A Software Tool for 3D Meshing of VLSI
Interconnect Structures

K.J. van der Kolk and N.P. van der Meijs
Delft University of Technology,
EEMCS, Circuits and Systems group,
Mekelweg 4, 2628 CD Delft, The Netherlands
Email: {keesjan,nick@cas.et.tudelft.nl

Abstract— Due to decreasing dimensions and increasing signal- II. DELAUNAY REFINEMENT

frequencies, the study of on-chip parasitic effects has beme of) : .
basic importance. In order to accurately predict the behavor of Our mesh-generator is based on techniques from the theory

a VLSI design, it is nowadays necessary to use tools capablé o qf Delaunay refinem_ent, that evolved_in_recent years. Limita-
performing detailed field-calculations. A primary requirement for ~ tion of space restrains us from publishing a full account of
such computations is that the domain is decomposed into a mies this theory, and we refer to [2], [3], and [4] for expositions of

This paper describes the design and implementation of a sefare the matter.

tool capable of generating fully three-dimensional meshefrom Figure 1 shows the Delaunay refinement algorithm in the

VLSI layout information. The main features of the tool are that .
the basic elements are tetrahedral, the generated elemergatisfy fOrm of pseudo-code. The functionspLiT;, SPLIT,, and

a predetermined quality condition, and the meshes exhibitgod SPLIT3 perform the operations of segment, subfacet and
grading. tetrahedron splitting, respectively. The functiorit) gives
the circumradius-to-shortest-edge ratio of a tetrahedrof
|. INTRODUCTION tetrahedrornt with v(¢) > B has an unfavorable circumradius-

- . . . ‘to-shortest-edge ratio and is callgkinny(such tetrahedra will
As chip dimensions decrease and signal-frequencies rigg, eliminated)

the parasitic coupling between on-chip interconnect becomegNhen one chooseB > 2, and all inter-edge and dihedral

more and more impor_tant. Therefore, designers of VLSo\lngIes in the input domain are greater than, or equél+to
circuits become increasingly dependent on automated toolstﬁgn the algorithm is guaranteed to terminate ([3]).
inspect if what they designed will actually have the desired

physical behavior. Since several decades, many publications !ll. GEOMETRIC PREDICATES AND ROBUSTNESS
have appeared on the topic of parasitic coupling and itsGeometric predicates form the necessary link between the
efficient computation (see, e.g., [1]). To actually incorporaigeometric information and topological information present in
such techniques into software, one needs to build appropfie mesh. Geometric and topological interpretations should
ate data-structures describing the geometric details of thgvays be mutually consistent: for example, a point which is
interconnect. A so-called boundary representation (b-rep) mggometrically in the interior of a triangle (in two dimensions)
not be sufficient, and what is often needed is a two- @fust not simultaneously be considered to lie on its outside on
three-dimensional mesh of the interconnect and possibly e basis of topological inspection.
surrounding structures, including the substrate. In our implementation, only two geometric predicates are
In this paper, we describe a software tool we develope@eded. One predicate REENT3D, determines the relative ori-
for converting arbitrary VLSI layouts into a three-dimensionadntation of four points (inz?). Another predicate,NSPHERE,
tetrahedral quality mesh. This implies that only tetrahedra (determines, given four points (iR?) p1, p2, ps, pa, Whether
3-simplices) are used as the building block of our meshesgiven fifth pointps lies inside or outside the circumscribed
Further, each tetrahedron is guaranteed to satisfy some quadithere of the other four points. Both predicates can be com-
condition. puted by the evaluation of a determinant. See [4] for details
This paper is structured as follows. First, we make a brieh these predicates. Note that the two-dimensional variants
reference to the mesh-generation literature on which our wask these predicates are not needed in our implementation
is based (unfortunately the theory is too extensive to replicgfer example, all operations on subfacets are performed using
here). Then, we discuss the implementation-details of otliree-dimensional predicates for robustness, see Section IX).
mesh-generator, where it will become clear that, althoughWithout additional care, both predicates can run into de-
the underlying theory of Delaunay-based mesh generatiganerate situations. In the case oRIBNT3D, a degeneracy
is gaining maturity, robust implementation is still far fromoccurs if the four given points lie exactly in a plane. In the
trivial. Finally, we describe the implementation of a front-endase of NSPHERE, a degeneracy occurs if the five given points
which renders our mesh-generator suitable for handling VL8 exactly on a sphere. For both predicates, the underlying
structures. determinant evaluates to zero in case of a degeneracy. Because

