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ABSTRACT
In many applications of wireless sensor networks, it is important
that the privacy of the nodes of the network be protected. There-
fore, privacy-preserving algorithms have received quite some atten-
tion recently. In this paper, we propose a novel convex optimization-
based solution to the problem of privacy-preserving distributed av-
erage consensus. The proposed method is based on the primal-dual
method of multipliers (PDMM), and we show that the introduced
dual variables of the PDMM will only converge in a certain sub-
space determined by the graph topology and will not converge in the
orthogonal complement. These properties are exploited to protect
the private data from being revealed to others. More specifically, the
proposed algorithm is proven to be secure for both passive and eaves-
dropping adversary models. Finally, the convergence properties and
accuracy of the proposed approach are demonstrated by simulations
which show that the method is superior to the state-of-the-art.

Index Terms— Distributed average consensus, privacy, wire-
less sensor networks, convex optimisation, primal-dual method of
multipliers

1. INTRODUCTION
Advances in wireless communication technology and embedded mi-
croprocessor design have enabled a huge growth of distributed com-
puting systems, including also wireless sensor networks (WSNs).
Average consensus, which is an essential building block of such
distributed systems, has been intensively investigated for decades,
and it has been applied in various fields such as automatic control,
signal processing, robotics and optimisation [1]. To solve the av-
erage consensus problem in distributed networks, many (iterative)
algorithms have been proposed [2–10]. The methods work by it-
eratively exchanging information between computational units (i.e.,
nodes/agents), whereby the network eventually reaches a consensus.
The data exchange required in these algorithms can lead to privacy
problems, as it is becoming clear that there is no real separation be-
tween the identity of individuals and their data [11]. Therefore, it is
crucial to protect the data held by each node as the private data for
being revealed to others.

An algorithm is called secure or privacy-preserving if it is able
to protect the private data during the algorithm execution. Existing
privacy-preserving distributed average consensus algorithms can be
classified into two classes: computationally secure algorithms and
information-theoretically secure algorithms. Computational security
is defined in terms of computational hardness: secrets cannot be re-
constructed efficiently under the condition that so-called malicious
adversaries are computationally limited. Computationally secure al-
gorithms [12–16] usually apply techniques from secure multiparty
computation [17] such as homomorphic encryption (HE) [18,19] and
garbled circuit (GC) [20, 21], where computations are performed in
the encrypted domain. However, these algorithms are computation-
ally demanding and have high a communication bandwidth. This

makes it difficult to apply them in resource constrained applications
like WSNs.

In contrast to the aforementioned computationally expensive al-
gorithms, the information-theoretically secure algorithms are quite
lightweight by comparison, as they simply insert noise to obfus-
cate the private data. Moreover, information-theoretic security has
a stronger security guarantee than computational security as it is ro-
bust against a computationally unlimited adversary. Depending on
the amount of information about the private data obtained by the ad-
versary, information-theoretically secure algorithms can be further
classified into two classes. The first class contains algorithms using
secret sharing, whereby perfect security is achieved [22]. It pos-
sesses the strongest security guarantees. No information regarding
the private data is revealed as the information obtained by the ad-
versary is statistically independent of the private data. However, it
requires prior knowledge about the network. The second class of
algorithms achieves a weaker form of security, called ε-statistical
security, which implies that the information obtained by the adver-
sary is not totally independent of the private data but only results in
a slightly better posterior guessing probability than the prior proba-
bility. Most ε-statistical security algorithms [23–25] adopt differen-
tial privacy [26, 27] to obfuscate the private data with independent
noise. However, as shown in [25], differential privacy-based ap-
proaches cannot obtain the exact average and privacy at the same
time. One way to circumvent the trade-off between accuracy and
privacy is to guarantee that the inserted noise adds up to zero. Some
algorithms [28–30] insert noise having a geometrically decreasing
variance over iterations and guarantee that the inserted noise adds
up to zero. Some other algorithms [31–33] rely on a trusted third
party to obtain the zero-sum property. However, a trusted third party
is hard to implement in ad hoc networks including also many WSNs.

