
1730 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 5, AUGUST 2000

Radio-Astronomical Imaging in the Presence of
Strong Radio Interference
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Abstract—Radio-astronomical observations are increasingly
contaminated by interference, and suppression techniques become
essential. A powerful candidate for interference mitigation is
adaptive spatial filtering. We study the effect of spatial filtering
techniques on radio-astronomical imaging. Current deconvolution
procedures, such as CLEAN, are shown to be unsuitable for spa-
tially filtered data, and the necessary corrections are derived. To
that end, we reformulate the imaging (deconvolution/calibration)
process as a sequential estimation of the locations of astronomical
sources. This not only leads to an extended CLEAN algorithm,
but also the formulation allows the insertion of other array signal
processing techniques for direction finding and gives estimates
of the expected image quality and the amount of interference
suppression that can be achieved. Finally, a maximum-likelihood
(ML) procedure for the imaging is derived, and an approximate
ML image formation technique is proposed to overcome the
computational burden involved. Some of the effects of the new
algorithms are shown in simulated images.

Index Terms—CLEAN, interference mitigation, maximum like-
lihood, minimum variance, parametric imaging, radio astronomy,
spatial filtering, synthesis imaging.

I. INTRODUCTION

T HE future of radio-astronomical discoveries depends
on achieving better resolution and sensitivity while

maintaining immunity to terrestrial interference. The last two
demands are obviously contradictory as improved sensitivity
implies receiving more interfering signals. One possible track is
to switch to massive phased array technology. If instead of the
huge dishes which became the trademark of radio astronomy,
we use phased-array radio telescopes comprised of tens of
thousands of small elements, then we gain both in terms of
resolution and sensitivity while increasing the flexibility to
mitigate interference. The international effort in this direction
is coordinated under the framework of the Square Kilometer
Array project (SKA). In this paper, we try to analyze the effect
of on-line interference rejection on the image formation process
in such an instrument.

We briefly describe the current status of radio-astronomical
imaging; for a more extensive overview the reader is referred
to [39], [44], or [26]. The principle of radio interferometry has
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been used since 1946 when Ryle and Vonberg constructed a
radio interferometer using dipole antenna arrays [29]. During
the 1950’s several radio interferometers, which use synthetic
apertures created by movable antennas, have been constructed.
In 1962, the principle of aperture synthesis using Earth rotation
were proposed [30]. The basic idea is to exploit the rotation
of the Earth to obtain denser coverage of the visibility domain
(spatial Fourier domain).

The first instrument to use this principle was the 5–km Cam-
bridge radio telescope. During the 1970’s, new instruments with
large apertures were constructed. Among these are the Wester-
bork Synthesis Radio Telescope (WSRT) in the Netherlands and
the Very Large Array (VLA) in the USA. Even these instruments
subsample the Fourier domain, so that unique reconstruction is
not possible without some further processing known as decon-
volution. The deconvolution process uses somea priori knowl-
edge about the image to remove the effect of “dirty beam” side-
lobes.

Two principles dominate astronomical imaging deconvolu-
tion. The first method was proposed by Hogbom [12] and is
known as CLEAN. The CLEAN method is basically a sequen-
tial Least Squares (LS) fitting procedure in which the brightest
source location and power are estimated. The response of this
source is removed from the image, then the process continues
to find the next brightest source, and so on, until the residual
image is noise-like. During the years, it has been partially ana-
lyzed [31], [32], and [37]. However, full analysis of the method
is still lacking due to its iterative nature.

A second method proposed by Jaynes [13], [14] is maximum-
entropy deconvolution (MEM). The basic idea behind MEM is
the following. Among all images which are consistent with the
measured data and the noise distribution not all satisfy the posi-
tivity demand, i.e., the sky brightness is a positive function. Con-
sider only those that satisfy the positivity demand. From these
select the one that is most likely to have been created randomly.
This idea has also been proposed in [8] and applied to radio-as-
tronomical imaging in [11]. Other approaches based on the dif-
ferential entropy have also been proposed [1] and [43]. An ex-
tensive collection of papers discussing the various methods and
aspects of maximum entropy can be found in the various papers
in [27].

The above-mentioned algorithms assume perfect knowledge
of the instrumental response (point-spread function). Due to var-
ious internal and external effects this assumption holds only ap-
proximately. One way to overcome this problem is the use of
calibrating sources. An unresolved source with known parame-
ters is measured, and by relating the model errors to the array
elements a set of calibration equations is solved. A much more
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appealing solution is to try to improve the fitting between the
data and the sky model by adjusting the calibration parameters.
Another possibility [23] is to use the redundant structure of the
array to solve for the calibration parameters (this is possible
only for some arrays which have redundant baselines, such as
the WSRT). A good overview of the various techniques is given
in [25].

A major problem facing radio astronomy is the accelerated
use of the electromagnetic spectrum. Even in bands which
are reserved to radio-astronomical observation one can find
interference, e.g., sidelobes of emissions from the Iridium or
GLONASS satellites. As was shown in [38], interferometric
arrays are less sensitive to interference than single-dish in-
struments. However, the interference still appears in images,
especially for observations at frequency bands not specifically
reserved for radio astronomy. Many efforts all over the world
are currently put into improving the interference mitigation
capabilities of radio telescopes. The methods considered span
over all possible domains: temporal [42], [10], [3], spatiotem-
poral [15], spatiospectral [21], [18], [17], and wavelet-based
methods [22]. Also considered are techniques which use
statistical and deterministic properties such as non-Gaussianity
and constant modulus of the interferers, in order to use blind
beamforming to remove the interferers.

As far as multielement synthesis imaging radio telescopes are
concerned, the spatial methods are extremely appealing, since
each interferer has its own “spatial signature.” Estimating these
signatures enables efficient mitigation of the interferer using
phased-array techniques. However, important questions arise.
As we will show in this paper, applying time-varying spatial
filters makes the point-spread function space-varying. In par-
ticular, the image formation techniques will have to be modified
accordingly. To cope with this problem, we reformulate the clas-
sical Fourier imaging framework in a parametric manner more
appropriate for statistical analysis of the interference mitigation.
This enables us to incorporate the spatial filtering naturally into
the image formation process.

