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I

Het binnen de spraakcodering gebruikte sinusoidale signaalmodel om een signaal
s (per frame) te representeren als

d
s(n) = Z ake’(wkn’ﬂl)k)’
k=1

waar o, wy, ¢ € R, leidt niet tot minimale representaties van audiosignalen.

11

Het is geen goede zaak dat het basiswerk Rate Distortion Theory; A Mathematical
Basis for Data Compression van Toby Berger [1] niet meer wordt uitgegeven.

{11 T. Berger. Rate Distortion Theory; A Mathematical Basis for Data Compression.
Prentice Hall Series in Information and System Science. Prentice Hall, Inc., Engle-
wood Cliffs, New Jersey, 1971.

II1

De in [1] beschreven iteratieve structured total least squares (STLS) methode
voor het oplossen van een overgedetermineerd systeem Ax =~ b waarbij de data-
matrix [A | b] Toeplitz is, is moeilijk bruikbaar in real-time applicaties.

[1] S. van Huftel, H. Park, and J.B. Rosen. Formulation and solution of structured total

least norm problems for parameter estimation. [EEE Trans. on Signal Processing,
44(10):2464-2474, October 1996.

1A%
Het gebruik van tijd-variérende filterbanken in datacompressiesystemen kan voor
hoge bitrates leiden tot een significante kwaliteitsverbetering in vergelijking met
systemen die gebaseerd zijn op tijd-invariante filterbanken.

A\

Recentelijk zijn de Rényi entropieén, die voor genormaliseerde, reéelwaardige
tijd-frequentie ditributies van een signaal s gedefini€erd zijn als

[
Hy (Cy) = — “log (// Co(t, frdt df). €))

geintroduceerd als een maat voor signaalinformatie en complexiteit [1, 2]. Hoe-
wel voor oneven o > 3, alle s € L“(R) en alle C, uit de Cohen-klasse van bili-
neaire tijd-frequentiedistributies de Rényi entropieén asymptotisch invariant zijn
voor kruiscomponenten, is deze informatiemaat praktisch moeilijk toepasbaar.




{1] P Flandrin, R.G. Baraniuk, and O. Michel. Time-frequency complexity and informa-
tion. In Proceedings IEEE Int. Conf. on ASSP, pages 329-332, 1994.

[2] R.G. Baraniuk, P. Flandrin, and O. Michel. Measuring time-frequency information
and complexity using the Rényi entropies. In Proceedings IEEE Int. Symp. on Infor-
mation Theory, pages 426430, Whistler, Canada, September 1995.

VI

De codeer-efficiéntie van de discrete-wavelettransformatie in datacompressiesys-
temen wordt overschat.

VII

Stellingen in de vorm van resultaten beschreven in het proefschrift kunnen beter
achterwege gelaten worden.

VIII

De reisplanning van de Nederlandse Spoorwegen vertoont grote analogie met het
binnen het internet-netwerk gebruikte transmission control protocol (TCP). Beide
garanderen een betrouwbare transmissie over een onbetrouwbaar netwerk, maar
men weet nooit wanneer een “pakket” wordt afgeleverd en via welke route.

IX

De afname van het aantal ernstige verkeersongevallen op de A2 sinds de invoering
van de radarcontrole is eerder een gevolg van de verhoogde staat van oplettendheid
van de verkeersdeelnemer dan van het zich houden aan de maximumsnelheid.
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Summary

Over the last few decades, images have increasingly been represented in a digital
format. Digital representation of images has a number of important advantages
over analogue representation, such as flexibility, robustness and suitability for a
variety of signal processing techniques. Representing images digitally also has
a disadvantage, namely, that the storage or transmission of these signals requires
fast interfaces and a large storage capacity or transmission bandwidth, respec-
tively. One way to reduce the number of bits, and thereby reduce the storage or
transmission cost, is to apply data compression.

Transform coding is one of the most efficient methods of data compression of
correlated signals. The use of a discrete-time signal transform before the actual
coding (i.e. before the quantization and the mapping onto binary codewords) can
significantly reduce the complexity of the coder. Suitable signal transformation
leads to signal representations that are easy to code. This thesis describes the de-
sign, application and realization of discrete-time signal transforms for the purpose
of data compression, in particular, data compression of images.

In Chapter 2, we show that a discrete-time signal transform can be regarded as
a(K, L, m) filter bank, where K denotes the number of filter channels, L the filter
length and m the down-sample factor. Placing discrete-time signal transforms into
this more general framework thus means that the design of signal transforms can
be formulated as finding a suitable filter-bank architecture (choice of K, L and
m), and choosing suitable constituent filter responses. In order to investigate how
different choices of the parameters K, L and m affect the coding efficiency of the
filter bank, we apply rate-distortion theory to transform coding systems.



X Summary

In Chapter 3, we concentrate on the actual design of filter banks. Here we
discuss which factors, besides coding efficiency, influence the choice of an ar-
chitecture and its constituent filter responses. These factors are, for example,
perceptual quality and numerical sensitivity. Based on this discussion we derive
a list of desirable constraints which we use to choose a suitable filter-bank ar-
chitecture. Moreover, we show how to design proper filter responses, i.e., filter
responses which satisfy all the stated constraints. We show that the class of lapped
orthogonal transforms (LOTSs) is suitable for the application of image coding.

In Chapter 4, we discuss the application of overlapped transform coding with
LOTs to X-ray cardio-angiographic image series. With lossless compression tech-
niques the bit rate of these X-ray image series can be reduced by a factor of about
2.5-3.511, 2]. The aim of the method described here, however, is to reach re-
duction factors in the order of 8 — 16. To achieve this goal we rely on lossy com-
pression techniques, in particular, those that are based on overlapped transform
coding with LOTs. Firstly, we discuss digital X-ray angiography. This specific
application imposes some additional requirements on the parameter setting of the
filter bank. Secondly, we discuss the complete transform coding system in more
detail and describe the results obtained with a software implementation of this
method. Philips has proposed that this coding scheme be included in the dis-
cussion on standardization of lossy data-compression algorithms which is being
organized by the ACR-NEMA committee with the support of the National Electri-
cal Manufacturers’” Association (NEMA) and the American College of Radiology
(ACR). We show that LOTs can effectively decorrelate the X-ray images, which
simplifies encoding of the transformed signal. Moreover, we show that LOTs are
particularly well suited to adapt the compression to the properties of the human
visual system and possible post-processing, such as image enhancement.

We end this thesis with the realization of discrete-time signal transforms in
Chapter 5. The design of realizations, in particular, those which are suitable for
very large scale integration (VLSI) technology, involves choosing a suitable al-
gorithm for computing the signal transformation and mapping this algorithm onto
an architecture. We show that, by considering both algorithm and architecture
design simultaneously, we can design numerically robust and implementation ef-
ficient realizations of filter banks. Moreover, these realizations can be made fully
programmable in the sense that the architecture can be used for arbitrary signal
transforms, including discrete cosine transforms, LOTSs or discrete wavelet trans-
forms.
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Chapter 1

Introduction

Over the last few decades, images have increasingly been represented in a dig-
ital format. Examples of applications in which digital images are used include
the videophone, teleconferencing, digital television and digital radiology. Dig-
ital representation of images has a number of important advantages over ana-
logue representation, such as flexibility, robustness and suitability for a variety
of signal processing techniques. Representing images digitally also has disadvan-
tages, specifically, the capacity required for their storage and the wide transmis-
sion bandwidth. For example, standard-definition television signals of the CCIR
601 format [3] have a bit rate of 166 Mbit/s. The storage or transmission of these
signals, therefore, requires fast interfaces and a large storage capacity or transmis-
sion bandwidth, respectively. One way to reduce the bit rate, and thereby reduce
the storage or transmission cost, is to apply data compression. Data compression
can be divided into two categories: lossless and lossy compression. In this thesis
we concentrate on lossy compression.

Various lossy data compression methods have been introduced over the last
twenty years. A relatively old lossy data compression technique is predictive
coding |4]. The compression ratio obtained with predictive coding is rather low
and, therefore, has not been considered in our investigations. At present, non-
overlapped transform coding is the best-known method. In 1991, a non-overlap-
ped transform coding method was standardized by the Joint Photographic Experts
Group (JPEG) of the International Standardization Organization (ISO) [3, 6]. The
method was originally intended for compression of still images, but it can also be
used to compress image series.

For the coding of video-image series, the Moving Picture Experts Group
(MPEG) of the ISO recently standardized two motion-compensated inter-frame
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non-overlapped transform-coding methods [7, 8, 9]. The JPEG and MPEG meth-
ods are based on compression of non-overlapping blocks of 8 x 8 pixels. The
disadvantage of these methods is that “blocking artifacts” are introduced at low
bit rates. These blocking artifacts are observed as equally-spaced discontinuities
in the decoded images. In many applications, like medical imaging, the introduc-
tion of blocking artifacts may not be acceptable. For example, in medical imaging
the artifacts not only give the images an unpleasant appearance, but in the worst
case the presence of severe blocking artifacts may lead to a mis-interpretation of
the image by the radiologist or cardiologist.

Several relatively new data compression methods are available which can
avoid the occurrence of blocking artifacts and which have the potential to reach
high compression ratios. The most promising methods are overlapped transform
coding {10, 11, 12], wavelet coding [13, 14, 15] and subband coding [16, 17, 18,
19]. All these data-compression methods are based on transforming the image
to some spatial frequency-domain representation, quantizing the transformed sig-
nal and mapping the quantized signals onto binary codewords. In fact, overlapped
transforms, wavelet transforms, subband filtering as well as non-overlapped trans-
forms can be seen as a special case of the more general framework of discrete-time
signal transforms or multi-rate filter banks [12, 20, 21].

This thesis describes the design, application and realization of discrete-time
signal transforms for the purpose of data compression, in particular, data com-
piession of images.

The design of discrete-time signal transforms consists of choosing a suitable
filter bank architecture (choice of the number of channels, filter lengths, down-
sample factor) and choosing suitable constituent filter responses. The choice of
these parameters depends largely on the underlying application, which, in our
case, is data compression of images. This means that the transform should have a
good coding efficiency, be numerically robust and not introduce blocking artifacts.

The design of realizations, in particular, realizations which are suitable for
very large scale integration (VLSI) technology, consists of choosing a suitable
algorithm for computing the signal transformation and mapping this algorithm
onto an architecture. We try to find realizations that behave optimally in the sense
that they exhibit low sensitivity to finite-length register effects and enable effi-
cient VLSI implementation by considering both algorithm and architecture de-
sign simultaneously. We argue that established structures, in particular, butterfly
structures (the perfect shuffle architectures), are not naturally the “best possible”
structures as is commonly claimed and believed. Butterfly structures are used
to compute Fourier-like transforms such as the discrete cosine transform (DCT)




Introduction 3

which is used in the JPEG and MPEG methods. These structures have emerged
from the fast transforms which require only % log m multiplications instead of m?
for a size m x m signal transform. This is a substantial saving in computations
for almost all practical values of m (typically m > 8). However, as the trans-
forms commonly used are orthogonal, large word lengths are needed to guarantee
that the finite precision transform preserves that desirable property. We claim that
there is an alternative structure available which is of low-cost in terms of the num-
ber of operations required and the implementation complexity of the operations.

Organization of this thesis

The structure of this thesis is as follows. In Chapter 2 and Chapter 3 we discuss the
design of discrete-time signal transforms for data compression of images. Firstly,
in Chapter 2, we apply rate-distortion theory to transform coding systems in order
to investigate the influence of different parameter settings of the filter bank on the
coding efficiency. Secondly, in Chapter 3, we discuss factors affecting perception
and implementation and derive a list of constraints on the choice of parameters
imposed by the image coding application. Based on this we choose a suitable
filter bank architecture and show how to design proper filter responses, i.¢., filter
responses which satisfy all the stated constraints. We show that the class of lapped
orthogonal transforms (LOTSs) is a suitable candidate for our specific application.

In Chapter 4 we discuss the application of overlapped transform coding with
LOTs to X-ray cardio-angiographic image series. With lossless compression tech-
niques the bit rate of the X-ray image series can be reduced by a factor of about
2.5-3.5[1, 2]. The aim of the method described here, however, is to reach re-
duction factors in the order of 8 — 16 with lossy compression techniques. Since
digital X-ray angiography plays an important role throughout this chapter, we first
give a brief review of the diagnostic X-ray system and consider some X-ray chain
properties which affect the selection of an appropriate compression method. We
also discuss some further constraints that are imposed on the method of data com-
pression by the clinical procedure used during digital X-ray angiography and on
the basis of these constraints, we select a suitable compression technique. Next,
we discuss the selected technique in more detail and describe the results obtained
with a software implementation of this method. Philips has proposed that this
coding scheme be included in the discussion on standardization of lossy data-
compression algorithms which is being organized by the ACR-NEMA committee
with the support of the National Electrical Manufacturers’ Association (NEMA)
and the American College of Radiology (ACR). The signal transformation, quan-
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tization and the actual coding are discussed. We show that LOTs can effectively
decorrelate X-ray images, which simplifies encoding of the quantized transformed
signal. Moreover, we show that LOTs are well suited to adapt the compression
to the properties of the human visual system and post-processing, such as image
enhancement. We believe that other compression methods are much less easily
adaptable, and we therefore believe that overlapped transform coding will give a
higher performance.

In Chapter 5 we consider the design of realizations for discrete-time signal
transforms, in particular, LOTs. We examine the numerical behaviour of different
realizations under finite word-length arithmetic and how they can be implemented
at the same time. We propose an algorithm which gives optimal realizations for
arbitrary signal transforms in the sense that they are numerically robust and al-
low efficient VLSI implementation. These realizations can be made fully pro-
grammable such that the architecture can be used for arbitrary signal transforms,
including DCTs, LOTs or discrete wavelet transforms.
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2.1 Introduction

The need to communicate at increased speed often requires that information be
sent over a communication channel at a rate that exceeds its capacity. In such
situations some distortion inevitably results. In order to keep this distortion to a
minimum, it is necessary first to order the data produced by the source in accor-
dance with its importance at the eventual destination, and then either condense
or delete the less significant information prior to actual transmission. Schemes
devised to extract only desired information from the output of a source and to
eliminate redundant and irrelevant material are called data-compression schemes.
The theoretical discipline (based on a foundation provided by information theory)
dealing with data compression is called rate-distortion theory.
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source source source user
——] channel -
encoder decoder

Figure 2.1: Block diagram of a communication system.

The foundations of information theory as a whole, and rate-distortion the-
ory in particular, were laid down by C.E. Shannon in his book “A mathematical
theory of communication”, published in 1949 {22]. Since that time the litera-
ture on rate-distortion theory has grown rapidly. Most investigations to date have
been primarily theoretical in nature. The performance achieved by various data-
compression systems has been compared with absolute bounds derived from rate-
distortion theory in several relatively simple cases. Attempts are currently being
made to extend the theory to include highly redundant, non-stationary sources and
better fidelity criteria. It is anticipated that these attempts will result in the design
of more sophisticated data-compression systems. These systems, incorporating
techniques based on rate-distortion theory, will be better at separating the redun-
dant and irrelevant information from the relevant information and thereby achieve
the required fidelity far more economically.

Figure 2.1 shows a diagram of a communication system which can be con-
sidered as a source cncoder, a channel and a source decoder. The function of
a communication system is to transmit information (data) from one point, usu-
ally referred to as the source, to another point, usually referred to as the user or
destination. The purpose of the source encoder is to represent the source output
by a sequence of binary digits, called bits, and one of the major questions is to
determine how many bits per unit time are required to represent the output of a
given source model. This number of bits per unit time (or bits per source symbol
where the channel represents a storage medium) is called the bit rate. The pur-
pose of the source decoder is to reproduce the information from the transmitted
or stored sequence of bits. Since the decoder acts practically as the inverse of the
encoder, we will mainly concentrate on the encoder and, where necessary, just
discuss those aspects of the decoder which do not simply match their counterparts
in the encoder. The channel might represent, for example, a telephone line or a
storage medium. The channel is usually subject to various types of noise distur-
bances, which on a telephone line, for example, can take the form of crosstalk
from other lines, and for a storage medium could be the coding noise introduced
by the source encodet.
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In practical source-coding systems, data reduction is obtained by using a quan-
tizer and a lossless coder. The quantizer causes a substantial part of the bit-rate
reduction. The quantizer maps an input symbol onto a quantizer-output symbol.
Usually, the number of distinct quantizer-output values is smaller than the number
of quantizer-input values. Therefore, the process of quantization is irreversible.
Examples of quantizers are scalar quantizers [4, 23, 24] and vector quantizers
[4, 25, 26]. The coder has two functions. The first is to map the quantizer-output
symbols onto binary codewords that are transmitted or stored. The second func-
tion is to decrease the bit rate required to transmit or store the data. This is done
by removing redundancy which is a reversible process. Examples of coding tech-
niques are Huffman coding [27], Ziv-Lempel coding [28, 29, 30] and arithmetic
coding [31, 32, 33, 34].

The use of a discrete-time signal transform before quantization and coding
can significantly reduce the complexity of the coder [4, 26, 35]. Source-coding
schemes using a signal transform are usually referred to as transform-coding
schemes. A suitable signal transformation leads to signal representations that are
easy to code after quantization. A second important reason for applying signal
transformations is that the inverse map on the reconstruction side can transform
the quantization errors in such a way that the perceptual distortion is small. This
is sometimes called noise shaping. We shall concentrate on the case of separa-
ble transforms, i.e. a two-dimensional transform is performed by independently
applying a one-dimensional transform in both the horizontal and vertical direc-
tions. For the purpose of the following discussion, we will restrict ourselves to
one-dimensional transforms.

In {36] it was shown that a discrete-time signal transform can be regarded as a
multi-rate filter bank. Placing signal transforms into this more general framework
has the advantage that the basis functions can be viewed as the impulse responses
of filters. Therefore, all properties known from multi-rate filter bank coding can
be directly translated into properties of transform coding.

In this chapter we apply rate-distortion theory to transform-coding systems
in order to investigate the influence of different parameter settings of the filter
bank on coding efficiency. We show that a discrete-time signal transform can be
regarded as a (K, L, m) filter bank, where K denotes the number of filter chan-
nels, L the filter length and m the down-sample factor, and we show how different
filter banks (different choices of K, L, m) affect the coding performance in a rate-
distortion sense. We do not attempt to tackle the problem of defining suitable
distortion measures for given combinations of source and user. Rather, we de-
velop some general results for various classes of distortion measures. To date,
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little is known about rate-distortion theory for transform coding. Investigations
have only be concerned with simple situations involving Gaussian sources and
the squared-error distortion criterion [37, 38, 39, 40]. These investigations mainly
concentrate on the separate encoding of filter bank channel signals. Relations
have been derived between frequency selectivity and information-theoretic per-
formance of two-channel quadrature mirror filters (QMFs) for small distortions.

Organization of this chapter

The remainder of this chapter is organized as follows. In Section 2.2 we discuss
transform coding in some detail. We provide a precise mathematical definition of
transform coding and show the equivalence of discrete-time signal transforms and
multi-rate filter banks. In Section 2.3 we define the rate-distortion function of a
source where a discrete-time signal transform is applied before the actual coding
takes place. In Section 2.4, we investigate the influence of the parameter m on
the bit rate needed to represent the output of a source, as well as its influence on
the complexity of the source encoder. The results thus obtained do not require
Gaussian input distributions and hold true for arbitrary distortion measures. In
Section 2.5, we show under what conditions we can separately encode the K
filter bank channels while still reaching the rate-distortion bound. The results
obtained do not require QMFs and the validity of the results is not restricted to
small distortions. Rather, we derive resuiis ihat hold irue for any distortion and
for arbitrary filter banks. Moreover, we show how we can use these conditions to
design proper filters for Gaussian input distributions. In Section 2.6, we discuss
the problem of non-stationary sources. Under some reasonable assumptions about
the nature of the non-stationarity, we show how this determines the optimal filter
length L. Finally, in Section 2.7, we draw some conclusions.

2.2 Transform coding

Let {X,.n € 7Z} be a discrete source defined on a probability space (£2, A, P)
(see Appendix A) and let M, N be positive integers. Denote by x any sequence
of N successive sample values of {X,,,n € Z}. Thatis, x = (x(n))f,\’=l where
x(n) = X,(w), o € Q. Also, let the sequence y = (y(n))r’:’:1 of sample values of
a random process {Y,, n € Z} denote the reproduction of the source sequence x.
A linear discrete-time signal transform isamap T, € CM*V . x > u = T,x. T,

is called the analysis map and is commonly a block-banded Toeplitz map, i.e. it is
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of the form A common example of an analysis map is the discrete cosine trans-

N
~
N
N

form (DCT). In this case the block entries of T, are square and non-overlapped.
Instead of encoding the source sequence x directly, we encode the transformed se-
quence u = (u(n))M . After decoding, the reproducing sequence v = (M |
is inversely transformed by a linear map 7y € CN*™ : v > y = T, called the
synthesis map. In the remainder of this chapter we consider the sequences « and
v as sample sequences of random processes {U,,n € Z} and {V,,, n € Z}, respec-
tively. Figure 2.2 shows a block diagram of a source-coding system in which a
discrete-time signal transform is used. The boxes labelled T,, Q, C, D, R and T,
denote the analysis map, quantization, lossless coding, decoding, reconstruction
and the synthesis map, respectively.

As mentioned before, the use of a signal transform prior to the actual cod-
ing can significantly reduce the coder complexity required to code the data at a
minimum rate. An appropriate transform removes the dependency in the source
sequence, resulting in a sequence in which the sum of the entropies of the coef-
ficients is minimized [4, 26, 35]. The optimal transform maps x onto a sequence
u where the sample values are statistically independent. Clearly, this transform
is signal dependent and, therefore, very complex. In practice, optimal transforms
are approximated by less complex signal-independent transforms which are either
constant or piecewise constant in time. In the former case we speak of a time
invariant transform, whereas in the latter case, the transform is said to be time
varying.

Let K, L, m be positive integers. If T, is time invariant, i.e., it has a block-
banded Toeplitz structure, it can be represented by a (K, L, m) multi-rate fil-
ter bank as shown by the diagram in Figure 2.3. That is, we have collections
A = (hk)f:l,S = (fk),f:l of K filters of length L with impulse responses
hy = (hk(n)),f:], Je = ('fk(n)),f:1 having Z-transforms Hy(z), Fj(z), respec-
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Figure 2.2: Block diagram of a waveform encoder/decoder system.
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Figure 2.3: Diagram of a multi-rate filter bank.
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tively. The set A = (hp)X_, is the set of analysis filters, the set S = ( K,
is the set of synthesis filters. The boxes | m in Figure 2.3b are decimators, tak-
ing every mth element from x;, k = 1, ..., K, i.e. they down-sample the filter
outputs x; to ux. In many applications the signals u; are coded, transmitted or
stored, and decoded (see Figure 2.3c in which the box labelled QC DR represents
the concatenation of quantization, lossless coding, decoding and reconstruction),
after which the original signal is reproduced using an inverse transform. This is
essentially the sum of the interpolated received band signals vy (see Figure 2.3d).
The boxes 1m indicate that m — 1 zero-valued samples are inserted between every
two samples of the received signals vi. Note that the integers K, L, m are the
row dimension, the column dimension and the displacement of the block entries
of T,, respectively, and that u = T,x = (uy) f: | and the reproducing sequence is
given by v = () ,f: - A more detailed description of multi-rate filter banks can
be found in [41, 42, 43, 44].

2.3 Rate-distortion function

In the previous section we provided a precise mathematical definition of transform
coding and showed the equivalence of discrete-time signal transforms and multi-
rate filter banks. In this section we define the rate-distortion function of a source
where a discrete-time signal transform is applied before actual coding takes place.

When information is transmitted from one point to another, the receiver often
does not require a perfect copy of the source output but will settle for a sufficiently
accurate approximation. In order to determine quantitatively whether or not the
performance of a communication system is satisfactory, it is necessary to assign
numerical values to the various errors that the system may make. Since the impact
of an error usually depends critically on the context in which it occurs, measures
of distortion can be quite complex.

Let {X,, n € Z}be a discrete source defined on a probability space (2, A, P)
and consider the problem of transmitting the output of {X,,, n € Z} to the destina-
tion within a certain prescribed accuracy. Let x = (x(n))f:’:1 be any sequence of
N successive sample values of {X,, n € Z} and let the sequence y = (y(n,)),[,,v:l
of sample values of a random process {¥,,n € Z} denote a reproduction of the
sequence x. To determine whether y is sufficiently close to x, we need a rule for
quantitatively assigning a distortion value to every possible approximation of x.

Following [22, 45, 46, 47], let us assume for this purpose that a non-negative
cost function is given, say pn (x, y), which specifies the penalty for approximating
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the sequence x by the sequence y. A sequence of distortion measures F, =
(o2 is called a fidelity criterion. A fidelity criterion composed of distortion
measures of the form

1 N
v, y) =<3 p(x(m), y@m), @.1)

n=1

is called a single-letter fidelity criterion. In that case the distortion between a
source sequence and a reproduction sequence is simply the arithmetic average
of the distortions between their corresponding sample values specified by a fixed
single-letter distortion measure p. As an example of such a distortion measure, we
might have p(x(n), y(n)) = 0 for x(n) = y(n) and p(x(n), y(n)) = 1 forx(n) #
y(n). Such a distortion measure would be appropriate if we were interested in
reproducing a source sequence exactly and considered all errors as being equally
serious. Other, more frequently used distortion measures, are the squared-error
distortion measure defined by

1
pr(x,y) = llx - yI3,

and the magnitude-error distortion measure defined by

1
pN('xs )’) - N”x - y”la

the latter being popular because of its low computational complexity.
To every conditional probability density g(y|x) defined on A we assign both
an average distortion

dx, y) = f / p()a (I on (x, V)dxdy,

and an average mutual information

q(yx)
q(y)
The rate-distortion function of {X,, n € Z} with respect to F,,, then, is defined by

I y) = / f pq ) log L2 gy,

R, (D) = lim R, n(D),
N-—>oo
where

1.
R, n(D) = ﬁqlerg 1(x; y),
D
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R(D)

0 Dmax

Figure 2.4: A typical rate-distortion function.

and
@p ={q(ylx) : d(x,y) < D}.

See also [22, 45, 46, 47] for further details. The subscript x is used to indicate
that the source {X,,, n € Z} itself is transmitted rather than a transformed process,
say {U,, n € Z}, asituation we shall discuss extensively in the following sections.
Thus, R, (D) is the effective rate at which the source {X,,n € 7} generates in-
formation when a distortion less than or equal to D is required with respect to F,.
Further, from its definition it is clear that R, (D) is a monotonically decreasing
function of D. The rate at which a source produces information subject to the
requirement of perfect reproduction is called the entropy of the source. It fol-
lows that the rate-distortion function is a generalization of the concept of entropy.
Indeed, if the distortion measure is such that a perfect reproduction is assigned
zero distortion, then R, (0) equals the source entropy. As D increases, R, (D)
decreases monotonically and usually becomes zero at some finite value of the
distortion D. With continuous amplitude sources, the (absolute) entropy is infi-
nite and the R, (D) curves become unbounded as D approaches zero. Figure 2.4
shows a typical rate-distortion function.

The calculation of the rate-distortion function for sources with memory is
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quite difficult. To date, this function is known specifically only in situations in-
volving Gaussian sources and certain modifications of the squared-error criterion
[48], and some special non-Gaussian cases. The usual approach to minimize the
function I (x; y) subject to the constraint d(x, y) < D, is to use a Lagrange mul-
tiplier, say s, and to minimize the Lagrangian function

1
Ly(q,s) = N-I(x; y) +sd(x, y),

over the set of conditional probabilities g(y|x). Then, by varying s > 0 we can
find R, (D) for all values of 0 < D < Dp,x. In this approach, the multiplier s
has the geometric significance of being the magnitude of the slope of the R, (D)
curve at the point generated by that value of s. For a clear introduction to the
Lagrange-multiplier technique the reader is referred to [49].

Remark 2.3.1 The Lagrange-multiplier technique is applied to minimization
problems subject to a set of equality constraints. Since it can be shown that
I(x;y) is a convex function on the closed convex region Qp, there is one and
only one minimum, R, n(D), and it always occurs at a point having an aver-
age distortion d(x, y) that equals D, i.e. the minimum value of I (x;y) in Qp is
achieved at the boundary of Qp. This is the reason that it is allowed to minimize
I(x; y) subject to d(x,y) = D.

Let T, and T, be fixed transforms and let R, (D) denote the rate-distortion func-
tion of {X,, n € Z} with respect to F,, where the transformed process {U,, n € Z}
is transmitted rather than the source process {X,, n € Z} itself. Since we are inter-
ested in the effective rate at which the transformed process {Uy, n € Z} generates
information when the distortion between the sequences x and y must be less than
or equal to D, we define R, (D) by

R.,(D) = lim R, y(D),
M—o00
where

1
Rum(D) = o inf 1(u;v),

reRp

and
Rp = {r(vlu) :d(x,y) < D}.

This means that instead of minimizing 7 (x; y) subject to d(x, y) < D we mini-
mize I (u; v) subject to d(x, y) < D.
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2.4 Influence of the down-sample factor on R(D)

Commonly used discrete-time signal transform systems, such as subband coding
systems [16, 18, 19, 50] and systems based on the DCT [5, 51], are critically
sampled, i.e. M = N (or equivalently m = K). The main reason for choosing
M = N is not quite clear from the literature but in the author’s opinion this is
because it leads to the lowest possible sample rate at which perfect reconstruction
is still possible and thus to the minimum number of arithmetic operations per
sample per unit time.

The situation in which M > N can offer some advantages over the critically
sampled case. For example, let’s assume that 7,7, = I, i.e., T is a left inverse of
1,, and assume that we want to impose some frequency-domain constraints on the
analysis filters, e.g., with a minimal ripple in the pass-band or with a certain at-
tenuation in the stop-band. Let us also assume that we want to impose some time-
domain constraints on the synthesis filters, like smoothness or length of impulse
responses [52]. In critical sampling the analysis and synthesis maps are square,
ie., N = M, so that given T, T; is uniquely determined. In other words, there is a
one-to-one correspondence between the analysis and synthesis filters. This means
that all requirements imposed on the synthesis filters can be directly translated
into requirements imposed on the analysis filters, and vice versa. Imposing both
time-domain and frequency-domain requirements on the filters, however, can lead
to suboptimal solutions. However, if we choose M > N, then the representation
is redundant and 7 is not uniquely determined by Tj,. In fact, for any 7, there are
an infinite number of T satisfying 7,7, = I. The conclusion we can draw from
this is that non-critical sampling can give us some extra freedom to optimize 7,
and 7 simultaneously.

Recently, analysis/synthesis systems in which M > N, also called oversam-
pled filter banks, have been extensively studied. In [53, 54, 55] oversampling has
been studied using the theory of polynomial matrices while in [56, 57] oversam-
pled systems have been studied using the theory of Weyl-Heisenberg frames. A
vector-filter framework for the study of oversampled analysis/synthesis systems
has been proposed in [58]. Oversampled filter banks are known to have improved
noise immunity compared with critically sampled filter banks [15, 56, 59]. The
improved immunity of redundant representations allows coarser quantization of
the filter bank channel. This improved noise immunity, however, does not imply
that non-critically sampled filter banks are more suitable than critically sampled
systems for source-coding applications, since no consideration is given to the as-
sociated number of bits needed to reproduce the redundant representations. It is
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the author’s belief that no significant conclusion can be drawn by considering rate
or distortion separately, but that they have to be considered simultaneously in a
rate-distortion sense.

