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Abstract—In this paper, a novel nonlinear Volterra equalizer
is presented. We define a framework for nonlinear second-order
Volterra models, which is applicable to different applications in
engineering. We use this framework to define the channel and to
model the equalizer. We then solve the minimum mean-square
error (MMSE) problem explicitly for the tandem connection of the
two second-order Volterra systems. Optimal solutions for a simpli-
fied, linear version of the MMSE equalizer are also presented. The
novel equalizer was tested when applied to a nonlinear ultra-wide-
band transmitted reference receiver front end. As a comparison,
a least mean squares (LMS) equalizer with a training sequence
has been used to verify the performance of the newly proposed
equalizer. The simulation results show that the LMS equalizer is
only able to attain the proposed MMSE equalizer after very long
training, which might not be desirable in a communication system.

Index Terms—Nonlinear MMSE equalizer, second-order sys-

tems, Volterra systems.

ONLINEARITIES are encountered in many communica-
N tion systems. This results from the fact that systems are
pushed to their limits, thus linear modeling of the components
is not sufficient any more to achieve a good model accuracy. As
the information bearing signals are processed and distorted by
nonlinearities, there is a high interest to find algorithms that re-
construct this information. Thus, the problems occurring due to
nonlinearities in the analog domain are compensated for by means
of nonlinear digital signal processing. Most of the time, the non-
linearities encountered in the continuous time domain are static
nonlinearities, which means that they do not show any memory
effects and a set of input values is mapped by a nonlinear function
toasetof output values. This function can be known exactly by an
analytical expression or can be approximated by means of Taylor
series, neural networks [ 1], and many other modeling approaches.
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If the memory is included in the model, one can develop equiv-
alent nonlinear fading memory systems and use Volterra models
to describe the input—output behavior [2], [3]. This approach is
used in many applications for nonlinear system description. Ex-
amples of nonlinear Volterra system modeling are presented in
[4] where nonlinear magnetic recording channels are modeled,
in [5] nonlinear digital satellite channels are modeled, and in [6]
the authors have shown that nonlinear Volterra modeling is also
possible for noncoherent ultra-wide-band (UWB) receiver front
ends. Many more applications can be found where Volterra mod-
eling is successfully applied, see, e.g., [7]-[9].

To recover the originally transmitted information, an equal-
izer has to be used to combat the distortion effects of the
channel. For strictly linear systems, many different equaliza-
tion strategies may be used. The most commonly known are
zero-forcing (ZF) equalizers, minimum mean-square error
(MMSE) equalizers, maximum-likelihood (ML) equalizers,
and minimum bit error rate (MBER) equalizers [10]. For linear
finite-impulse-response (FIR) channels, the definition of an
exact inverse is given by replacing all the zeros of the channel
transfer function by poles, thus leading to infinite-impulse-re-
sponse (IIR) filters. A minimum phase requirement on the
channel is thus implicitly assumed to be able to create a stable
and causal ZF equalizer [11]. Any occurring noise in the overall
system is amplified by a possible gain of the ZF equalizer,
making it useless for many implementations.

Another possibility to compute an equalizer is to minimize
the mean squared error over a block of data symbols. Usually
the error is then defined as the difference between the originally
transmitted data symbols and the estimated data symbols, i.e.,
the received data symbols processed by an equalizer. Thus, the
formulation of the overall system is necessary, i.e., the combined
response of the channel and the equalizer. For purely linear sys-
tems, the MMSE equalizer is easily derived and can be found in
textbooks [12], [13].

In this paper, we extend the conventional linear MMSE
equalizer to nonlinear, second-order Volterra systems. Gener-
ally, nonlinear fading memory systems are described by a set of
kernels, i.e., characterizing the nonlinear input-output behavior
of the system. The output of a discrete-time, gth-order Volterra
system with input d[k] is given by
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where hg and h; represent the bias and linear part, respectively.
All higher-order kernels are given as h;, 7 = 2,...,q. Each of
the multidimensional objects h; has, in its most general form,
independent memory depths N;, ¢ = 1,...,q. The data se-
quence d[k] represents data symbols with an arbitrary modu-
lation format.