Our reformulation of the image formation problem describes
the measurements as a set of covariance matrices, measured
at the various observation epochs. This yields a model where
the array response is time-varying. Previous research on
time-varying arrays and their application to direction-of-arrival
(DOA) estimation includes [45], where an ML estimator for
a single source and the corresponding Cramer–Rao bound
(CRB) are derived. For multiple sources [9] proposes three
approaches: a modified beamforming, a virtual interpolated
array, and focusing matrices. The main drawback of the last
two methods is that they do not lend themselves to estimating
more sources than the number of physical sensors. In [34], a
generalized LS (GLS) approach is proposed. The idea is to
present the problem of estimating the source powers (given
the DOA parameters) as a linear problem. This enables a
closed-form solution for the powers. Substituting back into the
GLS estimator, the problem is reduced to a multidimensional
search problem over the DOA’s. The main drawback of this
approach is the need to invert very large matrices ( ,
where is the number of physical sensors). It is also shown
that the asymptotic performances of the GLS and the ML

estimators are identical up to second order, which makes it
very attractive. All these papers deal with the case of a fully
known array response and are limited to one-dimensional
location parameters. In this paper, we also extend the above
methods in several directions. First, we use the eigenstructure
to mitigate strong interferers for which we do not know the
array response, and we analyze the efficiency of this proce-
dure. Second, we propose other relatively “low” complexity
approaches, based on eigenstructure and Minimum Variance
Distortionless Response (MVDR). Finally, we discuss an ML
approach to the astronomical image formation problem, derive
an approximate ML estimator (AML) of low complexity and
discuss the relation of the AML to the CLEAN algorithm. Our
treatment of the radio-astronomical imaging can be applied to
other problems of imaging with time-varying sensor responses,
such as ISAR/SAR radar imaging in the presence of strong
jammers. The model then generalizes the model given in [35]
to the time-varying context. For the case of an array with
constant time behavior (connected element array), methods of
computing the MLE have been proposed in [35] using the EM
method or [7] using the SAGE algorithm. However, there is
no straightforward extension of these methods to our context.
Although an EM algorithm can be applied, the dimensionality
of the parameter space makes it infeasible to perform full
MLE without very good initialization. Reference [24] contains
an extensive overview on image formation principles and
algorithms, as well as previous work on parametric image
formation in other fields such as radar and tomography.

To allow the paper to be of use both to the information
theory/signal processing and to the radio astronomical commu-
nities the introductory part is of a tutorial nature. The structure
of the paper is as follows. In Section II we describe the as-
tronomical measurement process and introduce an often-used
coordinate system. The measurement equation is subsequently
rephrased in a more convenient matrix formulation in Section
III, and extended with the effect of interference. In Section IV,
we describe several basic spatial filtering approaches to on-line
interference suppression, and compute the residual interference
after adaptive estimation of its parameters for one specific case.
In Sections V and VI, we discuss the image formation process,
first based on classical techniques (CLEAN), then extended
to other beamforming methods and taking the spatial filtering
into account. Finally, we derive an approximate ML algorithm
for image formation. We end with conclusions regarding future
implementation of on-line interference suppression in radio
astronomy.

II. A STRONOMICAL MEASUREMENTEQUATIONS

In this section we describe a simplified mathematical model
for the astronomical measurement and imaging process. Our
discussion follows the introduction in [26]. We begin with the
measurement equation, and reformulate it into a matrix form in
the next section. This will allow us to obtain a uniform descrip-
tion of various astronomical imaging operations, such as decon-
volution and self-calibration.

The signals received from the celestial sphere may be con-
sidered as spatially incoherent, wideband random noise. It is
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(a)

(b)

Fig. 1. (a) The emitted electrical field from the celestial sphere is received by a rotating telescope array. (b) Geometrical delay compensation.

possibly polarized and perhaps contains spectral absorption or
emission lines. Rather than considering the emitted electric field
at a location on the celestial sphere, astronomers try to recover
theintensity(or brightness) in the direction of unit-length
vectors , where is a specific frequency. Let be the re-
ceived celestial electric field at a locationon Earth (see Fig.
1(a)). The measured correlation of the electric fields between
two identical sensorsand with locations and is called a
visibility and is (approximately) given by [26]1

is the mathematical expectation operator, the superscript
denotes the transpose of a vector, and overbar denotes the

complex conjugate. Note that is only dependent on the ori-
ented distance between the two antennas; this vector is
called a baseline.

For simplification, we may sometimes assume that the astro-
nomical sky is a collection of discrete point sources (maybe

1To simplify notation, we do not include in our model the directional response
of the elements of the radio telescope. This can be included in a straightforward
manner as in [26, Ch. 1, Sec. 4.3]

unresolved). This gives

where is the coordinate of theth source, and then

(1)

Up to this point we have worked in an arbitrary coordinate
system. For Earth rotation synthesis arrays, a coordinate system
is often introduced as follows. We assume an array with an-
tennas that have a small field of view and that track a reference
source direction in the sky. Other locations in the field of view
can be written as (valid for small ) and a
natural coordinate system is

Similarly, for a planar array, the receiver baselines can be pa-
rameterized as
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The measurement equation in coordinates thus be-
comes

(2)

The factor is caused by thegeometrical delayassoci-
ated to the reference location, and can be compensated by in-
troducing a slowly time-variant delay (see Fig. 1(b)). This syn-
chronizes the center of the field-of-view and makes the refer-
ence source location appear as if it were at the North Pole. After
compensation, we arrive at a measurement equation in
coordinates only

(3)

It has the form of a Fourier transform.
The function is sampled at various coordinates

by first taking all possible sensor pairs or baselines
, and second by realizing that the sensor locations,

are actually time-varying since the Earth rotates. Given a
sufficient number of samples in the domain, the relation
can be inverted to obtain an image (the “map”), which is the
topic of Section V.

