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Radio-Astronomical Imaging in the Presence of
Strong Radio Interference

Amir Leshem Member, IEEEand Alle-Jan van der VeeMember, IEEE

Abstract—Radio-astronomical observations are increasingly been used since 1946 when Ryle and Vonberg constructed a
contaminated by interference, and suppression techniques becomeradio interferometer using dipole antenna arrays [29]. During
essential. A powerful candidate for interference mitigation is the 1950’s several radio interferometers, which use synthetic

adaptive spatial filtering. We study the effect of spatial filtering ¢ ted b bl ¢ h b tructed
technigues on radio-astronomical imaging. Current deconvolution apertures created by movable antennas, have been constructed.

procedures, such as CLEAN, are shown to be unsuitable for spa- IN 1962, the principle of aperture synthesis using Earth rotation
tially filtered data, and the necessary corrections are derived. To were proposed [30]. The basic idea is to exploit the rotation

that end, we reformulate the imaging (deconvolution/calibration)  of the Earth to obtain denser coverage of the visibility domain
process as a sequential estimation of the locations of astronomical (spatial Fourier domain)

sources. This not only leads to an extended CLEAN algorithm, The first inst tt thi inciol the 5—km C
but also the formulation allows the insertion of other array signal e firstinstrument {o use this principle was the >—xm L.am-

processing techniques for direction finding and gives estimates bridge radio telescope. During the 1970’s, new instruments with
of the expected image quality and the amount of interference large apertures were constructed. Among these are the Wester-
suppression that can be achieved. Finally, a maximum-likelihood pork Synthesis Radio Telescope (WSRT) in the Netherlands and
(ML) procedure for the imaging is derived, and an approximate  hq \/ery Large Array (VLA) in the USA. Even these instruments
ML image formation technique is proposed to overcome the . . . L
subsample the Fourier domain, so that unique reconstruction is

computational burden involved. Some of the effects of the new X ] .
algorithms are shown in simulated images. not possible without some further processing known as decon-

Index Terms—CLEAN, interference mitigation, maximum like- volution. The dgconvolutlon Process uses sanpeior knowl- .
lihood, minimum variance, parametric imaging, radio astronomy, €dge about the image to remove the effect of “dirty beam” side-
spatial filtering, synthesis imaging. lobes.

Two principles dominate astronomical imaging deconvolu-
tion. The first method was proposed by Hogbom [12] and is
known as CLEAN. The CLEAN method is basically a sequen-

HE future of radio-astronomical discoveries dependtal Least Squares (LS) fitting procedure in which the brightest

on achieving better resolution and sensitivity whilesource location and power are estimated. The response of this
maintaining immunity to terrestrial interference. The last twsource is removed from the image, then the process continues
demands are obviously contradictory as improved sensitivity find the next brightest source, and so on, until the residual
implies receiving more interfering signals. One possible trackiimage is noise-like. During the years, it has been partially ana-
to switch to massive phased array technology. If instead of thyged [31], [32], and [37]. However, full analysis of the method
huge dishes which became the trademark of radio astrononsystill lacking due to its iterative nature.
we use phased-array radio telescopes comprised of tens oA second method proposed by Jaynes [13], [14] is maximum-
thousands of small elements, then we gain both in terms exftropy deconvolution (MEM). The basic idea behind MEM is
resolution and sensitivity while increasing the flexibility tathe following. Among all images which are consistent with the
mitigate interference. The international effort in this directiomeasured data and the noise distribution not all satisfy the posi-
is coordinated under the framework of the Square Kilomettvity demand, i.e., the sky brightness is a positive function. Con-
Array project (SKA). In this paper, we try to analyze the effectider only those that satisfy the positivity demand. From these
of on-line interference rejection on the image formation processlect the one that is most likely to have been created randomly.
in such an instrument. This idea has also been proposed in [8] and applied to radio-as-

We briefly describe the current status of radio-astronomicibnomical imaging in [11]. Other approaches based on the dif-
imaging; for a more extensive overview the reader is referréerential entropy have also been proposed [1] and [43]. An ex-
to [39], [44], or [26]. The principle of radio interferometry hagensive collection of papers discussing the various methods and

aspects of maximum entropy can be found in the various papers
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appealing solution is to try to improve the fitting between thestimators are identical up to second order, which makes it
data and the sky model by adjusting the calibration parametersry attractive. All these papers deal with the case of a fully
Another possibility [23] is to use the redundant structure of tHenown array response and are limited to one-dimensional
array to solve for the calibration parameters (this is possidcation parameters. In this paper, we also extend the above
only for some arrays which have redundant baselines, suchnaathods in several directions. First, we use the eigenstructure
the WSRT). A good overview of the various techniques is givedn mitigate strong interferers for which we do not know the
in [25]. array response, and we analyze the efficiency of this proce-
A major problem facing radio astronomy is the acceleratetlire. Second, we propose other relatively “low” complexity
use of the electromagnetic spectrum. Even in bands whiahproaches, based on eigenstructure and Minimum Variance
are reserved to radio-astronomical observation one can fiDistortionless Response (MVDR). Finally, we discuss an ML
interference, e.g., sidelobes of emissions from the Iridium approach to the astronomical image formation problem, derive
GLONASS satellites. As was shown in [38], interferometrian approximate ML estimator (AML) of low complexity and
arrays are less sensitive to interference than single-dish dhiscuss the relation of the AML to the CLEAN algorithm. Our
struments. However, the interference still appears in imagégatment of the radio-astronomical imaging can be applied to
especially for observations at frequency bands not specificatither problems of imaging with time-varying sensor responses,
reserved for radio astronomy. Many efforts all over the worlsuch as ISAR/SAR radar imaging in the presence of strong
are currently put into improving the interference mitigatiojpmmers. The model then generalizes the model given in [35]
capabilities of radio telescopes. The methods considered sparthe time-varying context. For the case of an array with
over all possible domains: temporal [42], [10], [3], spatiotentonstant time behavior (connected element array), methods of
poral [15], spatiospectral [21], [18], [17], and wavelet-basecbmputing the MLE have been proposed in [35] using the EM
methods [22]. Also considered are techniques which usgethod or [7] using the SAGE algorithm. However, there is
statistical and deterministic properties such as non-Gaussiamity straightforward extension of these methods to our context.
and constant modulus of the interferers, in order to use bliddthough an EM algorithm can be applied, the dimensionality
beamforming to remove the interferers. of the parameter space makes it infeasible to perform full
As far as multielement synthesis imaging radio telescopes 8M&E without very good initialization. Reference [24] contains
concerned, the spatial methods are extremely appealing, sinoe extensive overview on image formation principles and
each interferer has its own “spatial signature.” Estimating thealgorithms, as well as previous work on parametric image
signatures enables efficient mitigation of the interferer usirfgrmation in other fields such as radar and tomography.
phased-array techniques. However, important questions ariselo allow the paper to be of use both to the information
As we will show in this paper, applying time-varying spatiatheory/signal processing and to the radio astronomical commu-
filters makes the point-spread function space-varying. In parities the introductory part is of a tutorial nature. The structure
ticular, the image formation techniques will have to be modifiedf the paper is as follows. In Section Il we describe the as-
accordingly. To cope with this problem, we reformulate the clatconomical measurement process and introduce an often-used
sical Fourier imaging framework in a parametric manner momoordinate system. The measurement equation is subsequently
appropriate for statistical analysis of the interference mitigatiorephrased in a more convenient matrix formulation in Section
This enables us to incorporate the spatial filtering naturally intd, and extended with the effect of interference. In Section 1V,
the image formation process. we describe several basic spatial filtering approaches to on-line
Our reformulation of the image formation problem describésterference suppression, and compute the residual interference
the measurements as a set of covariance matrices, measaftat adaptive estimation of its parameters for one specific case.
at the various observation epochs. This yields a model wheneSections V and VI, we discuss the image formation process,
the array response is time-varying. Previous research finst based on classical techniques (CLEAN), then extended
time-varying arrays and their application to direction-of-arrivab other beamforming methods and taking the spatial filtering
(DOA) estimation includes [45], where an ML estimator fointo account. Finally, we derive an approximate ML algorithm
a single source and the corresponding Cramer—Rao bodadimage formation. We end with conclusions regarding future
(CRB) are derived. For multiple sources [9] proposes thrémplementation of on-line interference suppression in radio
approaches: a modified beamforming, a virtual interpolatestronomy.
array, and focusing matrices. The main drawback of the last
two methods is that they do not lend themselves to estimating
more sources than the number of physical sensors. In [34], a
generalized LS (GLS) approach is proposed. The idea is taln this section we describe a simplified mathematical model
present the problem of estimating the source powers (givem the astronomical measurement and imaging process. Our
the DOA parameters) as a linear problem. This enablesdiscussion follows the introduction in [26]. We begin with the
closed-form solution for the powers. Substituting back into theeasurement equation, and reformulate it into a matrix form in
GLS estimator, the problem is reduced to a multidimensiontile next section. This will allow us to obtain a uniform descrip-
search problem over the DOA's. The main drawback of thifon of various astronomical imaging operations, such as decon-
approach is the need to invert very large matriggs X p?, volution and self-calibration.
wherep is the number of physical sensors). It is also shown The signals received from the celestial sphere may be con-
that the asymptotic performances of the GLS and the Miidered as spatially incoherent, wideband random noise. It is

Il. ASTRONOMICAL MEASUREMENT EQUATIONS
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geometric
delay 7.