286

01: whi | e True

02: (sTeEP1) i f some subsegmentis encroached

03: SPLITy §

04: el se (sTepP2) i f some subfacet is encroached
05: | et ¢ be the circumcenter aof

06: i f ¢ encroaches upon a subsegment

07: SPLITy s

08: el se:

09: SPLIT u

10: el se (sTer3) i f there exists a tetrahedranwith ~(¢) > B:
11: | et ¢ be the circumcenter of

12: i f ¢ encroaches upon some subsegment
13: SPLIT; s

14: el se i f ¢ encroaches upon some subfaget
15: SPLIT u

16: el se:

17: SPLIT3 ¢

18: el se:

19: br eak

Fig. 1. Pseudo-code for the three-dimensional mesh-refineatgotithm.

degeneracies would greatly complicate the implementation Diierefore, points are added to the DT until all segments and

the algorithm, we adopted the symbolic perturbation scherfexzets of the input PLC are represented in the DT as the

by Edelsbrunner and Witke, named Simulation of Simplic- union of tetrahedron-edges and tetrahedron-faces respectively
ity (SoS) [5]. Essentially, this scheme perturbs the points syrfaccording to Figure 1).

bolically, such that the determinants underlying the predlcatesThe incremental insertion of a point to the DT is imple-

can never evaluate to zero. o _mented using the Bowyer-Watson scheme [8], [9]. Essentially,
‘_I'he SoS methqd IS In principle quite mefﬁment,_smce when a pointp is added to a DT, we first find the so-called
relies on exact arithmetic, and therefore we apply it only '_ﬂowyer—Watson polyhedron, which is the union of tetrahedra

case of actual degeneracies. For the conventional evaluaté%'?]tainingp in their circumscribed sphere. Starting from a

of predicates, we use Shewchuk's adaptive floating POiRfianedrons containingp (¢ is clearly in the polyhedron),
library [6]. In order to decrease the probability of degeneraci e full polyhedron is computable by a simple breadth-first

we glso applyaslight physical perturbation to the points vvhi arch (an elegant proof of this fact can be given along the
are inserted into the mesh. As a consequence, degenerameﬁi%es of the proof of the “acyclicity lemma® given in [3]).

In practice, quite rare, so that the efficiency of our _SOS_ MKtter collecting the tetrahedra which form the polyhedron,
plementatllon is not very |mpo_rtant. In fact, the optimizationg,. remove them, and we add a new tetrahedron between
proposed in [5] are only marginally relevant in our case. ., 504 each of the triangles at the boundary of the formed
IV. DELAUNAY TRIANGULATIONS AND cavity. The resulting complex is guaranteed to be a consistent
TETRAHEDRIZATIONS Delaunay tetrahedrization, and it is unique due to the exclusion
In a three-dimensional Delaunay refinement scheme, fkdegeneracies. Note that this point-insertion scheme indeed

mesh starts as a Delaunay tetrahedrization (DT) [7] of ﬂ1;8quires exclusively the two geometric predicates described in

vertices in the input, which is supposed to be a piecewilld® Previous section.