III. A RRAY SIGNAL PROCESSINGFORMULATION

A. Obtaining the Measurements

We will now describe the situation from an array signal pro-
cessing point of view. The signals received by the antennas
are amplified and down-converted to baseband. A time-varying
delay for every antenna is also introduced, to compensate for
the geometrical delay. Following traditional array signal pro-
cessing practice, the signals at this point are called rather
than , and are stacked in vectors

where is the number of antennas. These are then processed by
a correlation stage.

It will be convenient to assume that is first split by a bank
of narrowband subband filters into a collection of frequency
components . The main output of the telescope hardware
is then a sequence of empirical correlation matrices of
crosscorrelations of , for a set of frequencies
covering a 10-MHz band or so, and for a set of times
covering up to 12 h.2 Each correlation matrix is an esti-
mate of the true covariance matrix

E

(4)

where the superscriptdenotes a complex conjugate transpose,
is the sample period of , and is the number of sam-

ples over which is averaged. The matrices are stored for
off-line spectral analysis and imaging. Typically, each subband

2Many telescope sites including WSRT follow actually a different scheme
wherein the signals are first correlated at several lags and subsequently Fourier-
transformed. This leads to similar results.

has a bandwidth on the order of 100 kHz or less. Due to the
subband filtering, the original sampling rate of is reduced
accordingly, resulting in on the order of 10 s and the number
of samples in the order of for each subband. represents
the center frequency in a subband. From now on we consider the
subbands independently ignoring that they are really connected.
Consequently, in future equations we drop the dependence on
in the notation.

The connection of the correlation matrices to the visibil-
ities in Section II is as follows. Each entry of the
matrix is a sample of this visibility function for a specific
coordinate corresponding to the baseline vector

between telescopesand at time

(5)

Note that we can obtain only a discrete set of sample
points. Indeed, the number of instantaneous independent base-
lines between antennas is at most . Also, using the
Earth rotation, we have a finite set where
the number of epochs is given by the ratio of the observation
time and the covariance averaging time (e.g., 12 h/30 s =
1440 samples). The available sample coordinates
give an irregular cover of the plane. For an East–West line
array such as WSRT, the points lie on ellipses. A practical issue
is the implementation of the geometrical delay compensation. It
is usually introduced only at the back end of the receiver. At this
point, also a phase correction is needed to compensate for the
factor in the measurement equation (2). This is re-
ferred to asfringe correction[39]. Since the Earth rotates,
is slowly time varying, with a rate of change in the order of 0–10
Hz depending on source declination and baseline length.

B. Matrix Formulation

For the discrete source model, we can now formulate our
measurement equations in terms of matrices. Let be an
arbitrary and time-varying reference point, typically at one of
the elements of the array, and let us take the coordi-
nates of the other telescopes with respect to this reference

Equation (1) can then be written slightly differently as

In terms of correlation matrices, this equation can be written as
, where
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and

...

...

The vector function is called thearray response
vector in array signal processing. It describes the response of
the telescope array to a source in the direction . As usual,
the array response is frequency-dependent. In this case, the
response is also slowly time-varying due to the Earth rotation.
Note, very importantly, that the function as shown here is
completely known.

More realistically, the array response is less perfect. An im-
portant effect is that each antenna may have a different complex
receiver gain dependent on many angle-independent ef-
fects such as cable losses, amplifier gains, and (slowly) varying
atmospheric conditions. We also have to realize that most of
the received signal consists of additive system noise. When this
noise is zero-mean, independent among the antennas (thus spa-
tially white), and identically distributed, then it has a covariance
matrix that is a multiple of the identity matrix, , where is
the noise power on a single antenna inside the subband which
we consider. Usually the noise is assumed to be Gaussian. The
resulting model of the received covariance matrix then becomes

(7)
where

... (8)

Note that this assumes that the noise is introducedafter the
varying receiver gains. This assumption is reasonable if the
channels from the low-noise amplifier (LNA) outputs to the
analog-to-digital converter (ADC) units are equal. Otherwise,
it is still reasonable to assume that the noise is spatially white,
i.e., the noise covariance matrix is diagonal. We can assume
that the receivers noise power can be estimated using various
calibration techniques; a simple diagonal scaling will then
bring us back to the model (7).

C. RF Interference

Radio frequency interference (RFI) usually enters the
antennas through the sidelobes of the main beam. It can be
stronger or weaker than the system noise. An important prop-
erty is that it has a certaindirectivity, so that it does not average
out in the correlation process. Examples of harmful RFI are
television broadcasts, geolocation satellites (GPS, GLONASS),
taxi dispatch systems, airplane communication and navigation
signals, wireless mobile communication (GSM), and satellite
communication signals (Iridium). Thus interferers may be

continuous or intermittent, narrowband or wideband, and
strong or weak.

Suppose that we have a single interferer impinging onto the
telescope array. The interfering signal reaches the array with
different delays for each telescope. Assuming processing
in narrow subbands as before, delays translate into phase
shifts,3 and the received signal can be modeled as

, or, in vector notation,

...

Here, is the baseband signal, and represents the tele-
scope gain in the direction of the interferer, including any pos-
sible attenuation of the channel. Unlike much of the array signal
processing literature, the are likely to be different for each
telescope since the interferer is typically in the near field. This
implies that it impinges on each telescope at a different angle,
whereas the response of the telescopes is not omnidirectional.
Hence, the corresponding array response vectoris now an un-
known function. This vector is also called thespatial signature
of the interfering source. It is slowly time varying, and we write

.
Similarly, with interferers

...

The subscript “” is used to distinguish from the array
response matrix of the astronomical sources.

The corresponding correlation matrix at timeis

E

The matrix E depends on the cor-
relational properties of the interfering signals. For independent
interferers, it will be a diagonal matrix, with theinterfering
powers on the diagonal.