As discussed above, the existing information-theoretically se-
cure algorithms have some limitations, such as requiring prior
knowledge of the network, the zero-sum property of the inserted
noise, or the existence of a trusted third party. To address these limi-
tations, we propose a convex optimisation-based method. To explain
the basic concept, we show how it can be applied in the primal-dual
method of multipliers (PDMM) [10, 34] which is an iterative algo-
rithm for solving constrained convex optimisation problems. The
concept can, however, also be applied to other convex optimisation
methods, for example ADMM-based algorithms. As we shall see,
the proposed method has a number of attractive properties: 1) the
proposed algorithm obtains asymptotically perfect security and re-
quires no trusted party nor prior knowledge about the network; 2)
exact consensus and privacy can be obtained simultaneously; 3) the
algorithm does not need zero-sum noise insertion but only a proper
initialisation of the dual variables; 4) the convergence rate is inde-
pendent of the privacy level; 5) the algorithm is secure under both
passive and eavesdropping adversaries; and 6) the privacy of any
honest node is guaranteed as long as it has one honest neighbour.
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2. PRELIMINARIES AND PROBLEM DEFINITION
In this section, we will define the problem at hand and introduce
some important definitions and concepts.
2.1. Distributed average consensus
Let G = (V,E) denote a simple graph, where V = {1, 2, ..., n}
andE = {e1, . . . , em} ⊆ V ×V denote the set of nodes and edges,
respectively. The neighbourhood of node i is denoted as Ni = {j ∈
V | (i, j) ∈ E} and the degree of node i is denoted by di = |Ni|.
Finally, let A ∈ Rn×n denote the adjacency matrix of the graph
defined as Aij = 1 if and only if (i, j) ∈ E, and let B ∈ Rm×n
denote the incidence matrix defined as Bli = Bi|j = 1 if and only
if el = (i, j) ∈ E and i < j and Bli = Bi|j = −1 if and only if
el = (i, j) ∈ E and i > j. Distributed average consensus aims to
estimate the average of all the initial state values given by

save = n−1
∑
i∈V

si, (1)

with si the initial state value of node i, without any centralised co-
ordination. For simplicity, we will assume that si is a scalar but the
results can easily be generalised to arbitrary dimensions.

2.2. Privacy concern and adversary model
In this work, the initial state value of each node is the private data to
be protected. Most algorithms consider a passive adversary model
(also known as the honest-but-curious model) where the instruc-
tions of the protocol are followed, but the so-called corrupted nodes
might collude and attempt to deduce information about the initial
state values of the other honest nodes from the messages they re-
ceive. The eavesdropping adversary is usually neglected in existing
approaches since eavesdropping can be prevented by using chan-
nel encryption [35]. However, channel encryption is computation-
ally expensive. For iterative algorithms where the communication
channels between nodes are used many times, channel encryption is,
therefore, less attractive. We thus assume that the communication
in the network is performed through non-secure channels, except for
the communication during the initialisation of the network.

2.3. Problem definition
The goal of privacy-preserving distributed average consensus algo-
rithms is to design a protocol that jointly computes the average of all
initial state values while protecting them from being revealed in the
process. We thus have the following two requirements which need
to be satisfied simultaneously:

1) Correctness: at the end of the algorithm, each node has ob-
tained the average result save = n−1∑

i∈V si.
2) Individual privacy: throughout the execution of the algorithm,

the initial state value held by each honest node is protected
against both passive and eavesdropping adversaries.

Some remarks are in order here. The adversary always knows the
sum of the initial state values of the honest nodes, as it can be de-
duced from the average result and the initial states values of the cor-
rupted nodes. Therefore, revealing this sum is unavoidable [17]. Fur-
thermore, for incomplete (i.e., not fully connected) networks, as in
the case in many practical networks, the partial sums of the honest
nodes in each (connected) subgraph will be revealed as well, some-
thing that is also unavoidable for any information-theoretically pri-
vate protocol [36, 37].

The corrupted nodes aim to infer the initial state value si of node
i. Let si denote a realisation of a random variable Si having differ-
ential entropy h(Si), assuming it exists1, and let g(k)(Si) denote the

1In the case that Si is a discrete random variable, the conditions are given
in terms of the Shannon entropy H(Si).

information sent out at iteration k by node i. We will measure the
amount of privacy by

I(Si; g
(k)(Si)) = h(Si)− h(Si | g(k)(Si)), (2)

where I(· ; ·) denotes mutual information [38]. Note that
I(Si; g

(k)(Si)) = 0 corresponds to perfect security in the sense that
h(Si | g(k)(Si)) = h(Si) so that Si and g(k)(Si) are statistically in-
dependent, while I(Si; g

(k)(Si)) < ε, where ε > 0, corresponds to
ε-statistical security. Again, having perfect security at every iteration
does not necessarily imply that I(Si; g

(k)(Si), . . . , g
(0)(Si)) = 0

since in the end the adversary is able to compute partial sums of
connected subgraphs, but nothing else beyond that.