(b)

Fig. 1. (a) The emitted electrical field from the celestial sphere is received by a rotating telescope array. (b) Geometrical delay compensation.

possibly polarized and perhaps contains spectral absorptioruaresolved). This gives

emission lines. Rather than considering the emitted electric field

at a location on the celestial sphere, astronomers try to recover d

theintensity(or brightnessY ;(s) in the direction of unit-length I5(8) =Y I(s1)6(s — &)

vectorss, wheref is a specific frequency. Lef;(r) be the re- =1

ceived celestial electric field a_\t a locatieon E_arth (see Fig. wheres, is the coordinate of théh source, and then

1(a)). The measured correlation of the electric fields between

two identical sensorsand; with locationsr; andr; is called a d

visibility and is (approximately) given by [26] Vi(ri, 7)) =7 Z I;(s) ¢ 2mafsi (rimri)/e, (1)
=1

Ve(rs, r; ::E{E r ) Er(r; } . . . ) )
it i) 1) Ey(r)) Up to this point we have worked in an arbitrary coordinate
— / I4(8) o 2mafsT (riri)/e g0y system. For Earth rotation synthesis arrays, a coordinate system
sky is often introduced as follows. We assume an array with an-

tennas that have a small field of view and that track a reference

E{ -} is the mathematical expectation operator, the superscrijyrce directios, in the sky. Other locations in the field of view
T denotes the transpose of a vector, and overbar denotesdhg pe written ag = s, + o, 8o L o (valid for smalle) and a

complex conjugate. Note thaf; is only dependent on the ori- natural coordinate system is
ented distance; — r; between the two antennas; this vector is
called a baseline. s =1[0, 0, 1]¥ o=1[t m, 0.
For simplification, we may sometimes assume that the astro-
nomical sky is a collection of discrete point sources (maybegimilarly, for a planar array, the receiver baselines can be pa-

rameterized as

1To simplify notation, we do notinclude in our model the directional response
of the elements of the radio telescope. This can be included in a straightforward

e — T _
manner as in [26, Ch. 1, Sec. 4.3] T —T; = Alu, v, w]", A=

<
7
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The measurement equation (n, v, w) coordinates thus be- has a bandwidth on the order of 100 kHz or less. Due to the
comes subband filtering, the original sampling ratexft) is reduced
g - b accordingly, resulting i’ on tr]e order of 1@,s and the number
Vilu, v, w) = ¢ //If(gv m)e dbdm. (2)  of samplesV in the order ofLl0° for each subband: represents
the center frequency in a subband. From now on we consider the
The factore=2"7* is caused by thgeometrical delayssoci- Subbands independently ignoring that they are really connected.
ated to the reference location, and can be compensated byGansequently, in future equations we drop the dependenge on
troducing a slowly time-variant delay (see Fig. 1(b)). This sy the notation.
chronizes the center of the field-of-view and makes the refer-The connection of the correlation matridgg) to the visibil-
ence source location appear as if it were at the North Pole. Afiies V (u, v) in Section Il is as follows. Each entry;(¢) of the
compensation, we arrive at a measurement equatign,in) matrix R(¢) is a sample of this visibility function for a specific
coordinates only coordinateg(«, v) corresponding to the baseline vector

Vi(u, v) = //If(ﬁ, m)e” 2V g g, 3) ri(t) — 7;(t) = Aluiy (t), vij (1), wi;(t)]

) between telescopésand; at timet
It has the form of a Fourier transform.

The function V;(u, v) is sampled at various coordinates V(uij (1), vij (8) = ri;(2) (5)
. : - . . i\t ) Vij = Tug\t)-
(u, v) by first taking all possible sensor paitsj or baselines
r; — r;, and second by realizing that the sensor locations Note that we can obtain only a discrete set(of v) sample
r; are actually time-varying since the Earth rotates. Givengints. Indeed, the number of instantaneous independent base-
sufficient number of samples in tife, v) domain, the relation lines betweerp antennas is at mostp(p — 1). Also, using the

can be inverted to obtain an image (the “map”), which is th&arth rotation, we have a finite sgt,, ¥ = 1, ---, K}, where
topic of Section V. the number of epochk is given by the ratio of the observation
time and the covariance averaging time (elg.= 12 h/30 s =
lll. ARRAY SIGNAL PROCESSINGFORMULATION 1440 samples). The available sample coordingtgs, v, « }

give anirregular cover of th:, v) plane. For an East-West line
) i o ) array such as WSRT, the points lie on ellipses. A practical issue
We will now describe the situation from an array signal prag the jmplementation of the geometrical delay compensation. It
cessing point of view. The signals received by the antennas,syally introduced only at the back end of the receiver. At this
are amplified and down-converted to baseband. A time-varyipgint also a phase correction is needed to compensate for the
delay for every antenna is also introduced, to compensate fQkior .—27w:;(*) in the measurement equation (2). This is re-
the geometrical delay. Following traditional array signal pragre to agringe correctior{39]. Since the Earth rotates, (¢)
cessing practice, the signals at this point are catige) rather s giowly time varying, with a rate of change in the order of 0-10
thanE(r), and are stacked in vectors Hz depending on source declination and baseline length.

t) = [z1(t), - ¥ . .
(t) = [ma(t), - p(t)] B. Matrix Formulation
wherep is the number of antennas. These are then processed bpfor the discrete source model. we can now formulate our

a correlation stage. o _ measurement equations in terms of matrices.rigét;,) be an
Itwill be convenient to assume thagt) is first splitby abank - 5 ivary and time-varying reference point, typically at one of

of narrowband subband filters into a collection of frequency,o alements of the array, and let us take (thev, w) coordi-

components ;(t). The main output of the telescope hardwargaies of the other telescopes with respect to this reference

is then a sequence of empirical correlation matriBg$¢) of

crosscorrelations af ;(t), for a set of frequencieg € {fi.} 7:(t) — ro(t) = Auwio(t), vio(t), wio(t)], i=1,---,p.

covering a 10-MHz band or so, and for a set of times {#;.}

covering up to 12 A.Each correlation matrid2,(¢) is an esti- Equation (1) can then be written slightly differently as

mate of the true covariance matd¥; (¢)