The questions that arise here are what is the increase in sample rate costs
in terms of bit rate needed to represent the source process {X,,n € Z} with an
average distortion less than or equal to D, and what is the impact on the source-
encoder complexity. In this section we investigate these problems and we show
what the relation is between the oversample ratio . = % and the rate-distortion
function. To do this, we first show what the relation is between [ (u; v) and
I (x; y). Based on this we derive a relation between R, (D) and R, (D).

To facilitate the discussion we have adopted a few conventions. Let {X,,,n €
Z) be an arbitrary random process defined on a probability space (2, A, P). A
sample sequence X (w) = (X,,(a)))flv=1 will be denoted by x = (xn)flvzl where
x € Iy, the source alphabet defined by I'y, = {X(w) : @ € 2}

We now introduce the notion of equivalent elements. Equivalent elements
play a central role in the derivation of the relation between R, (D) and R, (D).
As we will show, it appears that the mutual information I (u; v) equals the mutual
information 7(x; y) if and only if no non-equivalent elements in I'y and I', are
ever confused after the analysis and synthesis map has been applied to X and V,
respectively.

Definition 2.4.1 (equivalent elements) Let X,Y and Z be jointly distributed
random variables defined on a common probability space (2, A, P). The ele-
mentsy € T'y,z € I'; : p(y) > 0, p(z) > 0 are said to be equivalent modulo X if
and only if p(x|y) = p(x|z) for all x € I’y and we write y = z (mod X).

We have the following equivalence relation.

Lemma 2.4.1 Let X, Y and Z be jointly distributed random variables defined on
a common probability space (2, A, P).

1. If y =2z theny = 7 (mod X).
2. If y =z (mod X), then z = y (mod X).
3. If yy =z (mod X) and y; = z (mod X), then y; = y> (mod X).
Proof: The proof of assertions 1 and 2 is trivial. To prove assertion 3 we con-

clude that since p(x|y1) = p(x|z) and p(x|y2) = p(x|z) forall x € T, we have
p(x|y;) = p(x|y2) forall x € T'y so that y; = y, (mod X). O
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The property of being equivalent modulo X is independent of the source distribu-
tion and only depends on the channel. This can be seen as follows. Using Bayes’
rule, we have

plxly) = &p(ylx)-
r(y)

Hence, if y = z (mod X) we have p(x|y) = p(x|z) for all x and we conclude
that

pylx) _ M forall x e I'y.

pilx)  p)
Let p(y|x) = ap(z|x). If we let g(x) be another input distribution, we have

g(x,y) = qg(x)p(ylx) = aq(x)p(z]x) = ag(x, z) so that g(y) = @g(z) and we
conclude that

PO _ 40 forall x e Iy,

p@lx) g

and y and z are still equivalent in the new distribution. We illustrate the notion of
equivalent elements with an example.

Example 2.4.1 Let T, = {x1,x2}, I'y = {y1, y2, ¥3, ya} and let the conditional
probabilities p(yi|x;) be given as depicted in Figure 2.5. Since p(yi|lx;) =
p(valx;) and thus p(y1, x;) = p(ya, x;) for i = 1,2, we conclude that p(y) =
p(y4) and, therefore, p(x;|y1) = p(xilys) for i = 1,2. Hence, the elements y,
and y4 are equivalent modulo X. A similar derivation can be made for y; and y3.
Note that if p = g = % we have y; = y; (mod X) foralli,j = 1,...,4, since
in that case no information is transmitted at all, i.e. the capacity of the channel is
zero.

We are now in the position to derive one of the main results of this section which is
the relation between 1 (x; y) and I (u; v). Instead of limiting ourselves just to lin-
ear operators T, and T, we shall obtain some results for rather arbitrary mappings,
either deterministic or stochastic, and translate these results to transform-coding
systems. In what follows, we will repeatedly use the following results,

Theorem 2.4.1 Ler X, Y and Z be jointly distributed random variables defined
on a common probability space (2, A, P) and let f be a measurable function.

1 IfZ = f(Y), then [(x;y|z) = Oifand only if Vy|,y» € I'y : f(y1) =
f(2) = yi = y; (mod X).
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Figure 2.5: An example of equivalent symbols.

2.IfY = f(X), then I(z; y|x) = O if and only if Vx1,x3 € T'y & f(x) =
f(x2) = x; = x2 (mod Z).

The proof of Theorem 2.4.1 is given in Appendix B. Here follows an example to
illustrate these results.

Example 2.4.2 Consider Ty, 'y and the conditional probabilities p(y;|x;) as

given in Example 2.4.1. Lei Z = [(Y) be given by

2 iy =y,
2=191 22 ify=yrory=y;s,
23 ify =y

Figure 2.6 shows this situation. Since y; = y3 (mod X) (see Example 2.4.1), we
have Vy;,y; € 'y . f(yi) = f(yj) = yi = y; (mod X) and we conclude that
1(x;y) = 1(x; z). Hence, the second channel destroys no information about X
since no non-equivalent elements in I'y are ever confused in the second channel.

Next let {Uy,n € Z}, {V,,n € Z}, {X,,n € Z} and {Y,,n € Z} be jointly
distributed random processes defined on a common probability space (2, A, P).
We have the following result which gives the relation between 7 (x; y) and I (u; v).

Theorem 2.4.2 Let f and g be measurable functions. If U = f(X) and Y =
g(V), then I(u; v) > I(x;y) with equality if and only if Vx;, x» € Ty : f(x1) =
JS(x2) = x1 = xp(mod Y) and Vvj,v; € Ty : g(v)) = g(vp) = v =
vy (mod U).
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Figure 2.6: An example of an information-preserving map, i.e. I (x; y) = I (x; z).

Proof: Using the data-processing inequality (see Theorem A.3.2), we have
I(;v) = I, y) + T vly) = I y) + T ylx) + T vly) > 1(x;y)
with equality if and only if 7(u;v|y) = 0 and I(u; y|x) = 0. Thus, using
the results of Theorem 2.4.1, we conclude that 7(u; v) = I(x;y) if and only
Vo, mmely:gw)=g1) = v =v; (mod U)and Vxi, x; € Iy 1 f(x1) =
f(x2) = x1 = xp (mod Y). a

At this point we are almost ready to derive the relation between R, (D) and R, (D).
To do this, we need the following result.

Theorem 2.4.3 Let f and g be measurable functions. If U = f(X) and Y =
g(V), then

inf I(u;v)> inf I(x;y), 2.2)
q€Qp

rGRD

with equality if and only if Vx1,x3 € Ty @ f(x1) = f(x2) = x; = xp (mod Y)
and Yvy, vy € Ty : g(vy) = g(v2) = v1 = v (mod U).

Proof: Obviously, we have

inf I(u;v) > inf I(x;y),
q€Qp

rE'RD

since the rate of any code exceeds the rate-distortion function R, (D) evaluated at
the distortion level D achieved by that code.
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First let us assume that we have equality in (2.2). In that case there exist
r(vlu) € Rp and g(y|x) € Qp such that I (u; v) = I(x; y) and we conclude
from Theorem 2.4.2 that Vx;, xp € 'y : f(x}) = f(x2) = x1 = x (mod Y) and
Yo, v2 € Ty : g(v1) = g(v2) = v = v (mod U).

On the other hand, if we assume that Vx{,x; € Ty : f(x1) = f(x2) =
x;1 = xp (mod Y) and Vv, vy € Iy @ g(v1) = g(vy) = vy = vy (mod U) we
have I(u; v) = I(x;y) by Theorem 2.4.2. To prove equality in (2.2) we show
that the left-hand side of (2.2) is less than or equal to the right-hand side. Since
Vxi,x3 € I'y ¢ f(x1) = f(x2) = x; = x2 (mod Y) there exists a measurable
function, say h, such that if u = f(x), then 2(u) = x (mod Y) and therefore
q(ylh(u)) = q(y|x) for all y € T',. Hence, for every g(y|x) € Qp there exist
r(vlu) € Rp such that r(v|u) = q(ylh(u)) = ¢(y|x) and we conclude that

inf I(u;v) < 1nf I(x;y),

reR D
which is a contradiction. a

This brings us to the second main theorem of this section, which gives the relation
between R, (D) and R, (D).

Theorem 2.4.4 Let f and g be measurable functions such that U = f(X) and
Y = g(V). If x, y are N-element sequences and u, v are M-element sequences,
then

M
R,(D) > u 'Ry(D), u= ¥ (2.3)

with equality if and only ifVxi1,x2 € Ty : f(x1) = f(x2) = x1 = x2 (mod Y)
and Yvi,vp € Ty : g(v)) = g(v2) = v1 = vy (mod U).

Proof: We have

1
Ru,M(D) = M inf I(u U)

rE'Rn

1
> i inf 7(x;y)

q€Qpn

Nl ey
=\, 10y

N
= MRX’N(D)

= IJ‘_IRX.N(D)a
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and thus
R, (D) = lim R, (D)
M—o00
> ' lim R, n(D)
N—oo
= u 'Re(D),

with equality if and only if Vx|, xp € Ty : f(x1) = f(x2) = xy = x» (mod Y)
and Vv, vy € 'y 1 g(v1) = g(v2) = v1 = vy (mod U), according to Theo-
rem 2.4.3. u

Theorem 2.4.4 says that we can reach the rate-distortion bound if and only if no
non-equivalent elements in I', and I',, are ever confused after the analysis and
synthesis map have been applied to X and V, respectively. In the remainder of
this thesis we will refer to signal transforms having this property as information-
preserving transforms.

Some remarks are in order here. To start with, the result of Theorem 2.4.4
shows that oversampled analysis/synthesis systems have improved noise immu-
nity compared with critically sampled systems, since the effective rate at which
the source {U,, n € Z} generates information when a distortion d(x, y) is required
less than or equal to D with respect to F,, decreases linearly with the oversample
ratio . This does not imply, however, that the total rate needed to store or transmit
the data decreases with the ratio p. This can be seen as follows.

By definition, R(D) gives the effective rate at which the source generates in-
formation in bits per sample. Hence, the total rate needed to store or transmit the
data equals R(D) times the number of samples. Let B, (D) and B,(D) denote
the total rate needed to store or transmit the sequence of sample values x and
u, respectively. In that case we have B,(D) = MR,(D) > M (u"'R.(D)) =
M (%RX(D)) = NR,(D) = B,(D), so that an increase of the oversample ra-
tio 1 does not decrease the total rate needed to reproduce the source {X,, n € Z}.
This is equivalent by saying that, given a fixed rate, an increase of the oversam-
ple ratio . does not decrease the average distortion d(x, y). Figure 2.7 shows an
example of the rate-distortion functions R, (D) of the source and R, (D) of the
source when the transformed process is transmitted where the oversample ratio
equals u = 2. So, with regard to rate-distortion, oversampling does not offer ad-
vantages over critical sampling. In fact, non-critically sampled filter banks have
a major disadvantage over critically sampled ones, namely the coder complex-
ity. The reason for greater coder complexity lies in the fact that the transformed
sequence u in oversampled systems is a redundant representation of the original
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R(D)

R.(D)

R.(D)

0 DITIZIX

Figure 2.7: A typical rate distortion function R, (D) of the source and R, (D) of
the source when the transformed process is transmitted (. = 2).

source sequence x. To code the sequence 1 with a minimum number of bits, the
source encoder should be able to remove the redundancy introduced by the over-
sampling. This inevitably implies an increase in encoder complexity compared
with the critically sampled situation, thus obviating the fact that the purpose of
the signal transform is to reduce coder complexity. A second disadvantage of
oversampling is that it increases the sample rate in the channel. This increase in
sample rate can give severe problems in real-time data-compression applications
as it increases the computational complexity of the hardware implementation and,
thereby, its silicon area in the case of a VLSI implementation.

In conclusion, it should be noted that the results derived in this section are
independent of the perfect reconstructing condition such that even where T;T, #
I, we can have equality in (2.3).

2.5 Independent coding of the filter bank channels

As stated above, the use of a signal transform prior to the actual coding can sig-
nificantly reduce the coder complexity required to code the data at a minimum
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rate. The optimal transform maps the input sequence onto a sequence in which
the coefficients are statistically independent. This transform, however, is far too
complex to implement and, therefore, we will approximate it by a less complex
signal-independent transform. This, of course, at the expense of increased coder
complexity. If we can design a filter bank in which the channel signals can be
coded separately, while still reaching the rate-distortion bound, we can trade-off
between coder complexity and filter bank complexity by varying K, the number of
channels. In this section we show under what conditions this is possible. We will
also show how this can be used to design proper filters for Gaussian input distribu-
tions. We assume that oy (u, v), the penalty charge for reproducing the sequence
u by the sequence v, is a single-letter distortion measure, that is, pa (u, v) is of
the form (2.1).

Let us assume that the transformed process {U,,, n € Z} is transmitted rather
than the process {X,,n € Z} itself and that the channel sequences uy, k =
1,..., K, are coded independently. This means that the reproducing sequence
vx depends only on the sequence u; so that no information from the other channel
sequences uy, k # [, is used. Formally stated, independent coding of the filter
bank channels means that we have 7 (vg; u|ux) = O for all k. An equivalent inter-
pretation of this statement is that, due to the independent coding, we impose some
restrictions on the set of possible conditional probabilities r(v]u). Let R/, be this
restricted set of conditional probabilities r(v|u) which gives rise to an average
distortion d(x, y) less than or equal to D, i.e., from (A.4),

Ry = {r(vlu) € Rp : r(vg, ulug) = r(vplug)r(ulug), k=1,...,K}.

From Lemma B.1.1 we conclude that independent coding implies that V;, —
Ur — U or, equivalently, U; — U, — V4, corresponding to what is intuitively
suspected. In that case we can define the rate-distortion function of {X,,, n € Z}
with respect to F, as

R;(D) = lim R;M(D),
M—o0 ’
where

1 K
R ,,(D)= — inf I(ug; o).
(D) Mre%; (13 Vi)

The main result of this section is the following theorem.
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Theorem 2.5.1 Let T, and Ty be information-preserving signal transforms such
that u = Tyx and y = Tyv. If x, y are N-element sequences and u, v are M-
element sequences, and R, (D) and R}, (D) denote the rate-distortion function of
the source process and the transformed process where the filter bank channels
are coded separately, respectively, then R;, u(D) = w IR, N(D), p= % with
equality if and only if

K

r@) =[] ra.

k=1

The proof of Theorem 2.5.1 is given in Appendix C. A consequence of this theo-
rem is that if we want to reach the rate-distortion bound R, (D), we have to design
our discrete-time signal transform such that the filter bank channel signals are mu-
tually independent, i.e., if and only if 7 (ux; uy - - - ug—1) =Oforallk =1,..., K.
In the case of a Gaussian source it is then sufficient to make the signals u; mu-
tually uncorrelated. In the remainder of this section we will use this property to
design proper signal transforms for wide-sense stationary (w.s.s.) Gaussian input
distributions.

Let us consider the analysis filter bank and let the impulse responses be k. €
12(Z). Also, let the source process {X,,n € Z} be a w.s.s. process. Thus we
conclude from Theorem A.3.4 that the autocorrelation function R of {X,,, n € Z}
is of the form

| I L
R == [ €*"5@)ds,
2 J_,
where h € Z and S is the spectral-density function of {X,,n € Z}.

It is natural to view the output X; ,(w),n € Z, of the filter ~; as a sample

function of another random process and write

Xen(@)= Y h(n—DXi(@), k=1,....K. (2.4)

I=—00

The decimators in the analysis bank each down-sample the sample functions
Xy n(@w) of {Xgn,n € Z} by a factor of m to the sample functions Uy ,(w) of
{Uk.n, n € Z} given by

Uk,n(a)) = Xk,mn(w)’ k=1,...,K.

The result will be that U, and U, are uncorrelated if E Uk,nm =0Qforall j,n e
7. So, to design proper signal transforms, we need an expression for E Uk,,,m in
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terms of the filters Ay and 4, the down-sample factor m and the spectral-density
function § of the source {X,, n € Z}. This relation will be given in Theorem 2.5.3
below, for which we need the following lemmas which show that both {Xj ,,n €
Z} and {Uy ,, n € 7.} are w.s.s. processes.

Lemma 2.5.1 Let {X,,n € Z} be a w.s.s. process and let {X¢,,n € Z}, k =

1, ..., K, be the output of filter h;, € 1%(Z) given by (2.4). Then, {Xy ,n € L} is
ws.s forallk =1,..., K.

Proof: See [60, 61, 62]. 0
Lemma 2.5.2 Let {X,,n € Z)} be a w.s.s. process and let {U,,n € Z} be the
down-sampled process, i.e., U, = X, for all n € 7. where m is the down-sample

factor. Then, {U,,,n € Z} is w.s.s.

Proof: See [61, 62]. |

Hence, given that {X,,n € Z} is was.s., the processes {Ugn,n € Z}, k =
1,..., K, are w.s.s. as well. This brings us to the following result.

Theorem 2.5.2 Let {X,,n € Z} be a w.s.s. process and let { Xy ,,n € Z}, k =
1,..., K, be the output of filter hy, € 1>(Z) given by (2.4). Then,

_ 1 T - .
EXpninXin = >~ B ()R (£)e" S (§)dE.

Proof: From Lemma 2.5.1 we conclude that {X} ,,n € Z}is a w.s.8. process.
Hence

EXk,rH—th,n = E hk(s)hl(t)EXn+h—an—t
5,1
1 —— [T i—sthyt
= — (A ie-s+hs §(£)d
= Es,, k()R (1) /_ne (&)dE

1 [~ ‘ - .
= 5/ (Z hk(s)e—”5> (Z hl(z)e”f) eME S(&)de

1 ("~
= > hie(E)hy(£)e™s S(§)ds.
T —7T D
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Theorem 2.5.3 Let {X,,,n € Z} be a w.s.s. process and let {Uy ,,n € Z}, k =
1,..., K, be the down-sampled output of filter hy, € 1*(Z). Then

- 1 T -
EUininUsn = 5= R (E)h(§)e'*™ S (&) dE.

-7

Proof: This follows on directly from the fact that EUy ,, 14Uy = E Xicn-tmh Xin
and Theorem 2.5.2. O

Theorem 2.5.3 shows that the conclusion often drawn that the filter bank channel
signals Uy , are mutually uncorrelated in the case of orthogonal analysis filters is
incorrect in general. One exception is where {X,,, n € Z} itself is uncorrelated. In
this event we have S(§) = R(0) is constant on the interval (—, 7] so that

- RO T =
EUgnsnTin = -5(7;3 f &) (&) de,

which is zero in the case of orthogonal filters. In practical coding schemes, how-
ever, the statistics of the source are generally not known. For any unknown source

statistics it is clear that EUy ,4,U,., vanishes if and only if A (§)h; (&) = O for
all £ € (m,m]. In other words, this is only satisfied if the analysis filters are
ideal pass/stop filters. We will refer to these kinds of filters as (ideal) brick-wall
filters. Although such filters cannot be realized in practice, we conclude that it
is important to design our analysis filters such that they have good frequency-

discriminating properties. In that case the quantity R (’g‘)lle (&) is small and so is
EUk n+rUin-

Moreover, where there are spectral lines and we consider arbitrary distribu-
tion functions F, the proofs given above can easily be modified by considering
distributions rather than spectral-density functions. In the more general case we
have

- 1 T - .
EUgpinUin = — | he@)hi(§)e* ™ dF (&),
2

-
and our conclusion is that it is still important to design our analysis filters such

that Ay (§)h;(£) is small.

We will illustrate the previous discussion with an example. We have used two
source models for the source process to be coded, the spectral densities of which
are shown in Figure 2.8. The dashed line corresponds to a zero-mean white Gaus-
sian source whereas the solid line represents a zero-mean non-white, or coloured,
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Figure 2.8: Spectral densities of the zero-mean Gaussian sources.

Gaussian source. Both sources were coded using three different orthogonal filter
banks, all three with 8 channels. The filter bank filters were assumed to be the
DCT filters, the LOT filters and the brick-wall filters, the frequency responses of
which are shown in Figure 2.9, from top to bottom, respectively. The distortion
measure we have used is the squared-error distortion measure. It is well known
[45, 47, 63] that the rate-distortion function for this distortion criterion has the
parametric representation

4

1
D@®) = 7 min(0, $(§))d§,

-7

R(@) = %/” max (0, log (5—(;—)—)) dE.

The non-zero portion of the R(D) curve is generated as the parameter 6 traverses
the interval 0 < 6 < sup S(£). Figure 2.10 shows the rate-distortion curves for
the white Gaussian source. As discussed above, the three curves coincide, since
the source itself is uncorrelated so that £ Uk,,,+hm becomes zero for orthogonal
filters. Figure 2.11 shows the rate-distortion curves for the coloured Gaussian
source. It is clear that the performance increases with increasing frequency-
discriminating properties. An important conclusion we can draw from Figure 2.11

and
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Figure 2.9: Frequency responses of DCT filters, LOT filters and ideal brick-wall
filters, from top to bottom.
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zero—mean white Gaussian source
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Figure 2.10: Rate-distortion function for the white Gaussian source.

zero-mean coloured Gaussian source
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Figure 2.11: Rate-distortion function for the coloured Gaussian source.
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is that the performance of the LOT already approaches the performance of the
ideal brick-wall filters very closely, these being optimal in terms of rate-distortion.
This means that it is not necessary to use long filter responses in order to obtain
very high attenuation (> 20 dB) of the stop bands. Sufficient attenuation of the
stop band is obtained with the LOT.

2.6 Coding of non-stationary sources

The third and last point concerning the rate-distortion performance of discrete-
time signal transforms we are investigating here is how to choose the filter length
L. Let {X,,n € Z} be a second-order Gaussian random process and assume that
the transformed process {U,, n € Z} is transmitted rather than {X,, n € Z} itself.
Let &, = ((j)kf 1) kel N the (non-negative definite) autocorrelation matrix of any
succession of N components of the source {X,,n € Z},and Ay, k = 1,..., N,
its eigenvalues. Similarly, let ®, be the N x N autocorrelation matrix of the
corresponding transformed process {U,, n € Z}. The next theorem shows the ex-
istence of an analysis map T, € CV*V and a synthesis map Ty € CV*¥ satisfying
Ty = T} such that &, = A, = diag(X, ..., Ay) is the eigenvalue matrix of ®,.
This also holds where the source {X,, n € Z} is non-stationary. The resulting map
(KL-transform) has K = L = N, is data dependent and computationally com-
plex whenever N becomes large, as usually occurs. To overcome this complexity
probiem, we can reduce K (and L) without the rate-distortion performance dete-
riorating, provided Theorem 2.5.1 is satisfied. This results in a transform which
is block-banded, the band consisting of overlapping blocks shifted over m < K
positions.

Theorem 2.6.1 Let {X,,n € Z)} be a second-order random process with auto-
correlation matrix O, and eigenvalues Ay, k = 1,...,N. Then, &, can be
decomposed as

&, =UA,U*,
where U is unitary and A, = diag(rq, ..., Ay).

Proof: Since ¢p; = EX;X; = (Xi, X)) = (X1, Xi) = EX; X, = ¢y we
conclude that @, is selfadjoint and thus ®, = UA,U* where U is unitary and
A, is the eigenvalue matrix of ®,. O

Next, let us assume that the source {X,, n € Z} is piecewise stationary, satisfying

O, = diag(@u,1, ..., Drp), By € T, 2.5)
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i.e., the piecewise stationary parts of {X,, n € Z} are mutually independent. Ob-
viously, we have lezl sj = N. This brings us to the following result.

Theorem 2.6.2 Let {X,,n € Z} be a second-order piecewise stationary process
with autocorrelation matrix ®, as given by (2.5). Then, &, = UA,U* with

U = diag(Ul, LU, Uj e C 9,

Proof: Since ®, is an autocorrelation matrix of a second-order random process,
®, is non-negative definite. As a consequence any principal submatrix of &,
say @, ; € CY>*%, is non-negative definite and from Theorem 2.6.1 we conclude
that there exists a unitary matrix U; € C% ™% such that U;CDX,]-UJ' = Ay, the
eigenvalue matrix of @, ;. Therefore, we have
UAU" = o,

= diag(®Py 1, ..., Pyy)

= diag(UiAx 1 U, ..., UA U
diag(Uy, ..., Updiag(Ay 1, ..., Ay )diag(Uf, ..., UJ)
= diag(Uy, ..., U)A diag(Uy, ..., U)* 0

Theorem 2.6.2 asserts that the optimal signal transform for a random process with
autocorrelation matrix @, as given by (2.5) is of the form

T, = T} = diag(Ty,..., T),  Tj € C,

satisfying T;®, ;T = Ay, , the eigenvalue matrix of @, ;. This means that the
big orthogonal transform becomes a block-diagonal transform with orthogonal
blocks Ty # T;fork #1l,and K; = L; =s;, j = 1,...,1. Italso means that the
filter length of the optimal transform becomes larger as the degree of stationarity
of the source process increases and becomes smaller as the degree of stationarity
decreases. It should be noted that this does not depend on the correlation between
the samples to be transformed. Indeed, if the source is completely stationary but
nearly uncorrelated, we have [ = | and the filter length becomes s; = N as shown
before. On the other hand, if the source is highly correlated but the length of the
data segments on which this highly correlated signal is stationary is very small,
Le.sj < N for all j, the filter length should be short, namely s;. Again, when s;
becomes too large for some j, similar solutions can be found as discussed above,
and the T can be replaced with a “banded” block.
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As mentioned in Section 2.1, in nearly all practical coding schemes the trans-
form used is signal-independent and time-invariant (K, L and m constant). That
is, wehave T; =T € C> forall j = 1,...,[. In that case we should choose
a filter length which is proportional to the average degree of stationarity. This
means that relatively stationary processes require longer filter lengths than pro-
cesses where the statistics vary quite rapidly. We will end this section by illustrat-
ing the previous discussion with an example.

Practical coding example

The source sequence we used in this experiment is the image depicted in Fig-
ure 2.12, which is a single frame (only the Y-component) of the “mobile-calendar”
sequence. The size of the image is 576 lines with 720 pixels each, where each
pixel is represented by 8 bits. We used a time-invariant signal transform in which
the blocks 7; = T = C** forall j = 1,...,] were taken to be the DCT. The
coding was carried out using a simple uniform quantizer and Huffman coder. The
distortion measure we used was the squared-error distortion function. The coding
experiment was performed for four different filter lengths, viz. s = 4, 8, 16 and
32. Figure 2.13 shows the resulting rate-distortion curves. We can see that the
optimal filter length for the “mobile-calendar” image is s = 8 which corresponds
to the lower curve. If we either increase or decrease the filter length to s = 16
or s = 4, respectively, the rate needed to reproduce the image with some fixed
distortion D will increase in both cases.

Next, consider the two images shown in Figure 2.14 and Figure 2.16. Fig-
ure 2.14 is a sub-image of Figure 2.12, 32 x 32 pixels in size and is part of the
sheep. We will refer to this image as the “sheep” image. Figure 2.16 is also a
sub-image of Figure 2.12, 32 x 32 pixels in size but is part of the goat and will
henceforth be referred to as the “goat” image. It is obvious that the “sheep” im-
age is a very low correlated but stationary image while the “goat” image is a very
high correlated stationary image. Figure 2.15 shows the rate-distortion curves for
the “sheep” image and Figure 2.17 shows the rate-distortion curves for the “goat”
image. The filter lengths used in these experiments were s = 8, 16 and 32. The
figures show that, for stationary sources, the coding performance increases when
filter length is increased, irrespective of the correlation between the samples to be
coded. Although the “sheep” image is considerably more difficult to code (requir-
ing a higher bit rate for a given distortion) than the “goat” image, the optimal filter
length in both cases is the same as the dimension of the image, namely s = 32. It
should be noted that while the “sheep” image is much more difficult to code than
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the complete “mobile-calendar” image (in terms of bits per sample), it still needs
a larger filter length. Based on the foregoing discussion we can conclude that the
filter length should be chosen such that it corresponds to the degree of stationarity
in the source process and is independent of the correlation between samples.

2.7 Conclusions

We have investigated the rate-distortion function of a (not necessarily stationary)
stochastic process where a discrete-time signal transform is used in the coder. The
main results can be summarized as follows.

¢ Given a fixed bit rate, oversampling does not reduce the reconstruction er-
ror. The effective rate at which the source {X,,n € Z} generates infor-
mation when a distortion d(x, y) less than or equal to D is required with
respect to some fidelity criterion decreases linearly with the oversample ra-
tio ;. However, since the total number of samples needed to represent the
transformed process {U,, n € Z} increases linearly with the oversample ra-
tio, the total rate needed to store or transmit the source process will remain
the same, independent of the value of u.

e Where we use non-critically sampled filter banks, the source encoder should
be able to remove the redundancy introduced by the oversampling. This
inevitably implies an increase in encoder complexity compared with the
critically sampled situation. Moreover, oversampling increases the sam-
ple rate in the channel, which can cause severe problems in real-time data-
compression applications.

o If the filter bank channels are coded separately, we can reach the rate-
distortion bound R,(D) if and only if the filter bank channel signals are
statistically independent. In practical coding systems this requirement will
not generally be met. In order to minimize the loss introduced by the in-
dependent encoding of the filter bank channel signals, the analysis filters
should be designed such that they have sufficient frequency-discriminating
properties, i.e., the suppression of the side lobe amplitudes must be suffi-
cient. As an example we showed that an attenuation of approximately 20 dB
of the first side lobe is already sufficient to reach the rate-distortion bound
very closely.
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Figure 2.12: The “mobile-calendar” image.
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Figure 2.13: Rate-distortion curves for the “mobile-calendar” image.
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Figure 2.14: The “sheep” image.
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Figure 2.15: Rate-distortion curves for the “sheep” image.
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Figure 2.16: The “goat” image.
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Figure 2.17: Rate-distortion curves for the “goat” image.
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o If we assume the source process {X,,, n € Z} to be Gaussian and piecewise
stationary, we showed that the optimal discrete-time signal transform cor-
responds to a unitary time-varying filter bank. Moreover, we demonstrated
that the filter length should be chosen such that it corresponds to the degree
of stationarity in the source process and is independent of the correlation
between samples. This means that relatively stationary processes require
longer filter lengths than processes whose statistics vary quite rapidly. This
property can be used as a basis for segmentation algorithms used in region-
based coding systems, i.e. in coding systems based on time-varying filter
banks [64, 65]. When a time-invariant transform is used, this property im-
plies that the fixed filter length should correspond to the average degree of
stationarity.
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3.1 Introduction

In the previous chapter we applied rate-distortion theory to transform-coding sys-
tems in order to investigate the influence of different parameter settings of the
filter bank on the coding efficiency. In this chapter, using the results of the pre-
vious chapter, we design analysis and synthesis filters for data compression of
images.

In traditional transform coding, such as JPEG and MPEG [5, 7, 9], non-
overlapped orthogonal transforms are commonly used. This is done by map-
ping the input sequence x onto an output sequence u using an orthogonal, block-
diagonal Toeplitz operator, say T, i.e. u is given by
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where A; € CK*X of full rank K. The term non-overlapped refers to the fact
that the blocks on the main diagonal of 7, are non-overlapping. Since T, has a
block-diagonal Toeplitz structure, the corresponding filter bank is time-invariant.
In general, the sequence u is quantized, coded, transmitted and/or stored and re-
constructed before being inversely-mapped by the synthesis operator 7;. The re-
sulting sequence y, therefore, will generally be an approximation of the input
sequence x. If T;T, = I, hence y = x, we say that y is a perfect reconstruction
(PR) of the input sequence x.

