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Abstract

We consider the problem of computing the inverse of a large classof infinite systemsof
linearequatons,which are descrbed by afinite setof dat. Theclassconssts of equatonsin
which the linearoperabr is represerdd by a discret time-varying dynamcal sysemwhose
local state spaceis of finite dimenson at eachtime point k, and which reducesto time in-
variantsysemsfor time points k — +oo. In this gereralization of classicalmatrix inversion
theoly, innerouter facbrizaions of opemtors play the role that QR-facrizaion plays in
classcal linear algebra.Numercally, they leadto so-caled ‘squareroot implemengations,
for which atracive agorithms can be derived, which do not require the determinaion of
spurious multiple eigenvalues, aswould be the caseif the problemwas convertedto adiscrete
time Riccat equaton by squarng. We give an overview of the theoryandthe derivation of
the main algorithms. The theory contins both the standardLTI caseandthe caseof afinite
setof linearequatonsasspecal instancesa paricularly instanceof which iscaled ‘ matices
of low Hanlkel rank’, recenty sometmescaled ‘quasiseparald matrices’. However, in the
generakaseconstderedhere,nev phenomenaccurwhich are notobsered in theseclasscal
casesnamey the occurrencenf ‘defect spaces’ We descrbe theseandgive an algorithm to
compue themaswell. In all casesthe algorithms given are linearin the amountof da@.
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1. Introduction

The problem of computng the inverse of an infinite system of linearequatons
canbe tackledattractvely with (low compleity) numericalmethodsf the param-
etersthatdesribe the system satidy certainbroadfinitenes congrains A particu-
larly interestig caseis whenthe finite setof dataconsists of a ‘ staterealization’ of
the systemof equations akin to a state-scerepresemation of atime-varying linear
dynamicalsystem.

Let the operatorT repregnta linearmapmapping a (possibly infinite) sequence
of vectorsu = [u;]2__ to a(possibly infinite) sequencef vecorsy = [yx 172

—00
y=uT.

Eachu; (yx) isavecor belongingto afinite dimensonalvecbr spaceof dimenson
m; (repectively n;). Thee dimensonsmayvary andeven vanidh, in which cae the
entrysimply disappearsit is replacedby a ‘placeholder(*-’ — with the convertion
that the productof a matix of dimensonsm x 0 with oneof dimensons0 x n isa
matix of dimensonsm x n consisting of zercs). This formalismhas the advantage
thatit includesfinite systensof linearequations, but alsoregularlineartimeinvariart
systemsasspecialcages T hasamatrix represetation 7 = [7; ] with T; x a matrix
of dimensonm; x ng. If @l inputentiesu, = 0 exceptu;, thenthe outputy is such
that yx = u; T; k. In the sequelwe shall assumethat T is boundedasan operabr on
£2 sequencesi.e.that

ITl= sw [uT]2 < o0
lullz=1

for ||ull2 = \/Z?i_oo [l ||§ with ||u; ||2 the standardEuclideannorm(andfor y lik e-
wise). We assume furthermorethat T is locally finite, that is, it possessesa time-
varying state-s@cerepresetation. If T is block-uppertrianguhbr (i.e.if 7; x = O for
i > k), thenthatmeangthatthereexist matrices{Ax, By, Ci, Dy} for eachk, such
that

Ty x = Dg,

Tix = BiAit1---Ar—1Cr  (fori < k).

Underlying this represemation, thereis atime-varying ‘ systemrealizatior' that pro-
ducesheoperatofT viathe‘l ocal state equatons

Xk+1=xX} Ak + ug Bk,
Yk =xkCx + ug Dy.

Thedimensions of all the matricesin the realization must of coursebe compatible. If
[bx] isthe sequencef dimensonsof the x;'s (the state), thenthe dimensonsof Ay,
By, Cx, and Dy areregectvely by x br+1, mg x bgy1, bx x np andmy x ni. We
shall alsoassune thatthe realization for T is uniformly exponentally stable (ueg in
the classical sense for lineartime varying systems i.e.thatthereareuniform bounds
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onthe normsof the matricesAy, Bx, Cx and Dy, andthatthereexists arealnumber
o with 0 < p < 1 suchthat aso uniformly over k,

lim swp | Agi1--- Agll < p*F.

{—o00
Thes conditionsmake T automaticallya boundedperatoon ¢, sequences
In the case that T hasboth upperandlower parts we shall assume that also its

lower parthasa uesrealization,i.e. thereexist matrices{A;, B;, C,} such thatfor
i >k,

Tik = BiA;_1 - A1 Crs
correpondngto a(backward)realzaion

Xp_a=x{A} +u} B},

ne=xCp

andsatisfying the boundednesrequremensfor ues

It is notationally convenient to collect the local realization operatars in global
‘diagonal’ operatorsConnectedo the series[ Ax ] we definethe operabr A as

A1

A

inwhich wedistinguishthe (0, 0)th elementby boxingit. Likewisefor B, CandD. If,
morewer, we introducethe ‘causal shift’ Z by therule[---, u_1, , uy,--1Z =

[---, , ug, u1, - - -] andby Z* the inverse backward shift, then T will have the
represetation

T=BZ*(1-AZ1C'+D+BzU-AZ)"IC (1)

in termsof its realization.The propertyof uniform exponentialstability asuresthe
existerce of the inverseof I — AZ asanupperoperatorand/ — A’Z* asalower
operator
In this paper, we assume thata systemrepresemationisgiven Thealgorithmswill

al leadto systemrepregntationslt is rathereay to find arealizationfor T, either
fromthestructureof the problemthatleadgo T itself, from standard realization theo-
ry or from approxmaingtheoperabrwith alow compkxity realzaion, minimizing
aHanlkel normdoing so. We referto therecentlypublishedbook[12] for extensve
informationandexamples Very attractve cagsarestructuredmatrices e.g. banded
matrices,their inverses;Toefitz matrices,matricesthatare’ closeto Toegitz’, prod-
uctsand sums of those. In this paper, we shall esgecially beinterestedn theinversian
of systemsfor whichtherepregntatonfor Tbecome&TI for k — +oo. Inthatcas,
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T is repregntedby afinite amountof data,althoughit is anoperatoron spaceswith
infinite dimensons. Thereareothercases e.g. whenthe variationfor k — +oo is
of the‘low-displacementype’, but those are beyondthe preentpaperAlthoughwe
shall not make specfic provisionsfor the cae wherethe system is periodic at its
extremities thatcasas coveredin principle by the theory presened, sinceaperiodic
systemcanbe conwertedto anLTI-system, by concaénatng a compkte period, or,
if possible, by appling a Fréchettrangormaton (pracicaly speaking, however, a
lot of additionalmileagecanbe obtainedfrom the periodicity [6,20]).

Themethodhatwe preenthassomekinship with theclassical‘ QR-factorization’
methodfor matrices in which Q is an orthogonalor unitary matix, andR is an
uppermatrix with somespecialinvertibility propertiesThe (non-finite)subgitute of
aunitary matrix in our theary is calledaninneroperabr. Isometic and co-isometic
operatarswill playanimportart roleaswell. If T is anoperatar, thenits adoint 7* is
definede.g.viathepropery [T*]; x = T;;, in which the latteris the usual hermitian
conjugae of a matix. Theoperaor U is isometric if UU* = I andco-isometic if
U*U = I (thatis for applicationto operandsittheleft sideof theoperatoindicated
by‘.U"). Itisinnerif it isupperisometic andco-isometric.An inneroperatomwhich
is uesand locally finite hasaunitary staterealization, i.e. astaterealization for which
the transition matrices

A Ck
5]
arethemelvesunitary Theconwers is also true,namelythata uesunitaryrealiza-
tion represes aninner matrix. The qualification ‘ues’ in the statenent isimportart:
arealzaion which is unitary but not uesdoesnot necesarily leadto aninnerop-
eratordueto the probableexistenceof a defectspace,see the discusion andthe
computatiorof the defectspacein Section5.

Equivalence Two upperrealizations{ Ay, Bx, Cx, D¢} and{Ag, B, Cx, Dy} are
strictly or Lyapunor equivalentif thereexists a uniformly boundedsequenceof in-
vertible square matrices { R} such thatthe {Rk_l} are uniformly boundedaswell,
and such that Ak = Rk_lAkRk_,_l, ék = Bi Ri+1, ék = Rk_le and bk = Dy (the
callection of {R;}'sis calleda Lyapunw statetrangormation).In otherwords an
equialentrealzaionis givenby the quadrupé

|:Rk_lAkRk+1 Rk_lck] -
By Ri+1 Dy

A realization isminimal if the dimersion of all Ax’sis assmall aspossible.Minimal
realizationscanalways be foundthrougheithera minimal realizationprocedure pr
areducton of an existing one[12]. A reaization isin inputnormal formif all the
pairs || areco-isometric. It is in output normal form if all the pairs[A; Cx] are
isometric. It is an interestig question, in general, whether a given realization can
bebroughtto input, repectvely, outputnormalform througha strict equivalengy. If
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onestartsoutfrom auesrealzaion {A, B, C, D}, thentheansveris asfollows. Let
{M}} bethe boundedsolution of thecollection of Lyapunow—Stein equatons

My41 = AZM](A]{ + B;:Bk.

Theclassical Lyapunov—Stein theoremstatesthatthes equatonswill indeechave a
unigueboundedsolution givenby the (fixed point) seriesexpanson

o0

My = Z (A 1 Af_ 1B iBx—iAk—is1- - Ak-1)

i=1
whenthe collection {Ax} is ues(theremaybe mary unboundedolutionsbut those
arenot intereging in the preentconext). The boundedsolution will of cours be
pogtive semidefinite as can be seenfrom the series expanson. If the solution is
actually uniformly positive definite, i.e. if thereexistsa positive € sothatfor all k,
M > €l, thenwe call the system strictly reachable and an adequate setof state
trangormationmatrices{ Ry} canbederived from M; = R,:*R,:l. Thecorrepond-
ing strictly ecuivalent realization {Ay, Bi, Cx, D¢} will be both uesandin input
normalform. The M; obtainedin the procedurehave animpori@ant physcal inter-
pretation,they form the Gramiansof the reachabilityoperatorsat eachtime point,
of the system underconsderaton. The ca® for the output normalform is duat the
observability Gramiars are given by the backward equations:

Np_1 = AkaAz + CkC;:.

If the { Ny} form astrict transformation, thenthe systemis strictly observable andthe
resuting statetransformation to bring the systemin output normal form is defined
by Ny = Rk—i—lR:_,_l-

The casefor the lower partis similar, the statetrarnsformation then is givenby

[@;( é,@} _ [Rk_lA/RkH R,;lc/]
B, 0 B, Rit1 0

andthetrangormaiton to inputandoutputnormalform aresimilar as before, mutatis
mutands.

The solution method Starting out from an operatar givenin the form of (1), we
wish to compuetheinverse T~1 of T, or, if T is not invertible, its Moore-Pemose
pseudonverse, 7T, which gives theminimal normsolution for inf,ce, |y —uTl2as
u = yT't. Our method consistsin the following steys:

1. First we convertthe generalupperlower) operabr to the upperform, usng a
minimalinneroperadr U choensuchthatUT is upper Thiswill conwert (1) to the
form

T=D+BZ(I - AZ)"C, (2)

in which the realizatian is minimal, and T is boundedThis step is equivalentto the
classicalQR-factaization step.

2.Tintheform (2)isnotnecesarily upperinvertibleor doesnotnecesarily have
anupperMoore—Renro® pseudoinvere—this providesfor the addednteres of the
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inversion problem consderedhere.The next, and cental part of the strategy then
conssts in a system theoretcal equivalent of the URV-factorizationof numerical
linear algebra.We shall show how T canbefactoredasT = V;T,V,, in which V,
is co-isometric (V,V, = 1), V, isisometric (V, V' = I) and T, is ‘outer’, i.e. it is
causlly invertible in a sen% to be madeprecse (although7, will be well defined,
it will not necesarily be boundedy invertible, but it will be invertible in a weaker
serse—seeSection 7 on the relation between'outerness’ and ‘invertibility ’). The
Moore—Renro® pseudo-inversefor T thenfollows as

Tt =vr 1Tty

ard it will satisfy the minimality requirement for the sane reasm as in the al-

gebraicca® (we have: ||y — uT|3 = |y — uVeT,Vill5 =y — VFVo) + YV —

uViT)Vie |5 =y = VV)I5 + I3V, — uVeT,)V,||5. Thefirst term cannotbe
influencedby u, while the secand will be zeroif u = yV*T, 1V} wheneerdefined,
i.e.on adensesubset. Minimality of thisu is easly edablished).Theproceduregyoes
in two sub-deps First we compue a so-called left outeinnerfacorizaton of T:

T =T,/V,, inwhich V, is causl isometric (hencenot necesarily inner),and 7,;,

is left invertible, thereis an acceptableausl operator7, such that7,;7,, = I (as
alreadymentionedbefore,it may occurthat 7,, doesnot have a boundedcausl

left inverse, but only one that can be approxmated with a sequenceof bounded
operaors but thatisinherento the situation). It turnsoutthat 7, is VI when T is—

thisfollows immediatelyfrom its state-pacerealizationwhich we derive furtheron.