3. PRIMAL-DUAL METHOD OF MULTIPLIERS
The proposed approach is based on the primal-dual method of mul-
tipliers (PDMM), an instance of Peaceman-Rachford splitting of
the extended dual problem (see [34] for details). PDMM can, like
ADMM, be used for iteratively solving constrained convex optimi-
sation problems. The PDMM update equations are given by

x(k+1) = arg min
x

(
f(x) + λ(k)TPCx+

c

2
‖Cx+ PCx(k)‖22

)
,

λ(k+1) = Pλ(k) + c(Cx(k+1) + PCx(k)), (3)

where k denotes the iteration index, x(k) ∈ Rn is the primal vari-
able, λ(k) ∈ R2m the dual variable, f(x) the objective function
to be minimised, C ∈ R2m×n a matrix related to the graph’s in-
cidence matrix B, and P ∈ R2m×2m a symmetric permutation
matrix exchanging the first m with the last m rows. The c > 0
is a constant controlling the convergence rate. The vector λ con-
tains the dual variables controlling the constraints; for each edge
(i, j) ∈ E there are two node variables λi|j and λj|i, one for each
node i and j, respectively, where λ(l) = λi|j and Cli = Bi|j if
and only if el = (i, j) ∈ E and i < j, and λ(l + m) = λi|j ,
C(l+m)i = Bi|j if and only if el = (i, j) ∈ E and i > j. Note that
C + PC = [BT BT ]T and ∀(i, j) ∈ E : λj|i = (Pλ)i|j .

Consider the update of two successive λ-updates, given by

λ(k+2) = λ(k) + c(Cx(k+2) + 2PCx(k+1) + Cx(k)), (4)

since P 2 = I . Let H = ran(C) + ran(PC) where ran(·) de-
notes the range, and let ΠH denote the orthogonal projection onto
H . By inspection of (4), we conclude that every two PDMM up-
dates only affect ΠHλ ∈ H and leave (I − ΠH)λ ∈ H⊥, H⊥ =
null(CT )∩null((PC)T ) unchanged, where null(·) denotes the null
space. Moreover, by inspecting (3), we conclude that the x-update
is independent of (I − ΠH)λ since λT (I − ΠH)PC = 0. As a
consequence, the component (I − ΠH)λ will only be permuted ev-
ery iteration and therefore not converge. We will refer to ΠHλ and
(I −ΠH)λ as the converging and non-converging component of the
dual variable, respectively.

4. PROPOSED APPROACH
The distributed average consensus problem can be formulated as an
optimisation problem where we minimise the objective function

f(x) =
1

2
‖x− s‖22, (5)

where s = (s1, . . . , sn)T , subject to the constraint that xi = xj
for all (i, j) ∈ E. The solution is given by x∗ = save(1, . . . , 1)T .
That is, all nodes in the network eventually know the average. The
PDMM update equation (3) for this problem is then given by

x(k+1) = (I + cD)−1
(
s+ cAx(k) − CTPλ(k)

)
, (6)
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where D = CTC is the degree matrix of the underlying graph and
CTPC = −A. The update equations for node i then become

x
(k+1)
i =

si +
∑
j∈Ni

(
cx

(k)
j −Bi|jλ

(k)

j|i

)
1 + cdi

, (7)

∀j ∈ Ni : λ
(k+1)

i|j = λ
(k)

j|i + cBi|j

(
x
(k+1)
i − x(k)j

)
. (8)

From (8) we can see that the update of the dual variables only de-
pends on λ(k)

j|i , x
(k)
j and x(k+1)

i , of which λ(k)

j|i and x(k)j are already

available at node j. Therefore, after broadcasting x(k+1)
i , all neigh-

bouring nodes can construct λ(k+1)

i|j and the dual variables do not

need to be transmitted at all, except for the initialisation, as all λ(0)

j|i s
need to be known at the first iteration.