How well an empirical estimate fits to depends on
the stationarity of the scenario, and is open to discussion. For
various reasons (mobile interferers with multipath fading, fixed
interferers such as TV stations moving through the varying side-
lobes of the rotating telescopes, fringe corrections of up to 10
Hz), the stationarity of is often limited to about 10–100 ms.
In the rest of the paper, we make the assumption that indeed the
available are obtained over stationary periods. In summary,
the overall model including astronomical signals, array imper-
fections, interference, and noise is given by

(9)

3For this, the processing bandwidths should be much less than the inverse
of the maximal delay. For example, in WSRT the largest baseline is 3000 m,
corresponding to a maximal delay of 10�s. Hence the narrowband assumption
holds for bandwidths less than 100 kHz [21].
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where we assume that the interference termis unstructured,
and .

IV. SPATIAL FILTERING

An on-line interference mitigation system will consist of two
stages. As a first step the presence of interference is detected.
This part is considered in [21] and [18] and is demonstrated on
astronomical data in [20]. In the case of continuous interference
it is reasonable to use its spatial signature in order to remove it.
This leads tospatial filtering techniques.

A. Projecting out the Interferer

Let us assume that we have obtained a covariance matrix,
which contains the rather weak covariance matrix of the astro-
nomical sources (visibilities) plus white
noise.4 Suppose also that there is an interferer with power

Assuming that is known it is possible to null all energy with
spatial signature. To this end, we can introduce the projection
matrices

It is easily seen that , so that if we apply as a
spatial filter to , we obtain

(10)

Thus the interference is completely removed. At the same time,
the visibility matrix is modified by the projections, and the
noise is not white anymore since one dimension is missing.
The imaging stage has to be aware of this, which is the topic
of Section V.

This idea is also applicable to multiple narrowband inter-
ferers, and we do not need to know the spatial signatures of the
interferers in advance. Indeed, if the total number of interferers
inside a subband is , an eigenvalue decomposition allows
to estimate the corresponding “interference subspace” spanned
by the spatial signatures from the data covariance matrix, and
subsequently project out this subspace.

Thus let be the eigendecomposition of. For
the purpose of interference cancellation we assume that the sky
sources are weak: , and thus their influence can be
ignored in the eigendecomposition. Let where

is and contains the eigenvectors corresponding to the
largest eigenvalues, and collects the remaining eigenvectors.
In the noise-free case, has rank and

In the noisy case

4In this section we consider a single covariance matrix hence we drop the
indexk.

with eigenvalue decomposition

(11)

Therefore, the smallest eigenvalue has multiplicity ,
and

(12)

We refer to as the interference subspace. According to (12),
, so that . Thus the eigenvalue decom-

position of allows us to detect the number of interferers (from
the number of repeated small eigenvalues) and to identify the
projection matrix to project them out, as in (10).
Note that we do not have to know . This hinges upon the fact
that the noise covariance is white (in general, known), and the
visibility matrix is insignificant at these time scales (other-
wise, it might disturb the eigenvalue decomposition).

In practice, we only have a sample estimateof . The
eigenvalue decomposition of this matrix

gives an ML estimate of [2].
One might be worried that if we use the estimated subspace

for the projections, it might leave correlated residual interfer-
ence components that eventually will show up in the final image.
This is in fact not the case, as we will now demonstrate that the
residual interference is spatially white.

B. Residual Interference After Projections

A perturbation analysis of the eigenvalue decomposition
yields asymptotic expressions for the residual interference in
the covariance matrices after spatial filtering. To this end, we
utilize the following theorem from [40], a proof of which is
given in [36].

Theorem IV.1:Let be the sample covariance matrix based
on samples of a -dimensional complex Gaussian random
process, with zero mean and covariance. Let
be an eigenvalue decomposition of, with
unitary, and , where

and . Let . Then
for , we have that is asymptotically a zero-mean
Gaussian random process with variance determined by

E

(13)

For simplicity, let us specialize to the case of nar-
rowband interferer, with power per sample and spatial sig-
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nature normalized to . In this case, ,
, and (13) gives

E

Now note that

so that

E E E

Similarly, we get for

E

If we define the input Interference-to-Noise Ratio (INR) as
INR , then we finally obtain

E
INR
INR

(14)

E E
INR
INR

(15)

Let us assume that the estimateis approximately independent
of the interfering signal. The residual INR at the output after
spatial filtering is then

INR
INR

(16)

These expressions are very satisfactory. Indeed, note from
(14) that the expected residual interference power is the same in
each of the directions , which together form an orthonormal
basis of the projected space. This means that the residual in-
terference is spatially white within the projected space (up to
second order (in ) effects), and only increases the effective
noise power without adding spatial features to it. The effective
noise power at the output is

INR

Fig. 2 shows the residual interference in a simulation, for
samples and antennas. The reference lines are

given by the predicted value in (16), and the line INRINR.
Although the predicted value fits very well for sufficiently large
INR, it is seen that for small INR, (16) loses its validity. This is
because Theorem IV.1 is valid only for eigenvalues sufficiently
above the noise power. For small INR’s, the estimated interfer-
ence subspace will be a random vector, and the projection will
have no effect on the INR. The crossover point is approximately
given by INR . The generalization for higher di-

mensional interference subspace is straightforward using the or-
thogonality of the interference eigenvectors. Note, however, that

Fig. 2. Residual INR after spatial filtering.

in this case the eigenvectors lose their natural interpretation as
spatial signatures of the various interferers.

C. Other Spatial Filtering Possibilities

Without going into too much detail, we mention a few other
possibilities for spatial filtering and interference cancellation.
Suppose there is a single interferer

Subtraction: With an estimate of and an estimate of its
power, we can try to subtract it from the covariance data

(17)

Without other knowledge, the best estimate ofis the domi-
nant eigenvector of , and likewise the best estimate of
is . Since both of these are derived from, it turns out
to be not too different from the projection scheme. Indeed, if
we look at

we can make it equal to (17) by selecting such that
. The projection scheme had .