linear complex (PLC). (We use the abbreviation “DT” both The algorithm manages one large 3d DT for the overall
for “Delaunay tetrahedrization” and “Delaunay triangulation fnesh, and one 2d DT for every facet, so that the current set of
but we add the prefix “2d” or “3d” if confusion may arise.)subfacets is always known. In 2d, point-insertion is handled
Eventually, i.e., in the final mesh, all facets should appeaimilarly as in 3d. However, for efficiency, we remove the
as a union of (triangular) faces of tetrahedra, since facetsterior subfacets from the triangulations step 2 of the
typically form the domain-boundaries, with different materialalgorithm (see Figure 1), since at this step, all subsegments are
on both sides. We say then that the mesinformsto the guaranteed to be in the mesh. The triangulation is therefore a
domain-boundaries. However, in the initial DT, this is not thkind of constrained Delaunay triangulation (CDT) [3], where
case (in general), and tetrahedra may ‘pierce’ through facdfse boundary edges are the constraining ones. (Note that in

287

three dimensions, a concept similar to that of a CDT does notAttaching and detaching subfacets to or from their sub-
exist [4], and therefore we leave external tetrahedra in placeggments is done when a point is inserted into the corre-
The Bowyer-Watson algorithm (in 2d) can be shown teponding 2d DT. First, all attachments between subsegments
work also in the case of constrained boundary edges. Howeward triangles in the Bowyer-Watson insertion-polygon are
the insertion-polygon does not necessarily contain all triabroken. Detached subsegments are stored in a (global) table,
gles which have the insertion poiptin their circumcenter. implemented as a hash-table. Then, each edge of each triangle
Basically, the insertion-polygon should be computed from @eated by the insertion is searched in the table, and if
breadth-first search starting at the triangleontainingp, and found, the corresponding subsegment is (re)attached. After the
the search should stop at the boundary of the domain. After thecedure, detached subsegments may remain in the table, and
insertion-polygon is found, the insertion procedure continudisey will be eventually attached during insertion of some other
by removing the corresponding triangles, and connecting theint.
new pointp to the edges of the polygon (in a similar fashion Attaching and detaching tetrahedra to or from their sub-
to the 3d case). facets is done similarly; as is attaching and detaching tetrahe-

dra to or from their subsegments.
V. ELEMENTARY DATA-STRUCTURES

In this section we describe the elementary data-structures VI. ENCROACHEDELEMENTS