Next, we facor, in adualway: 7,, = V,; T, to yield thedesred overall factorization.
We shall derive state-pacerealizationsfor the factors The state-pacerealizations
for the inverses thenfollow immediately V* and V;* areanticaual and have real-
izations which are the Hermitian conjugates of those for V, and V,, repectiely,

while for TO_l it is given in termsof the realization {A,x, Bok, Cox, Dox} Of T, @s
{Aok — Cox D} Bok, =D Bor, Cor DY, DY, inwhich D,y is invertiblebecaus

of the outernes assumption. In otherwords the state complexity of theinversis of

the sameorder asthe statecomplexity of the original.

3. However, thereis more.As in the classical cag, we may wantto extendthe
operatorsV, andV, so that they becomeunitary, and (try to) congruct the ‘row-
nullspace’andthe ‘column-nullgpace’for T. In doing so, we shal encoungr new
phenomenan contras to the clasical algebraiccase, the operatorsV, andV, may
besuchthatthey cannotbe extendedto causl unitary operaors, althoughtheir real
izationscanindeedbe extendedo unitary. Whenthathappensthereis anadditional
nullspacewhich we call a ‘defect space’. We shall show how a bass for it canbe
computed yielding a complete sdution to the inversion problem

Minimal state-pacerealizationdor the operatorsencountere@readvantageous
notonly becausthey allow usto findinverses of systemswith aninfinite numberof
equationsusng afinite numberof computationsbut also becaus they areeconom-
ical, even for finite systemsof equatons whenthe dimenson of the state-paceis
small. Calcuations on finite matricesform a special simplified caseof the theory
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preentedhere. When such matriceshave scalar entries (which is not necesary
for the theoryto go through) and can be repreenied by a low order mode| say
maximized by b, then matrix—vecta multiplication becanesof O(nb) (if n is the
dimension of the matrix), while inversion goeswith a complexity of atmostO(nb?),
althoughthis figurecanbereducedf a properrepregntationof the original system
is choo®n. The ideaof using time varying system theory for the purpo® of ma-
nipulating matricesis probaby dueto the work of the autorsin the late 1980s in
conjuncionwith AlpayandDym, as exemplifiedin the paperq1,2,11,13,14,3434].
A comprehenise treatmentis the subject of the thess [29]. Of cours, therewere
forerunners We menton the extenson theory for generalpostive definite band
maticesbasd on a generailzaion of the Levinson and Schur algorithms to the
time-varyingcas[7,8,15]andthetreatmentf a(redricted)class of matriceghatde-
compogin asum of adiagonalmatix, an upperandalower matix whosrows are
partial multiples of eachother called‘semisemralde matrices’by the authors [17].
However, thes publicaionsdo not use the generaltime-varying state-pacemodel
for matrices Thefirst publicationto doso seemgo be[14], which solvestheminimal
Hanlel normapproxmaiton problemfor generaimatices Thefirst comprehense
publication settling the inversion problem for time-varying systemsand matrices
de<ribedby a time-varying state-gpaceformalism seemsto be[30], whos method
we adoptandextendhere Recentlyin[16] anew term‘quasseparablenatrices was
introducedto indicatematriceswhose lower andupperpartsadmitrepregntations
astime-varying systens. This classof matricesis of course idertical to the class
of ‘matriceswith low Hankel rank’ consderedin [12,34],andthe referencegiven
earlier The authors of [16] give same invertibility thearems for a sub-classof such
matricesbagdondeterminantalheory They follow anotherapproachhanthe URV
approactwe follow here,andwhich hasaninteres inits own right, but whose scope
is moreredricted.

As announcedwe concentate our efforts on the inversion of systemswhich be-
comelLTIl for k — +o00, aca® whichwe shall call ‘the IVI ca®’ (a specialinstant
of whicharejust finite matrices. If thereisindeedanon-trvial LTI partat+oo, then
it will turn out that we mug find the innerouter facorizaion of an LTI-system in
state-gpaceform. During the redacton of this paperit was broughtto our attention
that the innerouterfactorizationof rational LTI systemswas recentlyconsdered
by Oara and Varga[26]. The® auhorsuse a method basd on the deerminaion of
eigemaluesof a relatedpencil characterisc for the zerosof the system, followed
by a regular spectralfactorizationof a reducedsystem via the solution of aregular
RiccatiequationThey facetheproblemof theremoval of boundaryzeroswhichthey
addres by whatthey call ‘a recentlydewelopedtechniqueof pole dislocation’. The
procedure presetied by theseauhors parallelsto a certainextent the presemation
in this paper althoughit doesnot make use of the squareroot form. Althoughtheir
approachseemsto yield goodreailts, it strikes us asunnecesarily complex (we
believe thattoo mary dislocationsareperformedwhich mug have a negative effect
ontheoverall performance).
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In the presentpaperwe ende&our to preentdirectinnerouterfactorizational-
gorithmsbased on the square-rooequaton which reaults direcly from the tranda-
tion of theinnerouterfactorizationto state-paceterms Asin the pencilapproach,
we areforcedto consder a numberof cages Thereis a dichotomybetweencases
which leadto a redricted eigenvalue problem(Cases| and Il), and cases which
leadto a completionproblem (Caseslll andlV). It turnsout thatin the first two
caesonly a simple direct eigemalue problem needsto be solved, no conwerson
to a spectralfactorizationis neededat all. In Cases Ill andIV we are also forced
to consder possible zeroson the boundaryseparatly, but we believe that we can
do thatin an elementaryclassical way (pole andzerodislocationtechniquesvere
dewelopedn the1960sandmug by now be consderedasstandardsystemtheoretical
techngues—we give thebasc algorithm in appendk). Oncethe disocaton of zeros
on the boundaryis done,a regular reducedspectralfactorizationproblemremains
which canbe sdvedin aclassicalway. But herealso, the square root equation yields
anattractve alternatve and just asclassical route.lt reaultsin adoublingalgorithm
which is capabé of quick convergenceThis methodis well known from Kalman
filtering theoryandhasbeenpioneeredy Kailath andhis studens, we reproducet
herefor the sake of complktenes (see thereference$urtheronin the text).

All in all, it turnsout thatinnerouterfactorizationcan indeedbe solved gen-
erally, for LTI and IVI ca®s using attractve, stable and elementaryalgorithms
which needno recoure to potentiallyill-conditioned eigemalue determinatioron
the Hamiltonianmatrix.

2. From general to upper operator

Thefirst stepin the algorithmic treatmenbf the generaloperatorT is the conver-
sionof itslower partto upper Thegoalisto compuean inneroperabr U sothatUT
is upper We summarizethebasc reault from [12].

Theorem1. Suppos that T hasthe realization (1) and that the pair {A’, B’} is
strictly reachable, thenthere exist inneroperators U such thatUT isupper A U with
minimal state dimersion has a redization givenby

[Ri *A{Ripal* By Reval®
e
in which M = Rk‘*Rk‘l, {M}} is the solution of the collecion of Lyapunw—Sein
equatons
Mi_1 = AF My A} + B*B]
and C/, and D/, are matricesderived from the isometiies [[Rk_lA;{RkH]* [B;

Rr+1]*] by an orthogonalcompktion procedue which makes the compktedmatrix
at stage k unitary.
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The derivation of the upperform is eay and goesas follows. An equivalent,
non-untary realzaton for U is

A B}
CiRe Dl
If we compue UT by brute force (dropping the indicesk for ea® of compugton),
ard utilize the identity

(I — ZA™)"1zZB*B'72*(I — A’Z*)~1C’
= —ZA M+ MU - AZ A Z*
with M definedabove, we obtain
-1 -1

UT = [D*+CFR*Z(I — A*Z)1B™] . [B'(I — z*A)"1z*C’

+D+ BZ(I — AZ)"1(C]
= CR™IC'+ DD + C}R*Z(I — A*Z)"[A*MC' + B D]

+DFBZ(I — AZ)XC + CI*R*2(I — A*2)"1B*BZ(I — AZ)1C.

Thistrander operabr expresion correpondsto the reaizaion:

R N A/* B/*B A/*Mc/ + B/*D
[g IC)} 2| 0 A c
C,R* DJB | CRC'+DJR

TheLyapunw—Stein equaton hasthe appearancef arecursve equaton. However,
if the systemis locally LTI (e.g for k — 400), thenthe equaton canbe madenon-
recusive,and thetimeinvariart or ‘ algebraic’ sdution, in which My, _1 = M} should
be used. It is worth observing that the propery ‘the system is LTI for k — 400’
is preerved underthe trangormaion T +— UT. This cae we shall call ‘the VI
ca®’ henceforthWe see als thatall the calculationsare purelylocal, in the cas
of finite matriceswith scalarentries the upperform canbe computedin at mod
O(nb?) calculationswheren is the dimension of the matrix and b an upperbound
on the size of the state space.If careis exercised to make the realizationsalge-
braically minimal (see[12, Chapter 14]), then the complexity can be reducedto
O(nb).

The strict reaclahlity assumption canalways be satisfiedin the IVl case.To see
that, it sufficesto choo® a minimal realizationat eachtime point. The reachability
operatorwill thenautomaticallybe strictly postive definite, becaus limy_, .o Mk
becomes squarenon-sngularmatix andlikewise for (thedifferent) limy_, _o, M.
As a global operabr, M will then be boundedy invertible, since the inverse
is given by a diagonalmatix conssting of the local inverses {Mk_l} and hence
will bebounded.
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3. Outer—inner factori zation

The computtion of theleft-innerouter factorization. We are now given T upper
in minimal state-paceform (2). We wish to find 7,,, andV suchthat7 = 7,,V, V
is upperisometic and7,; is left outer. The bags for the algorithm is given by the
following theorem

Theorem2. Let for each k, W, be a unitary matrix, and Y; a uniformly bounded
sequencef matriceswhich satisfy thefollowing equalities(for all k):

ArYierr Cr| 0 Yr Cu
|:BkYk+l Dk:|_|:0 0 Dolwk’ 3)

andwhich are such that
(1) Y is suwchthat ker(Yx-) = 0 andhasmaxmal dimenson, and
(2) ker(Dyi-) = 0.

Let
Byr Dy
Wi = | Avik  Cyk
Byr Dy

be a conformd decamposition of Wy. Then {A vy, By, Cvi, Dyi$ an isometric
realization for V, {Ax, B, Cor, Do} IS a redization for T,, and {Av, Bvk, Cyk,
Dy} is aredization for a(maximd) causl isometic operator for which TU* = 0.

Proof (Sketch). Theproofof thetheoremsgivenin [12]. It isbasd ontheBeurling—
Lax theorem(first provenin this context in [29]) anda system theoretcal interpre-
tation of the operatar Y = diag Y] in termsof basesfor the observahlity spaces
of TandV. If (I — Ay Z)is invertible, then Eq. (3) caneasilybe obtainedfrom a
state-paceexpansonof 7, = TV*:
D,+BZ(I — AZ)"tc,
=D+ BZ(I — AZ)"CI[D} + C(I — Z*A%) 12" B} (4)

and the application of the following basicmixed partial factaization lemma.