Spatial Whitening: In this scheme, we try to make the inter-
ference plus noise white again. This component is equal to

, so we pre- and postmultiply with square-root
factors of it

Subtraction of a Reference Signal: If we have a reference an-
tenna that receives a “clean” copy of the interfering signal,
then we might try to subtract this reference signal from the
telescope signals. There are many adaptive schemes for doing
so, e.g., LMS or RLS. This solution involves a separate re-
ceiver for each interferer. To shorten the filter lengths sub-
band processing is recommended, as otherwise the adaptation
might be slow for wideband signals.This filtering scheme is
similar to the first-mentioned subtraction scheme, except that
the spatial signatureof the interferer is computed from cor-
relations with the reference antenna.
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Note that each of these filtering schemes can be described as
a linear operation on the entries of the observed data covariance
matrix . In future equations, we will denote the linear opera-
tion by , and the output after filtering .

V. FOURIER IMAGING AFTER SPATIAL FILTERING

In the previous sections, we discussed spatial filtering tech-
niques. It was shown that an attractive scheme for removing the
interference is by projecting it out. However, by doing so we
replace the observed visibilities in the matrix by
some (known) linear combination. In this section, we discuss
the implications of this for the imaging.

A. Classical Inverse Fourier Imaging

The relation between sky brightness and visibilities
(where , are taken at frequency) is

We have measured on a discrete set of baselines .
The “dirty image” (a lumpy image obtained via direct Fourier
inversion possibly modified with some weights) is defined by

(18)

It is equal to the two–dimensional (2-D) convolution of the true
image with a point spread function known as the “dirty beam”

or

is the dirty beam, centered at the origin. The weights
are arbitrary coefficients designed to obtain an acceptable beam
shape, with low sidelobes, in spite of the irregular sampling.

Specializing to a point source model

where is the intensity of the source at location , gives

TABLE I
THE CLEAN ALGORITHM

Thus every point source excites the dirty beam centered at its
location .

From the dirty image and the known dirty beam , the
desired image is obtained via a deconvolution process. A pop-
ular method for doing this is the CLEAN algorithm [12]. The
algorithm assumes that has its peak at the origin, and con-
sists of a loop in which a candidate location is selected
as the largest peak in , and subsequently a small multiple of

is subtracted from . The objective is to
minimize the residual, until it converges to the noise level. A
short description of the algorithm is given in Table I. The pa-
rameter is called the loop gain and serves the purpose
of interpolation over the grid, is the estimated power of the
source.

B. Inverse Fourier Imaging After Projections

If we take projections or any other linear combination of
the visibilities during measurements, as in Section
IV, we have instead available

The coefficients are connected to the linear operations
of Section IV, and are the samples contained in the
collection .

Suppose we compute the dirty image in the same way as be-
fore, but now from

Then
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where

Thus the dirty image is again obtained via a convolution, but
the dirty beam is now space-varying. is a beam
centered at and measured at .

With a point-source model,

where

Again, every point source excites a beam centered at its lo-
cation , but the beams may all be different: they are
space-varying. Nonetheless, they are completely known if we
know the linear combinations that we took during observations.
Thus the CLEAN algorithm in Table I can readily be modified
to take the varying beam shapes into account: simply replace

by everywhere in the algorithm. Some re-
maining issues are as follows.

1) It is not a priori guaranteed that the main peak of
is indeed centered at .

2) The noise is not necessarily white, and the coloring should
be taken into account.

3) The computational complexity is increased since we have
to construct for every point .

The first two points are addressed in Section VI-C.
To demonstrate the spatial variation effect of the dirty

beam, we have generated an unfiltered dirty beam
(Fig. 3), and the beams that would result after
projecting out an interferer with a fixed terrestrial location. We
show the latter for a source located at the center of the field,
i.e., (Fig. 4), and for a source at , i.e.,

(Fig. 5).5 Note that the spatial projections
have modified the shape of the beam, in particular the sidelobes,
and that the response is not constant but varies with the location
of the source. Although the changes do not look very dramatic,
the differences are in fact important: accurate knowledge of the
beam shapes is essential in the deconvolution step, especially if
weak sources are to be detected among sources that are orders
of magnitude stronger.

VI. I MAGING VIA BEAMFORMING TECHNIQUES

In this section, we reformulate the classical inverse-Fourier
imaging technique and the CLEAN algorithm for deconvolu-

5The beams have been computed for(u ; v ) samples corresponding to a
WSRT antenna configuration withp = 14 telescopes andK = 100 covariance
epochs over 12 h.

Fig. 3. Classical dirty beamB (`; m), no interference suppression.

Fig. 4. Dirty beam resulting after spatial filtering. BeamB(`; m; 0; 0) for a
source at the center of the field view.

Fig. 5. Dirty beam resulting after spatial filtering. BeamB(`; m; 40 ; 30 )
for a source at (40 ; 30 ).

tion in terms of a more general iterative beamforming proce-
dure. This is possible since we have a parametric point-source
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model, and the prime objective of the deconvolution step is to
estimate the location of the point sources. The interpretation of
the deconvolution problem as one of DOA estimation allows ac-
cess to a potentially large number of algorithms that have been
developed for this application.

A. CLEAN and Sequential Beamforming

We set out by showing how CLEAN can be interpreted as a
sequential beamforming procedure.

Let us assume that we have available a collection of mea-
sured covariance matrices , obtained at times with

, and let us assume the parametric model of (7), i.e.,

Here, the unknown parameters are the source locations
, in each of the , and the source bright-

ness in . A natural formulation for the estimation of these
parameters is to pose it as the solution of an LS cost function,
given by

(19)

( is constrained to be diagonal with positive entries). This is
recognized as the same model as used for DOA estimation in
array processing. Note, however, that the array is moving (
is time-dependent), and that there are many more sources than
the dimension of each covariance matrix.

In this notation, the image formation in Section V-A can be
formulated as follows. Recall from (5) and (6) that

...