A common example of a non-overlapped orthogonal transform is the discrete
cosine transform (DCT) [4, 26, 35, 51]. It is well known that the disadvantage
of non-overlapped transforms is that “blocking artifacts” are introduced at low bit
rates. This can be seen as follows. The effect of quantization can be regarded
as adding an additional noise signal, say n, to the sequence u. Hence, the recon-
struction y becomes y = Ts(u + n) = x + &, i.e. y can be written as x, a perfect
replica of the input signal, and an error term &, which is a linear combination of
the columns of 7T,. We shall refer to these columns as the basis functions of the
signal transform.

With non-overlapped transforms, the basis functions change abruptly at the
endpoints of their support, which causes equally spaced discontinuities in the
error term &. For example, Figure 3.1 shows the first even-symmetric and odd-
symmetric DCT basis functions. The result of reconstructing a ramp-function
with only these two hasis functions, using K = 32, is shown in Figure 3.2. The
clearly visible discontinuities are generally referred to as blocking artifacts. To
avoid these artifacts, we must choose basis functions without abrupt changes that
tend to zero smoothly at the endpoints of their supports. However, this is not pos-
sible with non-overlapped transforms when the PR condition has to be maintained
at the same time.

A class of transforms which can eliminate the blocking artifacts is the class of
50% overlapped transforms [10, 11, 36, 66]. In this case, the analysis map 7, has
an upper-triangular, block-banded Toeplitz structure, where the non-zero parts of
the basis functions overlap one another by 50%. The orthogonal transforms of this
sub-class are collectively referred to as the lapped orthogonal transform (LOT). In
[36, 10, 11] it was shown that the LOT can be constructed using a DCT. How-
ever, the basis functions thus obtained still have a certain amount of discontinuity,
which will also cause blocking artifacts. In [67] a solution is proposed for over-
coming this problem. The discontinuities can be eliminated by using an additional
scaling of +/2 of the first DCT basis function. The signal transform thus obtained
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is usually referred to as the modified lapped transform (MLT)!. However, this
solution leads to non-orthogonal transforms which is a disadvantage in terms of
implementation.

In this chapter we design LOTs which do not introduce blocking artifacts.
These LOTs, however, cannot be constructed with DCTs. Figure 3.3 shows the
first even and odd-symmetric LOT basis functions as an example of a perceptually
relevant LOT. These functions are smooth and decay to zero at the endpoints of
their support and, therefore, cannot cause blocking artifacts. The result of recon-
structing a ramp-function with these two basis functions, again using K = 32, is
shown in Figure 3.4. From Figure 3.2 and Figure 3.4, we conclude that it is indeed
possible to eliminate the blocking artifacts completely.

Organization of this chapter

The remainder of this chapter is organized as follows. Since the aim of this chapter
is to design analysis and synthesis filters for data compression of images, it would
be useful to start by discussing those factors which influence the choice of an ar-
chitecture (choice of K, L, m) and the sets .4 and S. These factors are, for exam-
ple, coding efficiency, perceptual quality, applying post-processing to the recon-
structed images and implementation considerations. This is done in Section 3.2.
Based on this discussion, we give a list of desirable constraints. This leads to a
suitable filter bank architecture. Given this architecture, we derive some aigebraic
properties of LOTs in Section 3.3, which can be used to significantly simplify the
design of the sets A and S. In Section 3.4 we concentrate on the choice of the
constituent filters. We show how we can design proper analysis and synthesis fil-
ters banks, i.c., filter banks in which the filters satisfy all the constraints referred
to in Section 3.2. Finally, in Section 3.5, we draw some conclusions.

3.2 Constraints on the choice of filter bank

In this section we give a list of constraints on the choice of the filters, imposed
by the application of image compression. Based on this we select a suitable filter
bank architecture (choice of K, L, m). The constraints can roughly be divided

'In [11, 68, 69] the term MLT is used as an abbreviation for modulated lapped transforms. As
these transforms are better known as cosine-modulated filter banks [70, 71, 72], we will use the
term MLT only for the modified lapped transform.
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into three categories: coding-efficiency, perception and implementation-related
constraints.

Coding-efficiency-related constraints

As discussed in Section 2.4, oversampling does not reduce the reconstruction er-
ror at a fixed bit rate. In fact, oversampling leads to complex source encoders
and can give severe problems in real-time implementations of the signal trans-
forms. For these reasons, we use critically sampled rather than non-critically
sampled filter banks (m = K). Moreover, we showed that 7,7, = I is a sufficient
(but not necessary) condition to reach the rate-distortion bound for any distortion
d(x,y) = D. If we choose T, T, # I, however, we have to increase the com-
plexity of the source encoder. This can be most easily seen by considering the
reconstructability of the input sequence x in the absence of a quantizer. Also, as
we showed in Section 2.5, we can reduce the coder complexity where the analysis
filters have good frequency discriminating properties.

From a coding point of view it is also very desirable to have both analysis
and synthesis filters with polynomial transfer functions which all have a zero in
the complex z plane at z = 1, except for the low-pass filter. In that case we can
represent DC information with the aid of only one coefficient, which will lead to
the most efficient representation of flat backgrounds, for example. To summarize,
we have

coder complexity = critical sampling (m = K),
= perfect reconstruction (T, T, = 1),
= good frequency discriminating properties of the anal-
ysis filters,
coding efficiency = zeros at z = 1, except for low-pass filters.

Perception-related constraints

A desirable property in image coding applications is that the overall transfer func-
tion T(z) = Y(z)/X(z) is a monomial in z, i.e. T(z) = z* for some k € Z.
This means that the overall (group) delay is equal to k. Moreover, since the con-
trast sensitivity function of the human visual system is roughly isotropic (rotation-
invariant) [73, 74] and the visual sensitivity of human observers decreases sym-
metrically at and on both sides of luminance changes [75], a desirable property
of the synthesis filters is that they have symmetry. This means that not only the
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overall transfer function 7'(z) should have the linear-phase property, but the con-
stituent synthesis filters as well.

An important requirement with respect to the type of filter to be used is that
blocking artifacts must be avoided. Therefore, the filter responses should be
smooth and decay to zero at the endpoints of their supports. Thus, in the case
of a PR analysis/synthesis system this implies / > 2. However, long filter re-
sponses usually give rise to ringing effects and, therefore, must be limited. This
implies short synthesis filters.

Finally, in almost all coding systems a noise-shaping quantizer is used. This
can be donc by combining the quantizer with a filter which feeds back the error
to the quantizer’s input {76, 77, 78]. A disadvantage of noise-shaping quantizers
is that they are relatively complex compared with ordinary quantizers, and the
quantizer and filter must be choscn carcfully to avoid instabilities caused, for ex-
ample, by overload errors in the quantizer. In transform coding systems, however,
we can do similar things by using different step sizes for the different filter bank
channels. This relatively simple method results in a spectral shaping of the coding
error and, therefore, can be seen as another form of noise shaping. This methods
can only be used properly if X is sufficiently large and the constituent filters have
good frequency discriminating properties. To summarize, we have

no phase errors = linear-phase overall transfer function,

symmetric sensitivity = linear-phase synthesis filters,

no blocking artifacts = smooth decaying to zero synthesis impulse re-
sponses,

no ringing effect = short synthesis filters,

simple noisc shaping = K sufficiently large.

Implementation-related constraints

Error blow-up is minimal when (A, S) is para-unitary, i.e. the impulse responses
h, together with their shifted versions (over m samples) must form an orthonor-
mal set and the same holds for f,,s. Moreover, para-unitary filter banks have the
nice property of having the same structure and entries for both the analysis and
synthesis filter bank, i.e., Ty = T*. If desired, we can exploit this property by
implementing both the analysis and synthesis filter bank with the same hardware.
Especially, in applications where the analysis and synthesis mapping is not com-
puted concurrently, this solution saves 50% of the silicon area. Finally, in order
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to minimize the sample rate in the filter bank, and thereby minimize the computa-
tional complexity, we down-sample the filter outputs x; to their Nyquist rate. To
summarize, we have

minimal error blow-up => orthonormality,
A and S the same structure = para-unitary,
minimum sample rate = critical sampling (m = K).

Apart from the final choice of the constituent filters to be used, we can conclude
from what has been said that an architecture in which m = K (critical sampling)
and L = 2K (I = 2, a 50% overlapped transform) could be very suitable for
data compression of images. Such an architecture would enable us to reduce
the blocking effects and at the same time limit ringing effects due to long filter
responses. Therefore, for the remainder of this chapter we shall assume that m =
K and L = 2K. The synthesis filters have symmetry (linear-phase filters) and
the overall transfer function 7'(z) must be a monomial in z. Adding the para-
unitary requirement to this architecture, we conclude that the LOT is suitable for
our specific application.

In the next section we shall derive some algebraic properties of LOTs which
can be used to simplify the design procedure considerably.

3.3 Lapped orthogonal transforms

As stated above, we shall assume that m = K (critical sampling), L = 2K (a 50%
overlapped transform) and the synthesis filters have the linear-phase property. In
this section we will derive some algebraic properties of LOTs which can be used
to design suitable filters.

We arrange the analysis filters and the synthesis filters in K x 2K matrices
A=[h(L+1—=nm)h=1,. .k n=1,..L = [Al A2],
and
S =[fiM=1,..k, n=1,... = [S1 $2],

where A, S, j = 1, 2, are matrices of size K x K. The corresponding transform
is performed by a map T, which has an upper-triangular block-banded Toeplitz
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structure, where the non-zero parts of the basis functions overlap one another by
50%. Thus, T, is given by

A Ay
T, = Ay A s
Aj T

and similarly for 75 it holds that

Sy

T = Sé Si
S S5

- ’ : -
Perfect reconstruction is obtained if the following necessary and sufficient condi-
tions are satisfied (see [43])

2
Y SjAk =08l k=-1,...1 1<l-k<2, (3.1)
=1

or equivalently with critical sampling

(]

SAS k=060l k=-1,...,11=l-k<2, (3.2)
=1

where 8, denotes the Kronecker delta.

In this section we show that if the filter bank is PR, the filter bank is para-
unitary if and only if (A, S) is restricted orthonormal, i.e. the sets 4 and S them-
selves are orthonormal. The proof can be divided into two parts. In section 3.3.1
we elaborate the PR conditions (3.1) and (3.2) together with the linear-phase syn-
thesis conditions. In section 3.3.2 we show that the resulting conditions imply
that (A4, §) is para-unitary if and only if (A4, §) is restricted orthonormal. As a
consequence, we can concentrate on the sets .,4 and & only, and we do not have
to consider the orthonormality of shifted versions of the filter responses, which
greatly simplifies the filter design.
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3.3.1 PR and linear-phase synthesis filters

Theorem 3.3.1 Let (A, S) be a PR filter bank with even length filters. The anal-
ysis bank has linear-phase filters if and only if the synthesis bank has linear-
phase filters. Moreover, half of the synthesis filters have even symmetry, i.e.
fe(L + 1 —n) = fi(n) and half of the synthesis filter have odd symmetry, i.e.
fr(L + 1 —n) = — fir(n) and the same applies to the analysis filters.

Proof: see [79, 80] O

Let J denote the exchange matrix in which all entries are zero, except for the main
anti-diagonal entries, which are all one. We partition A and S as

A:[Al,l AI,IJ]
Ax1 —AxJ |0

g = S, S/
S —So0d |’
where Ag i, Sk € C%XK, k = 1,2. Hence, we have arranged the even-

symmetric filters in the first % rows and the odd-symmetric filters in the last —122
rows. Using these decompositions, (3.1) becomes

S| AL+ IS5 AT =31, (3.3)

and

SiaALL =85 A0 (3.4
We now can derive some useful properties.
Lemma 3.3.1 ran(A; ) = ran(Sx) = 3K fork =1,2.

Proof: From (3.3) we conclude %K < ran(Si‘lAl,l) < ran(Aj1) < %K and
ran(Ay 1) = %K. The proof for A; 1, S7.1 and Sy is similar. O

Since both A | and A;; are of full rank we conclude that Ay | = B, A with B,
is non-singular. Similarly, we have S, | = B;S; 1. Substituting this result in (3.4)
yields S{ | A; | = S BiB,A1,1 from which we conclude that By = B! since
both A | are §;,; are of full rank by Lemma 3.3.1.

Let A, = 3(A1, + A11J) and A, = J(A11 — Ap1J) sothat A, J = A, and
A,J = —A,. It then follows that A and § take the following form

T Aot Ay (Act A)J
A“[ BaMAeJrAO —(Ae+A0)J}’ 3.5)
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and

1 Se +S0 (Se+ So)d
s=[ s [5is GN ) a0

Note that a similar expression was postulated in [10] for a LOT. However, it turns
out that the conditions of PR, linear-phase synthesis filters and 50%-overlapped
transform already imply the signal transform to be characterized by (3.5) and
(3.6).

Since A,J = A, and A,J = —A, we conclude that A, A% = (A, J) (A, J)* =
—A,A} = 0. Using the PR conditions (3.2), which only hold of a critically
sampled (A, &), it follows that A | Si’] = %I and A} | JS{’] = O or equivalently

A8t = A,S, =11, (3.7)

and thus ran(A,) = ran(A,) = ran(S,) = ran(§,) = 5 K.

1
3
3.3.2 Orthonormality

Definition 3.3.1 Let Z be the right (or causal) bilateral shift operator, defined
by Za = Z(o)72 o = (k- 1)7e_oor Then the set X = (xk),f:1 is said to be
restricted orthonormal if X satisfies

(Xms Xp) =8mn forall m,n=1,... K,
and (fully) orthonormal if X satisfies
Xms Z€ x)) = 8pnbio forall myn=1,..., K, andall k € Z.

A K-channel (A, S) filter bank is said to be restricted orthonormal or fully or-
thonormal if both the sets A and S are restricted orthonormal or fully orthonor-
mal, respectively.

Considering AA™ and SS*, we have

I A | A* I }
AA* =2 Cob ,
R | AP | ™

and
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Hence, we conclude that restricted orthonormality of (A, §) implies

ALLAT | = A AL+ A AL =31, (3.8)
S1,187 1 = SeSy + 8,85 = 31, (3.9)

and that B, is unitary. Before proving the main theorem of this chapter, we need
the following lemma.

Lemma3.3.2 IfP,Q ¢ CT*K are even-symmetric, i.e. PJ = P and QJ = Q
satisfying A, P* = A, Q% then P = Q.

Proof: Since A, A} = O weconclude from A, (P—Q)* = Othat P—Q =T A,

for some 7 € CT*%. Therefore we have P — Q=(P—-Q)J =TA,J =
—TA, = —(P — Q) = O which completes the proof. O

Theorem 3.3.2 Let (A, S) be a PR critically sampled linear-phase filter bank.
Then (A, S) is fully orthonormal if and only if (A, S) is restricted orthonormal.

Proof: Assume that (.4, S) is fully orthonormal, thus para-unitary. Then § = A,
hence S, = A, and S, = A, so that (3.7) becomes A, A} = A A} = 11
Conversely, taking (3.7) and the fact that A, A% is non-singular, we have
ASE = 31
= $(AADAADT

Let P = S, and Q = 3(A.A})"'A,. Then PJ = §5,J = S, = P and
0J = %(AeAj)_'AeJ = %(AEA:)"IAQ = (. Therefore we conclude from
Lemma 3.3.2 that §! = +A%(A,A?)™! so that

SeS: = (Sé)*Sé
= 1g(AAD T A AL (A AT
Te(AeAD ™"

Similarly, we have TS}; = 1]—6(A0A§)_1. Combining these results with (3.8) and
(3.9), we get

A AL+ AAL =11,
and

T6(AAD ™ + 5 (A,AN) ! =

1
.




3.4. Design of perceptually-relevant LOTs 51

From these two equations for A, A; and A, A}, we readily obtain A, A} = A, A} =
%1. Combining this result with (3.7), and again using Lemma 3.3.2 where P = A4,
and Q = S., we conclude that A, = S, and similarly for A,, S,, we conclude that
A, = S,, which completes the proof. 0

In conclusion, the design of LOTs is fully characterized by a unitary map B, and
A., A, satisfying

A AL =AAL =11 (3.10)

3.4 Design of perceptually-relevant LOTs

In this section we consider the problem of designing suitable para-unitary linear-
phase filter banks. So far, we have satisfied all the constraints mentioned in Sec-
tion 3.2, except for three, namely,

1. Hi(2), Fi(z), k=2,..., K, have zeros at 7 = 1,
2. good frequency discriminating properties of the analysis filters,

3. smooth synthesis impulse responses, decaying to zero at the endpoints of
their supports.

The first condition has been added because we can then represent DC information
with the aid of only one coefficient. This will give to the most efficient repre-
sentation of flat backgrounds. The second condition enables us to reduce coder
complexity, while the third condition ensures that blocking artifacts are avoided.
To satisfy these conditions, we can restrict our attention to A, and A, because
the design of B, can be done independently as it only affects the odd-symmetric
filters. For this reason, in the next subsection we will focus on the design of A,
and A,. The design of B, is discussed separately in subsection 3.4.2.

3.4.1 Designof A, and A,

In this subsection we show how the above conditions, which are imposed on the
composite matrix A, can be turned into constraints on the submatrices A, and A,,.
To do this, let A, = (ge(k, n))y., and A, = (a,(k, 1))k », and stack the matrices
Ae and A, in a matrix U € CK*K |

(3.11)
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We then have the following result.

Theorem 3.4.1 Lets = (1,..., 1) € CK and ex = (1,0,...,0)" € CK. The
polynomial transfer functions Hy(z), Fx(2), k =2,..., K, have zerosat z = 1 if
and only if

Us = yeg, |y|=%«/§,

and

ae(l,n)z% forall n=1,...,K.

Proof: Assume that the analysis filters, except for the first one, have zeros at
z = 1. Since the odd-symmetric filters have a zero at z = 1 by definition, we can
concentrate on the even-symmetric filters only. It follows that Ay ;5 = yeg /2 so
that A,s = yeg > and Us = yek for some y € C. Moreover, since UU* = %I
and thus U*U = }‘I, we get s = 4U*Us = 4U*yek so that a.(1,n) = (4y)7!

foralln = 1,..., K. Therefore, since Us = y ek, we conclude that K (47)*l =
y, so that |y| = %\/K and thus a.(1,n) = @4y) ! = % forallm =1,..., K.
The proof of the converse is trivial. O

A direct consequence of Theorem 3.4.1 is that the only freedom we have in de-
signing the first LOT filter is in choosing a suitable sequence a,(1, -). The higher-
order filters (k > 1) can be obtained by a joint optimalization of both . (k, -) and
a,(k, -). To satisty condition 2, we conclude from (3.5), that the sequences a, (k, -)
and a,(k, -) must have good frequency-discriminating properties. Moreover, con-
dition 3 is satisfied if we take smooth sequences (g, (k, n)),’f=l and (a,(k, n)) ,’le of
which the sum a, (k, n) +a, (k, n) decays smoothly to zero at the left endpoints of
their supports. Figure 3.5 and Figure 3.6 show an example of suitable sequences
a.(1, ) and a,(1, -) and the resulting sum sequence a,.(1, -)4a,(1, -), respectively,

when K = 32. Note that a.(1, n) = %\/% ~ 0.088 foralln = 1,...,32. Inthe
following we discuss a recursive method for the design of perceptually-relevant
LOTs, these being LOTs which satisfy all the above conditions. The term recur-
sive reflects the fact the we optimize one filter after the other. Such a procedure
clearly has advantages over a direct approach, because otherwise the number of

variables to be optimized becomes unfeasible for large values of K.
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Figure 3.5: Example of smooth sequences a.(1, -) and a,(1, -).
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Figure 3.6: Sum sequence a.(1, ) + a,(1, -).

A recursive method for the design of perceptually-relevant LOTs

From the DCT, we may conclude that the DCT basis functions satisty all the above
conditions, except for one of them, which is that the sum sequence a.(l, ) +
a,(1, ) does not decay smoothly to zero at the left endpoint of its support. The
design algorithm we propose here exploits these properties and modifies the se-
quence a,(1, -) such that the resulting sum sequence does have the desired prop-
erty of smoothness. This is accomplished by weighting the coefficients a,(1, n)
with some properly chosen weighting function and normalizing the resulting se-
quence to unity, recursively. In order to preserve the symmetry properties of
A,, the weighting function must be even-symmetric. Since a modification of
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ao(1, -) affects the orthonormality of the rows of A,, we can apply a Gram-
Schmidt orthogonalization procedure. The Gram-Schmidt process says that if
W = (w,,)f;’=1 is a linearly independent set of vectors, then there is an orthogonal

set VY = (v,,)rll\':l such that v, # o and v, is a linear combination of wy, ..., w,
foreveryn = 1,..., N. The v, are constructed by
T (wn, ve)
Up = Wy —Z—zvk. 3.12)
k=1 “Uk||2

Clearly, the idea of the Gram-Schmidt process is to subtract from every new vector
its components in the directions that are already settled and normalize it. As a
consequence, after we have optimized a, (1, -), we have to optimize the remaining
sequences as well since they all are affected by the Gramm-Schmidt procedure.
As mentioned above, for k > 1, a joint optimalization of a.(k, -) and a,(k, -)
can be performed. However, for the purpose of implementation, it is better to
optimize A, only, and leave A, unchanged. We will return to this point in more
detail in Chapter 5 and leave this issue aside for the moment. Algorithm 3.1
shows the pseudo-code of the recursive design algorithm. Figure 3.7 shows an
example of LOT impulse responses (only the first and fourth filter responses are
shown) obtained with Algorithm 3.1 when K = 32 and B, has been designed
as discussed in the next subsection. It can be seen that these functions smoothly
decay to zero at the endpoints of their supports. Figure 3.8 shows the frequency
responses (only the first eight responses are shown).

An alternative recursive design method, which is computationally more ex-
pensive but robust with respect to any initial solution (the sequences a,(k, -) and
a,(k, -) can be chosen randomly), is discussed in [81], where an optimization pro-
cedure is proposed which is formulated entirely in the frequency domain. The
results obtained with this method are very close to the solutions obtained with
Algorithm 3.1, and where almost independent of the initial solution chosen. This
indicates that in the orthonormal case, Algorithm 3.1 leads to “optimal” LOTs.
When the signal transform to be designed is biorthogonal or oversampled, how-
ever, Algorithm 3.1 fails, whereas the algorithm proposed in [81] does not.

3.4.2 Design of B,

In this subsection we concentrate on the design of B, and have assumed that
the even-symmetric filters are properly designed so that they satisfy the above
conditions.
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/+ initialization =/
A, = 0.5xeven_dct functions (K);
A, = —0.5x%o0dd dct _functions (K);
a = 0.05;
/% program body =/
fork =1to K/2,
do
A=a.k,1)+a,k, 1),
while |A| > threshold(k),
do
if A >0,
window = 1 4+ axhanning (K);
else
window = 1 — axhanning (K);
fi;
weight_sequence (a,(k, -), window);
Gramm_Schmidr (A,);
A =a,k,1)+a,lk,1);
od;
od;

Algorithm 3.1: Recursive design algorithm for LOTs.

One way to obtain the odd-symmetric filter responses is to shift the frequency
responses of the even-symmetric filters over r radians. Thus, let A; be an even-
symmetric filter. Then the corresponding odd-symmetric filter, say A, satisfies

o0

M@ = Y mne™

= D et

n=—0o0

= D (—D)'"he(m)e™,

n=—cxo
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Figure 3.7: Impulse responses of a size 32 x 64 LOT. Only the first (top) and the
fourth (bottom) filter responses are shown.
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Figure 3.8: Frequency responses of a size 32 x 64 LOT. Only the first eight re-
sponses are shown.
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so that

hi(n) = (=1)"hi(n), (3.13)
forall n = 1,..., L. It is easily verified that / = K+ 1 — k. Let D =
diag(d,...,dg) withd, = (—1)" foralln = 1,..., K. We then can express

(3.13) for all the % odd-symmetric filter responses as
Ari =JAD.

Due to the PR condition together with the linear-phase conditions we have to
satisfy A>; = B,A;.). The row space of B,A|, |, however, does not generally
coincide with the row space of JA| | D. In the case that the two row spaces do
not coincide we will approximate JA; ;D in a least-square sense, i.e. we will
approximate JAj ;D by the orthogonal projection of the row space of JA; D
onto the row space of B, A 1. This means that

BuArr = JAILD (BaAi1)" (BaAry (BaAi))") ™' BaAr,
= JALDAT, (A1AT) T AL
so that B, 1s given by
B, =JADAT (ALAT) "

Since both J, D and A arc of full rank we conclude that B, is non-singular, as
required.

In order to have B, unitary, however, we can apply a Gram-Schmidt orthogo-
nalization procedure to B,. This can be done cither to the rows or the columns of
B,. For perceptual reasons, however, we apply the procedure to the rows. This can
be seen as follows. From (3.12), we conclude that the Gram-Schmidt process sub-
tracts from every new vector its components in the directions that are already set-
tled and normalize it. As a consequence, the deviation of the orthogonalized vec-
tors with respect to the original non-proccssed vectors increases with increasing
index, i.e., Wyt —Uppill2 = |lwy —vullp foralle =1, ..., N —1. Next consider
the construction of A, ; and assume that we have ordered the even-symmetric
analysis filters in A such that the pass-band centre-frequency of the frequency re-
sponses increases with increasing row index k. Obviously, as A> | = B,Aj |, the
kth row of A, is only affected by A; | and the kth row of B,. Now, since the
sensitivity of the human visual system varies as a function of spatial frequency in
the sense that it is less sensitive to the higher spatial frequencies than to the mid-
dle and lower spatial frequencies [73, 74], we conclude that we are less sensitive
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to errors in the higher order rows of B, than to errors in the lower-order rows.
So, based on what was said above, we can exploit this property by applying the
Gram-Schmidt procedure to the rows rather than to the columns of B,, starting
with the first row, then the second one and so forth.

We end this section by showing under what conditions of A,, A, and B, we
satisfy B,A1,1 = JA|,1D. To do so, we need the following lemma.

Lemma 3.4.1 A.D = TA, and A,D = T~'A, for some non-singular T €
Cz*z

Proof: Since JDJ = —D we have A,DJ = (A.J)(JDJ) = —A,D and
A,DJ = (A, JY(JIDJ) = A,D sothat A, D is odd-symmetric and A, D is even-
symmetric. Therefore, we have A,D = T A, for some non-singular T € CTx%
and thus A,D = T~ A,, which completes the proof. O

The next theorem finally gives the required conditions.

Theorem 3.4.2 B,A;, = JA; 1D if and only if BjA, = JA.D and B, =
JB 1.

Proof: Let us assume that B,A;; = JA; 1 D. Then B,(A. + A,) = J(A, +
A,)D. Since both A, and A, are of full rank and A, D and A,D are odd and

ran_cummates oty nAA1T woa roansln thot D A TA D
cven- \)jllllll\/\ll.\z’ Luoyvuuvux], uJ uuxuxuu J.a1, WO \«vu\uuuv ulde Oglig = v ligLs

and B,A, = JA,D. Moreover, from B, A, = JA,D we conclude that JA,D =
JB;'JA,sothat B, = JB;'J.

Conversely, if we assume that B,A, = JA,D and B, = JB, 1J. We then
have JA,D = JB;'JA, = B,A,. Hence, JA; 1D = J(A.+ A,)D = JA, D +
JA,D = B,A, + B,A, = Ba(Ae + A,) = BaAj 1 as required. O

3.5 Conclusions

We have investigated the design of analysis and synthesis filters for the purpose
of data compression, especially the data compression of images. We indicated
desirable constraints imposed by the application, on the basis of which we derived
a suitable filter bank architecture (choice of K, L, m). We concluded that LOTs
are suitable for our specific application. These transforms correspond to critically
sampled para-unitary linear-phase filter banks. LOTs enable us to reduce blocking
effects and at the same time limit ringing effects due to long filter responses. We
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showed that any PR linear-phase filter bank with (fully) orthonormal analysis and
synthesis filters can be generated by (3.5) with § = A, B, unitary, and A,, 4,
satisfying (3.10). Furthermore, we turned the perception-related constraints on the
filter responses into constraints on the constituent matrices A, and A,,. Finally, we
showed how to design a suitable matrix B, such that the resulting odd-symmetric
filters also satisfy the given constraints,
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4.1 Introduction

The previous chapters touched upon the design of discrete-time signal transforms,
in particular the design of LOTs, for data compression of images. In this chapter
we discuss the application of overlapped transform coding with LOTs to X-ray
cardio-angiographic image series.

X-ray cardio-angiography', which can be used very effectively in adult coro-
nary and left ventriculography, is a useful tool in the rapid diagnosis of cardiac
abnormalities and in clinical decision-making [82]. X-ray angiography is one
of the major imaging modalities in radiology. Other modalities, for example, are

IX-ray cardio-angiography visualizes the cavities of and the large arteries around the hcart using
rontgenology.
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computed tomography, magnetic resonance imaging, nuclear medicine and digital
fluorography [83].

The processing trend in medical radiologic imaging is increasingly towards
digital. The rationale behind this trend is the wide variety of opportunities it of-
fers to support image transfer and archiving, and to manipulate visual diagnostic
information in useful and novel ways, such as image enhancement and volume
rendering [84]. Another impulse comes from the picture archiving and commu-
nication systems (PACS) community who envisions an all-digital radiology envi-
ronment in hospitals for the acquisition, storage, communication and display of
large volumes of images in various modalities [85]. Image compression is a major
contribution in using PACS as an alternative to analogue film-based systems by
reducing the bit rate required to store or transmit images, while maintaining the
relevant diagnostic information. It also enables fast transmission of large medical
images over a PACS network to display them on a workstation for diagnostic, re-
view and teaching purposes. A rather new application, which has received much
attention over the last few years and which inevitably requires data compression,
is teleradiology. Teleradiology is a wide area network (WAN) application that
aims to bring expert radiological service, which is available in major urban medi-
cal centres into rural areas and small towns, usually via low-bandwidth channels,
such as a long-distance telephone line or an integrated services digital network
(ISDN) supporting data rates of 144 Kbit/s [86 87]

ray anglography, but an increase in the resolutlon to 1024 x 1024 p1xels may
be expected in the near future. Philips, for example, has introduced the Integris
Cardiac Imaging system [88], which enables recording of 1024 x 1024 images.
Image rates up to 15 Hz are most frequently used, but an increase to 30 Hz or more
can be expected in the near future. Storage of these image series will require fast
interfaces and a large amount of storage space. One way to reduce the access
speed and storage space, and thereby reduce the storage cost, is to apply data
compression.

In this chapter we investigate the performance of data compression of X-ray
cardio-angiographic image series. Data compression can be divided into two cat-
egories: lossless and lossy compression. With lossless compression the bit rate
of the image series can be reduced by a factor of about 2.5 — 3.5 [1, 2]. The aim
of the work described here, however, is to reach reduction factors in the order of
8 — 16. To achieve this goal, we rely on lossy compression techniques, in par-
ticular those that are based on overlapped transform coding. Our objective is to
produce images that do not contain perceptually annoying artifacts and preserve
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the original diagnostic quality.