Lemmal. SupposthatU is a unitary operator, and A; and A, are contractive
operatorssuch thatthe spectal radiusof either A1U or AoU (or both) is lessthan 1,
(I — ALU)and(I — AoU) areboundedyinvettible. LetI" beanothemwisearbitrary
operator of appropriate dimensons Then
(I — AU — u*A3)~1
= - AU M - M+ MU -U* A5
= (I — AiU) A UM + M + MU*AS(I — U* A% ™2, (5)
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in which M is the unique boundedsolution of the (gereralized) Lyapuno—Sein
equaton

M — AJUMU*AS =T. (6)

The proof of the lemmais immedate, by pre- and post-multiplication with the
invertible operators (I — A1U) and(I — U*A%). A closedform expresionfor M is
givenby the conwergingsummaton

(0.¢)
M = (AT Ayt
k=0
Expanson of thequadraitc term in (4) andequaing memberdeadso

AYern  Ce|[Ay, By |_[0 Y Co
BiYiy1 Dy C;k D"{,k O O Dy’

Completion of the secondfacir to unitary andinverson produceg3). Thediagonal
matrix Y satisfies the Lyapunw—Stein equaton

Y, = CkCT/k + AkYk—i—lA)‘\(/k-

The proof of the theoremproceeddy showing that (3) is indeedsolvable and
producesa boundedY = diagY, and that the kernel and maxmality requiremens
onY andD, indeedproduceanouterfactor7,. [

Eq. (3) indeedgives an algorithm which is capabé to compue Wy, Y, Cox and
D, fromthe knowledgeof Y;1 andtheoriginal syssemmatrices{ A, By, Cr, Dy }.
In fact, W, is ageneralizequnitary) Jacobitrangormationwhich brings

AYiy1 G
BrYri1  Dg

to block upperechebn form, taking careof trivial zerocolumnsin the proces. For
self-containmentof this paperthe elementary algorithm is givenin Appendk B. It
asumesthatfor somelarge,postivevaue of k, Yx+1 isknown. Thiswill bethecas
if the systemis LTI for large k, but otherinstancesareconcevable, e.g.the system
is of finite displacementank,or it is almog periodicfor largek. Theeinstancesare
guite intereging but beyondthe scopeof this paper

Eq. (3) canbe squaredto eliminate Wy by right multiplication with its complex
conjugateandthis leadsto arecursve Riccati equationin My = Y, Y;* (the connec-
tion of innerouterfactorizationand Riccati equationss classical, see e.g.[3], for
treatment®f thetime-varyingcas, see[18,29]),

My =AMy 1AL + CrCyf
—[AxMi 1B + Cy DDy Df + BiMy41B7)"
x[DrC{ + BxMi+1A%]. (7)
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Onemay be temptedto solve the Riccati equationto solve the outerinnerfac-
torization problem, but that leads to greatdifficulties asis amgdy documenrted in
the literature [22]. It is dready not advisaldle numerically to square an equation to
sdveit, and the discretetime Riccatiequation hassamenasty propertiesin addition.
We shall thus endeaour to solve what we shal henceforh cal the ‘squareroot
equatons (following the terminology of [24]). We do it for the time invariantcas
in the next secion, andthengenerailze to the cae wherethe system isonly LTI for
k — 4o0. Inthelattercasethe LTI theay form the essettial startirg point.
Thekernelconditionsmentionedn the theoremarenecesary for the following
rea®ns
(1) The maximality conditionon Y; only makessense if at the same time onere-
quiresthatker(Yx-) = 0. In that cas the column dimenson of Y correponds
to the dimersion of a minimal realization for V. In fact,Y so definedhasanice
interpretatian as the ‘angle operata’ betweenthe observahlity spacesof V and
T, see[12] for further details. Interesingly enough,this dimenson canhave a
valuerangngfrom zeroto the dimenson of the state spaceof T. Whenit is zero,
Yk justdisappeas.

(2) The kernel condition on D, is certairly necessaryT,, could not possibly be
left-outer if any D, would not have a left inverse.That the condition is aso
sufficient is the subjectmatterof thetheorem.

4. Outer—inner factorizationinthelLTIl-case

Now we turn to the algebrac, i.e. non-recurgve or fixed point version of the
squarerootequaion (3), to beusedfor the LTI left-outerinnerfacorizaion 7(z) =
T,e(z)v(z), iInwhich T, (z)is left-outerand v(z) causl isometric.Let{A, B, C, D}
be a minimal realization for T'(z). Thenone hasto solve the algebrac (i.e. non-
recursve or fixed point) verson of (3), i.e.the setof equatons

A C|[y _Jo v ¢

o)l =l o 5w ®
for a'Y of maximaldimenson suchthatkerY-) = 0, a D,, such thatker(Dg-) =0
anda W thatis unitary, in fact

B, Dy
W=[A, G
B, D,

isswchthat{A,, B,, C,, D, } definesanisometricrealizationof v(z), while {A,, B,
C,, D,} definesanisometricrealizationfor u(z), whichis suchthat

v(z)
u(z)
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isinner,and T'(z)u*(z) = 0.u(z) definestheorthogonakcompkemenaryrangespace
of v(z), whichin this caseturns out to have a basiswhich is analytic in the unit disc.
Finally, aminimal realizationfor 7,, isgivenby {A, B, C,, D,}. The existerceof all
thes matriceshasbeenshown alongtime agoin complex functiontheory, for avery
attractve treatmentsee [19], our purpo® hereis to derive an economicalsolution
to the ‘LTI squareroot equaions (8). The zerosof T'(z) play an esential role at
leag in part of the treatment{Cases| and Il). They canbe studiedvia the Smith—
McMillan form, or directly via appropriateHankel matricesconnectedo Laurent
seriesexpansonsin the relevantpoint of the complex plane,see [35] wherealso the
enslingfactorizatiortheoryis dewelopedWe recallsomefacts Let sup, (rank(7'(z))
becalled the ‘normalrankof T, it is the normal rark of the Smth—McMillan form.
T (z) will have that rank almog everywhere Points of exceptonsare points where
oneor moreof the minimal facbrsof T have a zero.Such points are caled ‘ zero$
of T'(z) (they may be polesaswell, whensome otherminimal factorhasa pole at
thatpoint). The Smith—McMillan theorydefinespolesandzerosproperly exceptin
the point z = oo, which plays a specialrole in the theory becaweof its utilization
of unimodularmatrices—if it is of interes, it canbe displacedto some otherpoint
in thecomple planethrougha bilinear trangormation,but we shall avoid having to
work ‘at infinity’ in this paper we shall solely be concernedvith zerosin the open
unit disc of the complex plane,where7(z) doesnot have ary polesby definition.
In the theoryto follow, ananomalycanoccurif T doesnot have normalrankatthe
point z = 0, for which we have to make the provision explainedin the following
paragraph.

If 7(0) doesnot have normalrank, then it canbe broughtto the generc cae
whereit does througha simple bilineartrangormationon thevariablez Let a bea
pointin the complex planeC suchthat|a| < 1, andlet

A a—z
Tl(Z)=T<l_C_lZ>.

ThenT; hasthe new reaization:

Ar=(@al — A —aA)™L,

Bi=—+/1—|a?2B(I —aA)"%,
=/1—|al(I —aA)"1C,

D1=D + Ba(I — aA)™1C (= T()).

If ais cho®nasa pointin the openunit disc whereT (a) hasnormalrank, then
T1(z) will have normalrank at z = 0. Propertes like outernes andinnernes are
preerved underthis bilinear trangormation—awell-known factfrom Hardy space
theory Alternatvely, and preferably the zero at z = 0 can be factoredout as an
innerfacor usng thetechnguede<xribedin Appendk C. For brevity, we skip this
techncal point.
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Generc cae: T(0) = D hasnormal rank Let {A, B, C, D}beaminimal real-
izationfor T, and let

D = [u1 uz) [‘é 8] [zﬂ 9)

with d squareinvertible, u = [u1 u2] andv = [v1 v2] unitary (an SV D would do but
is notreally neededjust orthonormabases for kernelsandrangesof D andD*). Let
T'(z) 2u*T (2)v. Let B = u* Bandy = Cv. Thena minimal realizationfor 7" is
givenby

{A, [gj 1yl [‘é g]} (10)

in which 8 andy have beenpartitioned accading to the sub-division of u andv. Let
AL A — pd 1.

Lemma?2. 7’(0) will havenormalrankiff S2(I — 4z)~1y, = 0.

A proof of thelemmais givenbelonv under'Cas IV'. Theconditiongivenin the
lemmamay serve as a ted to determinewhether? (z) satisfiesthe conditionitself,
els onecanapply the bilinear trangormationof the previousparagraphlt should
be clear that an outerinner factorizationfor 7’ will produceonefor T and vice
versa (see furtherfor the precise formulag. We assume from now on that T is in the
normalzedform of (10) andthatit hasnormalrankatz = 0.

The treatmentof the innerouterfactorizationwill differ greatly accordingto
whether 8, disappearsor y», or both. Thelast cas corregpondsto D beingsquare,
non-sngularandcanbe solvedin a particularly smple way, involving only a parial
eigervalue decanposition of the matrix 4 = A — CD~1B ard the sdution of a
Lyapuna—Steinequation.No recurson is needednor is it necesary to conwertto
aRiccatiequationTheprocedureanbeextendedn aratherstraightfornardway to
thecas wherey, isempty, but not 2.

Thenext cag, y2 notempy, 2 notpreent, is fundamendlly different It corre-
spondsto the determinaion of a ‘rangefuncton’—awell-known problematc ques
tion in classicalHardy spacetheay. The stardard way to tacKe it is to construct
a correpondingRiccati equationand thento solve the latter usng an eigenalue
decamposition of a pencil constructed on an Hamiltonian matrix derived from the
dat[22]. Theproblemwith thatapproachsthatthe methodrequresthenumercaly
unstable determiration of intrinsically multiple eigenvalueson the unit circle. Dif-
ferentapproachearepossible. Onecongstsinfirst reducngthe problemto aregular
Riccatiequationwhich thencanbe solvedin a classical, stableway. Thereduction
conssts in the determinaton of the eigensructure of the zerosof 7'(z) on the unit
circle followed by a polynomial extraction. This step canbe donein an as stable
way as possible, the multiplicity of the eigenwaluesis not doubledaswould be the
ca® if onewould work on the original dat. An alternaive approachwas proposd
by Kailath e.a.as a squareroot algorithm to solve the Kalman filtering problem
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[21]. This recursve solution has an interestingconnectionwith the Szeg6 theory
of orthonormalpolynomials on the unit circle. Althoughthe theoryis clasical, we
give the recursve solution and its doubing verson as the preferredmetod both
from a numericalpoint of view andbecaus it solves the squareroot equationsn a
rea®nablydirectway.

Finally, Cas IV isthegenerakas, which combinesthe previousca®sin area-
sonablydirectway. It may seemallittle conwlutedto distinguish all thes different
ca®s buttherearevery goodnumericabndmathematicatea®nsto do so. We shall
gointo thes in thediscussion at the end of the paper

4.1. Casel: The square non-sngular case

Weassunethat7 (z) = D 4+ Bz(I — Az)~1C is minimal with D squareandnon-
singular Sincethe Y soughtis suchthatker(Y-) = 0, we canalways expresit as

r=v[g].

in which o is squarenon-sngular andV unitary, e.g.by an R Q-factorizationor an
SVD.

Propostion 1. Letd = A — CD~1B andlet Y beexpressed as

~f;

with o square andnon-sngular andV unitary. Let moreover

VEAY & [511 512] _

821 022
ThenY will be a solution of (8) with ker(Y-) = Oiff
(@) 821 =0;
(b) 811 isinvertible and has its eigervaluesstrictly outside the unit disc of the com-
plex plane

(c) M £ o~*0~1 isthe uniquenon-sngular solution of the Lyapuno/—Sein equa-
tion

M = "B + 657 My}
in which 8 = D—le[ng].
The solution will be maximd if §11 continsall the eigenvaluesof 4 which are lo-
catedoutsidethe openunit disc (multiplicitiescounted.