used in the implementation. The data-structures are choseds Figure 1 shows, the algorithm needs to query the
such that all operations can be performed by “local” inspectiaurrently encroached subsegments and subfacets. Furthermore,
or modification of the mesh, which is of course important fat needs to query whether a given poitjtwhich is not (yet)
efficiency. in the mesh, encroaches upon a subsegment or subfacet. Both
For every node in the mesh, a unique node-object is creatgukrations are quite different. Recall that a subsegmeiat
which stores the respective y, z coordinates. Other objects,encroached upon by some nodeff ¢ lies in the diametral
when referring to a particular node, contain a pointer to ttephere ofs (i.e., the smallest sphere containigp similarly,
corresponding node-object. Node-objects in the 3d DT amadsubfacetf is encroached upon by some nodéf c lies in
2d DT’s are shared. The address of a node-object is ugbd equatorial sphere gf (the smallest sphere containirfd.
as its “perturbative-index” in the SoS scheme [5] (in our First consider the case in which we need to pick any
implementation, the address of an object remains fixed afesicroached subsegment currently in the meststar 1 of
it has been created). the algorithm). To implement this operation efficiently, we
A subsegment-object contains two pointers to node-objedteep a list of “possibly encroached subsegments.” Each time
During execution, a subsegmenpts “attached” to a subfacet a new node is inserted into the 3d DT, we determine the
s if and only if s contains both nodes @f Every subsegment- subsegments which are possibly encroached by this node and
object has associated with it an (arbitrarily large) set dfisert them into the list (by pointer). Fortunately, we can
subfacets to which it is attached (these subfacets are cals@ahply add all subsegments to the list which become detached
its “wings.”) Furthermore, each subsegmentvhen it lies in by the insertion (but note that consequent attaching will not
a facetf but is not attached to a subfacetfofecords a pointer automatically remove them from the list). Thus effectively,
to a subfacet inf which is topologically “close” tog. we consider only those subsegments which are attached to
A subfacet-object contains three pointers to node-objectstrahedra in the insertion-polyhedron. Now, when looking for
Furthermore, it contains three pointers to its neighbors &ayencroached subsegment, we take one subsegment from the
pointer is simplynull if there is no neighbor at a certainlist and see if it is still encroached (this test can be performed
edge of the subfacet). As a local optimization, each subfadst inspecting only the tetrahedra which share both nodes of
also stores the ordinal number of the abutting edge of eaitle subsegment); if it is not encroached, we discard it and
of its neighbors. During execution, a subfaeds “attached” move to the next element in the list, and so on. Note that the
to a tetrahedrort if and only if ¢ contains all nodes of. delay in testing whether a subsegment is actually encroached
Every subfacet-object records a set of (at most two) pointénsproves efficiency, since a subsegment can disappear before
to abutting tetrahedra. Every subfacet also records a topoldigis tested for encroachment (bys®LiT; operation).
ically “close” tetrahedron, when not attached. Furthermore, aConsider the case in which we need to pick any encroached
subfacet contains pointers to attached subsegments (detachdsfacet in the mesh (asTEP 2). This case is handled
subsegments are not recorded). similarly to the previous case, i.e., we keep a list of “possibly
Each tetrahedron contains four pointers to node-objec&)croached subfacets.” Maintaining and querying this list is
and potentially four pointers to its neighbors. As a locassentially similar.
optimization, each tetrahedron also stores the ordinal of theNow, we shift our focus to the case in which we need
abutting face of each of its neighbors, as well as the orienta- find a subsegment encroached by a given pejrds in
tions of those faces. Furthermore, the tetrahedron stores upinies06 and12. In this case, we compute the Bowyer-Watson
six pointers to subsegments which are attached to it (durimgsertion-polyhedron of: (but note thatc is not inserted).
execution, a subsegmegtwill be attached to a tetrahedran Again, the edges of the tetrahedra in the insertion-polyhedron
if and only if ¢ contains both nodes qf). may correspond to subsegments encroachedc,bgo any

288

attached subsegment is candidate. No other subsegments need VIII. POINT-LOCATION

to be considered; one can see this from the fact that at lines , i , i i
06 and 12, all subsegments are present in the 3d DT (and An operation which was not discussed yet, but is essential
thus attached) sinceTEP 1 is complete, and a subsegmenf! the algorithm s that of point-location, i.e., finding the
encroached by must be attached to a tetrahedron having tetrahedrort in which a given poinip lies (we consider here

in its circumsphere. Thus, in any case, we may safely negldeg 3d case). . _
the list of “possibly encroached subsegments”. Point-location can be performed by starting with some

The case in which we need to find a subfacet encroachy dom tetrahedron and “walking” through the DT towards

by a given pointe, as in linel4, is handled similarly to the the pomtp (this is called a finear ngk [10]). In essence we
previous case. may consider each facg of u, and in case the apex of the