Generally, an equalizer for a nonlinear Volterra system can
be computed exactly as a recursive Volterra system as shown in
[14]. However, due to the recursive structure, the inverse system
may encounter stability problems when applying signals with
low signal-to-noise ratio (SNR) [15]. Conversely to the exact
inverse, a ZF Volterra equalizer can be found by expressing the
cascade of the Volterra channel and Volterra equalizer in terms
of the orders of the input signal and equating equal exponents.
This is conventionally known as the pth-order inverse of non-
linear systems [16]. Up to an order of p all the nonlinear kernels
of the cascade are forced to be zero. By introducing a nonlinear
equalizer, higher-order terms (larger than p) occur in the cas-
cade, which are nonzero and are assumed to be small such that
their influence is negligible. However, exact inverses as well
as pth-order inverses require that the first-order kernel of the
channel is minimum-phase because an exact inverse of the linear
part is needed.

In this paper, we want to address an exact expression for an
MMSE equalizer of a second-order Volterra system. To realize
this, we make the crucial assumption that the data symbols d[k]
in (1) are binary antipodal with zero mean. Under this assump-
tion, we extend the linear MMSE equalizer by incorporating the
second-order Volterra channel model, and we adapt the MSE
formulation to second-order Volterra equalizers in order to im-
prove the performance even further. Additionally, the obtained
results are compared with their least mean squares (LMS) coun-
terparts, which ideally should achieve similar results. Note that
initial work on these approaches has been reported in [17], but
the equalizers developed there are only approximations of the
true MMSE equalizers. In [18], linear equalizers are proposed
to achieve equalization of a nonlinear Volterra system. Such
an equalizer requires oversampling at the receiver front end in-
creasing the complexity significantly. Still, it has been applied
successfully to oversampled nonlinear receiver front ends in
[19]. In other works, the equalization problem has been formu-
lated as a fixed point problem [20], [21] where a solution for
the equalizer is found iteratively. This is possible as long as the
mapping between the iteration steps is contractive. An effective
implementation of an adaptive equalizer in the frequency-do-
main is found in [22] where fast block convolution algorithms
are used to combat intersymbol interference (ISI). In [23] a non-
linear least squares (LS) equalizer is found for IIR nonlinear sys-
tems and the authors in [24] propose an iterative method with a
nonlinear predictor.

The paper is organized as follows. In Section II, the nonlinear
channel for our approach is defined. A similarly defined gener-
alized equalizer structure is shown in Section III. We express the
MMSE solutions for linear and second-order Volterra equalizers
in Section IV. Section V briefly reviews the adaptive nonlinear
filter definitions achieving MMSE equalization by LMS. Simu-
lation results for an example of such a nonlinear second-order
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Volterra system, fitting in the proposed framework, is presented
in Section VI. Finally, conclusions are drawn in Section VII.

II. NONLINEAR SYSTEM MODEL

As seen in (1), the output of a fading-memory nonlinear
system can be considered as a generalization of the linear
convolution. This extension is obtained by including nonlinear
terms in this convolution, i.e., by using all product terms for
different time lags up to a certain memory depth. For the special
case of a second-order system, i.e., hy = 0,Vq > 2, we can
write the output of the Volterra system in a matrix-vector form
as

z[k] = ho + hid[k] + AT [k]Hod[k] + n[k] )

where nlk] is the additive noise, d[k] = [d[k],d[k —
1],...,d[k — L + 1]]" is a vector containing the L data
symbols, and where the scalar hg, the L X 1 vector hy, and the
L x L upper triangular matrix H, are the zeroth-, first-, and
second-order kernels of the channel, respectively. With respect
to (1), the memory depth of the nonlinear system is defined as
L = max(Ny, N3). We make the following assumptions in this

work:
Al) the data symbols d[k] are binary antipodal, i.e., d[k] €
{%c}, with ¢ € R and =%c is equiprobable such that

E{d[k]} = 0;
A2) the noise is i.i.d. Gaussian with zero-mean and variance
2
g

o,

The derivations in this paper can also be done without the
i.i.d. assumption. However, the covariance matrices introduced
later on will not be scaled identity matrices anymore.

The squared elements of d[k] are given as d*[k] = ¢%, Vk,
and thus the main diagonal of the second-order kernel Hs can
be included into the bias term hy which simplifies (2).

For our further considerations, we assume that the bias term

is not contained in the system and we define

ylk] = 2[k] — ho = hid[k] + AT [k]Hod[k] + n[k] ~ (3)
as the received sequence without the bias h(, which can easily
be obtained by averaging.