Organization of this chapter

The outline of this chapter is as follows. Digital X-ray cardio-angiographic im-
ages play an important role throughout this chapter, and it thus seems appropriate
to start with a brief review of this imaging modality. In Section 4.2 we briefly re-
view the digital diagnostic X-ray system and discuss some X-ray chain properties,
such as transfer function and noise characteristics. This review is not intended to
serve as a detailed description of the X-ray system but to understand those sys-
tem features that play a role in selecting an appropriate compression technique
and analyzing its performance. Moreover, we discuss some additional constraints
that are imposed on the method of data compression by the clinical procedure
used during digital X-ray angiography and, on the basis of these constraints, we
select a suitable compression technique. In Section 4.3, we concentrate on the
complete transform-coding system. Philips has proposed that this coding system
be included in the discussion on standardization of lossy data-compression algo-
rithms which is being organized by the ACR-NEMA committee with the support
of the National Electrical Manufacturers’ Association (NEMA) and the American
College of Radiology (ACR) [89]. We discuss signal transformation, quantization
and lossless encoding and we show how we can adapt the compression to the char-
acteristics of the human visual system and to a post-processing technique called
image enhancement. In Section 4.4, we consider computer simulation results of
this compression method. Finally we draw some conclusions in Section 4.5.

4.2 X-ray cardio-angiographic image series

In this section we will briefly review the digital diagnostic X-ray system and dis-
cuss some constraints that are imposed on the method of data compression by the
clinical procedure used during digital X-ray angiography.

Figure 4.1 shows the X-ray acquisition chain in the form of a diagram. In
the X-ray tube a beam of electrons, accelerated by a potential of several thou-
sand volts, hits a metallic target called the anode. In the anode the electrons are
decelerated as a result of which a substantial part of the total energy from the
charge is emitted as radiation, called deceleration radiation or more commonly,
bremsstrahlung. The production of X-rays is accompanied by a large amount of
heat. To avoid anode deterioration, the target used is a rotating disc so that the
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Figure 4.1: A diagram of the X-ray acquisition chain.

heat is equally distributed over the target. The X-ray tube is followed by a filter
which removes the low-energy photons. These low-energy photons do not con-
tribute to the image formation because they will be completely absorbed by the
object being radiated. Since any amount of X-radiation causes damage to living
tissues and organisms, it is important to filter out these low-energy photons. The
filter is followed by an image intensifier. The input screen of the image intensifier,
trons. These electrons are accelerated and focussed at an output phosphor screen
which converts the electrons into light photons. The output of the image intensi-
fier is connected, via some optics, to a camera which converts the light photons
into an electrical (analog) signal. One of the last steps in the acquisition chain is
the reduction of the voltage range. This is a non-linear operation resulting in a
more equally distributed error, introduced in the digitalization of the signal, over
the dark and bright parts of the image. This operation is commonly referred to as
white compression. After white compression the signal is finally digitized in the
analog-to-digital convertor.

Several components are involved in the X-ray acquisition chain, each of which
has an impact on the final image quality. Two major features of the X-ray chain are
its modulation transfer function (MTF), and its noise characteristics. The MTF is
the response of the acquisition chain in the frequency domain. It has a low-pass
characteristic which is mainly determined by the behaviour of the image intensi-
fier and the camera. The impinging X-ray photons are thus low-pass filtered by
the imaging system. As a consequence, most of the signal energy can be expected
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Figure 4.2: A typical (raw) X-ray cardio-angiogram.

to be concentrated in the lower spatial frequency band. X-ray systems are sub-
ject to different types of noise, including camera noise, noise introduced in the
image intensifier and quantum noise. Quantum noise is the most dominant noise
component and is caused by spatial fluctuations in the number of impinging pho-
tons. Quantum noise can be modelled as a Poisson process in which the variance
is proportional to the X-ray dose [90]. Therefore, the high-intensity parts of the
image contain more quantum noise than the low-intensity parts. Figure 4.2 shows
a typical example of a (raw) X-ray cardio-angiogram. The term “raw” reflects the
fact that no signal processing (e.g., sharpness perception enhancement) has been
applied to the images.
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This given information can be used in a data compression scheme. Thus we
can exploit the fact that the system MTF has a low-pass characteristic in the al-
location of available bits to the frequency components. Similarly, we can exploit
the fact that the high-intensity parts of the image contain more noise than the
low-intensity parts by accepting larger quantization errors in areas with a larger
intensity, thereby achieving a better balance between the perceptual image quality
in the dark and bright areas [91].

Clinical procedure

In the past, the interpretation of angiograms was performed (off-line) using 35 mm
cinefilm. Most angiograms were reviewed visually, hence, subjectively. A great
advantage though of the off-line cinefilm is its high spatial resolution. Nowadays,
the diagnosis is performed both objectively and subjectively. Recent develop-
ments in digital cardiac imaging systems have been directed towards obtaining
on-line quantitative measurements, i.e., from digitized video images during the
catheterization procedure. The digital systems provide a high density resolution
of 8 to 10 bits per pixel and an image rate of up to 30 Hz. These features are
more suitable for quantitative analysis than the conventional cinefilm approach
can offer.

Figure 4.3 shows a block diagram of the various steps involved in the an-
giogram interpretation process. The guantitative analysis of vessel diameter and
wall motion measurements [82], in particular, is usually performed using the raw
(decoded) data, i.e. without any further processing of the image. Prior to display-
ing the images, however, they are commonly enhanced to increase the sharpness
perception. This enhancement is in fact an emphasis of the middle and high spa-
tial frequencies in the image using unsharp masking techniques [92]. Figure 4.4
shows the enhanced version of the raw image in Figure 4.2.

It should be noted that the image not only looks sharper than the original raw
image but also looks more noisy. We should be aware of the fact that besides
the original information, the quantization errors introduced by the compression
system will also be emphasized by the enhancement. No coding artifact should
be visible in the enhanced image. '

During visual inspection of the image series, the cardiologist may want to ac-
cess images in an arbitrary order. Each image should, therefore, be separately ac-
cessible from the storage medium. This means that each image should be encoded
separately. This type of compression is usually referred to as intra-frame coding.
Finally, the quality of the decompressed images must be such that the cardiologist
can use them for the diagnosis of abnormalities and for decision-making.




4.3. The overlapped transform coding system 67

data. storage data .
raw compression decompression decoded
image raw image
B T e S T e —— =
D/A display
enhancement conversion
,,,,, -
O O
analysis
quantitative
= .
analysis results

Figure 4.3: Block diagram of the steps involved in the interpretation of X-ray
cardio-angiograms.

4.3 The overlapped transform coding system

Based on what has been said above, we conclude that the data compression tech-
nique for compressing X-ray cardio-angiographic image series has to be an intra-
frame lossy coding technique. Figure 4.5 gives a block diagram of such a coding
system. The boxes labelled T,,, Q and C denote (analysis) signal transformation,
quantization and lossless coding, respectively. In the following subsections, we
will describe the individual blocks of the encoder in more detail. We will not con-
sider the source decoder here since it behaves more or less as the inverse of the
source encoder.

4.3.1 Signal transformation

In Chapters 2 and 3, we discussed the design of discrete-time signal transforms for
the compression of images, and we concluded that LOTs are suitable candidates.
These transforms provide a sufficient degree of freedom to reduce the blocking ef-
fects as well as limiting ringing effects due to long filter responses. We interpreted
the LOT as a (K, L, m) multi-rate filter bank for which K = m = 2L. There is
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Figure 4.4: A typical enhanced X-ray cardio-angiogram.

thus one independent parameter which has to be determined from application spe-
cific input data. This parameter is the filter length L. Based on the reasoning in
Section 2.6, we know that L must reflect the average “degree” of stationarity in
the image. This means that images containing relatively stationary data require
longer filter lengths than images in which the statistics vary quite rapidly.

In order to determine the optimal filter length for coding X-ray cardio-angio-
grams, we can set up an experiment similar to the one described in Section 2.6.
The source material we use in this experiment is the enhanced image shown in
Figure 4.4. The size of the image is 512 lines with 512 pixels each, where each
pixel is represented by 8 bits. The coding is performed using a (dead-zone) uni-
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Figure 4.5: Block diagram of the transform coding encoder.

form quantizer and a Huffman encoder [26]. The distortion measure we use is the
squared-error distortion measure. We repeat the coding experiment using LOTs of
different block sizes. These LOTs are designed using the recursive Algorithm 3.1
which produces perceptually-relevant transforms. The resulting rate-distortion
curves for the block sizes K = 16, 32 and 64 are shown in Figure 4.6. It is seen
that the optimal block size for coding the angiograms is K = 32, which corre-
sponds to a filter bank with filters of length 64. If we either increase or decrease
the block size to 64 or 16, respectively, the total rate needed to reproduce the
image with some fixed distortion increases in both cases. It should be noted, how-
ever, that the differences are quite small for this type of imaging modality. One
of the reasons is that, besides the diagnostic information, these images contain
a significant amount of quantum noise. This noise component is stationary over
and between the images and, therefore, requires a large block size for minimum
rate coding. The diagnostic information, however, is non-stationary and needs a
smaller block size. It turns out that a block size of 32 serves as a good compro-
mise to code both components efficiently. Figure 4.7 shows basis functions (only
the first ten basis functions are shown) of the 32 x 64 LOT. This is the LOT that
we will be using in the remainder of this chapter.

For video material, like the “mobile-calender” image used in the experiment
in Section 2.6, it turned out that the optimal block size equals K = 8, as it is
chosen in the JPEG and MPEG standards [5, 7]. This value is significantly smaller
than the optimal block size found for the X-ray angiograms. Therefore, we may
conclude that X-ray cardio-angiograms have a much more stationary character
than video images, so that apart from the blocking artifact argument, this provides
a second argument for not using JPEG or MPEG for the compression of X-ray
cardio images.

Another important conclusion that we can draw here is the following. If we
want to compress different image modalities efficiently, like X-ray vascular, com-
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Figure 4.6: Rate-distortion curves for the X-ray angiographic image shown in
Figure 4.4.

puted tomography and magnetic resonance imaging, with one and the same com-
pression system, the signal transform must not be a fixed in size. This limitation
on the transform does affect for the hardware implementation since it requires a
certain degree of flexibility. We will return back to this issue in the next chapter,
where we discuss an architecture which is fully programmable in the sense that it
can be used for arbitrary signal transforms.

In the remainder of this chapter we consider two-dimensional signals since
some functions in the overall coding system cannot be described in terms of one-
dimensional signals only.

4.3.2 Quantization

The purpose of quantization is to remove information that cannot or need not be
perceived by the receiver. This is accomplished by mapping the incoming se-
quence of transform coefficients u onto quantizer-output symbols. Usually, the
number of distinct quantizer-output symbols is much smaller than the number of
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Figure 4.7: Impulse responses of a size 32 x 64 perceptually-relevant LOT (only

the first ten basis functions are shown).
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Figure 4.8: Block diagram of the quantization operator.

quantizer-input values. The quantizer symbols are transmitted to the decoder. The
number of bits required to represent the quantizer-output symbols (after lossless
coding) is generally smaller than the number of bits required to represent the orig-
inal transform coefficients. Figure 4.8 shows a block diagram of the quantization

nnaratinn
Upriauli.

The block denoted Q is a mid-tread dead-zone uniform quantizer [93, 26].
The characteristic of this quantizer is almost the same as the characteristic of
a purely uniform quantizer, except for a somewhat larger quantization interval
around zero, usually referred to as the dead zone. The dead zone ensures that very
small coefficient values are quantized to zero, which significantly decreases the
entropy of the quantized coefficients and thus reduces the number of bits needed to
represent them. It does not, however, introduce significantly more visible quanti-
zation errors than purely uniform quantization would do. The size of the quantiza-
tion intervals, except for the one around zero, is usually referred to as the step size
of the quantizer. The box denoted W, performs a (perceptual) weighting of the
transform coefficients u to adapt the quantization to the human visual system. The
box W, performs another weighting of the transform coefficients. The objective
of this weighting is to adapt the quantization function to the post-processing en-
hancement, which is very often applied to medical images before they are viewed
on a monitor or printed in hard copy. We will discuss both adaptations in more
detail below.
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Figure 4.9: A typical (normalized) CSF.

Adaptation to the human visual system: the perceptual weighting

The sensitivity of the human visual system to intensity variation is a function of
the spatial frequency. This function is usually referred to as the contrast sensitivity
function (CSF) and is roughly isotropic (rotation-invariant) [73, 74|. Figure 4.9
shows a typical (normalized) CSF {74]. The CSF reflects the fact that the human
visual system is less sensitive to the higher spatial frequencies than to the mid and
lower spatial frequencies.

The overlapped transform decomposes the image into spatial frequency com-
ponents (transform coefficients). We can exploit the non-uniform frequency sen-
sitivity of the human visual system by quantizing the transform coefficients with
varying accuracies (i.e. non-uniform step size). We can accomplish this in prac-
tice by first multiplying the sequence of transform coefficients u = (u(k, 1)) by
weighting factors wy ;, which are positive and bounded by one. These factors are
sample values of the contrast sensitivity function of the human visual system at
the frequencies (k, ). The coefficients weighted this way can then be quantized
with a uniform accuracy quantizer. The net result is that the lower the value of
wy,;» the more coarsely the coefficient u(k, /) is quantized.

Let &, and &, denote horizontal and vertical spatial frequencies, respectively,
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and let £2 = £7 + £2. The CSF is defined [74] as

—§-’——1+c)

[ = e+ fee (55

where the parameters ¢ and &max are 0.05 and 8 cycles per degree, respectively.
This function is modelled in units of cycles per degree and has to be mapped
onto the two-dimensional frequency domain using the calibration parameters of
viewing distance and pixel spacing. As a consequence, the weighting factors have
to be adapted to the conditions under which the images are viewed. In the present
application, it would be unrealistic to fix the viewing distance at a single value,
yet we may assume that the observer will stay within a range of viewing distances,
say A, C R We, therefore, consider the worst case situation for the weighting
function, which implies that we take the maximum sensitivity of the human visual
system over the complete set A,. For this reason, we use a modified CSF as
follows,

fG&n) = max ((c + Ei;x)e_(&%‘“rc‘)) '

Figure 4.10 shows the modified function for a viewing distance ranging from three
times the screen height to infinity. This approach ensures that the modified curve
can be used over the complete set A,,.

Adaptation to post-processing: the enhancement weighting

Very often some form of post-processing is applied to medical images before they
are viewed. X-ray images, for example, are often enhanced in order to increase the
impression of sharpness. This enhancement is in fact an emphasis of the middle
and high spatial frequencies using digital filtering techniques.

Image enhancement is usually based on a technique which is referred to as
unsharp masking [92]. With the method of unsharp masking, the input (raw)
image is first low-pass filtered. The low-pass image thus obtained (the unsharp
mask) is then subtracted from the input image to obtain a high-pass version of the
raw image. This high-pass image, multiplied by a gain factor, is then added to the
input image. This method is depicted in Figure 4.11. Here, x, denotes the raw
image, x, the enhanced image, / the low-pass filter used to obtain the unsharp
mask and y a gain factor. In general, the gain factor will have a value of around 5.
However, if so desired, it can be adjusted by the user. Let %, denote the effective
enhancement filter, i.e., x.(n) = (houn * x,) (n) for all n, and let ﬁenh denote the
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Figure 4.10: Modified CSF for a range of viewing distances.
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Figure 4.11: Enhancement method using unsharp masking.

Fourier transform of /.,;,. Figure 4.12 shows an example of a two-dimensional
magnitude response |fzenh| where h(k, ) = % forallk,/=1,...,5andy =5. It
is clear that this enhancement is in fact an emphasis of the middle and high spatial
frequencies.

In coded images, the enhancement not only cmphasizes the relevant medical
information, but the coding noise as well. Steps should be taken to ensure that
coding artifacts, which were below the threshold of visibility in the decoded raw
images, do not become visible in the enhanced version of these images. Of course,
one way of solving this problem is to perform the enhancement before the images
are coded. That way, the decoded data are suitable for viewing, but are not in the
correct format for the quantitative measurements such as vessel diameter. More-
over, as different physicians prefer different settings of the image enhancement
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Figure 4.12: Magnitude response Ilge,,;,l.

(different gain factors), the non-enhanced data should be compressed. The com-
pression method, therefore, needs to be adapted to the enhancement which may
be applied later.

The overlapped transform coding meihod is well suited to adapt the Guaiiti-
zation to the image enhancement. Since it divides the spatial frequency spectrum
into a large number of narrow frequency bands (K = 32), we can quantize the
frequency bands that will be enhanced later on more accurately, i.e. with a smaller
step size than those that will not be enhanced. This can be achieved by applying
an enhancement weighting, in addition to the perceptual weighting. This enhance-
ment weighting can be calculated as follows.

Assume that we apply the enhancement to the images before they are coded.
In that case, due to the associative property of the linear convolution, the filter
bank channel signals u; ; are given by

Uy = Xe*hgy
= (X * Renn) * hk,l
= X% (henh * hk,l) -

Hence, the transform coefficients can be calculated by convolving the raw in-
put data with an effective filter k., * hj ;. Next, consider the coding of raw
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images using the enhancement weighting. Here the weighting coefficients, say
et k.1 =1,..., K, should be chosen such that the weighted transform coef-
ficients approximate the transform coefficients obtained by coding the enhanced
data. For this reason, we minimize

i = Inkshes = hown * higlly.  forall k,I=1,... K, “.1)
for some suitable choice of «. We choose || - ||, to be the Frobenius norm, which
results in a least-square solution.

Let 4y, k.1 =1,..., K, denote the weighting coefficients which minimize
(4.1). By setting the derivative with respect to 1, ; on the right-hand side of (4.1)
to zero, we have

8CD/\'./

N1

= 2hi g, Tkl — hepn * hy ) =0,

N1 =1h.1
[rom which we conclude that
Py = (he.ts Nenn ;khk./>
' oMl

forallk,/ =1, ..., K. Note that for separable signal transforms we have [[A ;|| -
= |lhgll2 A1 |2, where hy and h; are the one-dimensional filters constructing /iy ;.

The resulting enhancement weighting function for the LOT described in sub-
section 4.3.1, obtained by calculating (4.2) for all &, /, is shown in Figure 4.13. As
expected, its shape is similar to that of the frequency response of the enhancement
filter. Obviously, we can combine the enhancement weighting and the perceptual
weighting of the transform coefficients without any additional complexity being
introduced. By doing so, we obtain the combined weighting function W, given in
Figure 4.14.

, 4.2)

4.3.3 Lossless coding

The purpose of the lossless coding is twofold. The first function is to remove
redundancy in the quantizer-output symbols. The quantizer-output symbols are
highly redundant since the quantizer maps the incoming sequence of transform
coefficients onto a smaller number of output symbols, which results in a peaked
probability density function. This redundancy can be climinated by mapping the
quantizer-output symbols onto another, more efficient, representation. The map-
ping is reversible (lossless), i.e., the quantizer-output symbols can be exactly re-
constructed in the decoder. The second function is to map the quantizer-output
symbols onto binary codewords that are transmitted or stored.
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Figure 4.13: Enhancement weighting.
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Figure 4.14: Total combined perceptual and enhancement weighting function.
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The quantizer-output symbols are coded block-by-block, i.e., each block of
K x K transform coetficients is treated independently. Within a block, the symbols
are first converted from a doubly-indexed sequence to a singly-indexed sequence
by using a scanning pattern. We have adopted the frequently used zig-zag scan-
ning pattern [26]. Another scanning pattern, for example, is the Hilbert or Peano
scanning pattern [94, 95]. The scanned quantizer-output symbols are coded by us-
ing a combination of variable-length coding (VLC) and run-length coding (R1.C)
which, in principle, is equivalent to the method used in the MPEG image-coding
standard |8, 9]. It works as follows.

Let ¢ = (qi)« denote the singly-indexed sequence of quantizer-output sym-
bols. The first element, which corresponds to the DC information within a block,
is coded separately using a fixed-length binary codeword. The actual length de-
pends on the original pixel resolution and the first basis function of the signal
transform. The run-length coding then converts the remaining elements to a se-
quence of triples (v, m,, s,), where r,, denotes the length of a concatenation of
zero-valued symbols (called the run-length), m, denotes the magnitude of the first
non-zero symbol following these zero-valued symbols and s, denotes the sign of
this non-zero symbol. The last element of the sequence is a special symbol (called
the end-of-block (EOB) symbol), indicating that the last non-zero coefficient has
been encountered in the block. For example, let’s assume that the sequence of
quantizer-output symbols ¢ is given by

q = (127,80, —20,0,5,0,0,0,1,0,...,0).

The first element (with value 127) is fixed-length coded. The remaining elements
are converted by the run-length coding to a sequence of triples (v, m,, $,), termi-
nated by the EOB symbol, as

(€0, 80, 1), (0,20,0), (1,5, 1), (3, 1, 1), EOB) ,

were s, = 1 indicates a positive value and s, = O a negative value. The variable-
length coding maps the sequence of triples (including the EOB symbol) onto
variable-length binary codcwords originating from a two-dimensional variable-
length coding table which has entries for the run-length and the magnitude. The
sign is separately coded with one bit following the variable-length codeword.
The number of possible combinations of run-lengths and magnitudes is very
large. Codewords are given in the table only for the most frequently occurring
combinations. For other combinations a special escape (ESC) codeword, which
is part of the table, is generated, followed by the fixed-length binary coded run-
length, magnitude and sign. Table 4.1 shows an example of the format of the
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L(rn , My) Hiodeword J

0,1) 0
0,2) 100
0,3) 101
(1,1) 1110
(1,2) 11010
2, 11011
EOB 1100
ESC 1111

Table 4.1: Example of a two-dimensional Huffman table.

variable-length coding table assuming that only 8 codewords are used. The num-
ber of bits needed to represent the run-length depends on the block size of the
transformation. For example, if the block size is 32 x 32, each block contains 2'°
symbols so that 10 bits are needed to represent the run-length. The number of bits
needed to represent the magnitude again depends on the original pixel resolution
and the basis functions of the signal transform. In addition to the quantizer-output
symbols, the step sizes used during the quantization are coded in the bit stream.

Since we assign short codewords to quantizer-output symbols with a high
probability and large codewords to those with a low probability, the bit rate per
coded image varies from image to image. Where it is necessary to produce a con-
stant number of bits per image, we can design some controlling mechanism which
ensures that, within a certain degree of accuracy, each image is encoded with the
required number of bits by varying the step size over the images [96, 97, 98, 99].
A bit-rate control mechanism of this kind is based on a feedback control system
in which the step size is updated from block to block, depending on the number
of bits actually produced.

A disadvantage of varying step sizes within an image is that some parts of the
decoded image may contain more clearly perceivable coding artifacts than others.
To avoid this “inhomogeneous distribution” of the coding artifacts, the control
systems aim to minimize the variation in the step size as much as possible.

To ensure that the control system is fast and accurate, the number of blocks of
K x K transform coefficients should be sufficiently large {98]. In our transform-
coding system, we use fairly large blocks of transform coefficients (32 x 32 co-
efficients). An image of 512 x 512 pixels, for example, therefore contains only
256 blocks, which has proven to be insufficient for proper control. In [100] this
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problem is solved by dividing each block of transform coefficients into, say n,
smaller segments and updating the step size from segment to segment. Computer
simulations have shown that good results can be obtained for n > 4. An almost
constant step size can be obtained with this method and the required bit rate can
be accurately achieved.

4.4 Computer simulations

In this section we consider computer simulation results of the compression method
described in the previous section.

4.4.1 Experimental set-up

A large number of X-ray images has been compressed at compression ratios in the
range of 8 — 32. The image material originated from various medical centres, viz.
the Hopital Cardiologique BP Lyon Monchat, France, the Hopital Cardiologique,
Service Hémodynamique, CHRU de Lille, France and the University of Texas,
Hermann Hospital, Cardiology Division, Houston, USA. Compression was ap-
plied to the raw images. The bit-rate control method described in [100] was used
to ensure that a given compression ratio was indeed accurately achieved.

Original and decoded images were compared using a 17 inch medical black-
and-white monitor at a viewing distance of three times the screen height or more.
Before viewing, the images were first enhanced with an enhancement filter as
described in subsection 4.3.2.

We compared our results with those obtained using the conventional non-
overlapped DCT based coding methods JPEG and MPEG-1. For JPEG we used
the baseline version. For MPEG we chose groups of pictures (GOPs) of length
two, each consisting of one I and one P picture. This means that with MPEG-1
two images are encoded in combination, so that only groups of two images can be
retrieved and decoded as a unit. MPEG is actually a standard for coding colour
video signals consisting of one luminance component and two colour-difference
components. We have simply assumed that the colour components are equal to
zero and coded our images as the luminance component. The compression ratio
we used in the comparison was 8, 12 and 16.

We used the peak signal-to-noise ratio (PSNR or simply SNR) as an objective
quality measure. Let x = (x;;) ,’(V ,_; and ¥ = ()?k,l)f:f ,—; denote the original
and decoded image, respectively, and let e = x — x = (ek,l),{,\f ;= denote the
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coding noise introduced by the compression. Assuming that e is a zero-mean
noise process, the variance, say aez, is estimated by

»_ 1§
2
% =2 Z lex,i”.
K=

The SNR is then defined by
2552
SNR = 10 " log ( - ) (dB).
Ge

4.4.2 Results

In this subsection we discuss results obtained by computer simulations of the over-
lapped transform-coding method. The observations described here are those of the
author and several of his colleagues, who include a number of medical physicists.
At present, more carefully defined perceptual evaluations are being performed in
the clinical environment, with radiologists and cardiologists acting as viewers.
The preliminary results of these evaluations will be described here. A more de-
tailed description will be published in the near future.

Performance of the overlapped transform system

We observed that the type of artifacts introduced by our overlapped transform-
coding method was completely different from the type of artifacts introduced by
JPEG and MPEG. At compression ratios higher than about 8, JPEG and MPEG
introduce blocking artifacts, i.e. individual blocks of 8§ x 8 pixels become clearly
visible and small details inside the blocks, such as small blood vessels, disap-
pear or are inaccurately represented. Our overlapped transform-coding system
does not introduce blocking artifacts. At large compression ratios (greater than
16), however, some change in the characteristics of the noise which is present in
the original images, can be observed. Furthermore, small details become a little
unsharp.

Figures 4.18, 4.19, 4.20 and 4.21 show the decoded versions of the origi-
nal image depicted in Figure 4.4, at compression ratios of 8, 12, 16 and 32, re-
spectively. The image shown in Figure 4.4 is one out of a sequence (52 images)
recorded at the Hopital Cardiologique Lille. The images in this sequence mea-
sured 512 lines with 512 pixels each, where each pixel is represented by 8 bits,
and has an image rate of 12.5 Hz. The corresponding difference images are shown
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Figure 4.15: SNRs of the coded and enhanced X-ray cardio-angiographic image
series at compression ratios 8, 12, 16 and 32.

in Figures 4.22, 4.23, 4.24 and 4.25. To make the coding errors more visible, the
differences have been multiplied by 5 and a value of 128 (middle grey) has been
added. Figure 4.15 shows the SNRs of the complete decoded and enhanced se-
quence at compression ratios of 8, 12, 16 and 32,

The image quality perceived at different compression ratios is as follows. At
compression ratios up to about 12, the overlapped transform-coded images can
hardly be distinguished from the original images. At a compression ratio of 16,
the artifacts described above start to become visible, but the perceived quality is
still good. We also observed that the image quality degrades very gradually as
the compression ratio increases; the images still look reasonable at a compression
ratio of 32.

Overlapped transform coding versus JPEG and MPEG

In order to make a significant comparison between the overlapped transform
method and the non-overlapped methods JPEG and MPEG, we also applied an
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enhancement weighting in the DCT based systems. At a compression ratio of 8,
the MPEG-coded images look reasonably good, whereas some blocking artifacts
can already be observed in the JPEG-coded images. At compression ratios of 12
and 16, both the JPEG-coded and the MPEG-coded images clearly show blocking
artifacts. These artifacts are most apparent in the JPEG-coded images. If the de-
fault viewing conditions were changed, by applying zoom for instance, the MPEG
and JPEG-coded images look poor: the blocking artifacts are emphasized, the im-
ages look blurred and the contours of large vessels are not very well defined and
would be difficult to determine in a quantitative coronary analysis. The zoomed
overlapped transform-coded images are of good quality, but slightly lacking in
definition. Figures 4.26 and 4.27 show the decoded images when the JPEG and
MPEG coding method is used, respectively, at a compression ratio of 12, and Fig-
ures 4.28 and 4.29 show the corresponding difference images (again the coding
errors have been multipiied by 5 and a value of 128 (middle grey) has been added).
Figure 4.16 shows us the SNRs of the complete decoded and enhanced sequence at
the same compression ratio for the JPEG, MPEG and overlapped transform-coded
method.

Influence of the enhancement weighting

In order to determine how well the performance of the coding system using the

nhancramant waiohting annravimatac tha narfarmance of the cndine cuctam in
Ullllul‘\&ulll\/‘ll— vy Uléllllllé uyljl V/ALLILIULGCY LA }}\/ll\."lll“ll\/\/ wi uiawv \/\J\-‘llle ’J SIS Y

which the input data are enhanced before being coded, we conducted the follow-
ing experiments. In one experiment we performed the enhancement before the
images were coded. We shall refer to this situation as “pre-enhancement”. We
compared the outcome of this experiment with the outcome of an experiment in
which the raw data are coded using the enhancement weighting, and enhanced
afterwards. We shall refer to this situation as “post-enhancement”. Note that the
pre-enhancement configuration is optimal in the sense that coding errors which
are below the threshold of visibility in the decoded images do not become visible
after applying the image enhancement, as is the case with the post-enhancement
configuration.

In a practical situation, the reconstructed images are stored on a storage
medium. This implies that the image decoding is followed by an additional quan-
tization which maps the reconstructed (floating-point) results onto the original
pixel resolution. This quantization introduces additional noise in the image. In
the post-enhancement configuration, this additional noise will be amplified by the
enhancement filter. To see what influence this has on the SNR and the image
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Figure 4.16: SNRs of the coded and enhanced X-ray cardio-angiographic image
series using the JPEG, MPEG and overlapped transform coding methods at a

compression ratio of 12.

quality, the post-enhancement experiment was performed both with and without
mapping onto the 8 bits per pixel resolution. In the latter case, this means that the
floating-point data produced by the synthesis mapping were directly enhanced.
We will refer to this configuration as the floating-point post-enhancement con-
figuration, or fit. post-enhancement, for short. To summarize, we considcred the

following cases:

e pre-enhancement,

e post-enhancement using enhancement weighting with additional mapping

to & bits/pixel,

e post-enhancement using enhancement weighting without additional map-

ping to 8 bits/pixel.

Figure 4.17 shows the SNRs of the decoded images in the test sequence at a re-
duction factor of 12. The use of post-enhancement together with the enhancement
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Figure 4.17: SNRs of the coded X-ray cardio-angiographic image series using
different enhancement methods at a compression ratio of 12.

weighting approximates the pre-enhancement configuration very closely. When
mapped onto the original pixel resolution, however, the SNR of the enhanced im-
ages decreases compared with the optimal situation. It should be noted that this
difference becomes relatively small for high compression ratios. Indeed, the total
coding noise e can be thought of as the combination of “real” coding noise with
variance, say o, and noise produced by the additional mapping with variance,
say o2. Allowing for the two noise components, the variance of the total coding
noise becomes

2 2 2
o, =0, +am’

with equality if and only if both noise sources are statistically independent. With
this, the SNR of the decoded images can be expressed as

2552
SNR > 10 "log [ —— ).

c m
It is clear that the influence of the errors introduced by the mapping will decrease

with increasing reduction factors.
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To determine the perceptual influence of the introduced quantization noise,
we compared the pre-enhanced sequence with the post-enhanced sequences. Fig-
ures 4.30, 4.31 and 4.32 show the results (enlarged) for the pre-, post- and fit.
post-enhancement scheme at a reduction factor of 12. Although the SNR plots
would suggest that the flt. post-enhancement is significantly better than the post-
enhancement with the additional mapping, the photographs show that this effect is
hardly visible. However, at very high compression ratios (greater than 40), these
crrors become clearly visible as contouring. This phenomenon will only occur in
flat areas since in these regions almost all grey values will be mapped onto the
same quantization level before being enhanced.