face (the node of, not in f) is on the opposite side gf w.r.t.
p, we replaceu by the tetrahedron abutting it @t Eventually
VII. BOOKKEEPING OFZONES we will find a tetrahedron containing (this can be seen from
the acyclicity theorem in [3]).
For each tetrahedron, we keep the “zone” in which it resides;Of course, to maintain efficiency, it is essential that the
the zone of a tetrahedron is eitheside when the tetrahedron initial tetrahedronu is chosen to be (topologically) as close
is in the domain to be meshed, auitside when the tetrahedron as possible to the tetrahedrerof interest, i.e., the number
is outside the domain. We need zone-information atliieof of steps issued by a linear walk should be kept minimal. One
the algorithm, because we only need to split skinny tetrahedriight consider to take: in each search to be equal to the
which are actually inside the domain (doing otherwise woul@trahedrory in the previous search. However, the insertions
be wasteful). into the mesh (and therefore point-locations) happen in a quite
Note that, because we need the zone-informaticsTaP3, non-local manner, as for example, missing subfacets may be
we are certain that all subsegments and subfacets are pantepfired simultaneously at two completely opposite areas of
the mesh and thus the zone of tetrahedron is in fact propetie domain.
defined (no tetrahedron can “pierce” through a facet so thatFrom the above, we see that it is important, that for any
it is in two different zones simultaneously). Therefore, wheoperation on the mesh, we keep track of an appropriate
we reachsTEP3 for the first time, we mark each tetrahedrometrahedron which is topologically close to the area of interest.
with its proper zone. Consider for example the case of inserting (into the 3d DT)
Of course, when points are subsequently inserted into the circumcentet of an encroached subfacgtWe can find a
mesh, the well-definedness property of the zone-informatitetranedron close tg by considering the tetrahedra attached
is potentially lost. However, tetrahedra which are untouchéd f, but f might not always be attached to a tetrahedron.
by a point-insertion can clearly keep their zone-informatior.herefore, we explicitly store with each subfacet a tetrahedron
Also, when inserting a point into the 3d DT, and all tetrahedmahich is topologically “close” to it.
in the Bowyer-Watson insertion-polyhedron are in the sameWhen pointing to a tetrahedranwhich is “close” to some
zone, we can keep the zone information. However, when thgsent or area of interest, we have to take into account that
tetrahedra are in a different zone, we mark the tetrahedhe tetrahedron may actually be removed when inserting new
created by the insertion to have an “unknown” zone. points into the mesh. Therefore, we try to re-use tetrahedron-
When querying for the zone of a tetrahedrcat STEP3, we Objects as much as possible when emptying and re-populating
thus have to consider the case of ending up with an “unknowite insertion-polyhedron during point-insertion. Following this
zone. Again, we know that the zone we are querying is weBpproach, tetrahedron-objects remain close to their original
defined (since we query it @&TEP3). Also, other tetrahedra geometric location, and this is experimentally verified.
aroundt¢ may carry correct zone-information. The approach Note that when an insertion leads to a decrease in tetrahedra
is to walk from ¢ towards a point at infinity. We will then (which is not the common case), we cannot reuse some of the
eventually run into a tetrahedrom which has known zone- tetrahedron-objects. In such situations we let those remaining
information, or we run into the boundary of the 3d DT. Irobjects point to objects which do end up in the mesh.
either case, we can reconstruct the zone bfy monitoring Figure 2 shows the point-location walk-lengths throughout
the number of subfacets we crossed during the walk. Once the execution of the algorithm, when meshing the sample PLC
have found the zone af we recursively reconstruct the zoneof Figure 5. We observe that initially, walk-lengths are large,
information of other tetrahedra arourid(until we run into but this is simply because initially the “topologically close”
a boundary or a tetrahedron with known zone-informationjetrahedra are not known yet (it turns out that this has only a
This last step is necessary to ensure the efficiency of futurearginal effect on runtime). Figure 3 shows the same graph
gueries. Note that, when following this approach, the numbfar a mesh which is about 10 times larger. We see about
of tetrahedra visited during zone-reconstruction is actually #ite same trend, although the outliers in the second graph are
most the number of tetrahedra visited during point-insertiolarger (which we can expect, since the topological distances
and hence the efficiency of the method is not fundamentalbgtween elements in the mesh are supposedly also larger). We
altered by these zone-bookkeeping procedures. note that forboth meshes, point-location immediately finds

289

IX. REPRESENTATION OFFACETS

As mentioned above, besides the 3d DT for the overall
mesh, we keep a separate 2d DT for each of the facets.
Note however, that it would be cumbersome to manipulate
these DT'’s using two-dimensional primitives, since they are
embedded in a 3d space. A proper implementation then would
probably require explicit rotation and projection operations,
which are of course undesired since they are prone to round-
off errors.