Since we want to write the second-order kernel as a linear
function of the crossterms, we introduce the operator X, which
is a modified Kronecker product that only takes the unique half
of the crossterms into account. We can then rewrite y[k] as

y[k] = hid[k] + h3 (d[k] R d[k]) + n[k] Q)

where hs is an appropriate modification of Hy, omit-

ting also the main diagonal elements since they
have been collected in the bias term. For a vector
b = [b1,b,...,bx]", we define the reduced Kronecker

product b X b as b X'b = [b1bo, babs, ..

br—2bx, ... bibx_1,bobg, bibk]T.
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III. EQUALIZER MODEL

We can now define an equalizer that is applied to the received
signal y[k]. For a first-order Volterra or linear equalizer the es-
timated data sequence d[k] becomes

d[k] = g{ylk] )

where y[k] = [y[k],y[k — 1],...,y[k — L. + 1]]", and where
the L. x 1 vector g; represents the linear equalizer coefficients.
Applying a second-order Volterra equalizer to y[k], we obtain

dlk] = gly[k] + y" [k]Gay[k] (6)

where the L. X L. matrix G represents the second-order kernel
of the Volterra equalizer. Note that there is no zeroth-order
kernel in both cases, since we already removed the bias from
the channel model.

As we did for the channel, we can rewrite d[k] as

dlk] = gl y[k] + g3 (y[k] ® y[k])

where g is an appropriate modification of Go.

N

IV. MMSE VOLTERRA FILTERS

In this section we derive linear and nonlinear equalizers for

4731

A. First-Order Equalizer

First of all, let us assume that the second-order kernel gs is
zero and that we only focus on the first-order kernel g; . We then
have to derive an expression for y[k] as a function of h; and hs.
To this end, let us rewrite the L. elements of the input samples
for the equalizer y[k — ] as

ylk — 1] = i do[k] +h3 (k] R d.[k]) +nlk — 1] (8)

where the extended data vector is given by d.[k] = [d[k], d[k —
1],...,d[k — L — L. +2]]" and where the channel vectors h;
and hy ; are appropriate extensions of h; and hy which depend
onl=0,1,...,L. — 1, respectively.

In short, we can thus write

ylk — 1) = £s[k] + n[k — 1] ©)

T
where f; = [h{“ h;l] and s[k] [dT[k], (d. [F]®
d.[k])T]". Both vectors, f; and s[k] are having the dimen-
sion (¢ + ) x 1, where ¢ = L. + L — 1 denotes the length
of the linear terms, and n = 2522 (Le + L — «) denotes the
length of the nonlinear product terms.

It is then easy to see that we can write y[k] as

the nonlinear channel model. y[k] = Fslk] + n[k] (10)
- hy[0] 0 0 1 i
ha 1] h1[0] 0
: . Le+L -1
0 hl[L — 1] hl[L — 2]
0 0 hi[L —1]
77777 Wlo] o0 ... 0o
ha[1,2] h»[0,1] 0
: B : Le+ L -2
0 holL —1,L—2] ho[L —2,L -3
0 0 holL —1,L — 2]
F=| mo2 o .. 0 an
}Lg[l, 3] }L2[07 2] 0
: . Le+L -3
0 holL —1,L—3] ho|L —2,L — 4]
0 0 ho|L —1,L — 3]
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where n[k] is similarly defined as y[k], and where F is
a structured matrix containing the entries of each fj, i.e.,
F = [fo,f1,...,fz._1]". The explicit structure of the channel
matrix is given by (11), shown at the bottom of the previous
page, where hq[k] is the (k + 1)th entry of the first-order kernel
h;, and hsk, (] is the (k 4+ 1,1 4 1)th entry of the second-order
kernel Hs, as used in (1). Finally, the matrix F is of dimension
(e + 1) X L. For the linear terms it has the conventional
Toeplitz structure and for the nonlinear terms it has a Toeplitz
structure built from off-diagonals of the second-order kernel.
For finding an equalizer, we can minimize the cost function
J = E{(d[k] — d[k])2}. By incorporating the linear part of (7)
and solving for the MMSE equalizer g, we obtain
g1 = (FR,F' + R,) 'FR.es11 (12)
where R, = E{s[k]s"[k]}, es;1 is a unit column vector with a
“1”in position 6 4 1, with ¢ the delay of the equalizer, and R, is
the autocorrelation matrix of the noise. Under assumption A2),
the noise correlation matrix can be written as R,, = 021y,_.
Further, under assumption A1), we can also define the structure
of the autocorrelation matrix R, as