Clinical evaluations

In the ongoing clinical evaluations [101], images compressed with the overlapped
transform coding method have been presented to radiologists and cardiologists.
The compression ratio used was 12. The viewing sessions took place in the
normal clinical environment. Of the set of patient images reviewed in a single
session, some were original, some were coded and the observers were not in-
formed which was which. The observers were requested to do the same diag-
nostic task as they perform in clinical practicc in their cardiology departments
with both still and moving images. They were free to review each image series at
their own pace, to move forward and backward and change the speed. Changes
in the post-processing, such as increasing the default edge enhancement, apply-
ing zoom, changing the contrast and brightness, were not allowed. There was
no significant difference found in the interprctations based on original and the
overlapped transform-coded angiograms. The variability in the diagnosis intro-
duced by the fact that different observers have different professional judgements
is significantly greater than the variability introduced by the compression. This
suggests that higher compression ratios may also be appropriate.

4.5 Conclusions

We have investigated the potential of overlapped transform coding for lossy data
compression of X-ray cardio-angiographic image series. We observed that over-
lapped transform coding does not introduce any blocking artifacts, in contrast to
conventional non-overlapped transform coding. With non-overlapped transform
coding, blocking artifacts start to become visible in enhanced images at compres-
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sion ratios of about 8. With overlapped transform coding, however, the original
images can hardly be distinguished from the coded images at compression ratios
up to about 12. At higher compression ratios, the perceived quality is still high,
but some change in the noise structure that is usually present in the original image,
and in small details such as small blood vessels, can be observed. Moreover, since
the overlapped transform coding method divides the spatial frequency spectrum
into a large number of narrow frequency bands (K = 32), it is particularly well
suited to adapt the compression to the properties of the human visual system and
to post-processing by quantizing the frequency bands to a different degree.
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Figure 4.18: Coded, enhanced X-ray cardio-angiographic image at a compression
ratio of 8 (first encoded and decoded, then enhanced).
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Figure 4.19: Coded, enhanced X-ray cardio-angiographic image at a compression
ratio of 12 (first encoded and decoded, then enhanced).
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Figure 4.20: Coded, enhanced X-ray cardio-angiographic image at a compression
ratio of 16 (first encoded and decoded, then enhanced).
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Figure 4.21: Coded, enhanced X-ray cardio-angiographic image at a compression
ratio of 32 (first encoded and decoded, then enhanced).
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Figure 4.22: Difference image at a compression ratio of 8 (scaled).
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Figure 4.23: Difference image at a compression ratio of 12 (scaled).
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Figure 4.24: Difference image at a compression

ratio of 16 (scaled).
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Figure 4.26: JPEG coded, enhanced X-ray cardio-angiographic image at a com-
pression ratio of 12 (first encoded and decoded, then enhanced).
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Figure 4.27: MPEG coded, enhanced X-ray cardio-angiographic
pression ratio of 12 (first encoded and decoded, then enhanced).

image at a com-
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Figure 4.29: Difference image of the MPEG coded image at a compression ratio
of 12 (scaled).
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Figure 4.30: Coded, pre-enhanced X-ray cardio-angiographic image (enlarged) at
a compression ratio of 12.
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Figure 4.31: Coded, post-enhanced X-ray cardio-angiographic image (enlarged)
with enhancement weighting at a compression ratio of 12.
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Figure 4.32: Coded, fit. post-enhanced X-ray cardio-angiographic image (en-
larged) with enhancement weighting at a compression ratio of 12.
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5.1 Introduction

In the previous chapters we touched upon the design of analysis and synthesis
filters for data compression of images and we concluded that LOTs were suitable
for this application. In this chapter we concentrate on the realization of these
filters, in particular on realizations which are suitable for very large scale integra-
tion (VLSI) technology. Rather than designing realizations for these transforms
directly, we will focus on the computing of

y = Ax,
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where A € C"*"  x € C" can be arbitrary. After showing how we can deal
with this problem, we will apply this solution to the LOT itself, to its constituent
matrices A,, A, and B,, in particular (see Chapter 3).

In this chapter we try to find realizations that behave optimally in the sense
that they exhibit low sensitivity to perturbations in the coefficients. However, re-
alizations that are insensitive to coefficient perturbations do not need to be truly
optimal. It might very well turn out that this notion of optimality is not appropriate
from the point of view of implementation. A realization which is optimal in the
sense that it is numerical robust is not necessarily efficient in terms of implemen-
tation, i.e., its computational complexity or its silicon area in the case of a VLSI
implementation may be too high. We show that, by considering both algorithm
and architecture design simultaneously, we can design numerically robust and
implementation-efficient realizations of filter banks. Moreover, such realizations
can be made fully programmable in the sense that the architecture can be used
for arbitrary signal transforms, including the DCT, the LOT or discrete wavelet
transforms. We argue that established structures, in particular butterfly structures
(the perfect shuffle architectures), used to compute Fourier-like transforms such as
the DCT, are not naturally the “best possible” structures as is commonly claimed
and believed. Butterfly structures have emerged from the fast transforms which
require only 7 log m multiplications instead of m? for a size m x m signal trans-
form. This is a substantial saving in computation effort for almost all practical
values of m (typically m > 8). However, as the transtorms commonly used are
unitary, large word lengths are needed to ensure that the finite precision transform
preserves this desirable property. We claim that there are alternative structures
which are low-cost in terms of the number of operations and the implementation
complexity of the operations.

Organization of this chapter

This chapter is organized as follows. For the purpose of selecting an algorithm
which admits a suitable realization, in Section 5.2 we will investigate the be-
haviour of different realizations and their corresponding implementations. We
first provide a precise definition of optimal realizations. We show that (minimal)
orthogonal realizations are optimal according to that definition and that they are
obtained through a factorization of A into elementary Givens rotation matrices.
Next we turn to the VLSI architectures to which these realizations can be mapped.
It is known that the Givens rotation can be implemented in CORDIC arithmetic.
The CORDIC computation technique was originally introduced by Volder [102]
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and later generalized by Walter [103]. CORDIC performs a plane rotation over an
angle @ = Y. _;0;6; in which o; € {—1, 1} and (6;);¢7 i a fixed-length sequence
of shift-add operations. The length |Z| depends on the precision required and the
chosen set of shift-adds. For example, a rotation over an angle 6 with s bits accu-
racy takes s + 1 elementary shift-add stages [102, 103, 104]. However, CORDIC
arithmetic can be more broadly defined by adding to the range 0 < |0] < 7
of angles a discrete set of feasible angles which admit simple rotations, called
micro-rotations or p-rotations, which were first introduced in [105, 106] to solve
the symmetric eigenvalue problem,

For p-rotation-based rcalizations to be feasible, it is necessary to first identify
a suitable, numerically robust algorithm to compute y = Ax. This is done in
Section 5.3. We propose an algorithm which is based on the RQ-factorization of
a properly chosen matrix, say X € C”"*" m < n. By properly chosen, we mean
that X X* is a multiple of the identity operator. In Section 5.4 we show how we
can apply this algorithm to the analysis and synthesis maps of a transtorm coding
system. We discuss both analysis and synthesis operator realizations and we de-
rive the conditions under which both operators can be given the same realization.
The RQ-factorization is commonly computed using a concatenation of Givens ro-
tation matrices [107, 108]. The purpose of the rotations in the RQ-algorithm is to
nullify the super-diagonal entries of X to reduce it to a lower-triangular form. This
is usually done by first nulling the super-diagonal cntries of the last column of X,
then those of the second-last column, and so forth until a lower-triangular form is
eventually reached. Note that if X X* is diagonal, the resulting lower-triangular
matrix will also be diagonal. The use of p-rotations instead of exact Givens ro-
tations, however, may lead to a different ordering in which the super-diagonal
entries of X are zeroed. Indeed, since the set of feasible angles is a subset of
[0, ], entries of X can only be made approximately zero and the accuracy de-
pends on the entry’s value. In Section 5.5 we propose an iterative algorithm to
compute the RQ-factorization of X. The idea behind this algorithm is that we
apply a sequence of rotations to X with the property that each new X is “more
diagonal” than its predecessor. Eventually, the off-diagonal entries of X are small
enough to be declared zero. In Section 5.6 we discuss the architecture imposed by
this algorithm, in which the realization of LOTs can be mapped. We discuss how
to increase the efficiency of the VLSI implementation by introducing concurrent
processing and designing LOTs which perfectly match hardware constraints, i.e.,
LOTs which are built on g-rotations. The use of such transforms can save more
than 25% of the total silicon area.

In Section 5.7, we make some concluding remarks on the final VLSI imple-
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mentation. Here, we discuss complexity issues such as layout and total silicon
area for the implementation of the LOT, and compare these results with alterna-
tive implementations, viz., a conventional butterfly-based VLSI implementation
and an implementation based on a TriMedia digital signal processor. Finally, in
Section 5.8, we draw some conclusions.

5.2 Optimal realizations

5.2.1 Introduction

Digital filters can be realized in a variety of structures. Which realization to use
may depend on various measures of performance. Thus the cost of the realization
measured in terms of the number of multiplications may be critical. Another mea-
sure may be the sensitivity of the input-output map with respect to perturbations in
the realization parameters, as different realizations can produce markedly differ-
ent performances due to errors incurred by the use of finite word-length registers.
To investigate these issues in more detail, it is necessary to know how the actual
computation of the output is achieved. This includes knowing what internal vari-
ables are used and in what order what variables are stored for later use, and other
detailed information about the computational structure. One convenient model for
analysing filter structures is the signal flow graph (SFG).

A signal flow graph is a network of interconnected operations which takes an
input signal at its input terminal and computes the output signal delivered by the
output terminal. For shift-invariant SFGs, the relation between output and input
signals can be expressed by means of the network’s transfer function. Thus a fil-
ter SFG consists of nodes and directed branches. The branches are commonly
labelled with simple branch maps, such as the unit delay with a transfer func-
tion z~" and multiplication constants with a transfer function equal to that gain.
Figure 5.1 shows a simple example where the corresponding transfer function is
given by H(z) = hg + hiz7 '+ hyz 2

A rational function H(z) of the form

B(z)  No+biz7 + -+ gz
Ay Nl +aiz '+ +azry’

where z € C, N = max(p, ¢g) and A(z) # 01in |z| > 1, is a transfer function of a
(causal) discrete-time or digital filter with the impulse response

H(z) =

5.1

1
h(n) = —% H(z)z" 'dz forall neZ,
2ri Jo
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hzz_%

where C is any closed counterclockwise contour in |z| > | and h(n) is absolutely
summable. The integer N in (5.1) is called the degree of H(z).

A digital filter realization of H(z) is any (finite) signal flow graph which
provides a receipt for the computation of a signal y from a signal x satisfying
Y(z) = H(z2)X(z), where Y(z) and X (z) are the Z-transforms of the signals y
and x, respectively. A (digital) implementation of a digital filter realization is any
mapping of the realization on a physical (digital) processor, be it a computer main
frame, a mini-computer, a micro-computer, a signal processor or a VLSI chip. A
given transfer function H(z) has neither a unique realization nor a unique imple-
mentation. For example, Figure 5.1 and Figure 5.2 show two different realizations
of the same transfer function H(z) = ho + hi1z~ ' + haz~% where hg = 1 + ko,
hy = ki(1 + ko)(1 + k) and hy = (1 + kg)ky. Also, both realizations can be
mapped onto various processors and circuits.

In order to arrive at a useful definition for optimal realization of transfer func-
tions, we will start with some preliminary definitions to facilitate the following
discussion. We illustrate the definitions using the realizations shown in Figure 5.1
and Figure 5.2 as examples.

Definition 5.2.1 (irreducible transfer function) A transfer function H(z) =
B(2)/A(2) is said to be irreducible if the polynomials B(z) and A(z) are rela-
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tively prime or coprime, i.e., have no common zeros.

Definition 5.2.2 (minimal realization) A realization is minimal if the number of
delay operators z~! is minimal, i.e., is equal to the degree of the corresponding
irreducible transfer function.

In our example, both the realization in Figure 5.1 and Figure 5.2 are minimal since
the number of delays equals the degree of H (z).

Definition 5.2.3 (direct realization) A (minimal) realization is said to be direct
if the parameters in the SFG are the coefficients of the (irreducible) transfer func-
tion.

The realization in Figure 5.1 is a direct realization whereas the realization in Fig-
ure 5.2 is not.

Definition 5.2.4 (canonical realization) A minimal realization is said to be ca-
nonical if the number of parameters in the SFG equals the number of coefficients
in the (irreducible) transfer function.

Note that minimal realizations may be canonical, without being direct realizations.
For example, the SFG in Figure 5.1 is a direct canonical realization whereas the
SFG in Figure 5.2 is canonical but not direct. Indeed, there is a one-to-one map-
ping (hg, hy, hy) = (ko, k1, k2). We can use the freedom we have in selecting
a realization for H(z) to optimize criteria related to the implementation of H (z).
Implementation considerations can influence the structure of the algorithm or re-
alization, and vice versa, the structure of the algorithm often suggests an imple-
mentation.

In general, the operations in digital filters are implemented in finite-precision
arithmetic. The effect of parameter word-length limitation on the transfer function
is of a static nature and only depends on the realization structure. However, there
is also a dynamic word-length limitation effect which is caused by the truncation
or rounding of the signals in the graph, in particular of the state variables that
have to be stored in finite-length registers. A third finite-length register effect
is the limit-cycle effect. Limit cycles are periodic signals (oscillations) that are
sustained by the signal quantization non-linearities.

Realizations that are insensitive to parameter perturbations and that produce
low output quantization noise, are not necessarily truly optimal. The reason is that,
even in such cases, the complexity may turn out to be greater than strictly required.
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By complexity, we mean implementation complexity, mainly size and dissipation
in VLSI implementations. For example, if the realization in Figure 5.2 was be
insensitive to perturbations of the multiplier coefficients k;, then the multiplication
cost could be reduced dramatically by substituting for k; the “nearest” value ki
which is in an almost trivial canonical signed-digit form.

We thus arrive at a useful definition of the notion of optimal realization of a
transfer function, which is the following.

Definition 5.2.5 (optimal realization) A realization will be said to be optimal if
1. it is minimal and canonical,

2. it exhibits low sensitivity to perturbations in the parameters and quantiza-
tion of the internal signals,

3. it does not sustain any limit cycles due to feedback of both coarsely and
granularly distorted signals,

4. it is suitable for low-cost high-accuracy VLSI implementation.

Deriving optimal realizations satisfying the above mentioned properties is not
easy. Very many of the commonly used realizations violate one or more of these
optimality conditions. Direct implementations, for example, are not optimal be-
cause they require (O(N?) multiplications per output sample [60]. Furthermore,
direct implementations of rational functions are numerically unstable, i.e. a small
variation in the input can cause very large variations in the output, which requires
large word lengths as a result [109]. We will return to this issue later. Notwith-
standing these drawbacks, directly implemented transfer functions are attractive
because of their simplicity and the way they match common multiply-accumulate
operations in DSP architectures. Thus, although there are alternative non-direct
realizations that come close to optimal, they mostly violate the fourth of the op-
timality conditions, i.e., their structure tends to prevent efficient mapping onto
silicon. However, leaving the mapping issue aside for the moment, there is one
class of realizations that deserves our attention because — as we shall show — if can
be exploited to the utmost optimality. The realizations we are referring to are the
class of orthogonal realizations which we will discuss in more detail in the next
subsection.
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Figure 5.3: The redrawn SFG of the direct realization.

5.2.2 Orthogonal realizations

let us consider the example in Section 5.2, Figure 5.1. Remember that this is a
direct canonical realization of the transfer function H(z) = hg +hjz ' + hyz L.
We can redraw this structure as shown in Figure 5.3. This SFG is clearly a cascade
of elementary sections performing either a multiply-accumulate operation or a
delay operation. It is this cascade that we now use for error analysis. The input-
output map is

Y()=[0 1 ]LzlezLo[ (1) ]X(z),

where

I'l Oﬂrz’flG'll'l G'II'Z~IG1I’1 G'I

LzZLlZL":[/Q 1“ 0 1J|_h1 1“ 0 1“110 1 J
Note that Lg, L and L, are lower-triangular matrices and are, therefore, generally
sensitive to perturbations in the coefficients &; (see Appendix D). In fact, the
matrices Lo, Ly and L, are elementary Gauss matrices. It is well known (see
also [110, 111, 112]) that Gaussian elimination is an unstable method; Gaussian
elimination can give arbitrarily poor results, even for well-conditioned problems.
We conclude that such direct canonical realizations are sensitive and, therefore,
not suitable for finite-precision arithmetic.

We can overcome the stability problems of the Gaussian elimination by choos-
ing a realization which is based on a factorization into unitary and diagonal (scal-
ing) matrices. One example of such a realization is shown in Figure 5.4, where
cpand s,, n=1,...,3, denote cos(d,) and sin(h,,), respectively. Note that this
realization is minimal and canonical. The input-output map is

Y(2)=[0 1 ]UZZUleol: } ]X(z),
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Figure 5.4: An SFG based on unitary sections.
where
U, ZU ZUy =

cy  —8 z7V 0 [ | 271 0 co  —S0
52 C2 0 1 51 Cl 0 1 S0 [#4) )

The matrices Uy, U; and U, are elementary Givens rotation matrices. The rela-
tion between (hq, i, h2) and (6g, 81, 6>) is given by

ho = (co + so)cicz,
hy = (co — so)sica + (co + $0)5152,
h2 = (C() — S())C1S2.
To show that this orthogonal realization is numerically stable, we will rely on

the theory of the condition of a set of linear equations [113, 111]. Consider the
computation of

y = Ax, (5.2)

where A € C"*" is of full rank and x € C*. The condition of (5.2) measures,
by definition, the worst relative variation of y with respect to the corresponding
allowable variation of A and x. It holds (see Appendix D) that

lldyll ldA]l IIdx||>

— < A _—
Tk )( 1AL

where
K (A) = | A 1Al

is called the condition number of a set of linear equations which quantifies the
sensitivity or numerical stability of the computing of (5.2). Note that k() > 1
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and that it depends on the underlying norm. When the norm is to be stressed,
we use a subscript. For the 2-norm, unitary matrices are perfectly conditioned in
that k2(A) = 1 if A is unitary. If we return to the realization in Figure 5.4. Put
A = U, ZU ZUy. Since Z, Uy, U; and U, are unitary, we have

k2(A) = k2(U2)i2(Z)k2(Ur)ka (Z)ka(Up) = 1,

and we conclude that these orthogonal realizations exhibit low sensitivity to per-
turbations in the parameters 6,, statically as well as dynamically. The class of
(minimal) orthogonal realizations also satisfy the third optimality condition, i.e.
if properly implemented the realization cannot sustain any limit cycles (see also
[60]). More about limit cycles can be found in [114, 115].
It is well known that Givens rotations can be implemented in CORDIC arith-
metic. In CORDIC arithmetic, the matrix
cos(8)  sin(@)
GO) = [ —sin(@) cos(8) ]’

is a function of the single parameter 6, i.e., it is a rotation operator, whereas in
multiply-accumulate arithmetic this matrix leads to four independent multiplica-
tions. There are many ways to implement the rotation in CORDIC arithmetic
[102, 104, 116, 117]. Most of them are defined for all 0 < |@| < w. However, if
the angle support is chosen appropriately, the rotations can be implemented at low
cost. These “simple” rotations are called micro-rotations or u-rotations and were
first introduced in [105, 106]. In the next subsection we briefly discuss p-rotations
and study their numerical behaviour in finite word-length arithmetic.

5.2.3 Fast u-rotations

In order to facilitate the following discussion, we have adopted certain conven-
tions. Let Q be the quantization operator. For computations with s digits after the
binary point, Q satisfies Qx = x + &, where |&| < n and 7 is the unit round-off.
For example, in rounded arithmetic we have n = 2-6+D whereas = 2% in
chopped arithmetic. If x;,x; € C* satisfies |jx; — x2/lc0 < 71, We cannot distin-
guish between them. We say that x| and x; are equivalent modulo n and write
x; = x2 (mod 7). In the remainder of this chapter we assume that scaling fac-
tors are introduced if necessary, so that every number x lies in the standard range
x| < L.
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We are now in the position to discuss p-rotations and to study their numerical
behaviour in finite word-length arithmetic. We define a fast u-rotation F e C2*2
as

¢ elvs ~
F = I: ivg . :|, ¢, 5,y R, (5.3)

where 0 < ¢,§ < 1. Since a complex u-rotation can be implemented as a com-
position of real p-rotations (see also [118]), in this section we have restricted
ourselves to y € {0, 7}, and thus ¢'Y € {—1, 1}.

Lemma 5.2.1 From the above definition and notation we have the following prop-
erties:

1. Let F = UX V™ be the singular value decomposition of F. Then
01 =03 = \/m .

2. If G(9) is a Givens rotation matrix, then
F =0,G(9),

with

O]

6 = arctan (

).

Proof:

1. From (5.3) we conclude that FF™* = (52 + §2) I, so that

LX* = U*(FFY)U
= (52—}-52)1,

whence o7 = 09 = +/¢2 4 §2.
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2. From assertion 1, we have F = UXV* = oyUV* = 01G(#) and, there-
fore, G(0) = o 'F. By inspection of (5.3), we conclude that

iy
-1 C ers
o, F = .
! [ —e s ¢ ’

1

where ¢ = o !¢ and s = 0,75, so that

K}
6 = arctan (—)
c

§
= arctan (;) .
c O

Lemma 5.2.1 shows that a p-rotation can be regarded as a true plane rotation and
an additional scaling. By choosing o) ~ 1, the matrix F is “close-to-orthonormal”
and, therefore, numerically robust. Moreover, if the entries ¢ and § admit a low-
cost implementation, the p-rotation thus defined satisfies all the optimality condi-
tions stated in subsection 5.2.1.

Let k be a non-negative integer. Following [119, 120], we have four types of
p-rotations in which the entries ¢ and § are based on the Taylor series expansion
of cos(27%) and sin(27*), respectively. The first and most simple j-rotation is
defined by

Ly O
fl

1’
2—k
so that o is given by
o1 = (142 %)z,

We will refer to this type of p-rotation as a type I rotation, denoted by F; (k). Let
x,y € C2. The computation y = F;(k)x then takes only two shift-add operations.

Obviously, o is a function of £ and gets smaller as k gets larger. In other
words, the larger the value of k, the more F approaches a true orthonormal matrix
G. Clearly, for some k > k; we have Fx = Gx (mod 7) for any x € C? and we
cannot distinguish between them. Using the property ||A{lc < +/m||A||2 for any
A € C™*" [111, p. 57], we conclude that

I(F = G)xlloo I1F = Gllooll*lloo

=
< IIF =Glleo
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< V2IF -Gl
= V2IUE - DV
= V2|~ 1|,
= V2(o1 = 1).

This means that if o) < 1 + %ﬁn then Fx = Gx (mod 7). Using the Taylor
series expansion
(1+07 =1+ 4+06Y), 0u? <o,

for any non-zero x € R, we conclude that o; = 1 + 2~ &+D L 0@Q-%) <
1 + 2= @D Therefore, we have o7 < 1 + %\/Er; for any k > k; given by

k] = —% (zlogn + %) .
A more accurate p-rotation, denoted by Fyj(k), is defined by
¢=1—2"@ktD,
§ =27k

so that o; becomes
o1 = (1 +2~(4k+2))%_

Hence, the computation y = Fj;(k)x requires four shift-add operations. With this
type of u-rotation, we have o7 < 1 + %\/in for any k > kj; given by

kip=—1 (2Iogn + %) .

A type III p-rotation is defined by

1— 2~(2k+1)
2—k _ 2—(3k+3)’

Il

¢
§

so that
o1 = (1 + 2*(6k+6))%.

Hence, the lower bound k;;; for this type of rotation is given by
krip = —% (Zlogn + 1—23) .

In this case y = Fy;(k)x requires six shift-add operations.
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As each of the previous types is limited to a certain lower bound of k, we
need a w-rotation which can be scaled, i.e., a u-rotation where o can be made
arbitrarily close to unity, thereby making it suitable for any value of k. This cannot
be done easily any of the above types. The problem with scaling these p-rotations
is the square root function of . Following [117], we can overcome this problem
by rotating twice over approximately half the angle so that the square root function
is eliminated. For this reason, a type IV p-rotation is defined to be a double type
I rotation, i.e., Fry (k) = Fi(k + 1)F;(k + 1). In doing so, we have

such that o; becomes
o = 1 4 2720+D

Note that the scaling is no longer a square root function. We can exploit this fact
to obtain rapidly converging scaling sequences. These sequences are based on the
well-known polynomial factorization

1-x7" =1 -1+ )1+ xD)A+ x4+ 22",

Thus, let m denote the number of scaling steps. We define the scaling as

K, = l:Iki’
i=l1

where
127260 jf i =1
ki = i S
' { 1 427 2&*+D  otherwise.
With this, the singular value o) (m) of a scaled type IV p-rotation becomes
oi(m) = o01Kp

= (1+272+D) g,
1 — 2_2(m+l)(k+1).

As for the unscaled types, we can derive a lower bound for &, given the number of
scaling steps, and we conclude that

k[v(m) = ~2—(m+l) (ZlOgT] + 2(m+1) - %) .
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shift factor || type angle no.
k Bk rot. [scl.
0 IV [[9.2729510° '] 4 T 10
1 IV || 4.89957 1071 | 4 8
2 I || 2.4684510°" [ 6 | 0
3 Im || 1.24596 1071 || 6 | 0O
4 II [[624797 107 4 | 0
5 II | 3.1247510°2 | 4 | 0
6 m || 1.56127 1072 | 4 | 0O
7 M || 781246103 || 4 | 0
8 I [[390623103] 2 ] 0
9 I 1.953121073 || 2 | ©
10 I 9.76562 10~* || 2 | 0
11 I || 488281107 2 | 0O
12 I 2441211074 2 | ©O
13 I 1.22070 10740 2 | 0
14 I ||6.103511072 | 2 | 0O
15 I 3.05176 102 || 2 | O
16 I 1.52588 1075 || 2 | O
17 I 0 210

Table 5.1: The set of feasible angles for fixed-point (chopped) arithmetic with 16-
bit accuracy, the type to be used and the number of shift-add operations required.

Note that the rotation itself requires four shift-add operations, while the scaling
requires m times two shift-add operations. To illustrate the previous discussion,
Table 5.1 shows which angles can be used with the different types of p-rotation,
as well as the requirement in terms of shift-add operations for fixed-point chopped
arithmetic where s = 16 digits.

Table 5.1 clearly shows that the unscaled types are relatively cheap to imple-
ment while the scaled type IV rotation is in general very expensive to implement.
Its use should therefore be limited. At first sight this would imply that rotations
over large angles should be avoided. However, this is not so. The reason for this is
that a rotation over a multiple of 7 radians is an almost trivial operation, because

b4 0o —17"
G((XE)ZI:I 0],
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so that the set of feasible angles is significantly larger than the angles given in
Table 5.1. If we concentrate on the feasible angles 6 in the first quadrant only,
we can rotate over 7 — 6 as well. This means that large angles can still be
used efficiently and that we can indeed limit the use of method IV rotations. Let
¢ = €' and thus ¢ € {—1, 1}. Clearly, for finite precision arithmetic with s-bit
accuracy, the total set of feasible angles, denoted by F, is given by

.T:{oz%+g9k:(er,k=O,...,s+1}. (5.4)

Figures 5.5, 5.6 and 5.7 show the realizations of Fy(k), Fi;(k) and Fyz7(k), re-
spectively. The realizations of Fj;(k) and Fy;;(k) are implemented as a cascade
of simple stages by using the relation

2—Gk+3) _ n—kn—(k+1)9—(k+2)

The realization of Fjy (k) consists of a concatenation of two Fj(k + 1) stages,
followed by, say m, scaling stages. Figure 5.8 shows an example of these scaling
stages where m = 3.

We can implement the rotation and scaling stages of the different types of
p-rotations in one single, generalized stage, as shown in Figure 5.9. This stage
forms the basis of the fast p-rotation architecture. The 1-bit control signals sg
and 51 can be used to select the desired input data. By doing so, the generalized
stage is fully controiied by the coniroi sequence {so, 51, k, ¢, ¢} Which requires
4+ 2logs bits to store.

5.3 Unitary factorization of embedded transforms

Based on what was said in the previous section, we conclude that realizations
which can be implemented using p-rotations are very suitable for VLSI technol-
ogy; they are numerically robust and can be efficiently implemented. For such
realizations to be feasible for our application, the realization of signal transforms,
it is first necessary to identify a suitable, numerically robust algorithm to calculate
y = Ax. This will be done in this section.

Let A € C™ be an arbitrary non-singular matrix. It is well known that for
any such matrix there exists an invertible lower-triangular matrix R € C"*™ and
a unitary matrix Q@ € C™ such that A = RQ. We will refer to this factor-
ization as the RQ-factorization of A. Note that this factorization is simply the
better-known QR-factorization of A* [110, 111, 112]. Let /; denote the identity in
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Figure 5.5: Realization for Fy(k).

X1 Yt

X2 y2

Figure 5.6: Cascaded realization for Fy;(k).
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Figure 5.7: Cascaded realization for Fy;(k).
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Figure 5.8: Example of scaling sections (m = 3) for Fyy (k).
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Figure 5.9: Generalized stage for a fast p-rotation architecture.

C/*J . The mapping Q thus obtained can be implemented by either a concatena-
tion of embedded elementary Givens rotation matrices G,,(k, [, 0, a, ) € C"*™,
defined by

Gnk,1,8,a,8) =
Iy
€' cos(6) €' sin(9)
I . (5.5)
—e P 5in(6) e~ cos(9)
J

where «, 8,8 € R, 0 < 0 < m, or a concatenation of elementary Householder
reflection matrices H,,(v) € C™*" v € C™", v 5 o, defined by

vu*

vy

H,(v)y=1, -2

Thus, if x € C™, and x; denotes the jth entry of x, then G, (k, [, 6, «, B)x is
essentially a plane rotation of the vector [x; x;]" over 6 radians and H,,(v)x is
a reflection of x in ker(v*). We shall not pursue the Householder factorization of
0.

The purpose of the rotations in the RQ-process is to nullify the super-diagonal
elements of A, thereby reducing A to a lower-triangular form. This is usually
accomplished by first nulling the super-diagonal entries of the last column of A,
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then those of the second-last column, and so forth, until a lower-triangular form
is eventually reached [111]. Thus, the lower-triangular matrix R is obtained by

AG;kn(kl,ll,Gl, oy, ﬁl) e GL(knsln, ena Up, ,Bn) = Rs

where n = %m(m — 1) denotes the number of super-diagonal entries of A. The
matrix R thus obtained is essentially unique, i.e., if Ry is another such matrix then
R = Ry D for a unitary diagonal matrix D [110, p. 241].