A. Obtaining the Measurements

d

Ry (t) =E{a; (e, (1)} Vir(®), ri(8) =3 e I e g s i e
N—1 =1
- 1
Ry(t) =< D ap(t+nD)zs(t+nT)" 4)
N =~ — 27y (uso ()i 4vio ()
n=0 SV (uij (1), vi;(1) =Y _e 2o @btvo@mi 1(g my)
where the superscriftdenotes a complex conjugate transpose, =1
T is the sample period cf ;(¢), andV is the number of sam- . 2T augo (D l+vjo ()m)

ples over which is averaged. The matridfép(t) are stored for
off-line spectral analysis and imaging. Typically, each subbamnglterms of correlation matrices, this equation can be written as

p—— H ==
2Many telescope sites including WSRT follow actually a different schem@"‘ = A B4, whereR,. = R(t)
wherein the signals are first correlated at several lags and subsequently Fourier-

transformed. This leads to similar results. Ay =lap(b1, my), -+, ap(Ly, my)]
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and continuous or intermittent, narrowband or wideband, and
r e—27 (w10 (tr )e+vio (te)m) strong or weak.
Suppose that we have a single interferer impinging onto the
a. (£, m) = : telescope array. The interfering signal reaches the array with
| e—2m(up0 (te ) eHvpo(te)m) different delaysr; for each telescope. Assuming processing
FI(6r, i) 0 in ‘narrow subbands_ as b_efore, delays translate into phase
’ shifts? and the received signal can be modeled:as) =
B = . a; 5(t) ¢~¥7247i o, in vector notation,
o (6, ma) aqe= XS
The vector functionas (¢, m) is called thearray response (t) = : s(t) = as(?).
vectorin array signal processing. It describes the response of ape= 2ty

the telescope array to a source in the directionn). As usual, ) )
the array response is frequency-dependent. In this case, if&e. s(t) is the baseband signal, angd represents the tele-

response is also slowly time-varying due to the Earth rotatiofcOP€ gain in the direction of the interferer, including any pos-

Note, very importantly, that the function as shown here gible attenuation of the channeI: Unlike much of the array signal

completely known. processing _Ilterature_, the; are_llkely_ to be_ different fo_r each _
More realistically, the array response is less perfect. An irfzléScope since the interferer is typically in the near field. This

portant effect is that each antenna may have a different compl@plies that it impinges on each telescope at a different angle,

receiver gainy;(t) dependent on many angle-independent eyhereas the response'of the telescopes is not omnidirectional.

fects such as cable losses, amplifier gains, and (slowly) varyifi§nce. the corresponding array response vect®now an un-

atmospheric conditions. We also have to realize that most f§fown function. This vector is also called thpatial signature

the received signal consists of additive system noise. When tRf¢he interfering source. Itis slowly time varying, and we write

noise is zero-mean, independent among the antennas (thus gpﬁfa@- o

tially white), and identically distributed, then it has a covariance Similarly, with ¢ interferers

matrix that is a multiple of the identity matrixI, wheres? is s1(t)

the noise power on a single antenna inside the subband which a

we consider. Usually the noise is assumed to be Gaussian. Th& = »_ a;(t)s;(t) = A,() | © |,

resulting model of the received covariance matrix then becomes J=1

5¢(%)
R, = [ ABAITY 4+ 521 @) A (t) = [a(t), -+, ay(t)]-
where The subscript §” is used to distinguisid(¢) from the array
0 response matrix of the astronomical sources.
Tk The corresponding correlation matrix at timeis
Ry = E{a(t)o(t)"} = (AR (A7) .
0 Vo, k ‘

Theg x g matrix (R,): = E{s(t)s"(¢;)} depends on the cor-

Note that this assumes that the noise is introduakelr the ; . ; . . .
. ) . . s .. .relational properties of the interfering signals. For independent
varying receiver gains. This assumption is reasonable if t S . . . X .
interferers, it will be a diagonal matrix, with theinterfering

channels from the low-noise amplifier (LNA) outputs to the owers on the diagonal
analog-to-digital converter (ADC) units are equal. cherwi;g, How well an empirice.d estimat&,, fits to R, depends on
it is still reasonable to assume that the noise is spatially Whl{ﬁé stationarity of the scenario, and is open to discussion. For
i.e., the noise covariance matrix is diagonal. We can assume ’ |

) . : . .various reasons (mobile interferers with multipath fading, fixed
that the receivers noise power can be estimated using varl?rﬂs

calibration techniaues: a simple diagonal scaling will the erferers such as TV stations moving through the varying side-
) ques, P 9 9 [bes of the rotating telescopes, fringe corrections of up to 10
bring us back to the model (7).

Hz), the stationarity ok, is often limited to about 10-100 ms.
In the rest of the paper, we make the assumption that indeed the

availableR,, are obtained over stationary periods. In summary,

Radio frequency interference (RFI) usually enters thge gyerall model including astronomical signals, array imper-
antennas through the sidelobes of the main beam. It can{Bgtions. interference. and noise is given by

stronger or weaker than the system noise. An important prop-

erty is that it has a certaitirectivity, so that it does not averageR;, = I‘kAkBAEI‘k + (A)k(R) (AN + 71,

out in the correlation process. Examples of harmful RFI are kE=0,1,--- (9)

television broadcasts, geolocation satellites (GPS, GLONASS),

taxi dispatch systems airplane communication and navigatioﬁFOf this, the processing bandwidths should be much less than the inverse
. . . . .of the maximal delay. For example, in WSRT the largest baseline is 3000 m,

signals, wireless mobile communication (GSM), and satelhfxg>

g ] o \ rresponding to a maximal delay of 8. Hence the narrowband assumption
communication signals (Iridium). Thus interferers may bkolds for bandwidths less than 100 kHz [21].

C. RF Interference
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where we assume that the interference tekms unstructured, with eigenvalue decomposition
andrank (A;) = ¢ < p.

R=UAU"1+-?U, U, U, U,
IV. SPATIAL FILTERING

. . . . A + 0%, | 0 .
An on-line interference mitigation system will consist of two =[U, U,] . ] [ H] . (11)
stages. As a first step the presence of interference is detected. 0 ‘ ol U,

This part is considered in [21] and [18] and is demonstrated on

astronomical data in [20]. In the case of continuous interferenEberefore, the smallest eigenval{ie’) has multiplicityp — g,
it is reasonable to use its spatial signature in order to removednd

This leads tespatial filteringtechniques.

span (U;) = span (A;) UA, =o. (12)
A. Projecting out the Interferer
Let us assume that we have obtained a covariance nﬁ,trixWe Jr_efgr toonStr?ZttIQE 'Tege'gﬂc?rﬁﬁgstﬁgcg' :r?\c/:glféngetgo(rf)’
which contains the rather weak covariance matrix of the astl’éf N A, T T ge
nomical sources (visibilitiesR, = T'xAxBAIT, plus white position of R allows us to detect the number of interferers (from
noise4 Suppose also that therbe is an interfelFer with powser the number of repfated Sm%" eigervalues) and to identify the
° projection matrixPy = U, U, to project them out, as in (10).
R=R, + o2aa" + 021 Note that we do not have to knad,. This hinges upon the fact
v s ) that the noise covariance is white (in general, known), and the

Assuming that is known it is possible to null all energy with V'.S'b”'.ty ”_‘a”'x .R” IS |nS|gr_1|f|cant at these time _s_cales (other-
wise, it might disturb the eigenvalue decomposition).

spatial signature. To this end, we can introduce the projection : N
P 9 prol In practice, we only have a sample estim#&@eof R. The

matrices eigenvalue decomposition of this matrix
P, =a(aa)'a" Py =1-a(a"a) ta". . u . m
R=UAU, +U,AU,
It is easily seen thana = 0, so that if we appIij as a
spatial filter toR, we obtain gives an ML estimate d/,, [2].
One might be worried that if we use the estimated subspace
Rt := P RP} = P,R,P, +o°P,. (10) for the projections, it might leave correlated residual interfer-

ence components that eventually will show up in the final image.
Thus the interference is completely removed. At the same tinghis is in fact not the case, as we will now demonstrate that the
the visibility matrix is modified by the projections, and theesidual interference is spatially white.
noise is not white anymore since one dimension is missing.
The imaging stage has to be aware of this, which is the tof¢ Residual Interference After Projections
of Section V.
This idea is also applicable to multiple narrowband inter-. . . . . .
L ields asymptotic expressions for the residual interference in
ferers, and we do not need to know the spatial signatures of {he . ) e .
. . . . € covariance matrices after spatial filtering. To this end, we
interferers in advance. Indeed, if the total number of |nterferer§ . . S
S ) ; . utilize the following theorem from [40], a proof of which is
inside a subband ig < p, an eigenvalue decomposition allows iven in [36]
to estimate the corresponding “interference subspace” spanﬁe(? ’ .
by the spatial signatures from the data covariance matrix, andrheorem IV.1:; Let R be the sample covariance matrix based
subsequently project out this subspace. on N samples of g-dimensional complex Gaussian random
Thus letR = UAU" be the eigendecomposition & For process, with zero mean and covariadtelLet R = UAUY
the purpose of interference cancellation we assume that the blyan eigenvalue decomposition®f with U = [uy, - - -, u,)
sources are weall?, < ¢21, and thus their influence can beunitary, andA = diag [A1, -+ -, A,], whereA; > -+ > A\, >
ignored in the eigendecomposition. W8t = [U, U,] where o%and),41 =--- =\, = o> LetU; = [uq, ---, u,]. Then
U, isp x g and contains the eigenvectors corresponding tg thdor m > ¢, we have thaPy i, is asymptotically a zero-mean
largest eigenvalues, all, collects the remaining eigenvectorsGaussian random process with variance determined by
In the noise-free casd& has rankg and