= | (13)
i ’Iy
The indices in the subscript of the identity matrices denote the
size of the corresponding matrix, i.e., € for the linear samples
and 7 for the nonlinear samples, respectively. The final result
in (12) is similar to the conventional purely linear equalizer and
it can be viewed as a generalization of this MMSE equation.
With our assumptions Al) and A2), the correlation matrices
can be computed with the method shown in Appendix II. It is
only questionable whether this linear solution shows good per-
formance. This may be true for weakly nonlinear systems only.

B. Second-Order Equalizer

What if we do not assume that the second-order kernel go
is zero? We then have to look for an additional expression of
y[k] X y[k] as a function of h; and h,.

In general, we can write that

y[k] ®y[k] =S(y[k] ® y[k])
= S[(Fs[k] + n[k]) ® (Fs[k] + n[k])]
=S(F ® F)(s[k] ® s[k])
+ S(F ® I)(s[k] ® n[k])
+S(I® F)(n[k] ® s[k])

+ S(n[k] ® n[k]) (14)

where S is a selection matrix that transforms the Kronecker
product ® into the modified Kronecker product X. Considering
now that a commutation of the Kronecker product is achieved
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by multiplying it by a permutation matrix P (see Appendix I),
we can rewrite (14) as

y[F] R y[k] =S(y[k] @ y[k])
=S(F @ F)(s[k] ® s[k])
+S[(F&I)+ (Lo F)P](s[k] @ n[k])

+ (n[k] ® nk]). (15)
The output of the second-order equalizer can be written as
d[k] = g1 ;] (16)

where g1 2 = [g], g7]" and wk] = [y"[k], (y[k] Ry[k])T]".
We can now write w[k] as
wk] = Qr[k] + U(s[k] ® n[k]) + m[k] (17)
where m[k] = [n'[k], (n[k] X n[k])"]", i.e., m[k] is sim-
ilarly defined as w[k], r[k] = [sT[k],(s[k] ® s[k])T]", and
U = [0",[S[(F®1I) + (I® F)P]"]". The big channel ma-
trix QQ containing all products up to fourth order is given as

F 0

Q—[o &F@FJ'
Now there is no correlation between the useful term r[k] and
the noise terms s[k] ® n[k] and m[k], since we’ve used the re-
duced Kronecker notations and zero-mean properties for s[k]
and m[k], respectively.

To make things more clear, the final equation for w[k] is
rewritten in a matrix form

BT s L]
+siEen s aemp) | EHERH

nk]
g g o
The formula for the MMSE expression for g » is now easily
derived. Let us define the correlation matrices as

R, = E{r[k]r"[k]} (19)
R, =E{[(s[k] @ n[k))][(s[k] @ n[k])]"} (20)

and
R,, = E{m[k]m'[k]}. 1)

One can show that the correlation between the data vector r[k]
and the noise vector n[k] is zero since the assumption that data
and noise are uncorrelated even holds for this modified data and
noise vector. But this property only holds as long as we assume
that the second-order kernels of the channel and the equalizer
have zeros on the main diagonal.
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With these assumptions we can use the same cost function as
before to minimize. The parameters for the optimal equalizer
are computed as

g.2=(QR,. Q" +UR,,,U" +R,,) 'QRes;1. (22)

The correlation matrix R, is not easy to describe in an analytical
way. We know that the very first part is given by a diagonal ma-
trix ¢?I because these elements describe the correlation between
the purely linear symbols. The rest of the matrix represents dif-
ferent terms of correlation in the linear and nonlinear data parts.
Due to the modified Kronecker notation used, a simplification of
the correlation matrix is a very challenging task. However, we
give a detailed description on how to describe the correlation
matrix in Appendix II, which can be used for any correlation
matrix used in this paper, i.e., also for R, ,, and R,,.