We now consider the case where A is unitary, i.e., A satisfies A*A = AA* =1
so that R is unitary and thus R = 7. As a consequence, wehave A = RQ = Q =
Gulky, by, 01, a1, B1) - - Gulkn, In, On, @y, Bn) so that

y = A‘x = Gm(kn«lnv enaan, ﬁn) - "Gm(k]»l]99],a], ﬂ])x~

We can thus compute y = Ax by applying a sequence of plane rotations to the
input data x. In general, however, A will not be unitary.

In this section we propose an algorithm which leads to orthogonal realizations
for arbitrary mappings A € C™"*", m < n. The basic idea behind this algorithm
is the following. Since m < n there exists a lower-triangular matrix R € C"*"
and a unitary matrix Q € C"*" such that

A=RQ=[L 0]0,

where L € C™*™ is lower-triangular. Therefore, y — Ax can be computed
as y = Ax = RQx. When AA* = |«|*], « € C, ie., the rows of A form
an orthogonal set, we have L = «o/. In that case the problem is similar to the
situation in which A is unitary and we only have to factorize Q in order to achieve
an orthogonal realization. Where the rows of A do not form an orthogonal set,
ie, AA* # |a|?I, this procedure does not work since L will not be diagonal
anymore and, therefore, R Q cannot be factorized into unitary factors. We propose
an algorithm which overcomes this problem. The idea is to embed the matrix A
into a larger matrix, say X, satisfying X X* = |«|?1, for some « € C.

Let A € C™™", m < n, and let k be a non-negative integer. We construct an
augmented matrix X € C™*"+0 a5 follows

X=[P A], (5.6)

where P € C"** Since m < n+k for all k > 0, the RQ-factorization of X exists
and we have

X=RQ=[L 0]0, (5.7
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where L € C"*™ is lower triangular. Let x € C",v € C™ and w € C***=" We
show that if

o[)-[2]

then y = Lv. Hence, in order to compute y = Ax we first compute the RQ-
factorization (5.7), then compute (5.8) after which we compute Lv to obtain the
desired data y = Ax.

The purpose of P is to augment the matrix A to X such that L becomes di-
agonal, say L = «/ for some o € C. In that case we have XX* = RQQ*R* =
RR* = LL* = |a|*I, which means that the rows of X form an orthogonal set.
Apparently, the function of P is to make all the singular values of X equal to
«. Since || X|l» > ||All2 = o1 we conclude that the largest singular value of X
is at least o1. Hence, if o denotes the algebraic multiplicity of oy, P must con-
tain at least m — p non-zero columns in order to have equal singular values. The
solution which yields ||X|» = ||All2 = o1 will henceforth be referred to as the
minimum norm solution for P. As an example, let us consider a map A satisfying
AA* = [ (or scaled by a constant). We then have ;1 = m so that the minimum
norm solution satisfies rank(P) = 0 and we do not have to extend A at all. In
this case the proposed algorithm automatically degenerates to the ordinary RQ-
factorization of A, with L = I. Assuming that the number of operations needed
to compute Lv can be neglected, this algorithm leads to canonical realizations
for any A € C"*" if we take P to be the lower-triangular minimum norm solu-
tion. Indeed, the complete RQ-factorization of X then can be accomplished using
mn — %(m + 1 — k)(m — k) rotations, the number of non-zero super-diagonal
entries of X. We shall return to the lower-triangular minimum norm solution.

To prove the main result of this subsection, we need the following theorem.

Theorem 5.3.1 Let G € C**" be Hermitian with rank(G) = r. If the leading
r X r principal submatrix of G is non-singular, the equation

S8§* =G, S e CY" lower-triangular, (5.9)

either has no solution, or all solutions are of the form S = SoD, where Sy is any
particular solution to (5.9) and D € C**" is a unitary diagonal matrix.

Proof: If G has negative eigenvalues then (5.9) has no solution. Indeed, in that
case there exist x € C" : x*Gx < 0sothat 0 > x*Gx = x*SS*x = ||S*x||> > 0
which is a contradiction.
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Let G be non-negative definite. We partition G as

G G
G = ' ’ , 5.10
[ Ga1 Gan ] (5.10)

where G1; € C", G5, G| € C>*=7) and Go € CP=IX(=1 Since G is
Hermitian, we have G = L DL* where L is a (not necessarily unique) unit lower-

triangular matrix and D a diagonal matrix. Using the same partitioning for L and
D as in (5.10), we have

o)L )8 815 &) oo
Gy Gap Lyy Lap O D, o L, | 7

Since G = L1,1D1L‘f,1 is non-singular, both L; ; and D, are unique [111, p.
137] and D a positive diagonal matrix of order r. Therefore, G, = L2,1D1L1‘,1
with Dy and L ; non-singular. We conclude that L, = G2’1(D1L’1‘,1)‘1 18
unique by the uniqueness of G, L1, and D;. Note that L, is not unique.

Moreover, from (5.11) we conclude that D2L§’2 = 0. Since L;; is unit lower
triangular, it is non-singular so that D, = 0. Thus, by setting

G L11+/Dy o ]= [ Liyv/Dy O (5.12)
Lyiv'D1 Lap/Ds LyivDy O ]’ '
we have G = $5*, where S is lower triangular with n —r columns being zero. The

proof that § is essentially unique follows from D = (/D;Q)(~/D10)* where
Q is a unitary diagonal matrix. |

Itis essential in Theorem 5.3.1 that the leading r x r principal submatrix is positive
definite. If this requirement is not met there will be an infinite number of solutions,
all differing from one another by a unitary matrix. For example, we have

[0 0__ 0 0770 37

0 25___3 4 L0 4 )
as well as

[0 07 _ [0 07[0 0]

| 0 25_—_0 51L0 5]
However, if we consider

[ 25 0___-5 0[5 07

| 0 O___O 0]jLO0 0]

this solution is essentially unique.
Now we are ready to prove our main result.
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Theorem 5.3.2 Let k be a non-negative integer, A € C"*" , m < n, and P €
Cm<k Put

X=[P A]. (5.13)

We can write X = RQ, where Q € COtROX0+) s ynitary and R € C"* 0 g
lower triangular,

R=[L 0], (5.14)
with L € C™*™ lower triangular.

I IfxeC',veC and w € C"*™ such that

0 v
o[ 2 )-[u ]
then Ax = Luv.

2. If L = al for some a € C, then |a| > 01, the largest singular value of A,
and

P if el > a1,
m—u ifla| = o1,

where u denotes the algebraic multiplicity of 0.

3. Leta € C and let

_{m if la| > oy,

m—p iflef =01

Also, let T1 € C"*™ be a permutation matrix. If the leading k x k principal
submatrix of

I (le*1 — AA*) IT%,

is non-singular, then the matrix P € C™** can be chosen such that the
matrix L satisfies L = oI and T1P is a rank k lower-triangular matrix.
Moreover, P is essentially unique, i.e., if Py is another such matrix, then
Py = P D for a unitary diagonal matrix D.
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Proof:

1. We have

Ax =

D

Il
~
% o

= O )

|
[

= L.

2. We have |a| = ||Lll2 = [[Rll2 = IXQ"[l2 = IIX]l2 > [|All2 = o1. Let

denote the algebraic multiplicity of o7 and let ¥ denote the singular value
matrix of A. Since AA* is Hermitian the SVD of AA* is given by AA* =
UXE*U*. Therefore we have

U*(PP*)U = U*(LL*— AA*)U
= U*(la)*l — AA")U
= |af*-TT¥,

where TX* = diag(olz, el O’,%l). Hence, PP* and AA* are diagonal-
ized by the same unitary matrix U, and, since |o| > o, the quantities
Ty T, 7y = () — or]?)% > Oforall 1 < j < m are the singular val-
ues of P. Hence, if || > o we have r; > 0 for all j so that rank(P) = m
and thus k > m, and if |¢| = o1 we have 7y = --- = 7, = 0 and we
conclude that rank(P) = m — p sothatk > m — u.

. From Theorem 5.3.1 we conclude that there exists an essentially unique

lower-triangular matrix § € C™*™ of rank k which satisfies
S8* = (jal’l — AA*) TT".

If we arrange the k non-zero columns of S in a matrix P € C"** such that
P = IT*S, we then have

lal?] = II*(SS*) 1+ AA*
= PP*+ AAY
LL*. (5.15)
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Obviously, LL* is Hermitian so that L = |«|D by Theorem 5.3.1, where
D is a unitary diagonal matrix. However, due to the essential uniqueness of
the RQ-factorization, we can take Q such that L = «/. By construction,
[1P is a lower-triangular matrix of rank & and the essentially uniqueness of
P follows directly from the uniqueness of TP. O

5.4 Analysis and synthesis operator realization of L.LOT's

In this section we show how we can apply the previously developed theory to
implement the analysis and synthesis maps of a transform coding system as de-
scribed in Chapter 3. We discuss both analysis and synthesis operator realizations
and we derive the conditions under which both operators can be given the same
realization.

5.4.1 Analysis operator realization

As discussed in the foregoing chapters, in transform coding systems the input
sequence x is mapped onto an output sequence ¥ using an upper-triangular block-
banded Toeplitz operator, say T,, with block entries A € C™"*", m < n. Since
the analysis operator is Toeplitz we can concentrate on a single block entry A.
Indeed, denoting x; ; = (x(im + 1), ..., x(im + j ))!, the complete transformed
sequence u = T,x can be calculated by computing uy , = Axy, forallk € Z.
Hence, the analysis operator T, is fully characterized by A and for this reason we
will focus on computing g m = Axg 5.

In the previous section we saw how to obtain optimal realizations for the ex-
ecution of the matrix-vector product uy,, = Axk,. This result was obtained
independently of the structure of the matrix A. However, the matrix A is often
so structured that it can be characterized with sometimes remarkably few angles.
This effect can already be observed when A exhibits some sort of symmetry as
is the case with the LOT. Thus applying the factorization algorithm to the LOT
matrix directly leads to realizations that are not canonical. The strategy we fol-
low to overcome this problem is to first decompose the matrix A into submatrices
which fully characterize A in a canonical way and to apply the factorization to
these submatrices individually.

In Chapter 3, we saw that the LOT matrix A € CK*2K can be factored as
follows,

A - [1 A1 AJ ]
- B, Ay —AJ
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1 Avi Iy
B [ B, H ALl ][ r—J ] 010

K K . . K
where B, € C7*7 is unitary, and A;; € C2*X obeys A1 1A]| = %I. Put
Xk 2k = (X g Xi_; g)'. Using the factorization (5.16), the matrix-vector product
Ui g = Axy g can be written as

_ 1 A1,1 1 J xk,K
s N | R |l B

This means that for each time instant k, we have to compute both A; ;x; x and
A11Jxg-1,k. Similar to what we did in Section 3.3, we can express A; ; as the
sum of its even-symmetric and odd-symmetric parts, i.e., A;; = A, + A, and
And = (A + Ap)J = A, — A,, and stack the matrices A, and A, in a matrix
U e CK x K ,

Ac
U= [ A, :I (5.18)

We can then compute Ajixpx and AjJxx—1 ¢ by computing Ux; x and
Uxi—1,x followed by some additions and subtractions to obtain Aj 1x; x and
Ay,1Jx¢—1, k. Moreover, temporary storage of Ux g at time k allows us to reuse
this product at time k + 1, as we then have to compute Uxy41 ¢ and Ux k. Since
A11A7, = %I and thus A A} = A,A} = %I, we have

1
UU*:U*U:ZI. (5.19)

This property enables us to reduce further the computational complexity of cal-
culating ux x = Axz k. Since U itself contains % even-symmetric and % odd-

symmetric Tows, we can partition U similar to A,

U=|:U1’1 Ui J
Uyg —UxJ |

where U;,1, U1 € CT*%, Moreover, from (5.19), we have

UiaUf, = Uf Uiy =gl

00| =

~

U U3, =Us Uy, =

00—
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There is therefore a unique unitary matrix, say B,,, such that U, = B,U; 1, and
we can write

1 Ui I J
TS (CE (0% B

In general, the matrix U;,; will be unstructured so that where the LOT is fully
canonically characterized by the submatrices B,, B, and U; ;. When Uy itself
consists of & even-symmetric and & odd-symmetric rows, however, a further fac-
torization for Uy | can be carried out. This situation arises, for example, when U
is a discrete cosine transform (DCT). In that case the matrix U; | is a DCT half
the size of U and, therefore, can be further factorized. In fact, the factorization
(5.20) can then be continued recursively until we end up with trivial scalar multi-
plications.

It is important to note that a necessary and sufficient condition for complete
recursive factorization of A is that the matrix U; | can be factorized recursively.
This means that LOTs with even-symmetric rows of U as the even-symmetric
DCT functions satisfy this condition. This is the main reason why Algorithm 3.1
uses the DCT as its initial solution and only affects A,, the odd-symmetric func-
tions, during the recursive procedure. It should be noted that many Fourier-like
signal transforms have this recursion property, i.e., a size n linear-phase transform
can be constructed with two size 7 linear-phase transforms. For fast decomposi-
tions of Fourier-like transforms the reader is referred to [121, 122, 123, 124].

In conclusion, we showed that in order to compute uy g = Axg2x we do
not apply the iterative RQ-factorization directly to the matrix A. Instead, we first
factorize the matrix as in (5.16) and in (5.20), and we then apply the iterative
algorithm to the matrices B,, B, and U ;.

5.4.2 Synthesis operator realization

In this subsection we focus on the realization of the synthesis mapping T5 : u +>
y. In Chapter 3 we saw that the synthesis mapping 7y, too, has a triangular block-
banded Toeplitz structure as follows

.St
- st st
st st
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In order to exploit the symmetry properties of the synthesis operator, which are
in the columns rather than in the rows, we characterize T, in terms of the matrix
S = [S1 $2] containing the synthesis filters. We can then calculate y = Tu
by repeatedly calculating yx 2k = S"ug g for all k € Z, and adding together the
results thus obtained with a mutual overlap of K samples. For this reason, in this
subsection we will focus on computing yi 2x = S'uy -

It is advantageous to design an optimal realization which can be used for both
the analysis and synthesis mappings. Such a solution, if it exists, has two major
advantages over any other realization. Firstly, in applications where the analysis
and synthesis mappings are not computed concurrently, this solution would save
50% of the total chip area. Secondly, and even more importantly, 7,7, = I is
maintained even under perturbation of the angles characterizing both A and S,
assuming the rotations are properly implemented. We shall come back to this
point and will now proceed with the determination of a unique realization for
both A and S. We have the following result.

Theorem 5.4.1 Using the definition and notation from above, let T,T, = I. For
any P € C"*k Jet

X=[P A].
have RQ-factorization X = RQ, where
R=[L 0],

and L = ol € C"*™ for some a € C. Ifx € C", v € C* and w € C" such that

« x| _ v
e[:]-[:]

then w = S'x ifand only if T,T,) = al.

Proof: First assume that 7,7 = «I. Since T;T, = I we conclude that T =
aT; and thus §' = o' A*. Partitioning Q as

| @11 Gz
Q= [ 021 022 ]

where Q1 € CF*¥, Q12 € C", 0y € Ok and 022 € C”" we conclude
that A = « Q) and thus, from (5.21), w = Q} ,x = o' A*x = S'x.
On the contrary, if we assume that w = §’x, again, we have w = Q% ,x so that
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w = a1 A*x, whence S = = A* since both A and S are of full rank. Therefore,
T, = 'T* and, since T,7, = I, T,T} = al. O

Theorem 5.4.1 shows that when A is isometric, i.e., A obeys AA* = «[ for some
o € R, both the analysis operator and synthesis operator can be given the same
realization. Note that this property also holds for non-square signal transforms. To
show that 7, T, = I is maintained when the angles characterizing both A and S are
perturbed, remember that we factor A as in (5.16) and in (5.20), and apply the RQ-
factorization to the matrices B, B, and U |, which are all unitary. Hence, if no
overflows are introduced in the additions and the subtractions and the realizations
of B,, B, and U | are implemented in CORDIC arithmetic, the inverse matrices
will be characterized by the same angles. Hence, B,, B, and U | can be perfectly
inverted, no matter what the values of the angles are.

5.5 Calculating the RQ-factorization

In the previous sections we identified a numerically robust algorithm to calcu-
late y = Ax, which is based on the RQ-factorization of a matrix X satisfying
XX* = |«|?I for some & € C. As mentioned before, this factorization can be
computed using a concatenation of Givens rotation matrices by first nulling the
super-diagonal entries of the last column of X, then those of the second-last col-
umn, and so forth until a lower-triangular form is cventually reached. If we use
p-rotations instead of exact Givens rotations, however, the ordering in which the
super-diagonal entrics of X are zeroed may change. Indeed, since we added to the
range 0 < 0 < 7 of angles a discrete set F of feasible angles which admit simple
and fast rotations, entries of X can only be made approximately zero and accu-
racy will depend on the value of the entry. In this section we propose an iterative
algorithm for calculating the RQ-factorization of a matrix X € =l om <1, sat-
isfying X X* = |«|*I for some o € C. The idea behind the iterative RQ-algorithm
is that we apply a sequence of rotations to X with the property that each new X is
“more diagonal” than its predecessor. Eventually, the off-diagonal entries of X are
small enough to be declared zero. In subsection 5.5.1 we discuss this algorithm in
more detail. We prove the convergence in subsection 5.5.2.

5.5.1 Iterative RQ-factorization

Let X € C"*! m < [ satisfying XX* = |a|*] for some @ € C. Since X X* is
diagonal, we can compute the RQ-factorization of X by systematically reducing
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the “off-diagonal” energy, defined by

m

/
off(X) = ) .

i=1j
J#i
The tools for doing this are embedded p-rotations F(p, q, 6, y) € C*, 1 <
p <m, p <q <1, of the form

Ip-i .

¢ e'rs
F(p,q,0,v) = A ;
—ei?§

(o3

Iiy

where y € R and 6; € F, a set of feasible angles. If X® = (x,(c';;)k,l denotes
the updated X matrix after i iteration steps, then the updated X matrix after i + 1
iterations will be XD = XD F(p,q,6;,y). The basic step in the iterative
RQ procedure involves choosing an index pair (p, ¢) and a pair (6, y) such that
the off-diagonal energy of X is minimized. Hence, a precise statement of this
procedure is

MINIMI78 nff(
isiesisisevs ~ iy

subject to 6 e F.

As the iteration XD = XD F(p, 4, 0;, y) only affects the columns p and g of
X% and since a decrease in the off-diagonal energy of X can only be accom-
plished by rotating energy from the entries x,, and x,, (assuming that g < m) to
the diagonal elements x,, and x,,, respectively, it is sufficient to concentrate on
computing

@i+1) i+ (@) (@) A 3
[ Xpp | Xpq :I _ l: Xpp  Xpg jl [ ¢ s :l (5.22)
G+ _G+D [ ) 6) —evs & | o
Xgp ~ Xqq Xgp  Xqq s ¢
The case m < g <[ can be simply tackled by extending X with/ — m zero rows
to a square / x [ matrix and making the extended matrix diagonal. This means that
if m < q <1 wehave x5, = x44 = 0 so that (5.22) reduces to a true RQ step. For

this reason we will henceforth assume, without loss of generality, that X is square
of size I x [.
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Since the Frobenius norm is rotation invariant, we conclude that

Off(X(i+1)) — Hx(H—l)HZ Z|x +l)|
_ |]X(")|| Z |x(’)|2 ( (z+1>| +|x(z+1)‘2)‘ (5.23)
J#pq

Let Aﬁi,l, denote the increase in diagonal energy caused by a rotation in the (p, q)
planc at iteration {, i.e.,

@ _ (l+1) (i+1)2 i)2 (i)
A = xR g xGH0 (lx 24 ) ) (5.24)
From this, (5.23) can be written as
i+ _ 0 (1) (i)
off(XUTD) = IX D} Z x5 1= AL,
— ey (Dy _ AG)
= off(X'") — A}
Hence, in order to minimize the off-diagonal energy of X at iteration i, we have
to maximize A(p")q.

Let Re(x) and Im(x) denote the real and imaginary part of x € C, respectively.
From (5.22) and (5.24) we find that

B _ g2 (@) @2 _ .02 ()2
AP, = (P P — P - 0P) +

+265Re( e (x{F) ~ xDF). (5.29)

By using some elementary calculus and setting the derivative with respect to y of
the right-hand side of (5.25) to zero, we have

) =(D) (i) =)
Im(x;,x556 — Xppx
y = — arctan ( ‘(If; ?lq) Z’; f{‘; ) mod 7, (5.26)
Re(xgpXgq — xppXpg)

and similarly for 6, we obtain

2Re (&7 (xfpegy — xfpinn) x
mod —. (5.27)

f = — arctan
2 e l? 4 1xgq 1> = Ixpal — Lxgp 2 2
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i=1;
while off(X®) > threshold,
do
(p,q.0,y) = compute_opt_angle(XD);
select O, Oxe1 € F : Opy) <0 < O,
if AD, Birr) = AL (00,
then
XD = XOF(p, q, 641, ¥);
else
XD = XOF(p, q, 60, v);
fi;
i=i+1;
od;

Algorithm 5.1: Iterative RQ-factorization.

Clearly, y and € maximize the diagonal energy if the second derivatives of the
right-hand side of (5.25) are negative for those particular values of y and 6. It is
easily verified that if we take y such that the quantity e"”(xé'lfig,; — xi(,‘}i;f;) is
non-negative, then the diagonal energy is maximized by taking 0 <6 < Z.
Algorithm 5.1 gives the outline of the iterative RQ-factorization. The proce-
dure compute_opt_angle (-) computes the optimum pair (6, y) according to (5.26)
and (5.27) for all pairs (p, q) for which 1 < p < ¢g <[ and returns the quadruple

(p, q, 0, y) which maximizes (5.25).

5.5.2 Convergence of the iterative RQ-factorization

In this subsection we consider the convergence of the iterative RQ-algorithm. In
order to prove the convergence of this “greedy” RQ-algorithm, it is sufficient to
show that

p,):1sp<qg=l AP >0, (5.28)

for each iteration step i = 1, ..., ijhax, Where in.x denotes the last iteration step
in the sense that off(X”) is small enough to be declared zero for all i > iy, By
small enough to be declared zero we mean that |xg;‘“") | < n, the unit round-off,
forall p,q =1,...,1, p # q. For finite precision arithmetic with s-bit accuracy,
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the smallest non-zero fast rotation angle, say Gmyin, is given by 0, = arctan(27%).
Clearly, assuming that the algorithm converges, we have Ix(l‘““‘)| < sin(%@min) for

all p, g : p # g so that

le(,ig’a") | < Sin(%emin)

< %emin

= % arctan(2°)
ly—s
52

< n

and we conclude that the off-diagonal entries of X are guaranteed to be smaller
than the unit round-off n and can, therefore, be declared zero. Note that this
property is independent of the use of rounded or chopped arithmetic.

To see whether we can satisfy (5.28) forall{ = 1, ..., iy, let Oope mod 7 be
the solution of (5.27) which maximizes A(i) If we have Gy, # 0 mod 7, then
A(l p.g > 0. If we have O, = 0 mod mr, however, we conclude that Ag)q =0,
which has the interpretation that no off-diagonal energy can be rotated to the main
diagonal of X at iteration i by a rotations in the (p, ¢) planc. Obviously, if this
situation occurs for all 1 < p < ¢ < m, we cannot satisfy (5.28). By inspection
of the second derivative with respect to 8 of (5.25), we conclude that

240
“Aply

560 = 2 (Ix + WP ~ x5 = 1k P).

q4
6 =0 mod 7

so that 8,5 = 0 mod 7 implies that

) =) (D) =()
XppXpg = XqpXqq s (5.29)

e 2+ brgg 12 = Lxpal® + x>

Hence, the convergence breaks down if both conditions are satisfied simultane-
ously forall 1 < p < g <1 for some i < im.. This situation, however, is very
unlikely to occur, as we shall show later on. Where this situation does occur, we
can overcome the convergence problem by using a double-sided rotation rathcr
than a single-sided rotation. Therefore, the updated X matrix after iteration i will
be X = F*(p,q, 0. )X VF(p,q,6,y"). In fact, this is the basic step in
the Kogbetliantz algorithm [119, 125, 126]. If X is Hermitian, this step reduces
to a basic step of the Jacobi method [110, 111, 119, 127, 128]. It should be noted
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that the algorithm proposed in Section 5.2.2 for computing y = Ax does not break
down with the use of double-sided rotations.

In the remainder of this section we concentrate on matrices for which (5.29)
is satisfied for all 1 < p < g < m. To determine the algebraic structure of such
matrices, first assume that m < g < [. As mentioned above, in that case we
have xf,’,} = x‘% =O0foralli = 1,...,ima, sO that from (5.29) we conclude
that 6y # 0 mod 7 (unless x,;, = 0 and nothing has to be done), and thus
Ag?q > 0 for all i. This means that we can always nullify the last / — m columns
of X so that X becomes zero, except for the m x m leading principal submatrix,
say X,. We then have X,,X* = XX* = |a|?l. To facilitate the following
discussion we assume, without loss of generality, that || = 1, so that we can
concentrate on the algebraic structure of m x m unitary matrices satisfying (5.29)
foralll < p <qg <m.

Let U, denote the set of m x m unitary matrices which do not converge to the
desired diagonal form. Thus, if A € U,,, then

Applpg = dqplyq.
(5.30)
|app|2 + |aqq|2 > |aqpl2 + ]apq|2,

forall 1 < p < ¢ < m. We have the following results.

Theorem 5.5.1 Let A € U,,. Let D € C™™ be a unitary diagonal matrix and

TV = TMXM o ssnsssrn st atsnze mantfisrv Thoam
1L < O G PEFTTAtiLiOn interiaA. 11icit

(D AIT* € Uy,
[T(AD)IT* € Upp.

Proof: We will prove that DA € U,, and AD € U,. To do so, let D =

diag(Ay, ..., An), 2; € Cand |A;| = 1 forall j. Since A € U,,, we have
for DA,
A papp)(hqapg) = )‘P)—‘qappapq
= Aplglgplgg
(A pagp)(hqaqq),
and similarly for AD,
(apprp)apghp) = |)”p|2“p,v‘_‘pq
= |Aq|2aqpaqq

= (agprg)(aggry),




5.5, Calculating the RQ-factorization 139

forall 1 < p < g < m. Moreover, since
2 2 2 2
|Apappl” + |Aqaqql™ = lappl” + lagl
2 2
b laqpl =+ Iapql
2
= [Apagpl” + I)“qapq|2’
forall 1 < p < g < m, we conclude that DA € U,, and AD € U,,. The
remaining part of the proof is trivial. a
From Theorem 5.5.1 we conclude that we can concentrate on matrices A € U,
with real non-negative diagonal entries satisfying ajy > a0 > -+ - > amum.

Theorem 5.5.2 Let A € U, have real non-negative diagonal entries such that

an Z axn = o+ = dmm. Moreover, letmj, u;, j =1,... k < m be real non-
negative numbers such that diag(aiy, ..., ampy) = diag(m 1y, ..., mi 1) where
I; € CHi>*Hi Then

A =diag(A;, ..., Ap), A; € CHixHj, (5.31)
satisfying

Ugp = Apg. (5.32)

Proof: The proof is by induction to k. For k = 1 we have a,, = m, for all
1 < p < m so that Appdpg = Agplgq iMplies a,, = a,,. Letk > 1. We then have

m
2 2 2
|app| = |app’ Z|apq|
g=1
m
- 2
= Z'appapq|
9=l
m
- 2
= Zlaqpaqq|
g=1

m

22 2

=< m] |aqp|
g=1

2

If a,, = m; we have equality and we conclude that

aqu{ dpq %f Agq =m)
apg =0 if agy # m
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Hence, A = diag(A,, B) where B € C"—#1)x(m—u1) By the induction hypothe-
sis, B satisfies (5.31) and (5.32) so that A = diag(Ay, ..., Ay), A; € C**H for
all j =1,...,k, satisfying ap, = agp. a

From Theorems 5.5.1 and 5.5.2, we conclude that unitary matrices which do not
converge to a diagonal form are (except for a symmetric permutation) are block-
diagonal matrices where the block-diagonal elements are essentially unitary Her-
mitian with equal main-diagonal entries satisfying (5.30). For example,

3 2 2 2 2
23 2 2 2
A==| 2 2 23 2 2|,
Sl 2 2 2 -3 2

2 2 2 2 -3

does not converge to a diagonal form by single-sided rotations and the same holds
for any other matrix DA or AD where D is a unitary diagonal matrix. Note that

1 -1 2 2
A=~ 2 -1 2 |,
2 2 -1

does satisfy dppdpy = Ggpagq DUt NOt |ap,|* + |agg|® = lagp|* + lapg|* for all
1 < p < g < m, so this example does not cause convergence problems. Indeed, a
rotation over 5 radians in any (p, g) plane will decrease the off-diagonal energy
of this matrix.

It should be noted that matrices which cause convergence problems is very
unlikely to occur since we have to satisfy 2(';‘) = m(m — 1) constraints simul-
taneously. Moreover, for m < 3 we cannot construct a matrix A € U,,. This
property will be shown in Theorem 5.5.3 for which we need the following results.

Lemma 5.5.1 If A € Uy, then
lappl = lagpl,

foralll < p<q <m.

Proof: From (5.30) and Theorems 5.5.1 and 5.5.2 we conclude that
lappl® + lagg” = lagpl® + lapg|?

_ 2|aqi,,|2 if lap,| = lagql
0 otherwise

k)

so that |ap,| > lagp| forall 1 < p < g < m, as required. O
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Corollary 5.5.1 If A € U,,, then |apy| > O0foralll < p <m.

Proof: Follows trivially from Lemma 5.5.1 and the fact that A is of full rank
m. O

Theorem 5.5.3 If A € U,,, then m > 4.

Proof: Forall 1 < p < g < m we have
m
0 = § :am’aqj
j=1
n
= AppQpq + aqplgq + § : Apjlgj

. j:]
J#p.q

m
= 2applpg + § : Apjlgj-
.j:l
J#p.q

Let 1 denote the maximum absolute off-diagonal entry of A. We then conclude,
using Lemma 5.5.1, that

m

Z Apjayj

J#p.q

2|app&pq | =

m

D lapllag]

J#p.q

m
< ) lappllagl
j=1

J#p.q
< (m=2pulag.

IA

Consequently, as |ap,| > 0 by Corollary 5.5.1, we have that 2|, | < (m — 2)u.
Now take p and g such that |a,,| = n and we conclude that m > 4. O

As an example of A € U, for m = 4 we have

-1 1 1 1
L1 -1 1

A=301 1 a (5-33)
11 1 -1
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Note from the proof of Theorem 5.5.3 that for m = 4, the relations are satisfied
with equality so that |a,,| = w forall p,g = 1,...m. Hence, (5.33) is essentially
unique.

5.6 Pipelined architecture for LOTs

In the previous section we discussed an iterative algorithm for computing the RQ-
factorization of a matrix X satisfying XX* = |a|?I for some & € C. In this
section we will discuss the architecture imposed by this algorithm, in which the
realization of LOTs can be mapped. To facilitate the following discussion, we will
restrict ourselves to real valued matrices only.

5.6.1 Architecture for computing y = Ax

Let k be a non-negative integer. Remember that we constructed an augmented
matrix X € R"*®+h) a5 follows

X=[P A], (5.34)

where P € R™** is such that the RQ-factorization

o v
o[:)-[2)

and hence, y = av, by Theorem 5.3.2, assertion 1. Since X is real, the RQ-
factorization X = R is unique with both Q and R real [111, p. 516].