A perturbation analysis of the eigenvalue decomposition

R=ARAY =UAUY. ; \
g n H 1 ..
= oy Unly, | 6, jto(N ), i, J>q.
In the noisy case N ;::1 (An—02)? J

(13)
R=ARA" 151

4In this section we consider a single covariance matrix hence we drop theFOr SlmpIICIty, let u_s specialize to the casepf= 1 _nar'_
index k. rowband interferer, with power? per sample and spatial sig-
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naturea normalized td|al|* = p. I_n this caseh; = po? + o2, INR after spatial filtering
u; = a/||a|| = a/./p, and (13) gives -12 I a— - :
2 2 2
N o° pol +ao
E{||Py ity |?V = 2 27T 7 > 1.
{H U || } N (po_g)g m
Now note that
||Pu1i"m||2 = [Jug1 i"mHQ = [Juy ﬂnl||2 ' ; : : :
T ) -20 -15 -10 -5 0 5 10
= ||ttt w1 [|” = || Pa,, 01 | INR in
so that Fig. 2. Residual INR after spatial filtering.
E{||Pa, a|’} = pE{||Pa, w1]®} = pE {||Pu, ttr|*} . o _ : . .
UIPs, all"} = pE{|IPa, w|"} = PE {|1Pus i ]I*} in this case the eigenvectors lose their natural interpretation as
Similarly, we get form # n spatial signatures of the various interferers.
E{(Pa, w)"(Pa,u1)} = 0. C. Other Spatial Filtering Possibilities

If we define the input Interference-to-Noise Ratio (INR) as Without going into too much detail, we mention a few other
INR = o2 /02, then we finally obtain possibilities for spatial filtering and interference cancellation.

Suppose there is a single interferer

2 2 2
91 0" pos+a®  p pINR+1
E{Hpﬂm“H }—pﬁ (po2)? =N (pINR)Z’ m>1 R =R, +c%aa" + o’
(14)
p(p—1) pINR+1 Subtraction With an estimate oz and an estimate of its
L 2 L 2 B . .
p = - = . ) try t btract it f th dat
= E{||Paa|| } E{||Pula|| } N »INRZ power, we can try to subtract it from the covariance data
(15) R=R- 5%aa". 17)

Let us assume that the estimaids approximately independent
of the interfering signal. The residual INR at the output after
spatial filtering is then

Without other knowledge, the best estimatea$ the domi-
nant eigenvectas; of R, and likewise the best estimate«f
is A1 —o2. Since both of these are derived frdgnit turns out

PLal? to be not too different from the projection scheme. Indeed, if
o2 B{IPaal’} 1 look at
INR = s — =1~~~ Tomr) (O 7EO%E

o p— D

_ H _ HY __ _ H 2
These expressions are very satisfactory. Indeed, note from (I~ awur) R(I - awruy’) = R~ wui'hy 20 — o)

(14) that the gxpe_ctegl residyal interference power is the same i(}ve can make it equal to (17) by selecting such that
each of the dlrec_tlonam, which together form an orthonqrmal A2 — a?) = 52. The projection scheme hag— 1.

basis of the projected space. This means that the residual in- s
terference is spatially white within the projected space (up toSpatial Whiteningln this scheme, we try to make the inter-
second order (in]%) effects), and only increases the effective ference plus noise white again. This component is equal to
noise power without adding spatial features to it. The effective o2aa + 21, so we pre- and postmultiply with square-root
noise power at the output is factors of it

N —1/2 —1/2
(0)? = o {1 + % <1 + ﬁ)} : R=(5%aa"+51) " R(5%a" +5°1)
p
= (.)*1/2RU(.)71/2 +1.
Fig. 2 shows the residual interference in a simulation, for
N = 100 samples ang = 8 antennas. The reference lines are g hiraction of a Reference Signkilwe have a reference an-
given by the predicted value in (16), and the line INRINR. tenna that receives a “clean” copy of the interfering signal,
Although the predicted value fits very well for sufficiently large {hen we might try to subtract this reference signal from the

INR, it is seen that for small INR, (16) loses its validity. This is telescope signals. There are many adaptive schemes for doing
because Theorem IV.1 is valid only for eigenvalues sufficiently ¢, e.g., LMS or RLS. This solution involves a separate re-
above the noise power. For small INR's, the estimated interfer-ceiver for each interferer. To shorten the filter lengths sub-

ence subspace will be a random vector, and the projection will544 processing is recommended, as otherwise the adaptation
have no effect on the INR. The crossover point is approximately might be slow for wideband signals. This filtering scheme is
given by INR=  + \/;—p The generalization for higher di-  gimjlar to the first-mentioned subtraction scheme, except that
mensional interference subspace is straightforward using the orthe spatial signatur of the interferer is computed from cor-
thogonality of the interference eigenvectors. Note, however, thatrelations with the reference antenna.
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Note that each of these filtering schemes can be described as TABLE |
a linear operation on the entries of the observed data covariance THE CLEAN ALGORITHM
matrix R;.. In future equations, we will denote the linear opera- I=0
tion by Ly, and the output after filterindg;, = LkRkLE. while I, is not noise-like:

V. FOURIER IMAGING AFTER SPATIAL FILTERING (£, my) = argmax Ip(£, m)

In the previous sections, we discussed spatial filtering tech- N = Ip(&,mu)/Bo(0,0)
niques. It was shown that an attractive scheme for removing the In = Ip—yNBolf—8,m—my)
interference is by projecting it out. However, by doing so we
replace the observed visibilitids(w;, v;) in the matrixR, by b=+l
some (known) linear combination. In this section, we discuss I=1Ip+5 YABsyun(l — f1,m — my)

the implications of this for the imaging.

A. Classical Inverse Fourier Imaging
Thus every point source excites the dirty beam centered at its

location(£;, m;).

From the dirty imagdp and the known dirty bean,, the
desired imag¢ is obtained via a deconvolution process. A pop-
ular method for doing this is the CLEAN algorithm [12]. The
algorithm assumes thdt, has its peak at the origin, and con-
We have measurel on a discrete set of baseling@:;, v;)}. sists of a loop in which a candidate locati@h, ;) is selected
The “dirty image” (a lumpy image obtained via direct Fourieas the largest peak ify,, and subsequently a small multiple of
inversion possibly modified with some weight$ is defined by B (¢ — ¢;, m — my) is subtracted fronip. The objective is to

- 2y (s Epoim) minimize the residual, until it converges to the noise level. A
Ip(t, m) = Z ¢V (ui, vi) e - (18)  ghort description of the algorithm is given in Table I. The pa-
g rametery < 1 is called the loop gain and serves the purpose
Itis equal to the two—dimensional (2-D) convolution of the truef interpolation over the grid); is the estimated power of the
imagel! with a point spread function known as the “dirty beam%ource.