V. ADAPTIVE VOLTERRA FILTERS

As a comparison, we want to show the effects of our newly
derived equalizers (12) and (22) w.r.t. an adaptive equalizer so-
lution. For that purpose we use an extension to the conventional
linear LMS adaptive algorithm [25]. These nonlinear extensions
are needed to adapt the second-order kernel of the nonlinear
LMS equalizer during training [26]. The modified LMS up-
dating equations are obtained as

gi[k] = g1k — 1] + pay[kle[] (23)
for the first-order kernel and as
galk] = galk — 1] + po(y[k] W y[k])e[k] (24)

for the second-order kernel, with e[k] denoting the error signal
which is given as e[k] = d[k — 6] — d[k] during the training
phase.

VI. SIMULATION RESULTS

In this section, we compare the linear (12) and nonlinear (22)
equalizer. For that purpose we have used the nonlinear second-
order equivalent system model derived in [6], which is a model
for a frame-differential (FD) transmitted-reference (TR) UWB
autocorrelation receiver (AcR) front end. It describes the inter-
symbol interference due to a time-dispersive multipath channel
for the nonlinear AcR. The authors also derive an exact expres-
sion for the noise variance at the output of the receiver, given a
certain double-sided noise spectral density Ny /2 at the receiver
input. As a first approximation (which turned out to be a rea-
sonable assumption for many scenarios), the noise is assumed
to be a zero-mean i.i.d. Gaussian random process with a fixed
variance o2 depending on the receiver parameters. Furthermore,
the FD-TR-UWB scheme uses BPSK signaling to transmit data
and thus fits into our framework defined in (4).

To compute the equalizer coefficients according to (12) and
(22) it is necessary to determine the autocorrelation matrix of the
data vectors s[k] and r[k]. The autocorrelation matrix for s[k] is
shown in (13) and is a scaled identity matrix with dimension
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2L? — L if we assume that L is the number of channel taps and
equalizer taps (i.e., L. = L). The construction of r[k] is more
complex and if we again take the same length for the channel
and the equalizer, we get a huge autocorrelation matrix R,., of
dimension (4L* — 4L3 + 3L? — L)/2. We see that this size
is mostly determined by the fourth-order term and brings an
enormous increase in the size of the autocorrelation matrix.

To achieve reasonable simulation times and matrix sizes, a
simplification of the nonlinear equivalent system model coeffi-
cients has been investigated first. For an RMS delay spread of
the channel impulse response of ;1,5 = 10 ns the authors in [6]
propose an equivalent nonlinear system model with 17 linear
coefficients and (17 x 16)/2 second-order kernel coefficients at
a data rate of 125 Mb/s (i.e., a symbol time of 8 ns) to achieve
sufficient model accuracy. For estimating the huge correlation
matrix R, of the data when setting the equalizer length equal to
the channel length, this complexity has to be reduced. For that
reason, a comparison of the equivalent system model to a trun-
cated version of itself has been done first. The quantity we’ve
compared to achieve similar system behavior is the data aver-
aged bit error rate (BER). Moreover, the quantiles of the two
results are compared and analyzed by simulation. It has been
seen already in [6] that the RMS value of the equivalent non-
linear system model coefficients is rather low when deviating
from the desired data symbol. A sophisticated analysis of this
behavior is also found in [27]. This means that the overall con-
tribution of the terms with high distance to the desired symbol
is small or even negligible.

For an equivalent truncated system model of six taps (i.e.,
six taps for the linear kernel and (6 x 5)/2 taps for the second-
order nonlinear kernel), the performance results in terms of BER
are shown in Fig. 1. With the obtained results, a conventional
threshold detector has been used, which decides on the sign
of the sampled output signal without equalization. It is seen,
that the results for the 90% quantile, mean, and median of the
data-averaged BER are practically the same for the truncated
system. For the 10% quantile a minor deviation from the full
system model is visible. For that reason, a truncated version
of the nonlinear equivalent system model is used to keep the
complexity low and allow estimation of the autocorrelation ma-
trix of the data. If we consider, that the perfect equalizer (ZF)
would have an infinite number of taps (IIR) the truncation to
L. = L = 6 taps is rather crude. An increase to 12 taps for
the equalizer length L. has shown to deliver reasonable results.
With the specified lengths of channel and equalizer the autocor-
relation matrix was constructed according to Appendix II, and
then used for all the computations since it remains constant.