When we obtain Q by the iterative RQ-factorization algorithm, Q is a con-
catenation of fast p-rotations and can be written as

Q = F(p1,q1, 91(1 SV e F(pimaxs Dimax ekimm‘ ’ Vimax)3 (5.36)

where | < pi <gi <n+k,0=<6y, <Zandy € {0, 7w} foralli =1,..., imax-
Hence, from (5.35) and (5.36) we conclude that the matrix-vector product y = Ax
can be computed by repeatedly performing s-rotations on the (extended) input
data, i.e.,

aw X

o
[ y :| zaF(plyql’ekl, yl).”F(pimax’qimax’ekimax’yimz\x)[ :I -
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memory
A={(p.q.0¥)i}i

|

control

X1

X2

stage | stage stage
1 2 N

TRPE |

Figure 5.10: Architecture for computing y = Ax using unitary factorizations.

Since a pu-rotation is fully characterized by a quadruple (p, g, 6k, v), we have
to store all quadruples (p, ¢, 6k, ¥)i» | < i < ipax, in some storage medium in
order to compute y = Ax. Letx = (x j)’l’ili denote the (extended) input data and
A = {(p,q, 6k, y)}i the set of all quadruples (p, g, 6, y);, Figure 5.10 shows
the architecture which can be used to compute (5.35). Each stage in the pipeline
is one single generalized stage (see subsection 5.2.3), which itself is controlled by

ad+ 2l()gs bit sequence {sg, 51, &k, Gy, &7}

5.6.2 Concurrent processing

Consider the architecture depicted in Figure 5.10. If we take N = 1, i.e., the
pipeline consists of one single stage, the architecture is purely sequential. Thus
a type IIT p-rotation is performed in three cycles. By taking N > 1, we can in-
troduce concurrent processing. However, we then have to take some precautions
in the way we compute the RQ-factorization. This can be seen as follows. As-
sume that N = 2 and we want to compute a method III p-rotation. Naturally,
we select elements x, and x, and feed them into the first stage. In the next cy-
cle, the processed data are fed into the second stage while the input data needed
for the succeeding p-rotation can be fed into the first stage at the same time. It
is clear that a causality problem arises when either x, or x, are needed for this
succeeding p-rotation since both data are being processed and, therefore, are tem-
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(. D] Gopv) [ Apg ]
(1,2) | (0.3218,0) | Ay =0.0833
(1,3) | (0.4636,7) | A3 =0.1667
(1,4) | (0.4636, ) | A1 4 =0.1667
(2,3) | (0.7854,0) | Az 3 =0.2500
(2,4) | (0.7854,0) | A4 =0.2500

Table 5.2: Possible indices, optimal angles and the corresponding reduction in the
off-diagonal energy of X given by (5.37).

porarily not available. We can overcome this problem by modifying the procedure
compute_opt_angle (-). After doing some bookkeeping, we select the quadruple
(p. q,0, y) which maximizes (5.25) subject to the condition that the indices p
and ¢ are not in the pipeline. This solution, however, has the disadvantage that it
influences the reduction of the off-diagonal energy inefficiently when the length
of the pipeline becomes large relative to the number of columns in the augmented
matrix X. This is illustrated by the following example. Assume that X is given by
1| 2v6 0 V6 V6 .

X_g[ 33 _3 _3], XX* =1, (5.37)

and that the pipeline depth equals two. To select the optimal quadruple (p, g, 6, y)
we compute the optimal pair (6, y) for any index pair (p, ¢) and the correspond-
ing reduction in the off-diagonal energy of X. The results of these calculations are
shown in Table 5.2. Obviously, for the first iteration we can choose either (2,3) or
(2,4) as the index pair. Assuming that we choose the pair (2,3) (the essence of the
discussion would not change if we had chosen the pair (2,4)). To select an index
pair for the second iteration, we have to update Table 5.2. However, irrespective
of the new values of (6, ¥) and A, ,, only the index pair (1,4) is left for the next
iteration since indices 2 and 3 are currently being processed in the pipeline and
therefore cannot be used. For the third iteration we have a similar situation since
the indices 1 and 4 would not be available so that we would have to choose the
index pair (2,3) again, and so forth. Clearly this procedure can cause some oscil-
lation with the consequence that we can only reduce the off-diagonal energy of X
locally. Eventually, after the elements x; 4 and x; 3 have been made completely
zero (up to the working precision) we have to introduce some dummy data into
the pipeline to be able to nullify the other elements of X. We can partly overcome
this undesired behaviour by introducing some queueing mechanism which has to
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Figure 5.11: Reduction of the off-diagonal energy of (5.37) with and without a
queueing mechanism.

ensure that the reduction in the off-diagonal energy is not held up by rotations
which give little reduction. This can be done by feeding dummy data into the
pipeline whenever the index pair (p, g) corresponding to the maximum reduc-
tion in off-diagonal energy could cause a causality problem. Figure 5.11 shows
the results with s = 12. In the non-queued situation, convergence is very slow
during the first cycles, while in the queued situation this problem does not occur:
the convergence is now more uniform. As the pipeline depth gets smaller relative
to the number of columns of X, both methods will perform more equally since
in that case there is enough freedom left to select a proper index pair (p, g) at
each iteration step. In the remainder of this chapter we proceed with the queued
method.

5.6.3 Fixed-length versus variable-length rotation angle

The number of elementary stages needed to perform a rotation over a given angle
increases as the angle gets larger. We will refer to this number as the length of
the angle. Thus a type 11 p-rotation rotates over length two angles. In the case
when the angle length is not a multiple of the number of stages in the pipeline, a
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rotation over this angle will be completed before the processed data has reached
the last pipeline stage, the one which is connected to the output bus. This means
that we have to pass the processed data through the remaining stages. However,
since these data cannot be addressed as long as they are in the pipeline, we can use
these remaining stages to further reduce the off-diagonal energy. As an example,
suppose the pipeline depth is three and we want to rotate over a length four angle.
We then have to feed back the processed data into the pipeline after three cycles
in order to compute the fourth and last cycle. After this operation, the rotated
data are idle for the next two clock cycles. We can exploit this by performing, for
example, one additional type II p-rotation or two additional type 1 p-rotations.
By doing so we can further reduce the total number of cycles needed to zero off-
diagonal entries. In fact, with this method we actually aim to use fixed-length
angles, of which the length equals the pipeline depth, instead of using variable-
length angles.

We illustrate the use of both methods by showing the results of applying the
iterative RQ-factorization to LOTs. Thus, we factor A € CX*2X a5 in (5.16),
(5.18) and (5.20) to obtain matrices U; | € Cz*7, B, € Cs*7 and B, € CT**.
The iterative RQ-factorization is then applied to these matrices.

Figures 5.12 and 5.13 show the results of using variable-length and fixed-
length angles, respectively, in terms of off-diagonal energy compared with the
number of cycles for the factorization of the matrix B, when K =32, s = 12 and
the depth of the pipeline varies from one to four. Figures 5.14 and 5.15 show these
results for the factorization of B, and Figures 5.16 and 5.17 for the factorization
of Uy1. It can be seen that an increase in the pipeline depth decreases the total
number of cycles needed to make the off-diagonal energy sufficiently small. The
reason for this is that during the first iterations the rotations are performed over
relatively large angles in method II, III or IV p-rotations which take more than
one elementary stage. This means that we can process succeeding p-rotations
in parallel, provided that they do not give causality conflicts with any of the ele-
ments being processed in the pipeline. As discussed previously, an increase in the
pipeline depth decreases the degree of freedom we have in choosing the optimal
quadruple (p, g, 0, y), therefore, to minimize the off-diagonal energy. There is,
therefore, a pipeline depth beyond which no further increase in efficiency can be
obtained. Thus, when using fixed-length angles, the optimal pipeline depth for
B,, B, and U ; equals four. Clearly, the optimal pipeline depth depends on the
dimensions of the matrix to be factorized.

The number of cycles needed to zero the off-diagonal entries also depends on
the required working precision s. If we increase the value of s, we need more
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Figure 5.18: Influence of the working precision on the number of iterations.

accurate, and thus computationally more complex, p-rotations to implement the
rotations. For example, a rotation over an angle which can be done using a type
I p-rotation with 12 bit accuracy may need a type II p-rotation if the required
accuracy becomes 16 bit. Hence, an increase in the accuracy results in an increase
in the number of cycles. As a consequence, the proposed architecture makes it
possible to trade-off between time and computational accuracy. Figure 5.18 shows
the influence of different working precisions s on the factorization of the matrix
Ui 1. The pipeline depth has been fixed to 3 stages.

5.6.4 Approximated LOTSs

We can further reduce the number of cycles by exploiting the orthonormality prop-
erties of the rows of the LOT matrix A, which are the filters of a K-channel para-
unitary filter bank. The K filters jointly satisfy the following property

K

Z he(®)> =1, forall& € (-, ). (5.38)
k=1
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Differentiation of (5.38) then yields
K ~ A
Y 1h(®)181hk(€)] = 0.
k=1

Therefore, if fzks are frequency selective functions in the sense that |ﬁ£ @& ~0
forall § & T1;, where I denotes the pass-band region of filter A, and |4;(§)| ~ 0
for all & € I, k # [, then

Ahe ()| ~0, forall& e I,

forall k = 1, ..., K. This means that a first-order perturbation of the filter pa-
rameters not only preserves orthogonality, but it also does not effect the behaviour
of |fzk(§)l, at least in its pass-band region.

We can exploit this property by terminating the iterative RQ-factorization be-
fore it converges. This can be seen as follows.

Let Q denote the concatenation of the first, say n, rotations. If we now apply
Q to the (extended) input data rather than Q itself, i.e.,

the result y = av can be regarded as the output of a filter bank with filters as
approximations of the rows of A. Indeed, let X = A (we do not have to augment
A here since the rows of A already form an orthogonal set) with RQ-factorization
X = QR, where R = «[ I O ] for some o € R, we define A= RQ. We then

have

0
Clearly, termination of the iterative RQ-factorization causes a perturbation in the
entries of A and thus of the underlying filter coefficients, although, without vio-
lating the orthogonality property. Therefore, for small perturbations, the Fourier
transforms of the rows of A, the perturbed filters, closely match the Fourier trans-
forms of the original filters, at least in their pass-band region. The following

example serves to illustrate this important property. Figures 5.19 and 5.20 show
approximation results of the LOT which was constructed with approximations of

A

Ax = A
R

S = ©>
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B,, B, and U, ;, using a pipeline depth of four. Without any approximation in
the above sense, the number of cycles can be read-off from Figures 5.13, 5.15 and
5.17, respectively. Thus, the total number of cycles needed to factorize the matri-
ces B,, B, and U; ; “completely” is approximately N = 800. The approximation
of the LOT functions is obtained by simply terminating the factorization of each
of the three submatrices after an equal number of cycles. It is not investigated
here whether there is a better allocation of the number of cycles to the submatri-
ces. For a detailed study of this problem, the reader is referred to [129, 130]. It
can be seen seen from the figures that the behaviour of the filters in the pass-band
region is insensitive to small parameter perturbations and that after % of the num-
ber of cycles N (here 800) for a “complete” factorization, the approximated filters
become suitable filter-bank filters. In fact, the difference in the frequency domain
between the “original” filters and the approximated ones after N and %N cycles,
respectively, is less than —50 dB.

5.7 Implementation

In the previous sections, we touched upon the design of realizations of discrete-
time signal transforms. As discussed in Section 5.2, an optimal realization must
be capable of being efficiently mapped onto silicon. In this section we discuss
issues of complexity such as layout and total silicon area of using the LOT, and
compare these results with alternative implementations. This section is not in-
tended to provide a detailed description of the chip design, but serves to affirm
the fact that the above realizations are suitable for low-cost high-accuracy VLSI
implementation.

In [131], an architecture for implementing the complete LOT is discussed.
The architecture consists of a linear array of pipelined rotation processors, all
working in parallel. Each pipelined processor consists of a register to store the
input, output and intermediate results, a pipeline consisting of a concatenation of
four generalized p-rotation stages (see Section 5.2.3) and a simple routing net-
work which routes the data between the rotation pipe, the register and the in-
put/output ports. The rotation processors themselves are governed by a global
controller. This global controller stores the entire control sequence for the trans-
form and delivers it to the first processor unit in the array of processors when the
image data arrive. The control is then skewed in time and delivered to subsequent
processor units by means of FIFOs. This architecture greatly reduces the control
overhead as opposed to each processor having its own stored control sequence.
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Moreover, since the storage for the control sequence is implemented on a RAM,
the system is (re)programmable for arbitrary signal transforms.

At Delft University of Technology a chip has been designed in 0.8u-CMOS
(Compass, ES2) that contains ten pipelined rotation processors. The chip operates
at a clock frequency of 50 MHz, which is suitable for real-time signal transforma-
tion of images with

e an image rate of up to 30 Hz,
e an image resolution of up to 1024 x 1024 pixels,
e an pixel resolution of up to 10 bits per pixel.

The total chip area for this chip is about 160 mm? for a one-dimensional LOT.
Currently, a prototype with three rotation processors is being produced.

In the remainder of this section, we compare the required chip area of the chip
described above with alternative implementations, viz., a conventional implemen-
tation based on multiply-accumulate arithmetic and an implementation based on
a TriMedia digital signal processor (DSP). We discuss both alternatives in more
detail below.

Conventional multiply-accumulate arithmetic implementation

A hardware feasibility study is reported in [132, 133] for a DCT based LOT, i.e.,
a LOT in which the matrix U is taken to be the DCT. The block size of this LOT
can be switched between 8, 16 and 32. The resulting chip operates at a clock
frequency of 35 MHz and is capable of processing images of 1024 x 1024 pixels,
with a pixel resolution of 10 bits and an image rate of 30 Hz. The required chip
area in 0.8 .-CMOS (C150dm) is about 160 mm? for a one-dimensional LOT. In
C100tm technology (0.5u-CMOS), however, the estimated chip area is 40 mm?.
A similar reduction in the chip area (factor four) may be expected for the chip
designed at the Delft University when the C100tm technology is used.

TriMedia DSP

The TriMedia TM-1 is a programmable DSP which is intended as a multi-standard
video, audio, graphics accelerator for PCI-based personal computers [134]. It
can also be used as the master CPU in stand-alone multimedia PCI-bus-based
systems. The programming language for the TriMedia DSP family is C. The
TriMedia compilation system translates C programs and generates machine code
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for a particular TriMedia chip. The generated coded can be verified by computer
simulation with the TriMedia simulator. The implementation of a DCT-based
32 x 64 LOT on a TM-1 processor is reported in [135]. It is estimated that a one-
dimensional LOT could be implemented with four TriMedia DSPs. With a 200
Mhz version of the TriMedia DSP, which has been announced as the successor to
the TM-1, this number will be halved to two.

5.8 Conclusions

We have investigated the realization of discrete-time signal transforms, in partic-
ular the realization of LOTs. We provided a precise definition of optimal real-
izations and we showed that (minimal) orthogonal realizations are optimal under
that definition. We proposed a numerically robust algorithm for the execution
of the matrix-vector product y = Ax and applied this to the LOT or, more pre-
cisely, to its constituent matrices A,, A, and B,. The algorithm is based on the
RQ-factorization of a properly chosen matrix X which is computed using a con-
catenation of p-rotations. The realizations thus obtained are low-cost in terms
of the number of operations and the implementation complexity of the opera-
tions. The total chip area needed for these realizations is about 160 mm? for a
one-dimensional LOT. This is similar to the chip area obtained by using conven-
tional multiply-accumulate based realizations. Our realization, however, has two
major advaniages over conveniionai ones. Firsily, ine realizations can be made
fully programmable in the sense that the architecture can be used for arbitrary sig-
nal transforms, including DCTs, LOTs or discrete wavelet transforms. Secondly,
since both the analysis and synthesis operator can be given the same realizations,
we can save 50% of the total chip area in applications where both mappings are
not computed simultaneously.
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A.1 Introduction

In this appendix we give some definitions and preliminaries. Its main purpose is to
provide sufficient mathematical background for the understanding of the theorems
stated and proven in this thesis.

Linear operators play an important role throughout, and it thus seems proper
to start with a brief review of the definitions and results that are relevant to this
thesis. This is done in Section A.2. Complicated or technical proofs that are
not necessary for understanding the main line of thought have been omitted. For
a more extensive but simple introduction to this theory the reader is referred to
[136, 137].

Since the main subject of this thesis deals with data compression, we will
unavoidably need the theory of random processes. To prepare for this, we provide
some background in Section A.3. This section is not intended to serve as a detailed
exposition on the fundamentals of random processes and information theory, since
it is assumed that the reader is familiar with the rudiments of this subject. A more
detailed description of random processes can be found in [138, 139].
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The symbols N, Z, R, and C will denote the set of natural, integer, rational,
real and complex numbers, respectively. Real elements may be considered com-
plex by a natural embedding of real numbers in the field of complex numbers. The
symbols a, b, ..., f, g, ... (lower case italics) denote arbitrary set elements, with
the exception of j, k, I, m, n which are used for integers, in particular, for indices.
The zero element is denoted by o. The symbols «, 8, . .. (lower case greek letters)
denote arbitrary numbers in C. The Kronecker delta is denoted by ;. If o is a
complex scalar, then @ denotes the complex conjugate of «.

A.2 Linear operators

In this section we consider an arbitrary Hilbert space H.

Definition A.2.1 (linear manifold and subspace) A non-empty subset D of H is
called a linear manifold if forall f,g € Dandall) € C, f+geDand \f € D.
A closed linear manifold is called a subspace.

Definition A.2.2 (operator) A mapping of a linear manifold D C H onto H is
called an operator in H. A mapping of H onto H (i.e. D = H) is called an
operator on H.

in the following we shall assume that the subset 7 C ‘H on which a mapping is
defined (also called the domain) is a linear manitold. Linear maps of a linear space
C™ onto some other linear space C" are represented by matrices. If f € C”, and
A = (. )k=\...ni=1,..m> then g = Af € C". We shall write A € C**™".

Definition A.2.3 (linear operator) A (not necessarily continuous) mapping A :
f — Af of a linear manifold M C H onto a Hilbert space H' is called linear if
forall f,g € Mandallr € C

A(f+g) =Af+Ag,
ALf) = AAS.

A mapping A of M onto H' is called isometric (or an isometry) if for all f € M
and all g € M

(Af, Ag) = ([, g)-

A linear and isometric mapping of H onto H' is called an isomorphism of H onto
H'. An isomorphism of H onto itself is called an automorphism.
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Definition A.2.4 (bounded linear operator and matrix norm) A linear opera-
tor A, with domain D C H, onto a Hilbert space H' is said to be bounded if there
exists a real number y > 0 such that

IAfIl = vIfIl forall f€D.
If A is bounded and D # ), then the non-negative number

IASl

JAll = s ,
reD. f20 ISl

(A.1)

is called the norm of A.
If A is bounded, then (A.1) implies

[AfN < IAl- 1L/ forall f e D.

Note that for a bounded linear mapping A on a domain D, D # #, (A.1) is
equivalent to the two following equations [136]:

[All="sup [IAf],
FeD I flI=1
[All=sup JJASIl.
feDAfI=1

Definition A.2.5 (adjoint operator) Let A be a linear operator on H. The linear
.operator A* on H satisfying

(Af.g) = (f, A%g) forall f.g e H,

is called the adjoint of A.

It can be shown [136] that if A is a linear operator on H, then A and A* are
bounded.

Definition A.2.6 (inverse operator) If the linear operator A on H is one-to-one
on H, then the linear operator A~" on H defined by

ATNAf) = f foral f e,

is called the inverse of A.
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Definition A.2.7 (self-adjoint, unitary and normal) A linear operator A on H
is called self-adjoint if A* = A. A bounded linear operator A on H. is called
unitary if A* = AL, A is called normal if A*A = AA*.

Obviously, self-adjoint bounded linear operators as well as unitary ones are nor-
mal.

It is well known that every subspace M C H gives rise to a bounded linear
operator P = P4 on ‘H which maps every vector f € H onto its projection upon
M. This bounded linear operator P is called the projection operator correspond-
ing to M or, more briefly, the projection upon M. If P is the projection upon a
subspace M, then

M={f:Pf=fY={f:IPfl=IfI}={Pg:geH}]
A bounded linear operator P on . is a projection if P = P2, It is an orthogonal
projection if P = P*,

Remark A.2.1 It seems reasonable to denote the set {Pg : g € H} by PH. In

general, if A is any linear operator, then for any subset U C H we shall write
AU ={Af : f e U}

Definition A.2.8 (range) If A is a linear operator on H, then the set AH is called

the range or image of A (notation: ran(A)).

According to the foregoing the

sponding subspace.

ranoa
itangc U

Definition A.2.9 (kernel) If A is a linear operator on H, then
ker(A) ={f eH:Af =0},
is called the null-space or kernel of A.

Theorem A.2.1 If A is a bounded linear operator on H, then Ker(A) is a sub-
space.

Proof: Suppose g; € ker(A) and g, € ker(A). Since A(x1g1+0282) = o Ag +
a2Agy = 0,7 € C and ap € C we conclude that «1g1 + azg2 € ker(A).
Thus ker(A) is a linear manifold. Now let g € ker(A) be given and let g =
lim,_, 00 €r, &n € ker(A) for all n > 1. Then, since A is continuous, we have
Ag = A(lim gn) — lim Ag, =0,
n—o0 n—>oQ

and therefore g € ker(A). Thus, ker(A) is closed and a subspace. O




A.3. Random processes 175

Theorem A.2.2 Let A and A* be bounded linear operators on H. Then
ran(A*)" = ker(A),
and as a consequence

H = ker(A) @ ran(A*).

Proof: Since A is bounded we conclude from Theorem A.2.1 that ker(A) is a
subspace. Suppose ¢ € H is given. Then from

(f, A%g) = (Af,g) =0 forall f e ran(A*)%,

it follows that ran(A*)t = {f e H : Af = 0} = ker(A). a

A.3 Random processes

The theory of random processes is a branch of probability theory and probability
theory is a special area of the branch of mathematics known as measure theory.
Probability theory and measure theory both concentrate on functions that assign
real numbers to certain subsets of an arbitrary set according to certain rules. These
set functions can be viewed as measures of the sizes or weights of the sets. Both
probability theory and measure theory consider only non-negative real-valued set
functions. The value assigned by the function (o a set is called the probability or
the measure of the set, respectively.

The simplest situation where probability can be considered involves a random
experiment with a finite number of outcomes. Let Q = {wn}fl":1 denote the set of
all outcomes. To each outcome w, we can assign a probability. Every subset A
of € in this case also has a well-defined probability which is equal to the sum of
the probabilities of the outcomes contained in A. If the number of outcomes in 2
is countably infinite, the situation is quite similar to the finite case. However, if
contains an uncountable number of points — for example, if we spin a fair wheel
and the outcome is known to be equally likely to be any number between 0 and 1 —
then the probability that any particular point will occur is zero because there is an
uncountable infinity of possible points, none more likely to occur than any others.
Hence knowing only that the probability of each and every point is zero, we would
be hard pressed 0 make any meaningful inferences about the probability of the
outcome being between % and %.
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The difficulty in this example shows that, in general, it is necessary to consider
probabilities to be defined on subsets of 2, rather than on points of Q2. A subset
A on which a probability is defined is called an event.

Let Q be an arbitrary set and let A be a o-algebra! denoting the class of all
events. The pair (2, A) is called a measurable space. The name “measurable
space” reflects the fact that we can assign a non-unique measure to such a space.
We can make this notion more precise with the following definition.

Definition A.3.1 (measure) A set function w defined on the sets of a o -algebra
A is called a measure if it satisfies the following properties:

1. u(A) >0for A€ A,

2. ,u(U,I:]:l Ay) = Z,Ilvzl u(An) whenever Ay, ..., Ay are finitely or denu-
merable infinitely many disjunct sets of A (completely additive),

3. Whenever (Ap), is a sequence of sets in A such that Ay D Ay D -+ D
An, (o2, An = @ then lim, o0 (A,) = 0.

If we add the constraint ;£ (2) = 1, the measure becomes a probability measure
and (€2, A, ) becomes a probability measure space or probability space.

Definition A.3.2 (probability space) A probability space is a triplet (2, A, P)
where Q2 is a non-empty set, A is a o-algebra of subsets of Q2 and P is a proba-
bility measure defined on (2, A). The set Q is called the sample space.

In information theory literature, what we call a probability space is sometimes
called an ensemble.

A random variable is a mapping from some sample space into a set, In this
thesis we only consider real-value random variables, i.e., the first space is the
sample space portion of a probability space and the second space is (a subset of)
the real line. A random variable is perhaps best thought of as a measurement on
a probability space, i.e., for each sample point w the random variable produces
some value, denoted functionally as f(w). @ can be viewed as the result of some
experiment and f (w) as the result of a measurement made on the experiment.

We now provide a precise mathematical definition of a random variable and
then make some comments on the reasoning behind the definition.

'A o-algebra is a collection of subsets of an arbitrary set that is closed under complementation
and countable union.
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Given the real line R, the Borel o-algebra is defined as the o-algebra gen-
erated by all open intervals of the form (a, b) on R. The members of the Borel
algebra are called Borel sets. We shall denote the Borel o -algebra of the real line
by B.

Definition A.3.3 (measurable mapping) Lez (24, A1) and (Q2, A3) be two mea-
surable spaces and let f be a function with domain Q2| and range in Q. The func-
tion f is said to be a measurable function or measurable mapping of (21, A)) into
(2, Ap) if for every set A in Q,, the inverse image of A under f,

A ={w: f(w) € A},

is in 4.

Definition A.3.4 (random variable) Ler (2, A, P) be a probability space. A
(real) random variable is a measurable mapping (2, A) —~ (R, B).

Given a probability space (€2, .4, P) and a random variable f : Q — R, we
need a precise definition of the probability P(f(w) € B), or P(B) for short,
for any B € B, the Borel o-algebra or event space of the real line. Since the
probability measure P is actually on the original measurable space (2, .4) and
since f assumes a value in B if and only if w €  is chosen so that f(w) € B,
the desired probability is clearly

P(B) =P(w: f(») € B) =P(f 1(B)).

In other words, the probability that a random variable f takes on a value in a Borel
set B is the probability of the inverse image of the Borel set B under the random
variable f.

It is clear that the foregoing natural definition of the probability of an output
event of a random variable only makes sense if the probability P(f ~!(B)) makes
sense, i.e., if the subset f~!(B) of Q corresponding to the output event B is itself
an event, in this case an input event or member of the event space .4 of the orig-
inal sample space. For this reason a random variable is defined as a measurable
function, rather than an arbitrary function f : Q > R.

Mathematically, a random variable is a measurable function defined on the
sample space of a probability space (2, .4, P). The amount of randomness is
described by P, i.e., by a probability measure on an event space of the real line.
When doing computations involving random variables, it is usually simpler to
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concentrate on the probability space (I", B, P) rather than on the original under-
lying probability space (€2, A, P), where T is the set of all possible values the
random variable can take on. The set I is often called the alphabet of the random
variable. For calculations involving the output values of a random variable, then
the probability space (I", B, P) is more direct to deal with.

So far we have used lower case letters to denote random variables. In the
following, however, we also often use upper case letters, like U, V, X and Y, for
random variables.

Definition A.3.5 (distribution function) Let X, ..., X,, be random variables
defined on a common probability space (2, A, P) and let X = (Xi,..., Xp).
Also, let x1,...,x, € Rand x = (x1, ..., xn). The function F, defined by

Fe) =Plo: X;@) <xj, j=1,...,n}),
is called the (joint) distribution function of X.

For each x € R", F(x) gives the probability that the sample values X ;(w) are less
than or equal to x;.

Definition A.3.6 (independence) Let Xy, ..., X, be random variables defined
on a common probability space (2, A, P) and let F; = P({w : X;(w) < x;})
denote the distribution function of X;. Then X1, ..., X, are called independent if

e A naads L
arfia ority i
n
Fx) =[] Fi@o.
i=1

Where F is absolutely continuous there exists a non-negative function p, called a
(joint) probability density function, such that

P(B)=/p(x)dx.
B

Where X1, ..., X, are discrete random variables, i.e. take at most countably many
values, F is a step function and there exists a non-negative function p, called a
probability mass function, such that

P(B)=)_ p(x).
x€eB

In the most general case the distribution function is a composite of a step function,
an absolutely continuous part and a continuous function whose points of increase
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all belong to a Lebesgue-null set [139, p. 178]. We have limited ourselves to cases
where F consists solely of a step function and an absolutely continuous part. Al-
though these random variables cannot be described by either a probability density
function or a probability mass function we can describe them by a combination of
a discrete distribution and a continuous distribution. To avoid unnecessary writ-
ing, however, we will use the description in terms of a probability density function
only and assume that these functions may contain impulse functions.

Definition A.3.7 (conditional probability density) If x,,...,x, are such that
pPXmy ..oy Xy) > 0and

F('xls e 7xm71|xlns LECRY ,xn) -

Plo: Xi() <xi [ Xj(@=x;, i=1,....m—1, j=m,... n}),

then
pX1, .., Xp)
PXms ... »xn),
is called the conditional probability density.

PX1 oo X1 Xy o X)) =

A random variable which turns out to be very useful is the mutual information
i(x;; x;) between X;(w) having a value x; and X ;(w) having a value x;. The
mutual information is defined as the information provided about X;(w) = x; by
the occurrence of X j(w) = x;.

Definition A.3.8 (mutual information) Let X; and X ; be real random variables
defined on a common probability space (2, A, P). The mutual information be-
tween X;(w) = x; and X j(w) = x; is defined as

p(xi, x;j)

A2
p(xi)p(x;) (A.2)

i(x;;x;) =log
Similarly, we can define the conditional mutual information between X;(w) = x;
and X j(w) = x; given Xy (w) = xi.

Definition A.3.9 (conditional mutual information) Let X;, X; and Xy be real
random variables defined on a common probability space (2, A, P). The condi-
tional mutual information between X;(w) = x; and X j(w) = xj, given X;(w) =
Xy, s defined as

p(xi, xj|xx)
p(xilxi) plxjlxe)”

£(x;; xjlxx) = log (A.3)
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The base of the logarithm determines the numerical scale used to measure infor-
mation. The most common bases are 2 and e, for which the numerical values of
(A.2) and (A.3) are called the number of bits and nats, respectively. It should
be noted that both (A.2) and (A.3) are symmetric in the sense that i (x;; x i) =
i(xj5x;) and i (x5 x| xe) = §(x;5;5 x| xe).

Definition A.3.10 (expectation) The expectation (mean, average, first moment)
of a random variable X is given by

EX = /-oo xp(x)dx.

—00

With this, the average value of mutual information, denoted by 71 (x;; x ), is given
by

p(xi, x;))
I(x,,xj)_-//p(xl,x])log e ,)p(jj)d idx;.

The average mutual information I(x;; x ;) represents the mean amount of infor-
mation that knowledge of the value assumed by X; supplies about the value as-
sumed by X ;, or vice versa. Itis easy to show (see also [46, p. 24]) that the average
mutual information satisfies 7 (x;; x;) > 0 with equality if and only if x; and x; are
independent. In [140] it is shown that the average mutual information can also be
well defined where X; = f(X;), which implies that the joint probability density
p(x;, x;) is an impulse function concentrated on the set {(x;, f(x;)) : x; € R}.