Proof. Wefirstestattish necessityi.e.we assune the solution Y given).
Since D is asumed squareinvertible, we canwrite down a block upperlower
factorization
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I R [ | v

in which 42 A — C D™1B is the celebratedSchurcomplemenbf D in the realiza-
tion matrix. Hence (8) canbe rewrittenas

[ A 1Y 1.+« _[I —-CcD7Y][0 Y G,
B D|| I_W_[ 1 Ho 0 Do] (11)
Looking at the secondblock columnof this equaton, we find
4 O]y ] Wﬁ‘l} [Y]
= (12)
B D|| ] [Wﬁ‘z 0
andhence

It follows that W21 must be invertible, sinceit is square by definition (W21 = A,)
andW;x = 0= Yx = 0= x = 0by thekernelhypohessonY. Hence

AY = YW,
andsinceY hasthe left (Moore—Renro)inverse Y1 = [0~ O]V*,
Wy =rTay,
=[o~1 0]v*4v [‘8]
=0_1811a,

and we have that 811 Is invertible with W»1. Hence Wy = a*al—l*a—* and since
W21 = A,, the statetrarsition matrix of aninner operator, 5;;°, must have its ei-
genvaluesstrictly inside the unit disc. From (12) and after multiplication with YT we

find
o 18110 07| W5 |1
BY D W;Z |0

—1
Introducngp = D~1BV [8%)1] and inverting the leftmost matrix, wefind finally

W31 . 0_181_11(7 0 1
w3, o —Bo DLl|o|
Expresing the isomety of [W21 Wa2] and puting M 26 *0~1, we obtain the

Lyapunw—Stein equaton
M = B*B + 87 M8 T (13)
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Since 81_11 has its eigervaluesstrictly inside the unit disc of the complex plane, this
equaton hasa uniguesolution givenby

(0.¢)
M=) "[8771° B BLo LTI (14)
k=0
M is stiictly positive definite sinceo is asumednon-sngular Hencewe find

[Wa1 Wa2] = [0%8°0 ™" — o™ B*].
If we plow this reault backinto the original equaton, we obtain

g
v blloit]=| "ol |

which will be equal to [ ] only if 521 = 0. This proves necesity.

Suficiencywill follow if we show thatthe algorithm derived from the conditions
of the theorenproducea Y which sdves(3), and which is left invertible (ker(Y -) =
0).Let

] [8* 0 ] x
A=V |1 |V (15)
812 022

be a block Schur eigenspacedecanposition for 4, in which 811 collects(the) eigen-
values of 4 which arestrictly outside the unit disc. Let now 8 be definedas given
in the statemem of the thearem, and let next M be the solution of the Lyapunw—
Steinequation (13). We claim that M is strictly postive definite asa consequence
of the minimality of the original system T. This canbe seenasfollows. Since the
eigenaluesof 81_11 are strictly inside the unit disc of the complex plane, the solution
of the Lyapunw—Stein equaion given by (14) is unique. It will be non-sngular,
iff the reactahlity pair [81_11 B1 is minimal, which meansthattheredoesnot exist
avectorx # O suchthatVk > 0: 86Fx = 0.Lets7x2y. Thenx =0« y =0,
and we find that the condition is equivalent to

a0 Y]
D BV[O]_O,
511 810]F
D—le[él aij mzo fork >1.

Let V[g] = y1. Then y1 = 0 & x = 0, ard the condition becanesvk > 0: B4y,
= 0for4 = A — C DB.Itisnow not hard to seeg(recusively) that thisconditionis
equialenttoVk > 0: BA*y; = 0.Sincetherealizationwas assumedstrictly reach-
able,we find y; = 0 and subsequentty y = 0 and x = 0. (The proof boils down to
the factthat if the realization for a systemis minimal, then the derived realization
for the inverse systemis minimal as well, but in the presem casethe inversesys-
tem is partially ungable so thatthe correponding Lyapunaw—Stein equaton for the
reachabilityGramiancannotsimply besummed.)Factornow M = o ~*o~1 andput
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YZVB]

Y satisfiesall the necessaryconditionsby congruction and is hencethe solution
sought 0O

4.2. Casell: T(0) hasfull columnrank—y» is empy

Let

D=u|i§i|v*

be a decanposition of D with u andv unitary matricesand d squarenon-sngular.
We find

Ay
A C I 0 O I 0
[B D]:[O Uy uz] [’81 d} [0 v*]’
B2 O

whereu = [u1 u] is a decanposition of u conformal to the partitioning of D. Let
T'(z) £ u*T (z)andlet T'(z) = T)(z)V'(z) be aleft-outer-inner decanposition of
T'(z). Then T,(z) = uT’'(zandV (z) = V’v* will producethe left-outerinnerde-
composition of 7' (z). We may justaswell take T (z) in the T'(z) form to startwith,
for smplicity of notation. 7'(z) thenhasthe form

_ | Th(2)
I = [Tz(Z)]

with T1(z) a ‘Casel’ matrix, and 7>(0) = 0. A left-outerinner factorizationof
T1(z) = T1,V1(z) producesviathetechnique®f Casel, aninnerfactorVi(z) which,
however, maybe‘toolarge’ for T>(z) in the sersethat 7(z) V;* (z) maynotbeana-
lytic in the openunit disc. Thetruerightinnerfacior V(z) will bethelarges inner
factorsuchthatboth71(z) V*(z) andT2(z) V*(z) are analytic in the open unit disc at
the sametime. To estaltish the relation betweenV; andV, let now n temporarily be
the dimenson of the output spaceand H; the Hardy spaceof dimenson n [27]. We
mug have H; V1(z) C H;V andhenceVi(z) = V,(2)V(z), V(z) is arightinner
facor of V1(z) with remainder V,(z). We determineVi(z) first usng the method
of ca |, thencompue the partof Vi(z) that makes 72(z) V;*(z) non-anajtic, and
finally compue a minimal V, sothat T>(z) Vi (z) V, (2) is anaytic. The squareroot
equaton now hasthe form

(A Y]y 0 Y C
B d[ ]:[ ﬂw. (16)
% o} I 0 0 D,

We apply the Case | procedureon

A vyl {0 "1 Ca
L e L
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This producesarealizationVi(z) = Dy1 + zBv1(I — zAu1) " 1Cy1. Applying Vi(2)
to theright of 7>(z) gives

T2(2) Vi (z) = Baz(I — A2) Yy [D¥) + C* (I — z*A¥) 12" BX 1. (18)

Reduction of this equation necessitatea’ partial fraction decanposition’ of amatrix
guadratic term.Lemmal applies. Let M be the unique solution of the Lyapuna—
Stein equation

M—AMA} =yC} .
whichis well definedsince A and A,,, both have spectralradiusless thanone (and
hencealso zZAandzA,,). Thenwefind in sequence:

(I—A) HyCrd —Z* Al ) P =U—A) M - M+ MU —*A}) ™,

To(2) Vi (2)=2*B2M (I — 2*A}) 1B} — B2M B},
+B2(I — Az) (M B} +y Dj .
We see that 72(z) V(z) may have ananticaual part
2 BaM (I — Z* A% ) LB .

Thecomputtionof V, andV is now astraightforwardapplication of factaization
theary for unitary realizations, interded to remove this articausal part. We give the
essetial stefs. Let Cj £ B, M, and let us find a unitary matrix u which reduceghe
possibly non-minimalobservability pair [A,, C,], therebydefiningthe A,, andA,

Ay A

sought
Cy
0 A, | O

If wenow apply thestatetrandormationu™ - - - u ontherealization {A,,, By, Cy,,
D, }, thenunitarity is prerved,andanequialentrealzaton isobtained , which will
facta in the desiredway. Let us denote this new realization as follows:

[u*Apu | u*Cyl = |:

A A/ /
|:M*Av1u ‘ M*Cvl] _ Cl)),- 4 ‘ CCUr
—_— v v ’
Bvlu ‘ DU]_ BU B/ ‘ D/
r v v1

in which we have articipatednotationwise on the destimtion of the sub-matrices.
Becaus of thereductionof thestrictly non-caual partof 72(z) V;*(z) to minimality,
we have

ZFCHI — AL 2 TIBY = 2FC (I — AL 2B
The equivalent unitary realizatian of V1(z) factorsnow

A Ur A/ C:), A Vr CUr I
O Av CU = I AU CU s
B, B, | D, B, | Dy, B, | D,
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in which the quantities to the left of the equal sign are known, and the quantities
to the right must be such that two unitary factas are obtained this being always
possible dueto the unitarity of the original matix andits parial block triangulariza-
tion. V(z) andV,(z) arenow fully determined (up to equivalence),and it is readly
verified that

ZCHI — A TIBY Vi (2)

hasbecomecausl (analyticin the unit disc), so that 7>V * is analytic aswell. In

addition, minimality of V is also readily edablished,thanksto standardinnerouter
facrizaiontheory Theprocedureshown is ahandytechngueto compue common
facorsin innerfunctions This completely solves Case Il in the squareroot form.

However, criticism on the method is still posside, since in many instarcesit may

leadto too marny computations: first the determination of arealization for V1(z) via
the determinaiion of a Schur eigenvalueform, followedby a furtherreducton.

4.3. Caselll: T(0)hasfull row rank— g2 is empy

This ca is fundamenally different from the previous cases— it corregponds
to the determinaton of the orthogonalbass of a rangefunction and its complketion
to a unitary matrix. We shall seethata specialcas of this inganceis foundin the
classical squareroot algorithmfor the Kalmanfilter. If m is the input dimenson
of T'(z) (dimensonsm x (n1 + n2), with n1 = m), thenthe rangefunction for T is
definedasthespace? £ H2[T1(z) T2(z)], inwhich H? is the m-dimentonalHardy
spaceof the unit disc. The subject of rangefunctionsis both a very essential part
of clasical Hardy spacetheory [19], and one in which major problemsoccurin
general,becaus an analyticrangefunction (that is a rangefunction with a bags
that is analytic in the unit disc) neednot have an anatic orthogonalcompkement
However, for therationalcase suchananomalitycannotoccurandcompletereaults
areavailable,a rationalrangefunctionthat hasan orthonormalbass conssting of
elementsanalyticin the unit disc hasan analyticorthogonaktomplementOur goal
will beto give numercaly stable algorithmsthat compute both theorthogonabass
and its complemert. It turns out that the most attractive algorithm is basedon the
squareroot equaton, this time in the recursve form of the Kalmanfilter. It will
have exactly the sameappearancasthe time-varying equation(3), executedasa
‘doubling procedure’ A traditionalalternatve is the solution of the relatedRiccati
equation.No numericallystable solution for the discretetime Riccati equationis
possibleif thezerosonthe unit circle of T'(z) arenotremoved first. It mayseemthat
the recursve squareroot solution doesnot suffer from the presnceof these zeros
but that is not true, as we shall seelaterin this sectio. Therefae, it is necessaryo
performa ‘reducton of zeroson the boundary’first. This canbe donein a rather
elementaryway, usng the characterizatiof zerosof generaltrander function as
originaly donein [35].
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As in the previous section we may assune 7' (z) = [T1(z) T2(z)] with therealiza-

tion
Alyt yv2la|A|Y
as) (5] (19)
in which d1 is squareinvertible and y» #+ 0. Let
To()T) (2) = T1(@)T1(2) + T2(2)T5(2) = R(z) (20)

bea (left) spectralfactorizationof 7'(z) T*(z) with 7,(z) the(left-)outerfactor Then
T(2) = T,(2)[V1(z) V2(2)] in which, of cour®, V(z) = [Vi(z) Va(2)] = T, (2)
[T1(z) T»(z)] definesa cawsal isometric matrix function whose rows actually form
ananalyticbass for therangespace#. V canthenfurtherbe embeddedh aninner
factor

V(z)} ’ 1)

W(z) = [U(z)

in which it forms the first block row. As before, we wish to have 7,,, V andW in
state-paceform, therealizationfor the latter canbe chosnisometric,augmentable
to a unitary matrix.

Two observationsarein orderatthis point. First, thezerosin the unit disc of V (z)
(i.e.pointswhereitsrankdropg oftenhave norelation with the zerosin the unit disc
of T'(z), incontrad to cael. They will appeain therightinnerfacor, butin atrivial
way. Even if T hasno zerosin the unit disc, the embeddng will have such zerosas
is exemgified by

1
T() = [H—l H}] (22)
for which
1 =z
we = |2 V2. (23)
2 2

Thezeroof Wis atz = 0, apoint atwhich T (z) hasno zero.Second the execuion
of the spectralfactorizationshown in (20) appeardo be esential in as much as
T, is normalizing the rows of T to produceV. The classical way of doing this in
state-pacetermsis to conwert the problemto the solution of a Riccati equationjn
this ca® a discretetime (algebraic)Riccatiequationlt is well known (seee.g.[22]
for a comprehense expostion) that this Riccati equationcanonly be solvedin a
numericalstableway whenT hasno zeroson the unit circle, becaus zeroson the
unit circle will appeardoublein the subsquentHamiltonianeigemalue problem,
making it unnecesarily ill-conditioned. In case thereare no zeros(and of course
no poleg on the unit circle, one speaksof a regular problem. Althoughwe shall
notsolve the Riccatiequationdirectly—weshall work onthe squarerootform—the
same problemwith boundaryzerosappearsMoreover, it appearsadvaniageoudo
work on a modified system repregnttion in which an obviousfacbor of the inner
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part hasbeentaken out first. Therefore,a couplke of preliminary stepshave to be
execuedfirst.