Ip(f; m) = Z i V(u, v;) 2twittvim)

The relation between sky brightnesd, m) and visibilities
V(u, v) (Whereu, v are taken at frequenc§) is

V(u, v) = // I(¢, m) e~ Fauttvm) qp g

B. Inverse Fourier Imaging After Projections

If we take projections or any other linear combinatjes] of
_ Z ¢ //1(5'7 m’) o= 2ma(us v ot oot the visibilitieg{V(ui, vi)} during measurements, as in Section
- IV, we have instead available

. 6277](u7-£+'vi m)

Z(u;, vi) = Z Cij V(uj7 Uj)
://I(£/7 m/) [Z ¢ 6277]('11,7' (Z—Z’)—I—'n;(rn—rn’))

J

The coefficients:;; are connected to the linear operatidds, }

LAl dm’ of Section IV, andZ(u;, v;) are the samples contained in the
collection{R;}.
= //I(E', m') Bo(£ — ', m —m') dl' dm/ Suppose we compute the dirty image in the same way as be-
fore, but now fromz
or
Ip =1 B07 BO(L m) — Z ci 6277](u7-é+'v7-m). ID(E7 m) . Z Z(U,Z, Ui) CQTF](U{[""U{TH)
By is the dirty beam, centered at the origin. The weightg =30 iy Viuy, vy) it
are arbitrary coefficients designed to obtain an acceptable beam iy
shape, with low sidelobes, in spite of the irregular sampling. Then
Specializing to a point source model
_ 2w 3(u; £+, m
I(& m) — Z II(S(E _ gh m — ml) ID(E, m) = Z Z Cij V(U,j, Uj) e 3 )
l v
wherel,; is the intensity of the source at locatiof, 1), gives _ Z Z - //1(5'7 m,)@_m(ujéurvjm,)
)

‘/(u7 U) — Z Il e—27r](uél+'vrnl)
l

In(f, m) =" I Bo(£ — &1, m — my). - dt dm!
l

& (ui+v;m)



1738 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 5, AUGUST 2000

://I(El7 m/) Z Z cij 6—271']('%[’4_1;3_"1/)

)

e?ﬂ](uié—l—'vinl) dg/ dm/

// B4, m, ¢, m')dl dm’
where

(E m, gl /) ZZC e—?ﬂ](ujé —|—l,_77n) 273 (u; £+v; rn)

Thus the dirty |mage |s again obtained via a convolution, bi
the dirty beam is now space-varying(¢, m, ¢, m’) is abeam
centered at?’, m’) and measured &t, m).
With a point source model,
Ip(¢, m) Z I B¢, m, £y, my) = Z I; Bi(¢, m) Fig. 3. Classical dirty bear®, (¢, m), no interference suppression.

where
Bl(g m Z Z Cij 277_7(ujél+'vjnll) e?wg(ugé—l—'vgnl).

Again, every pomt source excites a beam centered at its |
cation (¢;, m;), but the beams may all be different: they are
space-varyingNonetheless, they are completely known if we
know the linear combinations that we took during observations
Thus the CLEAN algorithm in Table | can readily be modified
to take the varying beam shapes into account: simply repla
By (£, m) by Bi(¢, m) everywhere in the algorithm. Some re-
maining issues are as follows.

Dec. [sec]

1) It is not a priori guaranteed that the main peak of
B;(¢, m) is indeed centered &t;, m;).

2) The noise is not necessarily white, and the coloring shoul
be taken into account.

3) The computational complexity is increased since we have

to constructB,;(¢, m) for every point(¢;, m;). Fig. 4. Dirty beam resulting after spatial filtering. Bea®{(, m, 0, 0) for a
source at the center of the field view.

The first two points are addressed in Section VI-C.

To demonstrate the spatial variation effect of the dirty
beam, we have generated an unfiltered dirty beag¢, m)
(Fig. 3), and the beamB(¢, m, £, m’) that would result after
projecting out an interferer with a fixed terrestrial location. We
show the latter for a source located at the center of the fiel
i.e., B(¢, m, 0, 0) (Fig. 4), and for a source &0”, 30”), i.e
B(¢, m, 40", 30") (Fig. 5)5 Note that the spatial projections
have modified the shape of the beam, in particular the sidelobe
and that the response is not constant but varies with the locati
of the source. Although the changes do not look very dramati
the differences are in fact important: accurate knowledge of tt
beam shapes is essential in the deconvolution step, especiall
weak sources are to be detected among sources that are ort
of magnitude stronger.

Dec. [sec]

RA [sec]

VI. IMAGING VIA BEAMFORMING TECHNIQUES

In this section, we reformulate the classical inverse-Fourig. 5. Dirty beam resulting after spatial filtering. Bed®(¢, m., 407, 30”)
imaging technique and the CLEAN algorithm for deconvoluor a source at40”, 30”).

5The beams have been computed fas, v;) samples corresponding to at. in t f | iterati b f .
WSRT antenna configuration with= 14 telescopes anfi’ = 100 covariance 10N IN 1€IMS O & More general iterative beamrorming proce-

epochs over 12 h. dure. This is possible since we have a parametric point-source



LESHEM AND VAN DER VEEN: RADIO-ASTRONOMICAL IMAGING IN THE PRESENCE OF STRONG RADIO INTERFERENCE 1739

model, and the prime objective of the deconvolution step is teell-known fact in array processing. When the sources are well
estimate the location of the point sources. The interpretations#parated, the bias is negligible compared to the standard devia-
the deconvolution problem as one of DOA estimation allows atien, otherwise it might be significant. This gives an explanation
cess to a potentially large number of algorithms that have befen the poor performance of the CLEAN in imaging extended

developed for this application. structures (see, e.g., [26]). Another enhancement in the CLEAN
can be made by turning itinto an iterative scheme rather than se-
A. CLEAN and Sequential Beamforming quential. In this case after estimating all point sources, we put
We set out by showing how CLEAN can be interpreted as@ne source at a time back into the data, and re-estimate it, using
sequential beamforming procedure. the estimates of the other point sources. This will improve the
Let us assume that we have available a collection of mdaS fit, and can easily be proved to converge. This approach is
sured covariance matricd®;,, obtained at times;, with £ = similar to the alternating projections approach for computing the
1, ---, K, and let us assume the parametric model of (7), i.e geterministic ML DOA estimator [46].

R, = ABA; + oI
Here, the unknown parameters are the source locatipns
(4, my),l =1, ---, din each of thed,, and the source bright- Once we view image formation/deconvolution as equivalent
nessl; in B. A natural formulation for the estimation of thesgo DOA estimation with a moving array, we can try to adapt var-
parameters is to pose it as the solution of an LS cost functidays other DOA estimators for handling the image formation. In

B. Minimum Variance Beamforming Approaches

given by particular, the deflation approach used in the CLEAN algorithm
R K can be replaced by other source parameters estimators. One ap-
[{3:}, B] = argmin »_ proach that seems particularly relevant in this context is the
(s B oy Minimum-Variance Distortionless Response (MVDR) method

R, — Ak({sl})BAkH({Sl}) — 0—21H (19) of beamforming [6]. The major new aspect here is the fact that
E {e array is moving and that there are more sources than sensors.

(B is constrained to be diagonal with positive entries). This A
h the dirty image

recognized as the same model as used for DOA estimation ifnStéad of working wit g
array processing. Note, however, that the array is movihg ( Ip(s) = Z a;, (8)Ry.a;.(s)
IS t|m.e-dep.endent), and that.there are many more sources t[haenbasis for high-resolutién beamforming techniques is to look
the d|rr.1enS|on.of each.covanance rr_1atr|?<. _ at more general “pseudo-spectra”

In this notation, the image formation in Section V-A can be I - H( o\ R 1
formulated as follows. Recall from (5) and (6) that b(8) =) wil(s)Rrwi(s) (21)

k
Vi(uij(te)s vij(te)) = rij(te) = (Bi)ijs k=1,---, K Heremwy(s)isthe beamformer pointing toward directisnand

=20 (L) dvra (t)m) 1,(8) is the output energy of _tha_t beamformer. Previously we
Wi = wo —ue Nadwi(s) = an(s); the objective is to construct beamformers
ap(f, m)= : , ! ! that provide better separation of close sources.
2730 (800 (1)) Yij = Vio — Yjo- A generalized MVDR follows by defining the problem as fol-

lows. At each time instandewe would like to generate a weight
vectorw; which minimizes the output power at tinkesubject

to the constraint that we have a fixed response toward the look
directions of the array, i.e.,

Thus if we writel p(s8) = Ip (¢, m) andax(s) = ax (¢, m), we
can rewrite the dirty image (18) as

Ip(8) = > Vi(wi(ty), vij(ts)

04,k
. 2ma(uio (b ) vio (th)m) =273 (uz0 (Ex)e+v50 (Ek)m) wy(8) = arg min 'wkHRk'wk such that 'wkHak(s) =1.
wy
izj:k( )i (@i(a); (a(2)); The solution to this problem is
2 I ) . .
=Y a}(s)Rpax(s). Wy = ARy ai(s),  wheref = ——————. (22)