The average conditional mutual information, denoted by 7 (x;; xj|xx), is given
by

I(x;; xjlxg) = //f p(xi, x;j, x;) log p(xi, %j1xi) dxidx;dxi. (A4)
p(xilx) p(xjxi)

The average conditional mutual information satisfies I (x;; x jlxx) = 0 with equal-
ity if and only if for each X (w) = x4, X; and X j are independent. The sit-
uation in which I(x;; x;|xx) = O is very important and can be visualized as a
pair of cascaded channels. Let X; be the input of the first channel, let X; be
both the output of the first channel and the input of the second channel and let
X ; be the output of the second channel. The situation / (x;; xj|x;) = 0 means
that p(x;|x;xk) = p(x;|xx) for all x;, x;, x; for which p(x;, xx) > 0, so that the
output of the second channel depends only on the input of the second channel.
Hence, the condition 7 (x;; xj|x;) = O states that there is no “hidden” channel
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passing information about X; to X ;. In this case the random variables X;, Xy, X ;
are said to form a Markov chain in that order (denoted by X; — X; — X;). We
will make this notion more explicit in the following definition.

Definition A.3.11 (Markov chain) Ler X, ..., X, be real random variables de-
fined on a common probability space (2, A, P). If the conditional distribution of
X, depends only on X,,_1 and is conditionally independent of X;, i < n—?2, then
the random variables X1, ..., X, are said to form a Markov chain in that order
(denoted by X| — Xy — --- — X,). Specifically, X, ..., X, form a Markov
chain X1 — --- — X, if the joint probability density function can be expressed
as

p(xt, ...y xn) = p(x) pxalxy) -+ p(Xnlxn=1)-

Note that X; — X; — X, implies X; — X; — X;. The following two theorems
are very important.

Theorem A.3.1 (chain rule for information) Let X, ..., X, be jointly distri-
buted random variables defined on a common probability space (2, A, P). Then

n—1
I(x1, .00, Xn—1: %) = Zl(xj§xn|xj—ls coesX1).
j=1
Proof: See [141, p. 22] O
Theorem A.3.2 (data processing inequality) Let Xy, ..., X, be jointly distri-

buted random variables defined on a common probability space (2, A, P). If
Xi = X; = Xg, then I (x5 x5) = 1 (s xp) + (x5 xj1x) = (x5 xp).

Proof: See [141, p. 32] t

The result of Theorem A.3.2 has the important interpretation that any processing
on X ;, whether it is deterministic or stochastic, can never increase the average
mutual information.

Definition A.3.12 (random process) A random process {X,,t € T} is a family
of random variables, indexed by a real parameter t and defined on a common
probability space (2, A, P). By definition, for each t, X; is a P-measurable
Sfunction. For each w € 2, X;(w) defines a function of t and is called a sample
Junction or a realization of the process.
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Remark A.3.1 In time-series analysis the index (or parameter) set T is a set of
time points, very often {0, £1, 2, ...}, [0, 00) or (—00, ), but random pro-
cesses in which T is not a subset of R are also important. Here, however, the
index set T will always be a subset of R, in particular T = Z.

Definition A.3.13 (discrete source) A discrete source is a random process {X,,
n € T} defined on a probability space (2, A, P) where T C Z.

Thus, a discrete source selects a point w €  and then produces the sample se-

quence {X,(w),n € T}.

Definition A.3.14 (second-order random process) A second-order random pro-
cess is a one-parameter family of random variables satisfying E|X,|> < oo for
allt € T.

Consider a probability space (€2, A, P) and the collection H x of all second-order
random variables X defined on 2. The space Hx becomes a Hilbert space if we
define the norm || X|| for any X € Hx and inner product (X, Y) for any X, ¥ €
H X by

1
X1l = (EIX[*)?,
(X,Y)=EXY.

Definition A.3.15 (covariance function) If {X;,t € T} is a second-order ran-
dom process, then the covariance function R of {X,} is defined by

R(t,s) = E(X; — EX;)(Xs — EX;), t,5€T,
and the correlation function r of {X,} is defined by

rit,s) =EX;X;, t,seT.

Definition A.3.16 (uncorrelated) A second-order random process {X;,t € T} is
said to be uncorrelated if

EX; - EX))(X;—EX;)=0 forall t,s €T, t#s.

The second-order random processes {X;,t € T}, {Y;,t € T} are said to be mutu-
ally uncorrelated if

E(X, —EX)(Y; —EYs) =0 forall t,s€T.
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As far as second-order properties are concerned, we are primarily interested in
linear operations on processes. Since the output of a linear operation on {X,, 7 €
T} is equal to the sum of the outputs of the same operation on X; — EX; and EX;
separately, we can always assume a zero mean with little loss of generality. In the
following we always assume that the mean is zero, so that the correlation function
and the covariance function are the same.

Definition A.3.17 (wide-sense stationary process) A process {X;, t € T} is
said to be a wide-sense stationary process (W.s.s. process) if

1. E|X,? <00 forall t €T,
2. EX; =u isaconstant forall t € T,
3. EX,X; =Rt —5) Jorall s;t €T.

A process {X;,t € T} is said to be strictly stationary if the distributions remain
the same with the passage of time, i.e., the multivariate distributions of the ran-
dom variables X/, 4, . . ., X;,+» are independent of . If a real Gaussian process is
stationary in the wide-sense then the process is strictly stationary because the pa-
rameters that determine a Gaussian distribution are the mean and the covariances.
A strictly stationary process is stationary in the wide-sense if it is a second-order
process.

Theorem A.3.3 The covariance function R of a w.s.s. process {X,,n € 7L} is
non-negative definite, i.e.,

N
Z R(m — n)ayo, > 0,
m,n=1
for every set of complex numbers o, . .., ay. Conversely, any function R satisfy-

ing this condition is the covariance function of a w.s.s. process.

Proof: See also [138, p. 473] O

The following theorem describes the non-negative definite functions as Fourier
transforms and is usually referred to as Bochner’s theorem.

Theorem A.3.4 (Bochner) A function R(h), h € Z, is the covariance function
of a w.s.s. process {X,, n € Z} if and only if it is of the form

R(h) = % /n eENdF(§),
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where F (defined for (§] < m) is bounded and monotone non-decreasing with
F(m) — F(—n) = 21 R(0).

Proof: See also [138, p. 474]. O

Remark A.3.2 The function F is called a spectral-distribution function. Since F
is bounded and monotone non-decreasing we have F € L*(—mn, 1) so that there
exists a non-negative function S, such that

A
FQ) = f S(E)dE.

-

Naturally, S is called the spectral-density function.




Appendix B

Proof of Theorem 2.4.1

In this appendix we prove Theorem 2.4.1. Before this, however, we will first
derive some results which we shall use in the proof.

Lemma B.1.1 Let X, Y and Z be jointly distributed random variables defined on
a common probability space (2, A, P). 1(x;z|y) = 0 if and only if p(x|yz) =
p(x|y) for all x, v, z for which p(y, z) > 0.

Proof: Obviously, from (A.4), we have I (x; z]y) = 0 if and only if p(x, z]y) =
p(x|y)p(zly). Hence, I(x;z|y) = 0if and only if p(x|yz) = p(x|y) for all
x,y, z for which p(y, z) > 0, as required. O

Hence, Lemma B.1.1 shows that we have 7 (x; z]y) =0Oifandonlyif X —» ¥ —
Z.

Theorem B.1.5 Ler X, Y and Z be jointly distributed random variables defined
on a common probability space (2, A, P) and let [ be a measurable function.

1. If Z = f(Y), then I (x;y|z) = Oifand only if y = f(y) (mod X) for all
yerl,.

2. IfY = f(X), then I(y; z|x) = 0 ifand only if x = f(x) (mod Z) for all
x el,.
Proof:

1. From Theorem A.3.2 we have I(x;y) = I(x;2) + I(x; yjz) > I(x;2)
with equality if and only if 7 (x; y|z) = O and thus if and only if p(x|yz) =
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p(x|z) for all x, y, z for which p(y,z) > 0 by Lemma B.1.1. Moreover,
since X — Y — Z we also have p(x|yz) = p(x|y) forall x, y, z for which
p(y,z) > 0. Hence, p(x|y) = p(x|z) for all x, y, z for which p(y, z) > 0.
This condition is satisfied if and only if y = f(y) (mod X) forally € T',.

2. From Theorem A.3.2 we have I(y;z) = I(x;2) + I(y;z|x) = 1(x;2)
with equality if and only if 7(y; z|x) = 0 and thus if and only if p(z|xy) =
p(zlx) for all x, y, z for which p(x,y) > 0. Similarly to what was said
in assertion 1, we conclude that this condition is satisfied if and only if
x = f(x) (mod Z) forall x € T',. O

Theorem B.1.6 Ler X, Y and Z be jointly distributed random variables defined
on a common probability space (2, A, P) and let f be a measurable function.

1. Let Z = f(Y). Theny = f(y)(mod X) for all y € T, if and only if
Yy, y2 €Ty 1 f(y) = f(y2) = y1 = y2 (mod X).

2. LetY = f(X). Then x = f(x) (mod Z) for all x € T, if and only if
Vxi,xp € Iy 1 f(x1) = f(x2) = x; = xp (mod Z).

Proof:

1. First assume that y = f(y) (mod X) forall y € I'y. Let y;, y, € I'y. Using
the equivalence relation in Lemma 2.4.1, we conclude from f(y;) = f(y2)
that y; = f(y1) = f(y2) = y2 (mod X).

To prove the converse, assume that y;, y2 € I'y 1 y1 = f(y1) (mod X),
y2 # f(y2) (mod X). We then conclude from f(y;) = f(y2) that y; =
FOD = f(32) # y2 (mod X).

2. Similar to the proof of assertion 1. a

Theorem 2.4.1 Let X, Y and Z be jointly distributed random variables defined on
a common probability space (2, A, P) and let f be a measurable function.

1. IfZ = f(Y), then I(x;y|z) = O ifand only ifVy;,y2 € Ty : f(y) =
f(2) = yi = y2 (mod X).

2. IfY = f(X), then I(z; y|lx) = O ifand only if Vx1,x2 € Ty : f(x)) =
fx2) = x; = xp (mod Z).

Proof: Follows on trivially from Theorems B.1.5 and B.1.6. O
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Proof of Theorem 2.5.1

In this appendix we prove Theorem 2.5.1. Before proving the main theorem,
however, we first derive some results we need for the proof. To begin with, we
will derive some properties and manipulations of the average mutual information.
After this, we derive a result about distortions based on single-letter distortion
measures.

Lemma C.1.2 Let Xy, ..., X, be jointly distributed random variables defined on
a common probability space (2, A, P). For any m < n we have

T (X1, o X5 X)) 2 T (X1, oo Xm—15 X)),
with equality if and only if I (xp,, -« ., Xp—15 XnlX15 o« Xm—1) = 0.

Proof: Using the chain rule for information (Theorem A.3.1), we have

I(xl,...,x,,,l;xn) =
= T(xp, . o xme13Xn) 1oy oo s X1 X0 X0, ooy Xip—1)
> T(xp, ooy Xim—15 Xn),
with equality if and only if 7 (xp,, ..., Xp—1; Xulx1, ..., Xu—y) = 0. a
Lemma C.1.3 Let Xy, ..., X, and Y, ..., Y, bejointly distributed random vari-
ables defined on a common probability space (2, A, P) and let X1, ..., X, be

independent. Then

n

T y) =D 1y, (C.1)

i=1

if and only if p(x|y) = []{_; p(xilyo).



188 Proof of Theorem 2.5.1

Proof: First of all, note that since Xy, ..., X, are independent, we have p(x) =
[T~ p(x:) and

n
PIRLETED!
i=1

I

p(xi, ¥i)
i» Vi | ——dx idi
f/ Py log o) pxi)p(yi) Y

— Z/fp(xy) gp(uyl)ddy
i=1

pxi)p(yi)

p(xi, yi)
1 dxdy.
// pix. )log (,H px)p(yi) ) e

Consider only those x, y for which p(x, y) > 0. In that case we have

DIy — I y) =
i=1

p®)p(Y) v1 P&, yi)
= 7] dxd
//”(x Y °g< P@x. ) Hp(xi)p(ye)> S

= //p(x y)log< =1 Pl |y’)>dxdy. (C.2)
px|y)

At this point we employ the well-known inequality Inx < x — 1 with equality if
and only if x = 1 in order to deduce from (C.2) that

D Iy - Ixsy) <
i=1

< loge/f p(x, y)( i=1 P Y1) 1) dxdy (C.3)
pxly)
= logeff (p(y)]_[p(xilyi)—p(x,y)) dxdy
i=1
< 0, (C4)

since the integration is over those (x, y) pairs for which p(x, y) > 0. We have
equality in (C.3) if and only if []'_, p(xily;) = p(x|y) forallx, y : p(x, y) > 0
and equality in (C.4) if and only if []/_, p(xily;) = O when p(x|y) = 0. Thus,
both inequalities are satisfied with equality, and consequently we have (C.1) if and
only if [T_, p(xi|y;) = p(x|y). This completes the proof. O
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Lemma C.14 Let Xy, ..., X,and Y1, ..., Y, bejointly distributed random vari-
ables defined on a common probability space (2, A, P) and let X4, ..., X, be
independent. If p(y|x) = [1i_, p(yi|x;), then

pxly) =[] ptxily).
i=l1

Proof: Since X, ..., X, are independent we have p(x) = ]_[:7:I p(x;). There-
fore, we have

plx,y) = px)p(ylx)
np(xi)l’(yilxi)
i=1

n
= [1pre . (C.5)
i=1
Integration of (C.5) over x yields p(y) = [_ll'f:l p(y;) sothat Yy, ..., Y, are inde-
pendent as well. Moreover, we conclude

plx,y)
p(y)

_ 1—[ p(xi, yi)

i1 POD
= l_[P(xi|Yi)
i=1

which completes the proof. a

pxly) =

Lemma C.1.5 Ler py(x, y) be a single-letter distortion measure defined by (2.1),
and x = (x(mNN_,, y = (y()_,. Then

1 N
dx,y) = = ) dExm), y(n).
n=1
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Proof:

d(x,y)

I

ff p(x, y)pn(x, y)dxdy

1 N
= ﬁZf/ p(x, y)p(x(n), y(n))dxdy
n=1
1 N
= NZ// px(), y(n))p(x(n), y(n))dx(n)dy(n)
n=1

1 N
= —N—;d()(f(n), y(n))

O

In words, a single-letter distortion measure gives rise to a distortion which itself is
the sum of distortions of the sample values. We are now ready to prove the main
theorem.

Theorem 2.5.1 Let T, and T, be information-preserving signal transforms such
thatu = Tyx and y = Tyv. If x, vy are N-element sequences and u, v are M-
element sequences, and R, (D) and R}, (D) denote the rate-distortion function of
the source process and the transformed process where the filter bank channels
are coded separately, respectively, then R; u(D) = /,L_IRX,N(D), n= %, with
equality if and only if Y

K
ru) =[] r@o. (C.6)
k=1
Proof: Since T, and T are information-preserving transforms, we conclude
from Theorem 2.4.4 that R, y (D) = /L_le, ~ (D) so that it is sufficient to show
that R, /(D) > R, m(D) if and only if r(u) = ]—[f:1 r(ui). First assume that
(C.6) holds so that I (ug; uy---uyp_1) = Oforallk = 1,..., K. To show that
R;’M (D) = R,,m (D) we will show that the infimum of / (u; v) on R is achieved
on R/,. Using the chain rule for information we conclude that

K
I(u;v) = Zl(uk;vlul---uk—l)
k=1

K
= Z(I(uk; vy ug—1) — Qg uy - - up_1))
k=1
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K
= Zl(uk; Vi - Ue—1)
k=1

K
> Y v, (C.7)
k=1

from Lemma C.1.2. Let Ry, (D;) denote the rate-distortion function of the random
process corresponding to the sample sequence u;. Using the convexity of R, y,
Lemma C.1.5 and (C.7), we conclude that

1 1 &K
v > E;MI(Mkivk) (C.8)
1 K
> ?;Rw,ynm
1 K
> Rum (E;Dk)>
= Ry m(D).

Hence, a necessary condition for achieving the infimum of 7 (u; v) on Rp is that
we have equality in (C.8). Using Lemmas C.1.3 and C.1.4, we conclude that this
is achieved by choosing r (viu) = I—[f:1 r(vg |ug). In that case we have

r(u,v) = r@yr@lu)
K
= []r@or@edue
k=1
K

= []rae vo.

k=1

Consequently, we have r(v) = ]_I,le r(v) so that I (vg; vy ---ve—1) = 0 for all
k=1,..., K. Toshow that r (v, uluy) = r(vi|ug)r(uuy) foraltk =1,..., K,
again using the chain rule for information, we conclude that

K
Iw;v) = D I velvr-vey)
k=1

K

= Z(I(Uk§ woy - V1) — L (v o1 -0 1)
k=1
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K
= Zl(vk;uvl e Vg—1)
k=1

(I (ug; ve) + I (vg; woy -+ ve—1|ug))

M= )=

I (ug; ve),

»
1

1

so that 0 = I (ug; uvy -« vp—qlug) > I(vg; ulug) > 0 for all k. This is satisfied
if and only if r(vg, ulur) = r(vglur)r(ujug) for all k = 1,..., K, so that the
infimum of I (u; v) on R p is achieved on RY,.

Conversely, let us assume that R;,M(D) = Ry m(D) and thus [ (vg; uvy - --
vk—1lug) = 0 for all k. In that case we have

K
Tw;v) = ) T velvr--ve-y)
k=1

K
= Z (I (vgsuvy -~ v 1) — T(ug; vy - - o))
k=1

I
M

(F Qugs vi) + T (us uvy - - - v |ug) — T (ugs vy - - ve—y))

=
Il
=

(F (ugs vi) — L (U v1 -+ - k1))

=

M= T~

I (ug; vi). (C.9)

»
Il

|

Therefore, using the definition of R, 5/ (D), we conclude that

1
R, m(D) < Ml(u;v)
1 K
< M;I(uk;w). (C.10)

Since we assumed that R;’ u (D) = R, m(D) we have equality in (C.10) and thus
in (C.9) sothat / (vg; vy ---v—1) =0forallk =1, ..., K, orequivalently r(v) =
]_[f=1 r(vg). Therefore, equality in (C.9) also implies r(viu) = ]—Ile r(vg|ug) by
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Lemma C.1.3 and we conclude that

r(u, v)

o= o

K r(w)
= rw ][]
k=1

(Vg |ug)
K

_ I—[’”(uk) r(ulv)

— -
k=1 nkzlr(ukh}k)

Note however that r(u«) is independent of D. Therefore, for all D > 0 and all u
and v we have

K
rulv) = @) [ ] ruclve),
k=1

where
ru)
1—[5:1 P
is independent of D. To complete the proot we show that ¢(u) = 1. Thus we fix

u. Since p(u, v) discriminates well in the sense that it vanishes only for v = u,
we get that, as D | 0,

c(u) =

r(ulv) — 6(u — v),
r(uglvg) = 8ug — i),

in the sense of probabilities. Now since

K
S(u—v) = H(S(uk — V),
k=1

it follows that ¢(u) = 1, which completes the proof. O






Appendix D

The condition of a set of linear
equations

In this appendix we review the notion of the condition of a set of linear equations
and the condition number which quantifies the sensitivity or numerical stability of
a set of linear equations. We shall rely on this discussion to study the numerical
behaviour of various realizations.

Let us consider the computing of

y = Ax, (D.1)

where A € C"*", x € C" and A is non-singular. The condition of (D.1) measures,
by definition, the worst relative variation of y with respect to the corresponding
allowable variation of A and x. Let the measure we take be the norm for vectors,
and the related operator norm for matrices, and let A and x be subject to arbitrary
(but infinitesimal) variations, such that y + dy = (A 4+ dA)(x + dx). Thus,
neglecting second order effects, we have

dy = Adx + (dA)x, (D.2)
and, therefore,

ldyll < l1Allldx] + id Allllx]l-

o1

02
A=USYV* =[n-- . ;.

Cn
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be the singular value decomposition (SVD) of A. U and V are n X n unitary

matrices and 0| > 03 > - -+ > g, > 0 are the singular values. The inverse A~! of
A is, then,

m
ATl =VvEU =g L] B
M
If we write (D.2) as dy = A (dx + A™'(dA)x), ||dyll is maximum when dx +
A~1(dA)x is in the direction of {1, since the singular vector ¢; corresponds to the
largest singular value of A, namely o. Moreover, from x = A~y it follows that

x| < 1A~ Iyl

with equality when y is in the direction of 7, (x in the direction ¢,) since the
singular vector 7, corresponds to the largest singular value of A™!, namely o',
It follows that

layl _ dA] IIdXII) ’ D3)

A A (——-—
iy = A AT S

with equality as soon as the two directional conditions are met. We conclude that

ldyll /Iyl ,
IdAN/IAN + lldx]l/llxll” '

™ A4y
LTy

is bounded by |A~!|||| A||, and that the bound may be obtained under certain con-
ditions of A, x, dA and dx. For this reason
k(A) = [|A7T 1AL,

is called the condition number of the system of linear equations. Note that «(-)
depends on the underlying norm. When the norm is to be stressed, we use a
subscript. Thus, for the 2-norm, « (A) is given by

0]
KK (A) = —.

n

We have the following properties.
Corollary D.1.1 The following statements hold for a given norm:

I. k(A) > L
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2. K(A1A2 A,,) < K(A])K(Az)'”K(An).

3. k(xA) =« (A) foranynon-zero o € C.

Proof:

Lok(A) = [AT"IA] = AT Al = 111 = 1.

2. k(A1A2 -+ Ap) = NA; - AT AL Al < 1A~ A A
NARN = AT AL - TA T AL = 6 (ADK (A2) - - - K (An).
3. Since || Al = |a|||A]l and [[(A)"'|| = Ja| '|A~| we conclude that

k(@A) = || el |AT[IIA] = AT AN = Kk (A), as required.
O

When the matrix-vector multiplication y = Ax is implemented, inequality (D.3)
maintains that round-off noise comes from two sources. One is the actual error
in dA and/or dx. The other is the natural sensitivity of the problem, which is
measured by «(A). Note that x(A) may be very large even for matrices with
reasonable eigenvalues. For example, consider the matrix

1 0O
A:[IO 1]. D.5)

Although the eigenvalues are all equal to one, the condition number is approxi-
mately equal to 100 since o7 =~ 10 and o, = 0.1. The difficulty with these types
of matrices is that a “large” off-diagonal entry in A means an equally large entry
in A™! - contrary to the general expectation that A~' would get smaller as A gets
bigger. If K (A) is large, then A is said to be ill-conditioned. Note that this is a
norm dependent property. Matrices with small condition numbers are said to be
well-conditioned. In the 2-norm, unitary matrices are perfectly conditioned in that
k2(A) = 1 if A is unitary. We conclude that unitary maps are optimal in terms of
numerical stability.

It is interesting to see what happens if A itself is a product of matrices, i.e.
A=A, - A(. We have the following result.

Theorem D.1.7 Let y = Ax with A = A, --- Aix. Then

lidyll ld Al lldx]|
‘ZH ADTEr 1A H A7 x|

=1t
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Proof: The proof is by induction. The case n = 1 yields (D.3). Letn > 1 and
yD = A, 1 Ax so that dy®tD = dA, (Ax) + A,p1d(Ax) = dA, 1y +
Ap+1dy. Using the induction hypothesis we conclude that

ldy®™ D (ndyn ||dAn+1n)
- A, +
[y A T T T
ldA; n d
< K(Anm(Z]_[ (A)'” i ”“ 1"[K<Aj)”“xx”“
i=l j=i j=1
||dAn+1||>
+___._
1 Ani
n+1 n+1 n+1
IdA; | ldx]l
= 2 Ixanr + e
i=1 j=i Jj=1 (]

Theorem D.1.7 and Corollary D.1.1, assertion 2, show that even when A itself is
well-conditioned, the quantity (D.4) can become arbitrarily large, depending on
the factorization A = A, --- A;. However, if A; is unitary forall j = 1,...,n,
we have k2(A) = k2(Ay) - - - k2(A1) = 1 and we conclude that unitary factoriza-
tions of A are optimal in terms of numerical stability.




Samenvatting

De laatste decennia worden beelden steeds vaker digitaal gerepresenteerd. Digi-
tale representatie van beelden heeft een aantal belangrijke voordelen boven ana-
loge representatie, zoals flexibiliteit, robuustheid en geschiktheid voor een ver-
scheidenheid aan signaalprocessingstechnieken. Het digitaal representeren van
beelden heeft ook een nadeel, namenlijk dat de opslag of transmissie van deze
signalen snelle interfaces en een respectievelijk grote opslagcapaciteit of trans-
missiebandbreedte vereist. Een mogelijkheid om het aantal bits te reduceren, en
daarmee de opslag- of transmissiekosten te verlagen, is het toepassen van data-
compressie.

Transformatiecodering is een van de meest efficiénte methoden voor datacom-
pressie van gecorreleerde signalen. Het gebruik van een tijd-discrete signaaltrans-
formatie voor de werkelijke codering (d.w.z. voor de kwantisatie en de afbeelding
op binaire codewoorden) kan een significante reductie van de codercomplexiteit
opleveren. Een geschikte signaaltransformatie leidt tot signaalrepresentaties die
eenvoudig te coderen zijn. Dit proefschrift beschrijft ontwerp, applicatie en reali-
satie van tijd-discrete signaaltransformaties voor datacompressie, in het bijzonder
datacompressie van beelden.

In hoofdstuk 2 laten we zien dat een tijd-discrete signaaltransformatie be-
schouwd kan worden als een (K, L, m) filterbank, waarbij K het aantal filter-
kanalen, L de filterlengte en m de decimatiefactor voorstelt. Het plaatsen van
tijd-discrete signaaltransformaties in dit meer algemene framewerk betekent dus
dat het ontwerp van signaaltransformaties geformuleerd kan worden als zijnde
het vinden van een geschikte filterbankarchitectuur (keuze van K, L en m) en het
kiezen van geschikte filterresponsies. Om de invloed van verschillende keuzes
voor K, L en m op de codeerefficiéntie te onderzoeken, maken we gebruik van
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rate-distortietheorie.

In hoofstuk 3 concentreren we ons op het werkelijke ontwerp van de filter-
bank. Hier bespreken we welke factoren, aanvullend op de codeerefficiéntie, de
keuze van een architectuur en filterresponsies beinvloeden. Deze factoren zijn, bij-
voorbeeld, perceptuele kwaliteit en implementatie-aspecten. Gebaseerd op deze
discussie stellen we een lijst samen van gewenste beperkingen en gebruiken deze
om een geschikte filterbankarchitectuur te kiezen. Bovendien laten we zien hoe
geschikte filterresponsies ontworpen kunnen worden, d.w.z. filterresponsies die
aan de gestelde beperkingen voldoen. We tonen aan dat de klasse van zogenaamde
overlappende orthogonale transformaties (LOT’s) een geschikte kandidaat is voor
onze applicatie van beeldcodering.

In hoofdstuk 4 bespreken we de applicatie van overlappende transformatieco-
dering van X-ray cardio-angiografische beeldsequenties. Met verliesvrije codeer-
technieken kan de bitrate van deze X-ray beeldsequenties met een factor 2,5 — 3,5
gereduceerd worden. Het doel van het werk dat hier beschreven wordt is om re-
ductiefactoren in de ordegrootte van 8 — 16 te verkrijgen. Om dit te bewerkstelli-
gen maken wij gebruik van niet-verliesvrije codeertechnieken, in het bijzonder de
technieken die gebaseerd zijn op overlappende transformatiecodering met LOT’s.
We beginnen met het bespreken van X-ray angiografie. Deze specificke appli-
catie legt enige additionele eisen op aan de parametersetting van de filterbank.
Vervolgens bespreken we het gehele transformatiecodeersysteem in meer detail

hocrhriivan rocnltatan Adia ‘n:n-]rv-annn 7iin mat aan nan“ﬂ)rn m ™
Cii U\/o\.«llllJ ven résunatni Gic Verkregen Zjn met &€n s5Cit =1 ‘ple.uentat‘“ van

deze methode. Dit codeerschema is door Philips ingebracht in de standaardisa-
tiediscussie van niet-verliesvrije datacompressie-algoritmen, georganiseerd door
de ACR-NEMA commissie welke wordt ondersteund door de National Electri-
cal Manufacturers Association (NEMA) en de American College of Radiology
(ACR). We laten zien dat LOT’s in staat zijn om X-ray beelden effectief te decor-
releren, hetgeen een efficiénte codering van het getransformeerde signaal vereen-
voudigd. We tonen ook aan dat LOT’s bijzonder geschikt zijn om de compressie
aan te passen aan het menselijk visueel systeem en aan eventuele post-processing,
zoals beeldopscherping.

We eindigen dit proefschrift met de realisatie van tijd-discrete signaaltrans-
formaties. Dit wordt gedaan in hoofdstuk 5. Het ontwerp van realisaties, in het
bijzonder van realisaties die geschikt zijn voor very large scale integration (VLSI)
technologie, bestaat uit het bepalen van een geschikt algoritme om de signaal-
transformatie te berekenen en het afbeelden van dit algoritme op een architectuur.
Wij laten zien dat, door zowel algoritme als architectuurontwerp gezamenlijk te
beschouwen, wij numeriek robuuste en implementatie-efficiénte realisaties van
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filterbanken kunnen ontwerpen. Deze realisaties kunnen volledig programmeer-
baar gemaakt worden in de zin dat de architectuur gebruikt kan worden voor wille-
keurige signaaltransformaties, inclusief de discrete cosinustransformatie, de LOT
of discrete wavelettransformaties.
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Glossary of symbols

General

Ty, T

b i
hi, fx
H(z), F(2)
K

L

m

analysis, synthesis operator
analysis, synthesis filter
Fourier-transform of Ay, fx
Z-transform of Ay, fi

number of filter bank channels
filter length

decimation (down sample) factor

Chapter 2: Rate-distortion performance of discrete-time signal transforms

(2, A,P)

{X,,neZ}
{U,,n € Z}
{Vi,n € Z}
(Yo, neZ}

22%@&%

= X
=

=

probability space

discrete source (random process)
transformed source process

decoded transformed process
reproduced process

sample sequence of {X,,n € Z}
sample sequence of {U,, n € Z}
sample sequence of {V,, n € Z}
sample sequence of {Y,, n € Z}

row dimension of T,

column dimension of T,
rate-distortion function of the source
rate-distortion function of the transformed source
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R, rate-distortion function of the transformed source where
the filter bank channels are coded separately

E expectation operator

S spectral-density function

Chapter 3: Design of lapped orthogonal transforms

A,S matrix with rows being the analysis, synthesis filters
A,S set of analysis, synthesis filters

Ae, A, even, odd-symmetric parts of constructing filters

B, transformation matrix for shaping A,

Chapter 4: Application to X-ray cardio-angiograms

Q quantizer

C lossless coder

Xy, Xe raw, enhanced data

B two-dimensional analysis filter
Renn enhancement filter

Chapter 5: Realizations for discrete-time signal transforms

A, S matrix with rows being the analysis, synthesis filters
R, O lower-trianguiar, unitary factor of the RQ-factorization
L reduced lower-triangular matrix, i.e., R =[L O]

X augmented analysis filter matrix, i.e., X = [P A]
Fr,..., Frv type I, ... ,type IV p-rotation

F set of feasible angles

A., A, even, odd-symmetric parts of constructing filters

B, transformation matrix for shaping A,

U composite matrix U = [A] AX]*

off(X) off-diagonal energy

(p,q) rotation indices

@, y) rotation angle and argument of (complex) sine/cosine
Af,f?,, increase in diagonal energy caused by a rotation in the

(p, g) plane at iteration i
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