Thus if we write and , we
can rewrite the dirty image (18) as

(We omitted the optional weighting. Also note that, with noise,
we have to replace by .) The iterative beam re-
moving in CLEAN can now be posed as an iterative LS fitting
between the sky model and the observed visibility [31]. Finding
the brightest point in the image is equivalent to trying to find
a point source using classical Fourier beamforming, i.e.,

(20)

Thus the CLEAN algorithm can be regarded as a generalized
classical sequential beamformer, where the brightest points are
found one by one, and subsequently removed fromuntil
the LS cost function (19) is minimized. An immediate conse-
quence is that the estimated source locations will be biased: a

well-known fact in array processing. When the sources are well
separated, the bias is negligible compared to the standard devia-
tion, otherwise it might be significant. This gives an explanation
for the poor performance of the CLEAN in imaging extended
structures (see, e.g., [26]). Another enhancement in the CLEAN
can be made by turning it into an iterative scheme rather than se-
quential. In this case after estimating all point sources, we put
one source at a time back into the data, and re-estimate it, using
the estimates of the other point sources. This will improve the
LS fit, and can easily be proved to converge. This approach is
similar to the alternating projections approach for computing the
deterministic ML DOA estimator [46].

B. Minimum Variance Beamforming Approaches

Once we view image formation/deconvolution as equivalent
to DOA estimation with a moving array, we can try to adapt var-
ious other DOA estimators for handling the image formation. In
particular, the deflation approach used in the CLEAN algorithm
can be replaced by other source parameters estimators. One ap-
proach that seems particularly relevant in this context is the
Minimum-Variance Distortionless Response (MVDR) method
of beamforming [6]. The major new aspect here is the fact that
the array is moving and that there are more sources than sensors.

Instead of working with the dirty image

the basis for high-resolution beamforming techniques is to look
at more general “pseudo-spectra”

(21)

Here, is the beamformer pointing toward direction, and
is the output energy of that beamformer. Previously we

had ; the objective is to construct beamformers
that provide better separation of close sources.

A generalized MVDR follows by defining the problem as fol-
lows. At each time instancewe would like to generate a weight
vector which minimizes the output power at timesubject
to the constraint that we have a fixed response toward the look
direction of the array, i.e.,

such that

The solution to this problem is

where (22)

Inserting in (21) shows that the overall spectral estimator is
given by

(23)

and the locations of the strongest sources are given by the
maxima of . It is known that the MVDR has improved
resolution compared to the classical beamformer which is
the basis for the CLEAN algorithm. Fig. 6 illustrates this by
comparing a dirty image produced in the classical way to
the dirty image corresponding to (23). In this simulation, we
generated an extended structure by placing many point sources
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(a)

(b)

Fig. 6. (a) Conventional dirty image. (b) Dirty image using MVDR
beamformimg. The dots represented the locations of the point sources modeled.

close to each other. The MVDR-based imaging produces a
much sharper result.

Compared to CLEAN there is a slight computational loss. An-
other drawback of the MVDR is the fact that the noise distribu-
tion at the output of the beamformer is not identical toward all
directions. Here we can use a modification [5] which demands
that have a functional form , for some

, but now under the constraint that . This leads to
the following estimator:

Many other techniques exist for estimating the point-source lo-
cations. A good overview of the various possibilities can be
found in [16].

C. CLEAN with Spatial Filtering

Let us assume now that we have spatially filtered the covari-
ance matrices by linear operations , for example, projec-
tions. If we assume that all the interference is removed by the
filtering, the measurement equation becomes

(24)
This modifies the LS optimization problem to

(25)

The cost function is similar to (29) and thus its minimization
does not pose stronger computational demands. Indeed, as we
mentioned before in Section V-B, if we follow the classical
Fourier-type imaging we end up with a deconvolution problem
with a space-varying beam, but the CLEAN algorithm is simply
extended to take this into account. Here, we develop the exten-
sion more carefully, taking note of the fact that the noise struc-
ture after projections is not white anymore.

In the case of spatially filtered signals the classical beam-
former follows from the previous by replacing by the ef-
fective array response , i.e.,

(26)

where

(27)

Therefore, the step of finding the brightest pointin the image
can be implemented using the fast Fourier transform (FFT) in
the same way it is implemented in the CLEAN algorithm, but
acting on instead of the original visibilities. Similarly, the
contribution of a source at location in a single covariance
matrix is a multiple of , and hence the
response in the dirty image is given by

(28)
This is the space-varying beam. The extended CLEAN algo-
rithm after spatial filtering now follows immediately and is
given in Table II.

To test the algorithm, we have taken an array configuration
with telescopes as in WSRT, and generated four equal-
powered point sources centered around right ascension 32and
declination 60, with a signal-to-noise ratio of 20 dB for each
of the sources. To simulate the effect of spatial filtering, we
placed an interferer at a fixed terrestrial location (hence varying
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TABLE II
THE CLEAN ALGORITHM WITH SPATIAL FILTERING

compared to the look direction of the array), and with INR5
dB. sample covariance matrices were generated,
uniformly spread along 12 h, and each based on sam-
ples. Fig. 7(a)–(c) shows the dirty image without interference
present, the effect of the interferer on the dirty image, and the
dirty image after estimating and removing the interferer using
spatial projections. Clearly, with interference present but not re-
moved, the sources are completely masked out (note the change
in scale between the first two images). After estimating and pro-
jecting out the interferer, in the third image, we obtain nominally
the same image as in the interference-free case, but the sidelobe
patterns are different (as we demonstrated before, they are, in
fact, space-varying). The circles in the third image mark the true
location of the point sources, and thesymbols mark the loca-
tions estimated by the extended CLEAN algorithm of Table II.
We can clearly see that the correct locations have been obtained.
This would not be the case with the unmodified CLEAN algo-
rithm.

D. Self-Calibration

To finish this section, we consider the situation where also
the array gains are unknown. In this case, the model fitting
equation without spatial filtering, (19), generalizes to

(29)

The solution can be obtained by the “self-cal” algorithm [25]:
an alternating LS algorithm which solves iteratively for the pa-
rameters by a CLEAN step (with fixed gains), and the
gain parameters by a calibration step (with fixed source
parameters ).