Lk : . . i (s)Ry ai(s)
(We omitted the optional weighting. Also note that, with noise, . _ )
we have to replac®; by R, — o2I.) The iterative beam re- In_sertlng in (21) shows that the overall spectral estimator is
moving in CLEAN can now be posed as an iterative LS fittin§'Ven by
between the sky model and the observed visibility [31]. Finding K
the brightest poing, in the image is equivalent to trying to find Ih(s) = —_—
a point source using classical Fourier beamforming, i.e., i1 all(8)R, an(s)

8o = arg max i“?(s) (Rk _ O_QI) ar(s). (20) and _the locations qf the strongest sources are given by the

s maxima of[},(s). It is known that the MVDR has improved

Thus the CLEAN algorithm can be regarded as a generalizezbolution compared to the classical beamformer which is
classical sequential beamformer, where the brightest points #ire basis for the CLEAN algorithm. Fig. 6 illustrates this by
found one by one, and subsequently removed f@muntil comparing a dirty image produced in the classical way to
the LS cost function (19) is minimized. An immediate consedhe dirty image corresponding to (23). In this simulation, we
quence is that the estimated source locations will be biasedgenerated an extended structure by placing many point sources

L (23)
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C. CLEAN with Spatial Filtering
80F Let us assume now that we have spatially filtered the covari-
sol ance matricef;, by linear operationd;,, for example, projec-
tions. If we assume that all the interference is removed by the
40t filtering, the measurement equation becomes
= 20} R, = LiR. LY = L, [Ak({sl})BA,?({sl}) + 021] L
2 5 (24)
g; This modifies the LS optimization problem to
-20 ) X
~40 [{él}, B} = argmin
{s:}, B, {T'+} k=1
-60r i H 27\ 7 H
. | L (R~ AnspBAL (sh) -1 LY . (25)
. . . ) . . ‘ ' The cost function is similar to (29) and thus its minimization
80 -60 -40 20 O 20 40 60 80 does not pose stronger computational demands. Indeed, as we
RA [sec] mentioned before in Section V-B, if we follow the classical
Fourier-type imaging we end up with a deconvolution problem
with a space-varying beam, but the CLEAN algorithm is simply
sol extended to take this into account. Here, we develop the exten-
sion more carefully, taking note of the fact that the noise struc-
601 ture after projections is not white anymore.
In the case of spatially filtered signals the classical beam-
4or former follows from the previous by replacing (s) by the ef-
< 20f fective array responsbax(s), i.e.,
g’i 0 K
: Ip(s) = > afl(8)Ly! (LeRiLy — o> LiLy! ) Luax(s)
O 20 k=1
K R
~40 =3 afi(s) (L,E‘Lk RkLELk—UQLELkLELk) a(s)
-60 k=1
K o
—80r =Y ap(s)Riai(s) (26)
L 2 ) N L L L L N k=1
80 -60 -40 -20 oA ?Sec] 20 40 60 80 where
(b) R, = LI'L, R, LI'Ly, — o*LY'L, LY'L,.  (27)

Fig. 6. (a) Conventional dirty image. (b) Dirty image using MVDR . . . .
beamformimg. The dots represented the locations of the point sources mode-lréa_erefo_rev the step of flndlng the brlghtes.t painin the image .
can be implemented using the fast Fourier transform (FFT) in

the same way it is implemented in the CLEAN algorithm, but

close to each other. The MVDR-based imaging produces,giing onR, instead of the original visibilities. Similarly, the
much sharper result.

) ) ) contribution of a source at locatiosy in a single covariance
Compared to CLEAN there is a slight computational loss. An, 5irix R, is a multiple okaak(so)akH(so)LH, and hence the
other drawback of the MVDR is the fact that the noise diStribLf'esponse in the dirty imagg, (s) is given by

tion at the output of the beamformer is not identical toward all
directions. Here we can use a modificatiorf [5] which demands 1Ll (L 1o L) L
thatw;. have a functional formw, = SR, ax(s), for some B(s. 8) := Z ay, (8)Ly ( xa(s0)ax; (s0) k) nar(s).

K

Bk, but now under the constraint thiaw||?> = 1. This leads to =t (28)
the following estimator: This is the space-varying beam. The extended CLEAN algo-
rithm after spatial filtering now follows immediately and is
K Hia P! given in Table II.
a; (8)R, ai(s R ) ) .
Iih(s) = Z M, 80 = argmax I7(8). To test the algorithm, we have taken an array configuration
k=1 a; ($)R;, aw(s) ® with p = 14 telescopes as in WSRT, and generated four equal-

powered point sources centered around right ascensfoar8?
Many other techniques exist for estimating the point-source Ideclination 60, with a signal-to-noise ratio 6f 20 dB for each
cations. A good overview of the various possibilities can bef the sources. To simulate the effect of spatial filtering, we
found in [16]. placed an interferer at a fixed terrestrial location (hence varying
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TABLE I
THE CLEAN ALGORITHM WITH SPATIAL FILTERING

Compute R’ using (27)

Ip(s) = T, a6 Rpau(s)
(=0

while I}, is not noise-like:

8 arg max I (s)
Compute B(s, ;) using (28)

A Ip(s:))/B(si,s1)
Ip(s) Ip(s) — yAB(s,s1)

l I+1

I= I,D + Zl ’Y/\lBsynth(S - Sl)

compared to the look direction of the array), and with INRS  fixed {4, } and B, we can minimize separately for eaklthe
dB. K = 100 sample covariance matricd®, were generated, related expression

uniformly spread along 12 h, and each base&/os 1000 sam-
ples. Fig. 7(a)—(c) shows the dirty image without interference
present, the effect of the interferer on the dirty image, and the
dirty image after estimating and removing the interferer using
spatial projections. Clearly, with interference present but not rieet g;, be the vector of diagonal elementg ; of I';.. Given an
moved, the sources are completely masked out (note the chaggiémate ofd; andB we can define for eacha(p x p) matrix
in scale between the first two images). After estimating and pr&-;, with entries
jecting out the interferer, in the third image, we obtain nominally

the same image as in the interference-free case, but the sidelobe

patterns are different (as we demonstrated before, they are, in

fact, space-varying). The circles in the third image mark the true

location of the point sources, and thesymbols mark the loca- . . . S _
tions estimatedpby the extended CLEXN algorithm of Table pnd fit g, with entriesg,, ; such that(Xy);; = gi g, ;- In
We can clearly see that the correct locations have been obtaintga 'usual self-calibration algorlth_m, this equ_at|on Is solved iter-
This would not be the case with the unmodified CLEAN aIgo@t'Ve'y for all two-by-two submatrices df; using the so-called
rithm.

min
{Tx}

Ry, — '3 ABATY — aQIHF . (30)

A

Ry, — o2I);;
(X = (By — o 1)ij

(ABAD),;

gain and phase closure relations. Instead, we note here that the
problem admits a more elegant solution, since in matrix form,
we have
D. Self-Calibration .
Xy = gkgllj'

To finish this section, we consider the situation where also
the array gaind’;, are unknown. In this case, the model fittingl'his asks for the best Hermitian rank-one approximation to the
equation without spatial filtering, (19), generalizes to matrix X, which is known to be given b§;, = v/A1v: where
A1 is the largest eigenvalue df; andw; its corresponding

K
|:{‘§l}7 Ea {f‘k}:| = argmin
{81}7Bz{rk} k=1

HRk — T A ({s))BAY ({8, TH — 0—21HF. (29)

The solution can be obtained by the “self-cal” algorithm [25]:

eigenvector.