As mentioned before, the non-converging component (I −
ΠH)λ(k) will only be permuted every iteration so that

λ(k) → λ∗ +

{
(I −ΠH)λ(0), k even,

P (I −ΠH)λ(0), k odd,
(9)

where λ∗ is given by

λ∗ = −
(

CT

(PC)T

)†( ∇f(x∗) + cCTCx∗

∇f(x∗) + cCTPCx∗

)
+ cCx∗, (10)

where (·)† denotes the Moore-Penrose pseudo inverse. As a con-
sequence, if we initialise the dual variable λ in such a way that the
non-converging component (I−ΠH)λ(0) sufficiently obfuscates the
initial state value, the primal variables will converge to save while the
initial state value itself cannot be inferred, assuming there is at least
one honest neighbour. We will prove this claim more formally in
what follows.

4.1. Correctness
As shown in [34], the primal variable x(k) will converge geometri-
cally to x∗ for arbitrary initialisation x(0) and λ(0), thereby proving
the correctness of the algorithm.

4.2. Individual privacy
We will now proceed to prove that the proposed algorithm protects
the individual privacy under both passive and eavesdropping adver-
saries. As we can see, each node transmits only the primal vari-
able x(k+1)

i to all of its neighbours and does not reveal its initial
state value si directly. To analyse the privacy properties of the pro-
posed algorithm, let Vc and Vh denote the set of corrupted and honest
nodes, respectively. With this, the numerator of (7) can be expressed
as

si +
∑
j∈Ni

(
cx

(k)
j −Bi|jλ

(k)

j|i

)
=

si +
∑
j∈Ni

cx
(k)
j −

∑
j∈Ni∩Vh

Bi|jλ
(k)

j|i −
∑

j∈Ni∩Vc

Bi|jλ
(k)

j|i . (11)

At convergence, x∗ is known and λ∗ can be calculated through (10).
Hence, by inspection of (9) and (11), we conclude that the adversary
can infer about the initial state value si from observing x(k+1)

i is the
term given by

si −
∑

j∈Ni∩Vh

Bi|j

(
P k(I −ΠH)λ(0)

)
j|i
, (12)

and we conclude that, as long as Ni ∩ Vh 6= ∅, we can obfuscate the
initial sate value by introducing uncertainty in (I −ΠH)λ(0).

Algorithm 1 Privacy-preserving PDMM

1: Each node i ∈ V initialises its primal and dual variables. The
dual variables are initialised with random numbers having suffi-
ciently large variance (depending on the required privacy level),
whereas the primal variables can be initialised arbitrarily.

2: Each node i ∈ V communicates its dual variables λ(0)

i|j to its
neighbour j ∈ Ni through secure channels [35].

3: while ‖x(k) − x∗‖2 < threshold do
4: Activate a node uniformly at random, say node i, updates its

primal variable x(k+1)
i according to (7).

5: Node i broadcasts x(k+1)
i to all of its neighbours j ∈ Ni

(through non-secure channels).
6: After receiving x(k+1)

i by the neighbours, the dual variables
λ
(k+1)

i|j are updated using (8).
7: end while

To quantitatively measure the amount of information carried by
x
(k)
i about si, consider both x(k)i and si as realisations of the random

variables X(k)
i and Si, respectively. We will analyse the mutual in-

formation I(Si;X
(k)
i ) between Si and X(k)

i for which we need the
following result.

Proposition 1. Let X and Y be independent continuous random
variables with var(X), var(Y ) <∞ and let Z = X + Y . Then

lim
var(Y)→∞

I(X;Z) = 0,

assuming I(X;Z) exists.

Proof. Let γ = 1/(var(Y ))
1
2 and define Y ′ = γY . Hence, Y ′ has

unit variance. Since mutual information is invariant under scaling,
we have I(X;Z) = I(X;X + Y ) = I (γX; γX + Y ′) . As a
consequence, we have

lim
var(Y )→∞

I(X;Z) = lim
γ→0

I
(
γX; γX + Y ′

)
= I

(
0;Y ′

)
= 0.