Therefore, we manipulate each 2d DT by using three-
dimensional predicates. In essence, for each fAcete create
an external node, which is located at a distance from the plane

of the facet. This node is called tlegpexof the facet, and is
0 o0z O oeation e e T denoted here by;. The distance from the plane of the facet
is chosen such that the apex is unlikely to encroach upon any
of the subfacets, for reasonably shaped subfacets.

Now, let us formulate the equivalent of a 2d-orientation test
on the three nodes of a subfacetand some poinp (thus
250 ‘ a decision on whethey is “inside” s or not). We denote the
v three nodes of by n, ny andng and assume they are ordered
counterclockwise when viewed frony. Assume also that the
] tetrahedron(a s, ny,n2,n3) is “properly” oriented. Then we
define that p is insides” when the tetrahedréa, p, ns, ns3),
(ay,m1,p,ng) and (ay,n1,ne,p) are properly oriented (thus
we use the @IENT3D predicate three times in this case).

' For the (2d) incircle-test, we use th&3PHERE predicate,
| by taking thea s node into account. Thus given the three nodes
of a subfacet, namedn, ns, andng, and a test-poinp, we
test whether the poinp lies inside the circumsphere of the
four pointsay, ni, ne, andns.
With some basic assumptions, it is not difficult to see that
° Hoo00n e ocation e oo Toonon both tests should work in practice. However, the nodes which
are part of a facet may not lie exactly in a common plane, due
Fig. 3. Walk-lengths for three-dimensional point-locatioperations when 5 roundoff errors. We have not (yet) looked into this issue,
refining a mesh of approx. 10 times the complexity of Figure 2.
and certainly, in order to find tests which work as expected
under any circumstances, more work is necessatry.

length of walk

Fig. 2. Walk-lengths for three-dimensional point-locatioperations when
refining a sample mesh.

200 |-

150

100

length of walk

W;#*+Muﬁw+ + o+

the desired tetrahedron (i.€), steps are required) in about
82% of the invocations, and less thansteps are required in
about98% of the invocations. Since tests with other (larger) Although our mesh-generator is suitable for an extended
meshes show the same trend, we conclude that point-locatiange of applications, we specifically designed it for the pur-
using our strategy for the initial guess can be consideredpase of analyzing parasitics in VLSI interconnect structures.
constant-time operation in practice. To be able to read descriptions of physical VLSI layout and
Point-location is also necessary in two dimensions, i.anesh them, we added a front-end to the mesh-generator, which
one sometimes needs to find the subfacathich contains is described in this section.
a given pointp (for example wherp is to be inserted into the The front-end consists of two stages. The task of the first
corresponding 2d DT). The 2d operation is almost completedyage is to read a GDSII file, which decribes the lateral geom-
similar to the three-dimensional variant described above. Hoetry of the VLSI interconnect structures [11]. Using external
ever recall from Section IV that we remove subfacets whidkchnology data, the polygons in the GDSII file are extended
lie outside the facet. This means that a linear walk magto the third dimension, and a so-called “overlapping PLC” is
prematurely end at a subfacetat the boundary of some created. An overlapping PLC is similar to a PLC, except that
concave part of the domain. Fortunately, we may assumedes, segments and facets may (partially) overlap (however,
that our initial guess is already topologically close to ththe interiors of any two facets may not overlap). The task of the
subfacet of interest, and thus we can, without significant losecond stage is to convert the overlapping PLC into a regular
of efficiency, complete the query by performing a breadth-fir®tlLC, by removing overlapping features. The second stage also
search through the 2d DT, starting @t removes features which unnecessarily reduce the local feature

X. FRONT-END FORMESHING VLS| STRUCTURES

290

Fig. 4. Original input describing the layout of a cmos-inverta the input,
faces, segments and nodes are (partially) overlapping.