4.3.1. Preliminary innerreducton of 71(z)
We start out by usng the smple procedureof Case | to reduceTy(z) to anouter
matrix

T1(z) = T1,(2) V1(2)
in which Ty, is outerandV1(z) inner. Then

T(@) = [T1(2) To(2)] [Vl@ ,}

andarealizationfor [T1,(z) T2(z)], given by

A Yo V2

:B dlo 0
is such that A — Vlaa’l_olﬂ hasno eigenwalueslarger than 1. Once an outerinner
factorization

[T16(2) T2(2)] = [T, (z) OI|W (2)
hasbeenfound,then

T = 1) 0) (W) [Vl@ ,D

will beanouterinnerfactorizatiorof the original matrix, and

deg (W(z) [Vl(Z) ,D = deg W () + deg V(o)

(awell-known propery of innermaticeg. Hence this partof the proceduras min-
imal. We mayandshall now assumethatthe original matrix for Cas lll is suchthat
T1(z) is outer, and hence hasa realization with d non-sngularandA — yd~18 such
thatit hasno eigemaluesof moduluslargerthanl.

4.3.2. Remaal of zeros on the bounday

We shall now reducethe spectralfactorizatiorproblemto aregularproblem.This
isdonein anasstable as possible way, by computng a squarenon-sngular polyno-
mial matrix P (z) of dimensonsm x m which is such that

T(z) = P(2)T'(z) = P()IB) Ty(2)] (24)

for T'(z) stable with no zeros(andof cours no poleg on the unit circle. The pro-
cedurerequresfirst the deerminaion of canddat zeroson the unit circle. Since
a zeroof T(z) must a fortiori be a zero of T1(z), we find a complete collecion
of canddakesby computng the eigemalueson the unit circle of A — yldl‘lﬂ. If
{a; : i =1-..}isthesetso obtainedthenwe mud find P(z) so thatit incorporates
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all thes zeros multiplicities and directionaldataincluded.This canbe donein a
recursve fashion on the canddaies{qa; }—oneextractsfirst the completezeroat a;
as a polynomial matix Py(z), and then proceedson the remainderPl_lT(z) for
which the set of zerosis now {a---}, becaus the extractionwill not affect the
location nor the multiplicity structure of the zercs atthe other points. The extraction
of a polynomial with a single zeroat a point a is an ‘elementary’procedurewhich
canbe basgd on an invariantsub-gacestructureof T characterisc for that zero.
An efficientcomputations based e.g.on the theoryof surplusspacesasoriginally
propodin [35]. We give the algorithm in Appendk C.

4.3.3. Therecusive solution

The attractive way of solving the regular problem is provided by setting up a
recursve solution as hasbeenpropodfor the computatiorof the clasical Kalman
filter in the squareroot form [25]. The methodcanbe approachedia a coninuous
Choleky facorizaion as explainedin [12, pp.65-71].

Let a minimal realization for 7'(z) (with T1(z) outer) be asbefore,andlet us
denotearealizationfor anouterT, suchthatT (z)T*(z) = To(2)T,(z) by

_ Al
To_[ﬁ dﬂ]

We assume thata realizationfor 7,(z) existswith {A, g} asreaclahlity par—a
well-known fact,whichis congructively provenby theprocedureo bederived now.

ApplyingLemmal on theproduct? (z)T*(z) with A; = A2 2 A, U £z andu =
yy* + AuA* we obtainamixedrealization

R() AT ()T*(z)=dd* + Bup* + Bz(I — Az) " Yyd* + Aup*]

Let y, £ yd* + Aup*, R(z) is the trander funciion correponding to the doubly
infinite Toepitz operator

dd* + Bup* By BAY,
v B* dd* + Bup* Byr R

A B yB dd*+ Bupt

in which the (0, 0)th enty hasbeenboxed for orientation purpo®s The simpleg
trick to find arealization for 7, (z) recursvelyis to consdera Choleky factorization
of astrategicallychoo®nsub-operatoof R(z), namelyof the operator
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. dd* + Bup* B BAY,
yiB*  dd*+ Bup* By,

A motivation for this choicecanbefoundin [12, pp.65-71,369and370],whereuse
is mack of the partial factaization lemmain the time-varying setting. We attemp to
find a Choleky factorizatiorfor R_, asfollows:

R — coda Be1 BAco diz 0 0. (25)
0 d-1 Pco chp* d*, 0
| 0 0 do| ] |L--- c A™B* " dpj |
In other words we look for a collecion of {d_x : k=0, ---,00} and{c_; : k =
0,---,00} sothat{A, B, c_x, d—;} form a partially time-varying realization for the

Cholesky facor sought All producs in the facorizaion (25) are finite—for ary
finite sub-block of R_ inits bottom right corner thereis a finite upperlower tradr
tional Choleky factorization Eachsuch factorizationexists andis unique,sinceR _
is strictly postive definite,andso is eachfinite mainsquaresub-block.Startingwith
the right bottom (0,0)th elerrent, we find dp such thatdod} = dd* + BMpB*. Next,
anadequateg follows:cg = y,do_*. Thisinitializestherecusion. Let us now define
anintermedate quantity fork = 1, ..., oo,
k
M_j = Z Alckici_;A™ (= copc™ + AM_11A7),
i=0
with Mo = cocg. Thenit is eay to checkdirectly that the upperlower Choleky

factorizatiorof theblock (—k - - - 0) x (—k - - - 0) leadsto thefollowing recurson on
the state-s@cedata:

(D) d_yd*; = dody — BM k1187,

(2) cok = [yr — AM_;418%1d~, (26)
B M_j =c_pc* ) + AM_j 1A%,

in which Eq. (1) gives astrictly positive definite vauefor d_d*, simply becaus of
the existenceof the Choleky factrizaion, Eq. (2) providesan adequa value for
c—k, and EqQ. (3) updaesM. We show thatthe recurson convergesfor k — oo. An
attracive proofis derived from the Szeg6 theoryof orthormalpolynomials (although
otherproofsbasd ontheWienerMasanitheoryfor spectralfactorizatiorare equally
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well possible, we give thebasc proofin AppendixD becaus it maynotbetoowell
known).

Propostion 2. The Cholesy recursions(26) convepge for k — oo and producea
realization {A, 8, ¢,, d,} of the outer factor 7, (z) as

CO = ||m C_k,
k— o0

d, = lim d_;.
k— 00

Therateof conwergencecanalso be deducedrom the Szego theory seein this
connedion [10].

It is now straightforward to turn this recurson into a recursve squareroot al-
gorithm. We reintroducethe original data (u = yy* + AuA* andy, = yd* + A
uB*) tofind:

dd* + B(u — M_y41)B* = d_d*,,
yd* + A(w — M_j41)B* = cpd’y, (27)
Yy 4+ Al — M) A" = c gt + (0 — M_p).

It is not hard to show thatmy = u — M_y is (not necessaly strictly) positive define
for all k, inductvely. With m; = rir;, @a minimal factaization of m,, we canwrite
(27)in factoredorm

Arca ][t BT e e [ 00 g
Bri_1 d 14 d 0 d €k d—k

Eqg. (28) will be sdvedif we find unitary matricesQy for k = 1, 2, ... suchthat,
startirg with Mo = cocy,

Arg_1 Y 0 e cx

[,Brk_1 d} - [o 0 d_J Qr (29)
i.e. an RQ procedurecomputng the upperechebn form andproducing the desred
quantitiesc_x, d—; andr;, andof coure also M_; recursvely. In (29) we recognize
the squareroot algorithm for the Kalmanfilter as proposed by Kailath and Morf,
adaptedo ourcircumganceqin the Kalmanfilter, d andy have aspecialform). For
anaccountwith referencessee[21]. Sincewe areonly interesedin the endresult
T,(z), the doubling procedurealso propo®d by Morf and Kailath togeter with
DobbinsandFriedlander[23], yields a paricularly fag andattracive method—we
givethe doubing proceduran Appendk E. Furtherrefinemens of thes procedures
have beenderived by Kailath andMorf, andareknown asChandragkharequaitons
Insteadof inducively computng the M_;’s, they actuallycomputethe increments
M_; — M_;+1. In our case,theseareall positive definite. The complexity of the
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incremental matrix is usually (much) smaller thanthat of the matrix itself. Both in-
duciveandsquarerootversionsarepossible here,andleadto afurtherimprovement
in complexity, at the cost of numericalstahlity . We referto the literature for further
information [21].

With 7,(z) determined, the resut for Caselll is now written down easily The
outerfacbr is alreadyknown, and we have for the innerfacor

V) =T, )T ().

Since T,(z) is outer(with no zeroson the unit circle if the zeroextractionhasbeen
donefirst, an advisable procedure),t hasa straight inverse, anda smple, direct
calcuation gives,with 4 = A — ¢,d; 1y

V(z) = [d;t — d; Bz(1 — A2)"eod; MId + Bz — Az) "Ly
=d;Yd + d; 1 Bz(I — A2)"Ye,d td — y).

Hence,

A codo_ld -y
B d,d=1

is arealization of the isometric systemV (z). It is not necesarily minimal, e.g.if
the zeroson the boundaryhave not beentaken out, thenit is ceriainly non-mnimal,
becaue the zeroson the boundarywill appearaseigenaluesof 4, and thes zeros
have to canceloutin V (z). Hence,if the reducton procedureof boundaryzerosof
the begnning of this section would not have beencarriedout, numericalinstablity
would reault evenin cagtherecursve squarerootalgorithm (initsdoubing verson)
is used There may be carcellationsin the realizatian of 7,(z), but these should not
giveriseto additional difficulties.

4.4. Case|V: thegeneral LTI case
The generalcas is now a rea®nablystraightforward generalizatiorof the pre-

ceedng casesWe assumenormalrark at zerq and the transition matrix for T given
by

A vy
pr d 0,
B2 0 O

in which d is square,non-sngular. Correpondngto this reaizaton is the decom-
pogion of 7 (z) infour blocks

_ T11(z) Ti2(2)
T = |:T21(Z) Tzz(z)]
_ [d + Bz — A "Y1 Brz(d — AZ)_l)/z]
B Boz(I — A9y ™Y1 Boz(I — A) Yyn]”



P. Dewilde A.-J. vander Veen/ Linear Algebra andits Applications313(2000)53-100 79

Thenormalrankconditionsmakesthebottomrowsin thisrepregntationinearlyde-
pendenbnthetoprows. Thiscanbeseenasfollows. Sinced is squarenon-sngular,
T11is invertible (in fact,with 4 = A — y1d 11,

T 2) =d ™t —d iz — A7) Hyd ™

andhence:

T(Z)=[ L HT” . H’ Tl_llle].
oAl 1 T2 — ToaT 1 T12 T2z

Since T'(z) hasnormalrank at z = 0 and T11(z) is guaraneéednon-sngular in a
neighborhoof z = 0, we mug have that

Toa(z) — To1(2) T{1 (2) T12(z) = O.

It follows that

[T21 T22] = T2173; [T11 T12).

Suppog that the outer facor 7, and the isometic rangefunction [V11 Vi2] for
[T11 T12] have beenfoundby the methodof Case Ill above, thenwe find

/

TO
T = [TZlVﬂl] [V11 Va2l

It turns out that the left facior may have polesin the openunit disc. If it is brought
backto analyticity in a minimal way, thenthe desred left-innerouterfactorization
will follow. The proceduras simple andsimilar to whatis donein Case Il above.
Let s(z) beaminimal innerfactor which pus’nesT21V1_11 to aralyticity, i.e.the s(z)
with loweg possible degreesuchthat

T12(2) Vi (2)s(2) € HI<m,
Then
(1) [s«(2)V11(2) s«(2) V12(2)] is amalytic in the open unit disc and isometric;

Tp(2)s(2)
2 _
2) [T21V111(z)s(z)
(3) theleftinnerouterfacorizaion for T (z) isgivenby

_ T,(2)s(z)
T2 = [Tzl(Z)Vl_ll(Z)S(Z)

} isouter;

] [s*(2) V11(2) 5™(2) V12(2)].