To benchmark the performance, an adaptive nonlinear filter
has been used with (23) and (24) as update equations. The length
of the adaptive filter was also set to L, = 12 to have sim-
ilar computational cost. For the step size of the algorithm, we
used constant and exponentially decaying step sizes. With a con-
stant step size the adaptive algorithm has problems to achieve
a high performant solution for the inverse of the system. With
an exponentially decaying step size a high performance is ob-
served, which is very similar to the performance of our proposed
nonlinear equalizer. The comparison of the analytical equalizer
computations is shown in Fig. 2 where, again, the mean, median,
10%, and 90% quantiles are shown for the achieved equalizer
performance. It is clearly visible that the nonlinear equalizer
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Fig. 2. Comparison of derived MMSE equalizers; linear and second-order
equalizer performance analyzed over 800 different equivalent system models.

outperforms the linear equalizer. This comes, however, at the
cost of an increased complexity.

The results of the adaptive equalizer are shown in Fig. 3. It
is seen clearly, that a similar performance can be achieved by
these equalizers. However, the estimation of the equalizer co-
efficients has to be performed with training sequences. For our
equivalent nonlinear system model, a few tens of thousands of
training symbols are needed to achieve good convergence of the
coefficients of the nonlinear adaptive equalizer. A good conver-
gence point is achieved when using an exponentially decaying
step-size parameter in (24). With this decaying step-size param-
eter also the convergence speed is influenced which is also one
of the reasons why we need a lot of training to find a good non-
linear equalizer.

We furthermore compared the output of the receiver front-end
without equalization, with the improved linear equalizer, and
with the nonlinear equalizer. The sequences of data symbols is
depicted in Fig. 4 for an SNR of 40 dB to keep possible mis-
takes due to noise small. To allow a comparison to the originally
transmitted data sequence we have depicted the data symbols
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Fig. 4. Time series of distorted data symbols (top), data symbols after the linear
equalizer (middle), and data symbols after nonlinear equalizer (bottom). “[1” de-
notes the originally transmitted symbol, “o” denotes correctly detected symbol
for each equalizer, and “Xx” denotes incorrectly detected data symbol for each
equalizer, respectively.

with squares in each subplot. Furthermore, the equalized data
symbols are shown either with a “x” for an incorrectly detected
data symbol or a “o” for a correctly detected symbol. One can
see that especially at data symbol changes (from +1 to -1, and
vice versa) the nonlinear equalizer achieves better performance
due to its nonlinear dynamics.

VII. CONCLUSION

In this paper, we have shown an equalization approach for
nonlinear second-order Volterra systems. First a novel linear
equalizer has been derived, which considers a nonlinear Volterra
structure of the channel. The achieved results for this computa-
tion are similar to the results in [17], but are formulated more
generally. Furthermore, a novel second-order Volterra equalizer
was designed by explicitly solving the MMSE problem for the
tandem connection of two second-order Volterra systems. Com-
pared to the pth-order inverse shown in [16], the noise in the
system has been considered in our approach. Furthermore, the
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Fig. 5. Autocorrelation matrix of the data vector r[k]. The matrix has
2652 x 2652 elements, where 22 152 are nonzero which reduces computational
complexity because of the sparsity.

linear term is not required to be minimum phase, i.e., to be in-
vertible, in our approach.

The performance of the novel equalizer is compared to a simi-
larly structured adaptive equalizer, which shows that similar per-
formances can be achieved with both approaches. However, the
optimal solution is found with our expressions in one compu-
tational step when the coefficients of the nonlinear model are
available. An adaptive algorithm with exponentially decaying
step size requires prohibitively long training sequences to ap-
proach that optimum.

APPENDIX I
COMMUTATION OF THE KRONECKER PRODUCT

The Kronecker product of vectors is not commutative, which
means that if the operands are exchanged a different result is
obtained. However, it is always possible to find a permutation
matrix P that achieves

c=a®b=Pb®a). (25)
If we assume that a is an m x 1 vector and b is an n x 1 vector,
cis an mn x 1 vector. Thus, a valid permutation matrix has to
be an mn X mn matrix. If we assume that E,,, is a matrix with
dimensions m X n filled up with zeros, except for a single 1 at
the position (z, y) we can express the permutation matrix as
P = [vec(Eq1), vec(Eq2), ..., vec(Emy)] (26)
where vec(-) is denoting the vector operator, i.e., the operator
that stacks a matrix into a vector columnwise [28].