Fig. 5. The original input of Figure 4 converted to a propercpigise linear
complex.

Fig. 6. Mesh for the piecewise linear complex of Figure 5. Ndizt the

whole domain is contained in a rectangular box, which is/folleshed (some

tetrahedra have been removed to reveal the contained selctu

size ([3]) in certain areas of the PLC, which is important in
order to keep the resulting mesh as small as possible.

We implemented the first stage of the front-end by extending
the SPACE layout-to-circuit-extractor [12]. BACE is able to
read GDSII data, and has its own format for technology data.
The GDSII data basically describes a set of masks, where each
mask is represented by a set of two-dimensional polygons.
Internally, SPACE uses a scanline-algorithm to break the layout
data into trapezoids, where each trapezoid describes a (two di-
mensional) region over which the layout consists of a fixed set
of masks [13]. For every combination of masks, the technology
description is used to generate a corresponding set of three-
dimensional prisms, related to chunks of conductors. Every
prism is basically the z-extended form of a trapezoid, and it
is output as a set of six facets in the overlapping PLC (when
one of the sides of the trapezoid has zero length, the trapezoid
reduces to a triangle, and naturally, the corresponding prism
will be output as five facets instead of six).

The above approach has the advantage that it is quite
flexible: for every combination of masks, we can determine
which conductors should exist, and at what z-coordinates they
should lie. On the other hand, many overlapping facets will be
generated, as well as many unnecessary nodes and segments.
This deficiency is overcome by the next stage.

The second stage of the front-end, i.e., that which converts
an overlapping PLC into a regular PLC, is logically divided
into a number of steps, which we will briefly describe now.

e (STEP 1) For any two segments which intersect in their

interior, a node is created at their point of intersection
(if the interiors overlap at more than a single point, no
action is taken).

o (STEP2) Any node which lies at the interior of a segment
will split that segment into two pieces.

o (STEP3) Any duplicate segments are deleted.

o (STEP4) If a chain of segments divides a facet into two
or more separate regions, then the facet is split along this
chain, and two or more facets result. This is done for all
facets, and it is repeated until no more facets can be split.

o (STEP5) For any pair of facets, if the two facets have
an equal boundary, then either both facets are removed,
or only one facet is removed (this depends on the type
of material of which the facets form the boundary).

o (STEP6) Two facets which lie in a common plane, and
which share one or more boundary segments, are merged
into a single facet (the boundary segments will become
interior segments of the new facet). This is repeated for
all pairs of facets, until no more facets can be merged.

o (STEP7) Any segment which lies in the interior of one
facet, and is not part of any other facet, is deleted.

o (STEP 8) Any node which joins exactly two segments
which lie on a common line is removed, and the segments
are joined into a single segment.

e (STEP9) Any node which is no endpoint of a segment
is deleted.

Note that, due to the approximative nature of floating-point

numbers, most of the geometric tests are performed while

291

keeping a certain margin. For example, inE® 2, we consider Other issues are the restriction of the PLC to minimum an-
a node to lie in the interior of a segment if it lies sufficientlygles of7/, and the existence of ‘slivers’ in the resulting mesh.
“close” to the segment, but not “close” to one of its endpointslowever, these issues are not important in all applications.
Thus, the second stage is not robust against all kinds ofDespite the deficiencies mentioned above, our implemen-
overlapping PLC's, but it will be able to handle them in modation works well in practice, and is capable of generating
practical cases. If the overlapping PLC’s are generated fraxbout15.000 tetrahedra per second on a modern Intel-based
VLSI data (as in our case), robustness is no practical isswarkstation. A copy of the implementation may be obtained
since VLSI data generally has to obey design rules which arg contacting the authors.
much stricter than the rules we need to impose for robustness.