As before the proofisbasdonstandardHardyspacetheory Numercaly the proce-
dureboils down to carcelling the articausalpart of 721(z) Vl_ll, whichisdoneexactly
in thesameway asin Cas |l above.
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*\ LTI —oco zone

LTI 400 zone

Fig. 1. The generalstructureof an IVI-system it is a time-varying system which is essentially LTI for
very small andvery large index points

5. ThelLTI/LTV/LTI or IVI case

We now turn to the cae wherethe system is time-varying, but hasa form which
is dexribedby afinite numberof parameterd.e. the systembeginsasLTI for very
small time points thenstartsvarying, andendsup againasLTI for very large times
The dimension of the statespaceneednot stayconstarnt, and the degreeof the limit-
ing systems, which also have anLTI repregnttions 7L, (z) maybe different The
simplest example is a systemwhich switches from one type to the other at same
time z,. The generalappearancef such a system is givenin Fig. 1. It should be
remarledthat such a system is truly LTI only in thetop-left andbottom-righttrian-
gular block. We keepassuming thatthe overall systemis ues so thatthe norm of
the 7; ; dropsuniformly andexponentally to zerowheninf(i, j) — oco. Again, we
shall be interesed in the compugton of theleft-oute~innerfacorizaion 7 = 7,V
in which V is cawsalisometric (VV* = I), sincethe othercasscanbebroughtto it
via the procedure®f Section2. Therecursve equation(3) specializedto this cae
shows thatfor £ ~ +o0, the sdution Y, istime-invariantandto be obtainedby the
technguesof the previoussecion. We assumenow thatwe know Y., and hencewe
canstart up therecurson givenby (3), goingbackin time, andcomputingY; from
Yr+1, whichis doneby a smple QR-facbrizaion. Interesing thingsstart to happen
whenwe reachthelLTI partfor k — —oo. Thepreentcasissubdantially different
from the LTl-cas in that the isometricfactorVV doesnot necesarily becomeLT]
again, but will have a special structure closely relatedto the invertibility properties
of T. Our goalin this sectionis to determinghatstructure.

Two simple examplestakenfrom [12], shouldillustratethe point.
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Example 1. Let

[ERN
|
NI

Thenit is eay to seethat Ty = O for y* = [--- 1, % 2,1, .--1, henceT is not
invertible, -7* hasanon-tivial kernel T doeshave arightinverse, namey

NTEN
[EEYNTENNTENP

O]

|
ENT S o
NI

o

However, this is not the Moore—Rnro® pseudo-inverse. To obfain the latter we
should compue T =7,V to find Tt = V*To_l, since in this caseT, will already
beouter. Thecompuation of V startsoutLTI fork > 0 (Casel). If wechoo®forT
the realization:

Ar=0 Vk,
Br=1 Vk,
1

—5 fork <O

_ 2 x Y

Ck_{—Z fork >0,
Dy=1 Vk,

then Yo = +/3. Wefind lims_ _s Y% = 0, from which follows thatfor k — —oo,

lim Avr By _ 1 O
k——00 CVk DVk 0 1|°

In otherwords thestate of theisometic system ‘ disappears§ it becomegalmod) un-
controllable and unob®rvable, although the transtion matrix stays unitary.
AlthoughV hasatall timesa unitaryrealization it is notaninnersystembecaus it
sharestheright kernelwith T andhencehasnoinverse.
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Example 2. The secondexampk is much like the first exceptthatthe numercal
valuesarenow reversed:

1 -2
1| -2

The +o0 LTI systemis now outet HenceY,, = [-] is empty andit will stay that
way al throughthe recurson k — —oo. Hence this T is alreadyleft-outer—a fact
thatwe could have guesed from the existenceof theright-invers in the preceeding
example,adaptedo thepreentcas.

Theleft outerinnerfactorizatiorfor T produced” = T,V in which V hasaniso-
metric realization Ay, Byk, Cvk, Dyr. Thesguarerootalgorithm givenin Theorem
2 producesaunitary rightfacor

A C
Wi — Awr  Cwi | _ BVk DVk
v Byr Dy

and contins a causl isometic sub-operadr U with realization {Ayx, Byk, Cvk,

Dy }. Thisoperaor satisfies U T* = 0—outputs of thetypeyU belongto the kernel
of -T* (the ‘column-nulspace’).But, aswe saw in the exampkes the kernel of -7*

canbe larger. We shall say thatsignalsin ¢2(—o0, 00), which arein the kernelof
-T* andarenotcon@inedin ary £2(k, oo) for arny k belongto the‘right defectspace
of T’, anorthonormalbass for which we shall denotewith g, (7). The following
properteshold and areprovenin [12]:

(1) Go(T) = do(W);

(2) Wwill beinneriff g,(T)(= q,(W)) vanishes,

(3) Intherecurson (3) for k - —oo, Y; canbecho®nin suchaway that

. Y_

lim Y; = o
k——o00 k |: 0 ]’
andtherealization{Awk, Bwk, Cwk, Dwi} for Wy convergesfor k — —oo to
theform

Aw — 0
AWk=|: W(’) Oo I}’ By = [Bw,—0 0],

(30)
Cw_
CWk=|: Wb OO} . Dwi = Dw, o,
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in which {Aw _s0, Bw.—00, CW.—00, Dw.—o0} definesan LTI inner function
V_s0(2), Which is such that T_,,(z) V*(z) is aralytic in the open unit disc
(i.e. V_(2) is aright facor of the full rightinnerfacor v_o, of T_(z) =
Ty, —00(2)v—x0 (z)—Exampk 2 shows readly that the two innerfunctionsdo
notnecesarily coincide).
To completethe characterizatim of the inverse,we must give anexplicit compu-
tation of the defectspace.We propo® an algorithm based on a characterizatiorof
the observability spaceof W dueto [12].

Propostion 3. Let P, bethe orthogonalprojecion of £2(—o0, +00) onto £3[k, 00)
(i.e. (y Px)¢ = y¢ for £ > k andothermwise zero). Then q,(7') P, spansa sub-gpaceof
the kth observability space of W, which is givenby

span[Cwri, AwkCw k+1, AwkAw k+1Cw k42, . . ).

Thebackwardrecursve compugtion starts with anorthonormalbass for g, of
the LTI systemat +o0 givenby (we usethenofation (-)’ for vecorswhoseright-hand
zeroshave beenchoppedff):

0y =[Cy, AyCy, A2Cy, --),

andproceedsecursvely asfollows:
Assumethatat point £ 4+ 1 an orthonormabass of the observability spaceis

Uis1 = [CWoit1. AW it1Cwi42, - - ),
thenafter the recursve step of the squareroot algorithm, the kth basis is given by:

ar = [Cwk. AwkOj11),
until it reachesa time pointk in the —oo-LTIl zone,whereY; hasconwergedto a
stable value (seethe propertes detailed in the previousparagraph)Thisis evaluaed
numerically asfollows. When k progreses towards —oco, we find asSVD for Yx
deerminedby (3):

)
Yk=Uk[ k EJ Vi,

in which the singular valuescapuredby the diagonalmatix E; arenegligible and

canbeputto zerofor practicalpurpo®s(in principle, Y; should be rightinvertible,

but thatdoesnot precludenearzerosingularvalues correpondingto a partof it that
goesto zerg. From the limiting theory we know that span(Vy41) ~ span(Vx) when
k hasbecomesmall enough,this propertycanbe teded, e.g. by checkingwhether
Vi+1V}" is nearlyunitary. Whenthatis the cag, conwergencéhasbeenedablished,
andY; canbechofnequalto Y+ 1. Infact,U; canthenbeabrbedin Ay, andthe
value of

2 2_
—o0 = |: k+l O] VVk—f—lé |: oo 0j| W_oo

hasbeenreached,
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A/
AW,—OO == [ W,—OO I} ’

aswell aslimiting valuesfor the other realization matrices,yielding the valuesfor
the matricesin (30). With kin theconvergencezone,we find for the defectspace

in which [0 7] is conformalthe decanposition for Y_.,. Theactualq, isthenfound
simply by extending q, Py to theleft with zeros(the‘tail’ goesto zerogeometrical-
ly, seethe formulain Propodion 3). The examplesin Section6 should clarify the
procedure.

6. Example

Let T begivenby the reaizaion

0.5 2333]1
T, = Te=| 0 0333|1|k>1.
25 23331

For k > 0, the LTI realizationhasa doublezeroat —%, for k <0, the LTI parthas

a zeroat —% andoneat —2. Theinnerfacor will keeponly the zeroat —% asa
pole, whereasthe squelchingof the secondzero will generatea defectspace of
dimenson 1.

An initial point Y, for the backwardrecurson (3) is given by the proceduran
Sectiord, Casel. Thisgives

;. _ [0.891 0.530
k=1 0 0.742|"

Continuing now therecurson, we find succesively
{0.733 0.824] [0.536 0.781]
Yo = Y 1=

k=+4o0,..., 1

|:0.461 0.735]
Y o=

0 0298 0  0143) 0 0071

y ._[0432 0711]  _T0422 0700] . __[0418 0695

3= o oo03" 47| o o018 T 0 0009
, _[0416 0694  _[0416 0693 . _[0416 0.693

6= o o004 7T 0 0002 87| o 0001
y ._[0416 0693  _[0416 0693

9= o o001 71T | o 0000

At this point, we decide that the secondrow of Y istoo small to keep.It isdropped:
we coninuewith

Y_11 = [0.416 0.693

andwe havereached stationaryvaue for Y, k - —oc.
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Thecorrepondngouterfacor hasarealzaion givenby

05 1 | 1.280 05 1 | 1.280
Tor=| 0 05|0800| (k<-12, T,_11=| 0 05| 0.800],

25 1| 2 25 1| 2
05 1 | 1.280 05 1 | 1.280
To_10=| 0 05| 0800|, T,_9=| 0O 05| 0800|,
25 1| 2 25 1| 2
0.5 1 | 1.280] 0.5 1 | 1.281]
To_g=| O 05|0800, T,_;=|0 050800,
|25 1 | 2001 |25 1 | 2002
0.5 1 | 1.287] 05 1 | 1.287]
To.g=| 0 05|0800|, T, 5=|0 05]0799],
25 1 | 2007 |25 1 | 2019
(0.5 1 | 1.297] 0.5 1 | 1.323]
To_a=| 0 05|0798|, T,.3=|0 050794/,
|25 1 | 2052 |25 1 | 2137
0.5 1 | 1.381] 0.5 1 | 1.490]
To_p=| 0 05|0783|, T,_;=|0 05| 0749],
|25 1 | 2349 |25 1 | 2.855

05 1 | 1.402 05 2333 2457
Too=| 0 05| 0663, Tor=| 0 0333|0510 (k>1).
25 1 | 3025 25 2333 4

Theinnerfacor hasreaizaion (note the changeof state dimenson inducedby the
dimenson changeof Y;)

—0.500 | 0.866 —0500 0 | 0.866
= < —_ =
Vi [ 0.866 | 0.500} k<=12, Vou [ 0.866 O | 0.500]’

~0500 0| 0.866 —~0.500 0.001 | 0.866
V_io=| O ~1] 0001, V.g=| O ~1 | 0001,

0.866 0 ‘ 0.500 0.866 0.001 ‘ 0.500

[—0.500 0.002 | 0.866] [—0.499 0.004 | 0.866]
Vg=| O -1 |0002|, V_7=| © —1 | 0.004],
| 70.866 0.001 | 0.500 | 70866 0.002 | 0.499
[—0.498 0.008 | 0.867] [—0.495 0.015 | 0.869]
Vg=| O ~1 |[0009|, V.s=| O ~1 | 0.018],
| 70.867 0.004 | 0.498] | 70.869 0.009 | 0.495]

[—0.488 0.031 | 0.873 —0.469 0.062 | 0.881
V_g4= 0 —0999 | 0.035(, V_3= 0 —0.998 | 0.071|,
0.873 0.017 | 0.487 0.883 0.033 | 0.468
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—0.430 0.128 | 0.894 —0.365 0.266 | 0.892
V_p= 0 —0990 | 0.141|, V_1= 0 —0.958 | 0.286 |,
0.903 0.061 | 0.426 0.931 0.104 | 0.350

[—0.412 0.543 | 0.732]
Vo= 0 —0.803 | 0.596],
| 0911 0.245 | 0.331]

[—0.500 0.750 | 0.433]
Vi = 0 —0.500 | 0.866| (k> 1).
| 0.866 0.433 | 0.250]

Note thatV _, isequalto the LTI solution, but only after we dropthe state cor-
regpondingto the defectspace.Fromthe obervability spaceof V, we deducethata
basisfor this spaceis

0.001 -0.001 0.002 —0.004 0.009 —0.018 0.035 —0.07

Qo = 0.141 —-0.282 | 0.564| —0.658 0.329 —0.164 0.082 —0.041
0.021 -0.010 0.005 —0.003 0.001

7. Discussiam

Therepregnition of systems of equatonsby state-gpacemodek opensup new
pergectivesfor systeminversgon. Theclassical QRor LQ algorithmgetsreplacedy
upperlower trandormatons innerouter faciorizaionsandcombnaionsof these.
The innerouterfactorizationdeterminesin all cags how the inverse or pseudo-
inverse is divided betweernthe upperandlower part,andnecesitatesan eigenalue
decompotion, or, in the worst case, eitherthe solution of a regular, discrete-time
Riccati equationor a doublingprocedureAt no pointin the proceduresigemalues
ontheboundaryf aHamiltonianmatrix haveto bedeterminedin thelVI-case—the
main point of intered in the preentpaper—the LTI theoryplaysanimpor@antrole
asdtarting pointfor therecursons However, as the recurson proceedsa new phe-
nomenorstartsto appearcalledthe defectspace.lts incidencehasbeenneglected
in the literature, sanetimedeadng to incorrectstatemets.

