions.
Thus, we can implement the FPGA-based scrubbing only for the
remaining 55% (Fig. 8: three clusters marked with red, blue, and
green) which also reduces the scrubbing turnaround period and
the required memory for the syndromes by half.

6.2. Software-based fault-tolerance technique

Another used fault-mitigation technique is software-based
value limitation: the absolute difference between consecutively
calculated filter outputs is restricted. Such technique catches the
abnormal behavior (spikes) as shown in Fig. 9.

As the picture presents, Kalman filter calculates three values of
satellite angular rates. When a satellite stabilizes its orientation
towards the Earth, its angular rates converges to zero as it is
happening during 0–675 s. SEU injections into the used memory
locations cause the spikes in the filter outputs, e.g. the spikes at
�676 s and �875 s as given in Fig. 9. Such spikes can be caught if
the expected output value range and the speed of its change are
known. In the case study, the output is considered to be abnormal
if its change is bigger than 10�4 rad/s relative to its value during
the previous filter iteration. If such abnormal behavior is observed,
the output value is ignored and the filter is reset. The time-
redundancy (or re-calculation) is not used here because the filter
converges fast enough to prevent the satellite mission loss.

6.3. Experimental results

The OBC has been modeled with three modifications: with the
observed FPGA-based memory scrubbing, the software-based
fault-tolerance technique, and without any fault-tolerance protec-
tion. One SEU has been injected for each OBC simulation run,
20,000 simulation iterations in total. The simulation results are
presented in Table 2. First, the results show the expected tendency:
the ratio of the simulation results with [0–10)% deviation from
the correct filter values is increasing when the fault-mitigation

techniques are used. Table A1 (see the Appendix) presents the
simulation time for different case studies.

The large number of cases where the relative deviation equals
[100–110)% can be explained by the next observation. The CPU
often raises exceptions after SEU injection, e.g. when it cannot
decode a corrupted instruction. If the exception routine is not
defined (as in the presented case), the algorithm execution stops
and the output values stay equal to zero. When the output value is
zero, its relative deviation from the correct result equals 100%. The
figures explicitly show the importance to keep the exception
handlers in the program to prevent CPU freezing.

In addition, the modeled OBC showed a strong general behavior
under a bit-flip introduction. While we cannot cover all possible
SEU injection combinations in general case (e.g. � 200;000
executed instructions on Time axis and 36,800 memory bits on
Memory axis), system fault-tolerance characteristics converge. We
conducted the same fault-injection procedure 1000, 5000, 10,000,
20,000, 30,000, and 40,000 times (one bit-flip per time). The
obtained results (such as in Table 2) converge fast and the
obtained tendency with 5000 iterations is accurate enough to
compare fault-tolerance techniques and to observe that the
absence of exception handlers negatively influences the OBC
fault-tolerance.

7. Conclusions

The paper proposes a high-level simulation approach for stat-
istical fault-tolerance analysis. The high-level SystemC-based
abstraction level allowed us to overcome the complexity of
modern heterogenous SoCs and co-simulate several functional
blocks such as CPU, FPGA-based co-processor, a central bus, and
memory storages. At the same time, the radiation effects at the
logic level had to be projected to the high level of TLM objects due
to the absence of knowledge about the logic level of used COTS
electronic components. While such projection can be precise for
SEU modeling, the modeling of multiple memory cells upset can
be inaccurate due to the absence of knowledge about the physical
circuit layout.

The simulation approach has been demonstrated on a real case
study of a satellite OBC with Microsemi SmartFusion SoC. The
performed radiation environment estimation justified the choice
of one SEU per algorithm execution as a fault model. The typical
small satellite aluminium shielding of 1.5 mm prevents the per-
manent errors in modern electronic components but fault-
tolerance techniques still have to be applied to prevent mission
failures caused by soft errors.

The case study revealed the importance of exception handling
for the OBCs: the proper exception handling may fix up to 11% of
wrong computation results. Until such simulation results have
been obtained, the satellite designers did not keep the exception
handlers that were not needed from a pure functional point of
view, which could have lead to the mission failure or to the
reduced satellite availability. In addition, the method enabled the
reduction of the scrubbing turnaround period and the required
memory resources almost by half since only 55% of the used
memory resources caused detrimental consequences in the pre-
sence of a bit-flip and had to be protected.

For the first time such modeling technique allowed us to
estimate and compare the efficiency of hardware and software
fault-tolerance techniques. Consequently, using the proposed
methodology, well-known fault detection and mitigation techni-
ques can be investigated and optimized for different applications.
In addition, our methodology can reveal critical fault-tolerance
design drawbacks at early development stages.

Satellite Orientation Stabilization

Fig. 9. Kalman filter behavior with two bit-flip introductions at �675 and �875 s.

Table 2
System fault-tolerance with and without fault-mitigation techniques.

Output relative deviation from
the correct results (%)

Ratio of iterations with such deviation
(20,000 iterations)

Without
protection (%)

SW
limitation (%)

FPGA-based
scrubbing (%)

[0–10) 82.81 84.58 88.60
[10–20) 2.36 1.76 1.45
[20–30) 0.57 0.27 0.21
[100–110) 11.31 11.75 7.93
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Appendix A. Simulation time

All simulations have been conducted on a PC with an Intel Core
i5-2430 M and 4 GB of DDR3 memory.
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Table A1
Simulation time of the case studies.

Case study (one run) Number of instructions User time (s) System time (s) Elapsed time (s)

Fibonacci sequence calculation (15 elements) 28,912 0.25 0.01 0.26
Fibonacci sequence calculation with watchdog 28,940 0.26 0.01 0.27
JPEG image compression (432�288 pixels) 22,079,255 185.93 0.09 186.89
JPEG image compression with memory scrubbing 22,079,255 225.90 0.10 226.99
Kalman filtering 120,504 1.56 0.04 1.67
Adaptive filtering 105,515 0.79 0.01 0.83
Adaptive filtering with memory scrubbing (Hamming encoding) 199,195 2.36 0.01 2.47
Adaptive filtering with software fault-tolerance technique 123,442 1.26 0.01 1.28
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