It has not been noted before in the literature that the latter step
admits a direct algebraic solution. Indeed, to minimize (29) with

fixed and , we can minimize separately for eachthe
related expression

(30)

Let be the vector of diagonal elements of . Given an
estimate of and we can define for eacha matrix

with entries

and fit with entries such that . In
the usual self-calibration algorithm, this equation is solved iter-
atively for all two-by-two submatrices of using the so-called
gain and phase closure relations. Instead, we note here that the
problem admits a more elegant solution, since in matrix form,
we have

This asks for the best Hermitian rank-one approximation to the
matrix , which is known to be given by where

is the largest eigenvalue of and its corresponding
eigenvector.

More work is needed to generalize this to the model equation
with spatial filtering. With fixed and , the minimization
problem for the gain parameters is

(31)

Let denote the operation of stacking all columns of a
matrix into a vector, and let denote the Kronecker product. A
general property valid for matrices of compatible size is
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(a)

(b)

(c)

Fig. 7. Dirty images of four point sources. (a) No interference. (b)
Unsuppressed interference (INR= 5 dB). (c) After spatial filtering.

Application to the present context gives that (31) asks for the
solution in least squares sense of

which has the form

If has a left inverse , we can find a unique LS solution
for , i.e., , and then fit , or equiva-
lently , where is derived from by unstacking,
i.e., . This is precisely the solution which we ob-
tained before.

However, in the present case is a projection operator and
hence is not invertible. It is easy to see from examples, such
as taking , that in these cases is not identifiable. A
solution can be obtained if we make the reasonable assumption
that is constant over several epochs, say for

, and that is sufficiently varying over this period, for
example, due to multipath or fringe corrections. In that case, we
obtain

...
...

For sufficiently large , the block matrix is tall and of full
column rank, and has a left inverse. We can thus solve for an un-
structured LS estimate , and subsequently fit .

The minimal number of linearly independent matrices
which are needed follows from counting dimensions. If we

project out interferers on antennas, has indepen-
dent rows and columns. Hence has independent
rows and columns, and we need . This gives
modest requirements: if for we take , then we
can accept up to interferers; with , up to .

In summary, we have obtained an elegant and computation-
ally nonintensive extension of the “self-cal” algorithm to com-
plement the space-filtering CLEAN algorithm.

VII. M AXIMUM -LIKELIHOOD IMAGING

A. Maximum-Likelihood Functional

Let us consider the imaging step from a more fundamental
viewpoint. In principle, the construction of the image using
the observed correlation matrices and assuming the parametric
model can be viewed as a parameter estimation problem. One
of the most important inference methods is the maximum
likelihood (ML) method. Given a parametric family of prob-
abilistic models for the received data, choose the parameters
that maximize the probability of obtaining the observed data.
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This is different than the most probable image approach [8]
where no parametric model is imposed on the image, leading to
maximum entropy image formation. Maximum-likelihood esti-
mators (MLE’s) are known to be consistent and asymptotically
statistically efficient (i.e., they provide unbiased estimators
with minimum variance) under very general conditions, and
thus are the natural choice for many parameter estimation
problems.

In deriving the MLE of the image parameters, we need a para-
metric family of models for the astronomical signals. A rea-
sonable assumption regarding the astronomical data is Gaus-
sianity of the temporal samples.6 This assumption is used in cur-
rent imaging systems which rely only on second-order statistics
(both temporal and spatial). For simplicity we further assume
that the samples are temporally white (valid for the relatively
narrow bands processed, while over very large bands the black-
body radiation pattern should be taken into account). For further
discussion on emission mechanisms, and the resulting physical
models of emission the reader is referred to [28]. Contrary to
the claim in [37], the corresponding MLE isnot equivalent to
parametric optimization of the CLEAN cost function. Using the
discrete point-source model we obtain

(32)

where the astronomical sources are Gaussian with covariance
matrix and sky coordinates , and
the noise is Gaussian with covariance . Let be the sample
covariance matrix during theth epoch, based on collected
samples. The likelihood of the observations at theth epoch
given map parameters is then given by [2]

(33)
Using all observation epochs we obtain that the log-likeli-
hood function is given by (after omitting constants)

(34)

The MLE is found by maximizing (34) over .
This maximization problem is prohibitively complex and hence
some simplifications are needed. In some simplified cases in
DOA estimation this has been dealt with. The Gaussian signals
model for a static array with perfect calibration have been con-
sidered by [4] which eliminated analytically some of the pa-
rameters. Derivation of the MLE for a single source in white
Gaussian noise for the simplified model appeared in [45].

Since the CLEAN gives an approximate solution to the de-
convolution problem we can use it to initialize an ML search.
In this case, the CLEAN components serve as initial estimates
to the MLE and the MLE serves the purpose of fine focusing of
the image, by shifting each point source to its true value. The
ML search itself can be done either using a gradient search, a
Newton search based on the Fisher information matrix, or an
EM algorithm. In Appendix B we present the expressions of the

6The assumption is valid for continuum emission, while for spectral line ob-
servations certain adjustments of the model are needed to include the lines struc-
ture.

gradient and the Hessian needed for the optimization. Since a
good initialization is very important for optimizing the compli-
cated equation (34) we will continue to derive an approximate
coordinate descent MLE which is computationally simpler, and
show its connection to CLEAN.

B. Single Source in Colored Noise

One simplified approach to solve the MLE (34) which leads
to good results in LS problems is the deflation approach or co-
ordinate descent algorithm. In this approach, the sources are ex-
tracted one by one and once we have obtained estimates of pa-
rameters of all sources we iterate the optimization along each
parameter fixing the other parameters. Some examples of this
approach are the alternating projections algorithm [46] and the
estimation of multipath parameters [41].

Our basic approach to remove the effect of previously esti-
mated sources will be to lump their contribution into the “noise
part” of the covariance matrix. This essentially provides ana
posterioriestimate of the noise covariance matrix, before con-
tinuing to estimate the next source. Hence an important com-
ponent of the algorithm will be the ML estimation of a single
source in colored noise with known covariance matrix. In what
follows we will derive an approximate ML estimator for this
specific case. In order to reduce the notational complexity we
will restrict ourselves to perfectly calibrated arrays, i.e.,
for all , and note that estimating the calibration parameters will
be done in a separate stage as it is currently done in the self-cal-
ibration scheme.