More work is needed to generalize this to the model equation
with spatial filtering. With fixedA; and B, the minimization
problem for the gain parameters is

min

{Tx}

‘Lk (ﬁzk — T ABAITY - 021) LEHF . (31

an alternating LS algorithm which solves iteratively for the pa-
rametersB, {s;} by a CLEAN step (with fixed gains), and theLet vec( - ) denote the operation of stacking all columns of a

gain parameter$I', } by a calibration step (with fixed source
parameterd3, {s;}).

matrix into a vector, and led denote the Kronecker product. A
general property valid for matrices of compatible size is

It has not been noted before in the literature that the latter step

admits a direct algebraic solution. Indeed, to minimize (29) with

vec (ABC) = (CT © A)vec (B).
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Fig. 7. Dirty images of four point sources. (a) No interference
Unsuppressed interference (INR5 dB). (c) After spatial filtering.
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Application to the present context gives that (31) asks for the
solution in least squares sense of

(L ® Ly,) vec (Ry, — o2I)
= (Ly ® Ly,) vec (T A BATY)
= (Ly © Ly) diag (vec (44 BA})) (3, © )

which has the form

hy = Fixy, Tr = Gi @ gy

If ' has a left inversé'!, we can find a unigue LS solution
for &y, i.e.,&, = F) hy, and then fitt), = g, © gj., or equiva-
Ientlyf(k = gkgl,j, wheref(k is derived fromz;, by unstacking,
i.e.,vec (f(k) = #;. This is precisely the solution which we ob-
tained before.

However, in the present cade, is a projection operator and
henceF'; is not invertible. It is easy to see from examples, such
astakingL;, = [{9], thatin these casds, is not identifiable. A
solution can be obtained if we make the reasonable assumption
thatI'; is constant over several epochs, saykfok+1, - - -, k+
M — 1, and thatL; is sufficiently varying over this period, for
example, due to multipath or fringe corrections. In that case, we
obtain

hi 1 Fi B
= 1. Zy, Tr = g1 O Gy
hiini—1 Frip

For sufficiently largeM, the block matrix is tall and of full
column rank, and has a left inverse. We can thus solve for an un-
structured LS estimat®y,, and subsequently fit;, = g, ® g,

The minimal numberd! of linearly independent matrices
L;, which are needed follows from counting dimensions. If we
project outq interferers orp antennasL; hasp — ¢ indepen-
dent rows ang columns. Hencd";, has(p — ¢)? independent
rows andp? columns, and we need (p — q)? > p?. This gives
modest requirements: if fgr = 14 we takeM = 2, then we
can accept up te = 4 interferers; withA/ = 4, up tog = 7.

In summary, we have obtained an elegant and computation-
ally nonintensive extension of the “self-cal” algorithm to com-
plement the space-filtering CLEAN algorithm.

VIl. M AXIMUM -LIKELIHOOD IMAGING
A. Maximume-Likelihood Functional

Let us consider the imaging step from a more fundamental
viewpoint. In principle, the construction of the image using
the observed correlation matrices and assuming the parametric
model can be viewed as a parameter estimation problem. One
of the most important inference methods is the maximum
likelihood (ML) method. Given a parametric family of prob-

bilistic models for the received data, choose the parameters
that maximize the probability of obtaining the observed data.
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This is different than the most probable image approach [§fadient and the Hessian needed for the optimization. Since a
where no parametric model is imposed on the image, leadinggood initialization is very important for optimizing the compli-
maximum entropy image formation. Maximume-likelihood estieated equation (34) we will continue to derive an approximate
mators (MLE’s) are known to be consistent and asymptoticalpordinate descent MLE which is computationally simpler, and
statistically efficient (i.e., they provide unbiased estimatoshow its connection to CLEAN.
with minimum variance) under very general conditions, and
thus are the natural choice for many parameter estimatiBn Single Source in Colored Noise
problems. One simplified approach to solve the MLE (34) which leads
In deriving the MLE of the image parameters, we need a pafg-good results in LS problems is the deflation approach or co-
metric family of models for the astronomical signals. A reaprdinate descent algorithm. In this approach, the sources are ex-
sonable assumption regarding the astronomical data is Gaggcted one by one and once we have obtained estimates of pa-
sianity of the temporal samplég.his assumption is used in cur-rameters of all sources we iterate the optimization along each
rentimaging systems which rely only on second-order statistiggrameter fixing the other parameters. Some examples of this
(both temporal and spatial). For simplicity we further assumgproach are the alternating projections algorithm [46] and the
that the samples are temporally white (valid for the relativelystimation of multipath parameters [41].
narrow bands processed, while over very large bands the blackour basic approach to remove the effect of previously esti-
body radiation pattern should be taken into account). For furth@&ted sources will be to lump their contribution into the “noise
discussion on emission mechanisms, and the resulting physisat” of the covariance matrix. This essentially providesaan
models of emission the reader is referred to [28]. Contrary fsterioriestimate of the noise covariance matrix, before con-
the claim in [37], the corresponding MLE i®t equivalent to tinuing to estimate the next source. Hence an important com-
parametric optimization of the CLEAN cost function. Using thgonent of the algorithm will be the ML estimation of a single
discrete point-source model we obtain source in colored noise with known covariance matrix. In what
Ry =T Ar({8}) BA!({8;}) T} + oI (32) follows we will derive an approximate ML estimator for this
where thel astronomical sources are Gaussian with covariangBecific case. In order to reduce the notational complexity we
matrix B = diag[I1, - - -, I] and sky coordinate§s; } ., and will restrict ourselves to perfegtly cahbra}ed arrays, =1 .
the noise is Gaussian with covariandd. Let Ry, be the sample forall &, and note that estimating the calibration parameters will
covariance matrix during thth epoch, based ai;, collected _be dpne in a separate stage as it is currently done in the self-cal-
samples. The likelihood of the observations at ifle epoch ibration scheme.

given map parametes; }, B, o2, I is then given by [2] In order.to reduce computational complexit_y even further,
1 o\ N we would like to perform the source power estimation (condi-

D (Rk|{sl}, B, o2, I‘k) = < "R e~ (Ry m)) . tioned on the location parameter) analytically. This will resultin
7| Ry a two-dimensional search over the field of view for the location

33 N, I .
Using all K’ observation epochs we obtain that the Io(g-li)keli‘-N'th highest likelihood for a point source, a task of moderate

hood function is given by (after omitting constants) complexity. . . .
. . ) Assume that we are given a set of covariance matrices
L (Rl, oy Ri|B, {si}, {I'n}, o ) {Ry:k =1,---, K} which are sample estimates Bf, where

K Ry, = \ay(s)all(s) + Oy, (35)

K
— o _ —17 . . . .
- Z Ny log | Ryl Z Nytr (Rk R"‘) - (34) andC}, is the noise covariance matrix (assumed to be known).

k=1 k=1 . N . . .
The MLE is found by maximizing (34) oveB, {s;}, {T'+}, o The log-likelihood function is given by

K
This maximization problem is prohibitively complex and hence,. [ ; 2 _ ) 13
some simplifications are needed. In some simplified cases iR (Rl’ o Rl s) - Z_:N’“ [log |R’“|+tr(R’“ R"ﬂ '
DOA estimation this has been dealt with. The Gaussian signals (36)
model for a static array with perfect calibration have beencon-, .. . .
sidered by [4] which eliminated analytically some of the pa$ubst|tut|ng (35) into (36) vye obtain
rameters. Derivation of the MLE for a single source in Whit%
Gaussian noise for the simplified model appeared in [45].

Since the CLEAN gives an approximate solution to the de- .
convolution problem we can use it to initialize an ML search. +tr(()\ak(3)a}£{(3)+ok) Rk):| -
In this case, the CLEAN components serve as initial estimaiggrther manipulation using: (AB) = tr (BA) and |AB| =
to the MLE and the MLE serves the purpose of fine focusing (i)j4| |B| yields
the image, by shifting each point source to its true value. The, . .
ML search itself can be done either using a gradient search,ce{Rlv s BfA, 3)
Newton search based on the Fisher information matrix, or an K
EM algorithm. In Appendix B we present the expressions of the = — Z Ny, |:10g ‘)\C’—lak(s)af(s) + I‘ + log |Cy|

k=1

K
(_él’ .. .7]A2K|)\, 8) = — ZNk |:10g |)\ak(s)a?(s)+0k|

k=1

6The assumption is valid for continuum emission, while for spectral line ob-

- . - . . -1 ~
servations certain adjustments of the model are needed to include the lines struc- +tr ()\C'_lak (s)aH (3) —|—I> C'_le
ture. k k k :
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Sincelog |C},| does not depend on the parameters, the MLE Iéow combining the various estimates we obtain
given by minimizing _ 1
c (Rl,---,RKM, s) var (A) = 25 B
K 1 - By the inequality of the harmonic and arithmetic mean we
=D M [bg ‘)‘Ck ax(s)ay (s) + I‘ know that if the Fisher information is different at some time
k=1 . instances, then the averaged estimator has a larger variance, but
+tr (()\O',jlak(s)af(s) +I) C',lek)} . the difference depends on the variation of thés. However,
After some algebraic manipulations described in the AppendiiS degradation in performance gives us a large computational
we obtain that we have to minimize saving. By the additivity of the derivative we obtain from (38)
N N that for eachk the MLE A; based orRy, is given by
L (Rl, e, RK|)\, S)

all(s) (Ci RCY - O ) au(s)