An importantpoint desrves attention: the relation between‘outer’ and‘invert
ible’. Throughouthe paperwe have assumedthe two notionsto beequivalent This
statemebmust be mitigated If we consider classicaHardy spacetheay on the unit
disc T of the complex plane,then f € Hy, is saidto be outer if Hyf = Ho. If it
is true that also Ho f = Ho, then f hasaninvere whichisin Hy,, and we cansay
thatf is ‘strictly outer’. However, the moregeneralcas often occurs For example,
f =1— zis outer, but its inverseis not in Hy, (notevenin Ly of the unit circle).
However, it can be approximated by functionsin Ho, 9. by g, =1/(z — p) for
p > linthesensethatg, f canbemadeascloseto 1 asdesredin the Lo(T) sense.
Clearly, f thenhasa practicalinverse, i.e. a functionthat approximateshe inverse
asclosely asdesred, in a strong sense. In such a ca® f cannothave zerosinside
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the unit disc. Surprisingly, this theay generalizesto the matrix caseand even to the
time-varying ca® asis amply discussed in thebook[12]. Suppo® now thatwe have
a(time-varying) realization of an outer operatar

T,=D+ BZ(I — AZ)"'C,
thenaboundedapproxmatinverse will begivenby
T)=D'—D'BZ( - pAz)~*cD™",

inwhichd=A —CD™1B,p > 1andp ~ 1.In pracice,peopkwill just putp = 1,
of course,the restuting transfer function will not be ues anymore, but will be stable
for someweakercriteria.

We terminatewith some words on the discretetime Riccati equation.If oneat-
temptsto solve the algebraicRiccati equation(7) directly for theLTI cas, thenthe
chancahatonewill hit asingularcas,i.e.acas with zerosontheboundaryis very
high. We have shown in this paperthat we canalways avoid this, by approachmg
the problemfrom the squarerootviewpoint. We cannotavoid the Riccati equationor
spectralfactaization altogether, in Caselll we haveto sdveaninstanceof it, butitis
aregularone,withoutzerosontheboundaryCas Il is very interesing becaus of
the connecton to Kalmanfiltering, Darlington synthess andrangefunction theory

Althoughwe do pregnta consstent andcomplete set of algorithms anumberof
points are not well settledyet. We believe that our sdution for Casd isthe most effi-
cientandstableonecandevice althoughanargumentanbe madethatthedoubling
procedureof Case Ill could simply be used for Case | as well. This would not be
advisable numercaly. Themain interes of doing Case | theway we have presenied
(by solving a redricted eigenvalue problem) is that a reduceddegreefor the inner
facor is guarantedto comeout If onewould use the doubing procedure(or the
Riccati method),then the reaulting inner function would automaticallybe of full
degreeandalot of cancelationswould occur. Thiswould introducea very undesr-
alle numericalinstablity . In Casell, theresuting degreeof the inner facta is even
lower. Hereaproceduravhich would direcly determinethe zerosnsidethe unit disc
of the overall systemwould certairly be animprovemen. The most problematicare
Cases |l andlV. Althoughthe algorithmsgivenarevalid andeffecive, the essential
polynomialextraction (zerodisplacementprocedurefrom the unit circle) could be
donein aglobalway. It is possible to combinethe sequencef zeroextracions but
thereallting formulasarecomplex and mesy. Furthermorethe doublingalgorithm
looksnicein first instance,but from a numercal point of view it should be refined.
First, the matnx 4 shouldbeputin Schurform, andkeptthatway in the succeeding
stegs. Attention to a minimal number of algelraic operationsis essetial, utilization
of Hesseberg forms might be a solution. Still this seens to be much betterthan
the determinatiorof eigemalueson the Hamiltonianmatrix, becaus the recursve
algorithmis inherentlystableandthereforecanalwaysrefinea realt thathasbeen
obtainedby a quickanddirty procedure.

Thefinalword onwhatarethe bes numericalmethoddor innerouterfactoriza-
tion requiresfurtherinvestigations!
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Appendix A. Sdving the LTI Lyapunov-Stein equéion

Let usassumethat we want to solve the Lyapunw—Stein equaton
M= AMA*+ CC*,

in which A is gtrictly stable. Therearetwo classical ways. One solvesit in qua-
dratic form by first performing a Schur eigenvalue decanposition on A andthen
expresing the solution in termsof the eigenvaluesand the componentecbrs of
the Schurdecompogion [5]. (The Bartels-Stavart methodhandleshe ‘continuous
time’ problemAX + X B = C problembut caneasly beadaptedo thepreentca.
Themehoddoesnotrequre A to beues a solution will exist if thereareno pairs of
eigenaluesi; andi; suchthatl — A ;A7 = 0. For furtherevolution of themehod,
see the papersin the survey book [28].) The other solves the equaion iteratively
in squareroot form, anduses a doubing procedurefor efficieng. Sincethe latter
proceduranay not be so well known, we give a brief survey. Let M = RR*. Then
the squareroot equialentof the Lyapunow—Stein equaion is

[AR C] = [R O]V, (A.1)

in which Vis unitary. If Rwereknown andlowertriangubr, then(A.1) would anount
to an LQ-factaization, with V for Q. But R is not known exceptfor the general
theoreticakxpresion

(o8}
M = RR* =Y A'CC*A*.
i=0

Thedoubing iteration worksasfollows:

Step0. Initialize Rg squareby either extendingC, Rg = [C 0] if C hasmorerows
thancolumns or else by computingC = L Q in which L is lower triangubrandQ
orthogonalin which cag oneputs Rp = L.

Stepl.[ARo Ro] = [R1 0]V1 by anLQ-factorizatiorwhichmakesR; lower; alsq
compue Ap = A?,

Gerera stepn. [A,R,—1 Ry—1] = [R, O]V, Ajq1 = A,% to producealower Ry,
againusng an L Q factorization.

It is eay to see,by squaring, that the algorithm compuesthe squareroot of the
parta sumof M consisting of thefirst2" terms. It convergesveryquickly, andisvery
well suited for ‘stiff’ problemsi.e. problemsin which A haseigenaluesof widely
differentamplitudesSeveralvariationsarepossible,dependingnthestructureof A,
andacombinatiorwith thealgorithmthatcomputegigenaluesof Ais alsopossile.
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Appendix B. Computation of the upper echelo form

A matrix hasthestrict upperechelonformif it lookslike

*
[0’ :
0 *
‘000 :
0 0 %
| ‘00 O ‘0|

in which the entries indicatedby x mud be non-zero(they canbe chosn strictly
postive), andthe entriesbetween'0’ indicatea vertical sequenceof zeros which
may disappear Notice that such a matrix hasright-kernel zero and hencea left
(p=x2udo-)inverse. A matix will have upperechebn form if it conssts of columns
of zerosfollowed by a strict upperechebn matix. The defining propery for a
matrix X to be in upperechelonform is that for eachcolumni thereis an index
ki such that k; is either zeroor k; > kj_1, Xx,; # 0, and X,; =0 for £ > k;
An arbitrary matix canbe broughtto upperechebn form through a sequenceof
Jacobitrangormationsappled to therightto the columnsof the matrix. For exampke,
suppo®

oY
o

aretwo columnssuchthat|a,|? + |b,|% > 0, then

/ /
a b}

a1 b1

i ﬂ_[ |

La' ‘ \% |an|2 + |bn|2 —an b ar/1,—1 bil‘l—l ’
" ! 0 Y, |an|2 + |bn|2

which is in upperechebn form. It should be clear that recursve applicatons of
such trangormationson the rows of a generalmatrix canbring it to echelonform.
One starts the algorithm bottom up from the right andannhilates as mary entries
aspossible while accumulatingenergy’ towardsthe upperright corner Notice that
the algorithm actually definesthe unitary transformations neecedand asoyields the
right-handside of theequatiomasareault. In our ca, the matrix block decompos
tion, andsomereorderingof block rows produces
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[Akml ck]W*_[O Yk cok]

BiYisr | Di| F |0 ] O | Do
in which the unitary matrix W has the conformal block decanposition
By | Duk
Wi =|Avk | Cvi
Byk | Dvk

and quite afew ertriesarepossilly enpty (evenY; or Y;41 canbe empty they are
rectangulamatricesin general),but the algorithm certainly producest; and D,
in strict upperechelonform, hencesatisfying the requiredkernelcondition.Q; and
the righthandside are definedby the procedureThey are‘essentialy’ unique,i.e.
unique exceptfor trivial trangormatons which we do not wish to make explicit
here.

Appendix C. Extraction of a multiple zero on the unit circle

Letabea(canddatk)zeroontheunit circle. Theprocedurdo extracta poynomial
P(z) from T(z) suchthat T (z) = P(z)T'(z), P(z) is a minimal polynomial and
T'(z) hasnozeroata (i.e. hasfull rankata) canbeg be explainedif alinearcoordi-
nak trangormaton thatputs a atthe origin of the complex plane isfirstexecued It
makesthe notation easieyand aswe shall see |t allows us alsoto use classicalHardy
spacereslts directly. Thus, we first make the transformation & = z — a. Then,with
Ag = Al —aA)?

T=1d+ Ba(l —aA) 1y]
+ B —aA) eI — AT —a) ™Yy (C.1)

or the trarsition matrix changes to

Al —aA)~1 (I —aA)~ Ly
B —aA)™t d+ Ball —aA)ly |

Thesurplustheoryalludedto beforeproducesa characterizatiorof the zeronow
até = 0 fromaMaclaurinseriesexpanson atzero.Let

T =To+&T1+ E%To + - - € C™[£].

We wish to find P (&) polynomial suchthat P(¢§)~17 = T’ hasrankm at & = 0.
We look for (andwill find) a P(&) which haszerosat zeroand polesat oo, i.e.
P~1(¢) isapolynomialin £~1. We go a stepfurtherandrequre that P(£) beinner
(this restrictian makesthe solution essettially unique). Let {Ap, Bp, Cp, Dp} bea
realizationfor P(£) (P(€) = Dp + Bp&(I — Ap&)~1Cp). Let D beasmal enough
disc ceneredarounct = 0 sothattherearenootherzerosof T init, andlet usdenoe
by T the expression of T in terms of £. Then & =0 istheonly zeroof 7; in D,
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we have Tz H; (D) C H5'(D) and P () will have to meetthe condition7; H; (D) =
P(&)H;' (D). It turns out that this latter spaceis actually fully characterizedy the
reachabilityparametersf P whenP is unitary:

LemmaC.1l. Ap andBp area maximalreadable pair such that
EX(I =& AL) T IBRT:
isanalytic in a neighbothoodof & = 0.

Working out, we mug find a maximal observabk pair and orderk such that

*(k—1)

. ) [To Tv -+ Tr-1
A% BL .- B .

To = 0. (C.2)

*(k—'l)
0 A= g

a To |
To solve this set of structuredequationsn a non-redundanivay, we proceedn two
phags First we condruct elemens of a bags for the right nullspaceof the right
Toeplitz matrix recursvely. Next, we shall orderthee componentsn such a way

thatthey fit the shift invariantstructureof the reachabilityspacesought.
C.1. Pha® 1: componergof thenullspace

Step0. Find Ugp whose rows forma bass for theright nullspaceZg of Ty
UooTp = 0.

Finding a nullspaceis a classical proceduren numercal anaysis, it is doneusng
eitheran SVD or arank-reealingQ R-factorizationon 7p.