In order to reduce computational complexity even further,
we would like to perform the source power estimation (condi-
tioned on the location parameter) analytically. This will result in
a two-dimensional search over the field of view for the location
with highest likelihood for a point source, a task of moderate
complexity.

Assume that we are given a set of covariance matrices
which are sample estimates of where

(35)

and is the noise covariance matrix (assumed to be known).
The log-likelihood function is given by

(36)

Substituting (35) into (36) we obtain

Further manipulation using and
yields
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Since does not depend on the parameters, the MLE is
given by minimizing

After some algebraic manipulations described in the Appendix,
we obtain that we have to minimize

(37)

where

and

Taking the derivative of the left-hand side with respect to
yields that the MLE of is given by solving the equation

(38)
Equation (38) is highly nonlinear and hard to solve in the gen-
eral case. We propose to simplify the problem by the following
procedure. First estimate the source power using each of the co-
variance matrices separately and then average the estimates. As-
suming that the ML estimate is consistent the above estimate
will still be consistent. If we further assume that the statistical
behavior of the various estimates is approximately the same
(i.e., the Fisher information based on each time observation is
almost constant) then the estimator is still efficient. This is for-
mulated in the following lemma.

Lemma VII.1: Assume that

Let be the MLE based on theth
block of data. Assume that all are equal, say ,
where is the Fisher information for based on the data ,
and the likelihood . Then is an
asymptotically efficient estimator of.

Proof: The Fisher information of the overall likelihood is
given by . Thus the CRB on estimatingis given by

Since the MLE is asymptotically efficient (in the total number
of samples ) its asymptotic variance achieves the CRB.
On the other hand, if we estimatebased on theth block we
obtain (by its asymptotic efficiency in ) that it has a variance
given by

Now combining the various estimates we obtain

By the inequality of the harmonic and arithmetic mean we
know that if the Fisher information is different at some time
instances, then the averaged estimator has a larger variance, but
the difference depends on the variation of the’s. However,
this degradation in performance gives us a large computational
saving. By the additivity of the derivative we obtain from (38)
that for each the MLE based on is given by

(39)

Equivalently, this can be written as

(40)

and hence

(41)
Now that we have this approximate ML (AML) estimate of
we can plug it into the likelihood function and obtain that we

have to maximize over the field of view the following:

(42)
The proposed coordinate-wise AML estimator is now sum-

marized in Table III.7 ,8

Alternatively to substituting back into the likelihood we can
try to find the direction which maximizes the received power. It
is interesting to observe that the CLEAN algorithm can be de-
rived as an approximation to this power maximizing estimator.
To that end maximize the power received from direction, i.e.,

(43)

Using (41) we obtain

(44)

7The stopping condition at Step 4 can be tested either using a� statistic or
by comparing the level of the extracted point source to the noise level.

8The final MLE focusing operation can use the same update equations for an
alternating coordinate maximization. In this case, we use the matrix inversion
lemma twice: First we add the contribution of the last estimated coordinate to
CCC , and then we subtract fromCCC the estimated contribution of the coordinate
along which we would like to optimize.
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TABLE III
ITERATIVE APPROXIMATE MAXIMUM LIKLIHOOD

From (7) we obtain that , where contains
all the array responses toward the previously estimated astro-
nomical sources. Assuming now that the power of the astronom-
ical sources is negligible compared to the noise power (this is
reasonable in many circumstances) and noting that
for every by our normalization, we obtain that and
that (44) simplifies to (20). An iterative application of (20) is
exactly the operation of the CLEAN beam removing technique.

VIII. C ONCLUSIONS

In this paper we have presented a parametric approach
to radio-astronomical image formation. We have used this
approach to adapt some known spectral estimators to the
astronomical image formation problem. We analyzed the effect
of interference suppression on imaging and proposed the
necessary changes to the imaging step in order to accommodate
the spatial filtering preprocessing. A new AML algorithm for
deconvolution has been presented, and the CLEAN algorithm
was derived by approximating the ML power estimates. Finally,
we have presented some simulated images demonstrating
some of the ideas presented, and demonstrating the possible
advantages in the parametric approach that leads to improved
resolution.

The work shows that the design of a new radio telescope can
(and probably should) use phased-array techniques to mitigate
RFI, but the imaging software will have to be changed accord-
ingly.

In this paper we have only analyzed LS based deconvolution.
In extension of this work [19] we analyze the MEM image for-
mation, in the context of adaptive interference suppression, and
propose suitable changes to the imaging. The possible applica-
tions of this work spans beyond the field of radio astronomy.
One possible example is ISAR imaging in the presence of strong
interferers.

APPENDIX A

In this appendix we derive (37). To simplify the derivation we
omit the explicit dependence on. Let

Hence

To compute , we use the matrix inversion
lemma obtaining

Using , we obtain

Since is independent of the parameters it can be
omitted from the maximization.

To evaluate note that the vector
is an eigenvalue of the rank one matrix

with eigenvalue . Therefore, it is an eigenvector
of with eigenvalue . All the
other eigenvalues of are . Hence since the
determinant is the product of the eigenvalues

Substituting into we obtain (37).

APPENDIX B

In this appendix we present the gradient of the log-likelihood
and the Fisher information matrix for the likelihood function
given in (32) and (34). This gives a possibility of obtaining
rapidly convergent ML estimation, given a good initialization.
We will not give the derivation in detail as it is rather standard.
Similar derivation for the perfectly calibrated array model case
can be found, e.g., in [33].
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... (49)

... (50)

Let the parameter vector be

where is the vector of coordinate of the astro-
nomical point sources, is the vector of
coordinate of the astronomical point sources, and
are the location coordinates of theth astronomical source,

is the vector of brightness of the sources, and
are the calibration parameters at theth observation epoch. The
score function is given by

(45)

and

(46)

We now turn to compute . Equation (32) can be
rewritten as

(47)

Hence we obtain

(48)

and similarly we obtain (49) and (50) at the top of this page.
Finally, the derivatives with respect to the calibration parameters
are given by

(51)

where is Kronecker’s delta, and are given by (8).
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