ABge A = . (39
= Ny {bg(l + Aag) — } (37) k - 2
> L+ Ao (afi(8)C5 "ants))
where Equivalently, this can be written as
a, = all (8)C7, Lay(s) ot [ »
and al'(s)C}, (Rk - ok) Cilay(s)

15 e S‘k = 2
B = ai (8)C5  RiCi an (). (akH(s)C',:lak (s))
Taking the derivative of the left-hand side with respectito

(40)

yields that the MLE of) is given by solving the equation and hence
aL’" EB: N o n Aoy B, _ 0 _ 1 K all(5)C;.t (Rk _ Ok) Ctan(s)
N el R Ve T o R W 3 A 3 N o ‘
- 38) > Ny ke (all(£)Cx an(s))
Equation (38) is highly nonlinear and hard to solve in the gen- =t (41)

eral case. We propose to simplify the problem by the following Now that we have this approximate ML (AML) estimate of
procedure. First estimate the source power using each of the &ave can plug it into the likelihood function and obtain that we
variance matrices separately and then average the estimateshAge to maximize over the field of view the following:

suming that the ML estimate is consistent the above estimate I

will still be consistent. If we further assume that the statistical ; _ arg max Z log (|1 + X(8)ax(s)]) — A(f)/ik(s) .
behavior of the various estimates is approximately the same s 1+ A(s)aw(s)

(i.e., the Fisher information based on each time observation is (42)
almost constant) then the estimator is still efficient. This is for- The proposed coordinate-wise AML estimator is now sum-
mulated in the following lemma. marized in Table IIF. 8

Alternatively to substituting back into the likelihood we can
K try to find the direction which maximizes the received power. It
L(z|\) = Zﬁk(-’rklk)- is interesting to ob_servg that th_e CLEAN alg_orl_th_m can_be de-
Pt rived as an approximation to this power maximizing estimator.
To that end maximize the power received from direcpne.,

Lemma VII.1: Assume that

Let A, = arg maxy Lx(2x|)\) be the MLE based on thith
block of data. Assume that all;, are equal, say(\) = J, 8 = argmax \(s). (43)
whereJy is the Fisher information fok; based on thg dats,., s

and the likelihoodZy(zx|\). ThenX = (1/K) S°r_, Axisan Using (41) we obtain

asymptotically efficient estimator of.

Proof: I]'he Fisher information of the overall likelihood isg _ arg max ’1 i N,
given by>",_, Ji. Thus the CRB on estimatingis given by s i =
A 1 1 k=1
Var()\)zlf—:m' H —1 {3 —1
S Jk ay, (8)Cy (Rk - Ck) Cy ai(s) a8
k=1 .
Since the MLE is asymptotically efficient (in the total number (0»,?(3)0';lak(s))2

of samplesy ", V,) its asymptotic variance achieves the CRB.
On the other hand, if we estimatebased on thé&th block we 7The stopping condition at Step 4 can be tested either usifgsaatistic or

. . . . . . . . by comparing the level of the extracted point source to the noise level.
obtain (by its asymptotic efficiency iiv) thatit has a variance 8The final MLE focusing operation can use the same update equations for an

given by alternating coordinate maximization. In this case, we use the matrix inversion
lemma twice: First we add the contribution of the last estimated coordinate to
A _ 1 C'., and then we subtract frof,. the estimated contribution of the coordinate
var [ Ax ) = —. ! ) e
Iy along which we would like to optimize.
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TABLE Il
ITERATIVE APPROXIMATE MAXIMUM LIKLIHOOD

1. Set the data covariance to be {R,(CO) tk=1,... ,K}.
2. Set the noise covariance matrix to be Cgco) =%l

3 LAl — RO — ¢,

4. Until the residual is noise like perform the following:

(a) Estimate the direction of a point source §; using (42).
(b) Estimate }; using (41).

(c) Let Cgﬂ) = Cg) + v a(8)a(E)"

(d) Update A{HY =R _ c{+1),

(e) Update (Cgﬂ)) - using the matrix inversion rank 1 update formula.
OHl:=0+1

5. Use the estimated components to initialize a MLE search.

6. Reconstruct the image using the estimated directions, estimated powers

and an ideal beam-shape.

From (7) we obtain tha®, = AkBAE+JQI, whereA contains APPENDIX A

all the array responses toward the previously estimated astrop, this appendix we derive (37). To simplify the derivation we
nomical sources. Assuming now that the power of the astronogi;t the explicit dependence anLet

ical sources is negligible compared to the noise power (this is _ -1 H

reasonable in many circumstances) and noting|ide@t)||> = p Hence B = Gl +AC, ma].

for everys by our normalization, we obtain thét, ~ ¢2I and

that (44) simplifies to (20). An iterative application of (20) is Rt =1+ )C; arall] 10}

exactly the operation of the CLEAN beam removing technique. 1 o _
To computelI + A\C}, “arall] 1, we use the matrix inversion

lemma obtaining
VIIl. CONCLUSIONS [1+ )\ozlakakﬂ}_l =1 A

] ) 14 )\al,jC',:lak
In this paper we have presented a parametric approach. ir (ab) — Bl btai

to radio-astronomical image formation. We have used thiso'"9 r(ab”) = b"a, we obtain vl el
approach to adapt some known spectral estimators to the tr(R,jlf‘?k) :tr(C',jlf‘?k) _ Aa G R Cy ar
astronomical image formation problem. We analyzed the effect 1+ Aall C',jlak
of interference suppression on imaging and proposed Wfcetr (C; ' R,) is independent of the parameters it can be
necessary changes to the imaging step in order to accommogfited from the maximization.
the spatial filtering preprocessing. A new AML algorithm for 1o evaluatelog (| + AC} 'arall]) note that the vector
deconvolution has been presented, and the CLEAN algoritii-14, is an eigenvalue of the rank one matiC;, L ayal
was derived by approximating the ML power estimates. Finallyitn eigenvaluerallCy a,. Therefore, it is an eigenvector
we have presented some simulated images demonstraipg | AC; taral! with eigenvaluel + AaflC; lay. All the
some of the ideas presented, and demonstrating the possifpjesr eigenvalues of + Acilakaﬂ are 1. Hence since the
advantages in the parametric approach that leads to improygferminant is the product of the eigenvalues

resolution. -1 H Hy—1

The work shows that the design of a new radio telescope can, .. .. |.I +AC, BB =142, C a.
(and probably should) use phased-array techniques to mitig§fébsmu“ng intal we obtain (37).
RFI, but the imaging software will have to be changed accord-
ingly.

In this paper we have only analyzed LS based deconvolutionIn this appendix we present the gradient of the log-likelihood
In extension of this work [19] we analyze the MEM image forand the Fisher information matrix for the likelihood function
mation, in the context of adaptive interference suppression, agiden in (32) and (34). This gives a possibility of obtaining
propose suitable changes to the imaging. The possible appliapidly convergent ML estimation, given a good initialization.
tions of this work spans beyond the field of radio astronomyVe will not give the derivation in detail as it is rather standard.
One possible example is ISAR imaging in the presence of stroBgnilar derivation for the perfectly calibrated array model case
interferers. can be found, e.g., in [33].

—1 H
Ok akak -

APPENDIX B
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- a 7T
ak
AL < Sl)rk ® I‘kak(sl) + a, (sl)I‘H ® Fk )
dvec (Ry) (49)
ol N
T
8ak
Ad sd)I‘k ® I‘kak(sd) + a;, (sd)I‘k ® Fk
- T = T
A < sl)I‘k @ Ivan(s) +al(s)I'll ® I‘k— (81 )
dvec (Ry,
Ovec (By) _ (50)
om
a darn, \
ak
Ad < Sd)r @Tran(sy) +all(s)T o T — o * (84)
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