Stepl. Find [U1p U11] whose rows form a bass and which is such that (1)
U10To = 0 and (2) U1oT1 + U11To = 0. SinceUjo will spanasub-gaceof thespan
of therows of Ugg, therewill be aright invertible matrix X1 suchthatU19 = X1Ugo.
Therows of X constitute a basisfor the space

R1 = R(-UgoT1) N A(-To)

(where* Z(-X)’ denoesthe rangeof the rows of thematix X).
Thedeterminatiorof X1 is alittle more elaloratethanthe computation of a sim-

ple nullspacesince the intersect of two spacesis involved, a smple numerically
stabde algorithm usesan R Q-trangormaion to determine an adequag bass of one
of the row-spacesandto rotatethat bass to the spanof the first naturalbas vec-
tors. If the same rotation is applied to the other span,then the intersecion canbe
determined via a simpe range-kernel decanposition or an SVD on the remainng
ertries.
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Step¢. This step is generic.Whenit delivers an empty space,thenthe proce-
durehasterminatedthelad non-trvial stepgivestheorderk = ¢ of the zero).Find
[Upo Upr --- Upge] suchthat Uyg has zeroleft kernel and is such that it lays in the
kernel of the blok Toeplitz operatar with ¢ 4+ 1 blocks

To --- Ty
Tp
Since this condition implies that [Uyg --- Uge—1] lays in the kernel of a similar

block Toeplitz operator with one block row and column less,there must exist aright
invertible matrix X, such that

[Ueo --- Upe-1] = XelUg-10 --- Up—1,¢-1]-
X¢ will beasolution if its rows form a basisfor the space
R(Ue0Ty + -+ - + Up e-1T1]) N A(-To).
Thisis canagainbe doneby theintersctionproceduredesribedabove.
C.2. Phas2: congdructonof Ap, Bp
Starting from abassfor U,g andthe correpondngbassof ordert, [Ug,o U1 - - -
U¢l, we trangorm the lower orderbaes so thatthey incorporatethe bas vectors

of the higherorderelementsalreadydefined.This leadsto the following tableaujn
whichwe denotetheelementf Bp so obtainedby lowercas ‘b's:

[b;'fo byy - bjfe]:[UZO Ue --- Uel
b* . p* 7
1,0 =11\~ [Up10 -+ Up—1.0-1]
by oo bpe-1 |
(C.3)
bio]
. | =[Uool.
bgg_
Thereallt is:
Bp=[bjg biq by, | D10 bjq1 by 144 | | bo]

andA p is ablock Jardanmatrix of the form:
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0O [ 0 7]
0

I

0
0 I 0

Ap =
0

I
0

0

(The proof of these reaults is of cour® classical andakin to the congruction of
the Jordancanonicalform.)

Appendix D. Proofof convergence

Let R_[n] be the lowerright bottom corner sub-matix of R_ of dimensons
(n+1) x (n+ 1), and let the factaization (25) be specializedto that bottom
corneras

R_[n] = F[n]F[n]*

with
d_n PBeopr1 --- BA" Lo
0 dop1 - BA" 2
Fln] = _ )
do

Becaus of the Choleky property F[r] is an invertible finite uppertriangular
matrix, and we canwrite

Fln]™'R-[n] = Fln]*.
Specialisirg this equation furtherto the first row, we find
[d:;} Jan—1 -+ fn,O] R_[n] = [din 0 --- 0]

for some(block) coefficiens f;, ,—1 - - - fu.0 Which we leave ungecified.This actu-
ally idertifies

Fy(2) éd:;} + fn,n—lZ + .- fn,OZn
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asthe Szeg6 orthonormal(block) polynomial of ordern belonging to the spectal
function R(z). Fromthe Szegdtheory(or Wiene~Masanitheory see[19] last chap-
ter for anice accoun}, we now have the following propertes of the Szeg6 integrak:

(1) J7, log| detF, (€”)|?% = log| detd_,| 2.

(2) limy—oo(f7, log| det, (€)252) = [ log| detR(€")| .
From the recusion (26) it is alreaq clearthatthe limit d_,d* , is boundedrom

below, thequegion iswheterthelimit isnon-sngular. This now follows from point
(2) above, and the fact that R(z) originatesfrom a rational system, for which the
Szeg6 integral is necesarily bounded.Hencelim,_, o d—, = d, iS non-sngular.
From the Szego theay it alsofollowsthat f,, ,—x convergefor n — oo, let ussay to
fok: Tor any numberof k (for a proof, see [9]). Let ustake k equalto the dimenson

of A, thenwefind, for nlarge enough

Q.
| pat | L foc ]

to any degreeof approxmaiton. Sincethe pair {A, } is asumedreachabldy mini-
mality of therealization for T'(z), c_,+1 mud conwergeto

-I-
ﬁ fol
i BA Jo2
U :
IBAk fok

With the c¢_,, conwemging,the convergenceof M_; becomesubmaic sincethe
spectralradiusof A is assumed strictly within the unit disc.

Appendix E. The doubling procedure

We start out from expresion (29) in which 7'(z) = [T1(z) T2(z)] andthe prelim-
inary reductonshave beendone:T1(z) is outerandcommonzerosonthe unit circle
have beenremoved (this later point being esserial in getting a numerically stable
outerfactor).T (z) hasarealizationgivenby

A v
B d 0}
in which d is squarenon-sngular. Our goal will be to find M, = limg_ ~ my in

square root form. The other quantities ¢, andd,, thenfollow easilyfrom the single
recurson.
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Stepl: reducion to the‘Kalmancase'. Let

| AP B R A I
B d 0 |7l o b,

with ker(Y-) = 0 and D,, squarenon-sngularandW unitary. Thenalso

A 0 Y 0 Y C,—yd D,
d71p I 0 / 0 0 d D,

with 4 = A — y1d—18. The equivalence is obtained via by premultiplication with
the non-sngulartrangormation matrix

[ —yd1
0o 47t |
Returning to the recurson for the determinaion of the outer facior (29) andthe
notation definedthere),anappicaion of the previouslemmabringsit to the form

Ik /
4 0 y] |:O T+l € :|
I — +1 Qk+1
[,3 1 0 I 0 0 4/,

for someapproprately modified (andotherwise unimportang ¢, , , andd,_, ;. Inthis
expresion, 4 isthe trander operaor of the inverse of anouter function,andhence
hasspectralradiusless or equalto one— by an appropriatestatetrangormationit can
bein factbemadecontactve,e.g.by usng aninputor outputnormalform, we skip
this operational detail. Note alsothe convenient recefinition of g andy .

Step2: thelinearizationof the Riccatiequation.

LemmaE.1l. Therelation

A 0 y:| Tk |:0 ree1 o C }

1 = K11 Ok,

[ﬁ I O 7 0 0 dk/—{l
with Q1 unitary, is equivalent to

mi+1| | mibi

][]
in which my = rgr; is a minimal factorization, by = (I + B*Bmy)~L4* is a well-
definedntermediatequantityand

_| 4 yy*
Z‘[—ﬁ*ﬁ A*]'
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Proof. < : Thesecondequatonin (E.1)gives
(I + B*Bmy)by = 4™

It is eay to seethat (I + B*Bmy) is always invertible, being of the form (7 +
M N) with M andN postivedefinite, and hencethe expresionfor b follows.Filling
by in the first equation we obtain

mig1=yy* + A1 + B*pmp) "t 4*,
which caneasly betrangormedto theequvalent
M1 = yy* + Ampd* — A1 + B 5) " Bmy 4.
Introducenow a minimal factorization
I+ BmB* = dp1di’yq
anddefine
iy = AP
Then
AmpA* +yy* = mrga+ i
Ampp* = C;<+1 ;:‘rl
BmiB* + 1 = diqdi’yy.
Introducingminimal factorizationsn; = r;r;” and padding with zerosto equal
outdimensons we find

k *
|:Ark 0 )/i| rS r]k _[O Fial c,’{+li| rO* 8
_ 1 rr,
o D00 o] B0 el g,

Thisis of theform M M* = N N* with M andN matricesof equaldimensons In
thatcasehereexistsaunitary matrix Q suchthatM = N Q andthe propery follows.
=: Retraceshe stepsin theopposte direction. [

2 iswhatisknownin classical circuit theorya‘hybrid matix’ linkinginputquan-
tities at both sidesof acircuit to output quantities alsooccuring at both sdes.These
guantities areof the ‘voltage and currert’ type and not of the scatterirg type, seethe
discussion atthe end of this secion.

Step3: The doubing procedue. Thedoubling proceduras obtainedby chaning
repregniationsof thetype(E.1)andisdueto [23], for ascateringinterpreiaton, see
[4]. We state thepropery as alemma.

LemmaE.2. If

m m1b
-1
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with
| 4 yy®
. _[—ﬂ*ﬁ A*]’
then
ma| mi1bq
3-541
with
A )/27/2*}
Z == % )
’ [—ﬂ;ﬂz 43
in which

A=A +yy*B*p)~t4
v2 hasminimal dimensonsandis such that

[Ay I+ y*B*By) Y2 ylg1 =1[y2 0]

for some unitary transformation matrix g1, and g2 hasminimal dimensonsand s
such that

[4*B*(I + Byy* B B*lg2 = (B3 O]
for some unitary transformation ¢».

Proof (By chaining). If

andboth (I — sr) and(I — ts) areinvertible, then

5, — |: r(I —st)~1r s+r( — st)_lu:| . (E.4)

t4u(l —ts) " Ltr u(l —ts) 1u

The givenformulasthenfollow by smple evaluation. [

Reverting backto LemmaE.1, we obtain the doubing algorithm for the compu-
tation of r, with M, = r,r} asfollows.

Algorithm E.1 (Doubling algorithm). Startup: find u suchthatu = yy* + AuA*,
letri 2 AuB*(I + Bup*) Y2 (thatis: in theoriginal dat, andwith aslightrenum-
bering, the new r; equalthe old r;_1).
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Gereric stepi: Given r; compuery; viathe RQfactorization:
Air; 0 Vil 0 ry = 0;
,3,'}’,' 1 0 o 0 0 * !
andupdatethe parameters

Agi = Ai(I + iy BB 4
[AiVi(I + y B Biyi) Y2 Vi] q1.i = [y2i O] (E.5)
(45870 + By BT B | a2 = 183, 01

A numberof remarksarein order:
1. When 4 is strictly contractive, the algorithm quickly convergesto alimiting value
in which 4o, = 0 andwhich isfurthergivenby

0 0 rq [0 1o 0
[/3 o I ol 01 - [o 0 (I + 5005@5*}/2]Q
with a (simple) unitary Q. Conwvergencen the generalcag was shown in the
previousappendx, its form canbederived and is beyondthe presentpaper

2. Oncer, andM, arefound,thentheotherquantities:, andd, quickly follow from
the original recurson, which canalso be used to checkcorrectnes, andimprove
ontheobtainedvaue.

3. Numericaly, onewould handkthevariousinversesby anSVD. Letk £ 8y. Then
wemug compuey (I + «*k) Y2, p*(I + kx*)"Y2andl — y (I — k*k) " 1*B.
With « = uov* anSVD for «, wefind for thesequantities, respectively: yv(I +
o2) V2% Bru(I + 02)~V2u* andl — yv(o (I + o2~ Hv*B.

4. Kailathetal.[4] callthe matrix 2~ a‘scatterig matrix’ and the composition (E.4) a
‘Redheffemproduct’.We take issue with this viewpoint. Traditionally, X would be
calleda‘hybrid matrix’ by circuit theorigs, seee.g.[36, p. 17]. Thecompogion
in (E.4)is in facta compostion of hybrid matrices which is not written down
in that form in mog classical textbooks but is usualy conwerted to the chan
form andthenwritten asa product,see e.g. [36, p. 22] Furtherargumentfor the
statementhat X~ should be regardeda hybrid matix is providedby its algebrac
propertieqrelatedto the algebraicpropertiesof a Hamiltonian).We had,for the
propagaion of my

|:mk+1i|_|: Vi VV*} |:mkbk]
b | T =g A || 1 |

Introducnhgajudiciousi = +/—1 in thepropagaibn chain, we find

imepr| | 4 lyy*| | imgby
o | T 4 1|
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Thematrix

al 4 dyy?

is skew-Hemnitian in the sersethat H*E = E H for

e-[2]).

This correpondsclassically to congervationof energyin the system

=)

in which vy is interpretedas a voltage and i; a currentflowing from right to
left (k = 1, 2). Further interpretations and additional numerical mileage may be
obtained by substituting the shift z for i, but this goesbeyondthe scopeof this
paper
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