Figure 4 shows an overlapping PLC which was created from
the layout of a cmos inverter cell. Figure 5 shows the PL{ W. Kao, C.-Y. Lo, M. Basel, and R. Singh, *Parasitic extraoti

. current state of the art and future trend€Proceedings of the
which resulted after the second stage of the front-end. Of |eee o1 89, no. 5. pp. 729-739, May 2001. [Online]. Available:
course, it is not possible to see which elements overlap in this http://ieeexplore.ieee.org/iel5/5/20097/0092965f..pd

figure, but notice that many unnecessary features have belh Bern and Eppstein, “Mesh generation and optimal trianguiét in
Computing in Euclidean Geometry, Edited by Ding-Zhu Du and kran

REFERENCES

removed. Figure 6 shows the final mesh of the layout. Hwang, World Scientific, Lecture Notes Series on Computingl—1Yo
1992.
XI. CONCLUSIONS ANDFUTURE WORK [3] H. EdelsbrunnerGeometry and Topology for Mesh Generatioiam-

)) o) bridge University Press, 2001.
. We have .glven a detailed description of the design a”ﬂq J. R. Shewchuk, “Delaunay refinement mesh generationD Ptlisser-
implementation of a Delaunay-based mesh generator. tation, School of Computer Science, Carnegie Mellon Ursitgr1997.

Some issues remain open. One issue was given in Sdel H. Edelsbrunner and E. P. ke, “Simulation of simplicity, a technique

; . ; : TR to cope with degenerate cases in geometric computatid@\ Trans.
tion IX: the inherent roundoff in floating-point numbers results Graphics vol. 9, pp. 66-104, 1990.

in the nodes of a facet to not lie exactly in a common plangse] J. R. Shewchuk, “Adaptive Precision Floating-Point Aritétic and Fast

It is not clear how to adapt the geometric predicates such Robust Geometric Predicatediscrete & Computational Geometry
that correct operation of the algorithm can be theoretically,, “°: 1& no- 3, pp. 305363, Oct. 1997.
p 9 (}/7] B. Delaunay, “Sur la spére vide,"Bull. Acad. Sci. USSR(V|Ipp. 793—

guaranteed. Related problems exist. For example, when de- 800, 1934, classe Sci. Mat. Nat.
termining whether a poinp encroaches upon a subsegment/8] A. Bfev;yelr,ee‘;C%ﬁspluting Dirichlet tessellationsComputer J. vol. 24,
i - pp. 162-166, :

we need to determine the dlsmnc_e pfto the center of] D. F. Watson, “Computing the-dimensional Delaunay tessellation with
the subsegment. However, such distance can be computed application to Voronoi polytopesComputer J.vol. 24, pp. 167-171,
only to some accuracy. It is unclear whether we need to E%F}-M] . 1. Sa 4B, Zhu “Fast randomized voint locati

. o) - e CcKe, |. Salas, an . u, ast ranaomizea point location
resorft to_ exact (or adaptlve.)_ computations, or whether SOH.@ without preprocessing in two- and three-dimensional delatreygula-
margin is warranted. As a final example, when computing tions,” in Proceedings of the 11th Annual Symposium on Computational
the circumcenter of a tetrahedron, some rounding error is1 gegmetwé%@, pg 274—28|3- CalBDSI S o " |
effectively made in general. It is of course important to knoh*! Cadence Design Systems, Inc/CarhSIl Steam Format Manua
whether this rounding error can be safely ignored (in faqi2] A. J. van Genderen and N. P. van der Meijs, “VLSI modeling and
we deliberately add some noise to the coordinates of nodes Vefi,fication,"_l1&94—2006&] home/ /page of thedm??elingi andfication

. . project, available at URIht t p: // space. tudel ft.nl .

to re_duce the f_requency of degeneracies, as WQS nOtedl N. P. van der Meijs, “Accurate and efficient layout extras,” Ph.D.
Section I, and it would be good to have a theoretical bound ~ dissertation, Delft University of Technology, Delft, The Netheds,

on the amount of noise that is permitted). Jan. 1992.

292