APPENDIX II
CORRELATION MATRIX OF THE DATA TERMS

In this section we derive an analytical description for the cor-
relation matrix R,.. Since it contains all different correlations
between data terms up to eighth order we can give a set of rules
how to create this matrix in a systematic way. First of all, we
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describe the correlation matrix a bit more explicitly. The cor-
relation between the data terms is given as E{r[k]r"[k]} where
each of the data terms is given as r[k] = [sT[k], (s[k] @ s[k])T]"
and s[k] can be expressed as s[k] = [d[[k], (d.[k]Xd.[k])T]".
Substituting this, we obtain

r[k] = [d][k], (do[k] R d.[k])T, [d[K], (d[k] ® d[k])T]

T

® [di[k], (d[k] R d.[k])T]]| - (27)

To determine the autocorrelation matrix, the expectation oper-
ator of the outer product of (27) with itself has to be computed.
If one studies the structure of the data products in detail, one
can see that the matrix consists of sections with products of dif-
ferent orders. To analyze these products stepwise, we separate
the correlation matrix in four parts, like

(28)

where the separating line between the parts is drawn right after
the fourth-order parts. Since the data vector up to the fourth-
order products is defined with the reduced Kronecker notation,
R, is exactly the same as R used for the linear equalizer. For
the higher-order terms, contained in R and R3, we can define
conditions which have to be computed for each element and then
it can be decided whether there is correlation between the terms
or not. For the following, we assume that all the processes are
stationary. Thus we drop the time index & of the data vectors.
Furthermore, in each element of R, and R, we get a certain
amount of data symbols contributing. Under assumption Al),
we can say, that for each element in the correlation matrix where
an odd number of data symbols is contributing, the resulting
correlation is zero. For an even number of contributing symbols,
we can define conditions which have to be fulfilled such that
there is correlation between the data symbols, otherwise also
these data symbols are uncorrelated.

Generally, the amount of different conditions which have to
be checked is huge in this case. However, this problem is very
similar with a set partitioning problem in combinatorics [29].
There, Bell has specified a number (i.e., the Bell number) which
gives the number of partitioned sets of one dataset. For our
problem, not all different subsets are interesting. We just want to
focus on the subsets which are contributing something different
from zero to the autocorrelation matrix of the data vector.

For the correlation of two data symbols, we have exactly one
case where this condition is fulfilled. There the contribution in
the autocorrelation matrix is E{d;d;} = ¢? for i = j, where
d; is the ith element of d..[k]. If we consider four symbols, we
get already four matches which contribute a different value than
zero to the correlation matrix. These four cases are split in three
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E{did;} =c* if
if

E{did;dyd,} = c*
if
(if
E{did,;dpdidydy} =84 if

 if
(if

if
E{didjdkdldmdndodp} :CS if

if

 if
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=7 1
= jAk=
4

,':j:k:l/\m:n 31

i=j=k=Il=m=nANo=p 374

(29)

sets of two data symbols and one set of four data symbols. Con-
sidering six data symbols, generally gives 31 different possible
conditions. These 31 split to 15 where we have three pairs of
data symbols, 15 where we have one pair of data symbols and
one quad of data symbols, and one single six-element entry. For
the eight-data-symbol case, we have generally 374 subsets of
the 4140 (the Bell number Bg) that contribute. There we find
103 terms consisting of four pairs, 210 terms consisting of a
group of four and two pairs, 25 terms consisting of a pair and
a group of six elements, 35 terms consisting of two groups of
four and one single entry that consists of a group of eight. This
in total gives 374 different conditions, and by superimposing the
other contributions with less than eight elements, we get a total
number of 410 different possibilities to get a contribution in the
autocorrelation matrix that is different from zero. To clarify the
grouping, we depict the conditions once again in (29) where the
different permutations are obtained when shifting indices.

Similar considerations are possible for the two other correla-
tion matrices R ,, and R,,, and similar conditions can be for-
mulated for the correlation terms of noise and data samples, i.e.,
the entries in the correlation matrix. See equation (29) at the top
of the next page. To show the complicated structure of such a
correlation matrix, we have generated an example for the case
where channel and equalizer have the same length of six taps.
One can observe some regularity in this matrix. Each element
containing a value different from zero is visualized with a dot.
The matrix has 2652 x 2652 = 7033104 entries. However, only
22 152 of them are nonzero, allowing sparse matrix computa-
tions reducing computational complexity.
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