By applying Proposition 1, we can conclude that the mutual in-
formation I(Si;X

(k)
i ) can be made arbitrarily small by increasing

the variance of the random variable representing the λ-contribution
in (12). That is, let λ(0) be a realisation of the random variable Λ(0).
Then we have I(Si;X

(k)
i ) = 0 if

∃j ∈ Ni ∩ Vh : var
(

((I −ΠH)Λ(0))j|i

)
→∞. (13)

Hence, the proposed algorithm obtains asymptotically perfect secu-
rity. A summary of the complete privacy-preserving PDMM algo-
rithm is given in Algorithm 1.

Some remarks are in order here. Firstly, since the dual variables
are not transmitted at all, except during initialisation for which we
need secure communication, no encryption is needed during the exe-
cution of the algorithm. Secondly, a necessary condition for achiev-
ing privacy is that Ni ∩ Vh 6= ∅. That is, node i requires at least
one honest neighbour. In the case the graph is complete, this means
that the algorithm is secure up to n − 2 malicious nodes in the net-
work. Thirdly, although we proved that the mutual information is
zero under the condition of (13), the variance of the dual variables
cannot be made infinitely large. Therefore, information about the
initial state variables will be leaked upon receiving the primal vari-
ables. To have an indication of the amount of leakage in practice,
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Fig. 1: Convergence of the primal variable, the converging compo-
nent and non-converging component of the dual variable in PDMM
with two different initialisations.

consider the following example of two independent Gaussian dis-
tributed random variables X and Y and their sum Z = X + Y . The
differential entropy of a Gaussian random variable with variance σ2

is given by 1
2

log(2πeσ2), so that I(X;Z) = h(Z) − h(Y ) =
1
2

log(1 + σ2
X/σ

2
Y ). Hence, if we have σ2

Y /σ
2
X = 100 (the range

of Y is approximately 10 times the range of X), the information
leakage is only 0.007 bits. Fourthly, in order to satisfy (13), a neces-
sary condition is that λ(0) ∩ H⊥ 6= ∅. By inspection of the matrix
C, we conclude that the matrix [C,PC] ∈ R2m×2n can be consid-
ered as the incidence matrix of a bipartite graph having 2n nodes.
As a consequence, we have that rank([C,PC]) ≤ 2n − 1 and we
conclude that dim(H) ≤ 2n − 1 and thus H⊥ 6= ∅. Hence, if we
randomly initialise λ(0), we have (I−ΠH)λ(0) 6= 0 with probability
one. Last but not least, the proposed algorithm can also be applied
to other convex optimisation methods such as ADMM and related
algorithms where the update equations have a similar structure.

5. EXPERIMENTAL RESULTS
Now we proceed to evaluate the performance of the proposed algo-
rithm by simulations in terms of the mean square error (MSE) of
primal and dual variables as a function of transmission number. We
generated a random geometric network with n = 10 nodes where
two nodes can communicate if their distance is within a radius r sat-
isfying r2 = 2 logn

n
, thereby guaranteeing a connected graph with

probability at least 1− 1
n2 [39]. For simplicity, we use uniform dis-

tribution as an example to demonstrate the results, where the initial
state values si are uniformly distributed in the interval [0, 1].

Figure 1 shows the convergence behavior of PDMM for differ-
ent initialisations. The red lines show the proposed PDMM algo-
rithm in which x(0) is initialised with all zeros and λ(0) is randomly
initialised with uniformly distributed noise in the interval [0, 100].
The green lines show results where the dual variable is initialised
in H such that λ(0) ∩ H⊥ = ∅, which implies that the initial
state values are not protected. The star, square, and circle marker
show the convergence of x(k), (I − ΠH)λ(k) and ΠHλ

(k), respec-
tively. We see that for both initialisations x(k) and ΠHλ

(k) con-
verge to the optimal solutions x∗ and λ∗, respectively. The magni-
tude of (I −ΠH)λ(k), on the other hand, does not converge. As a
consequence, the proposed algorithm protects the initial state value
by obfuscating it with a high-variance non-converging component

Fig. 2: Convergence of the proposed PDMM and state-of-the-art al-
gorithms under three different noise levels.

(I −ΠH)λ(k). Note that the green line with square marker is not
visible since (I −ΠH)λ(k) = 0 for all k.

Figure 2 shows a comparison of the proposed PDMM approach
with popular state-of-the-art information-theoretically secure algo-
rithms including differential privacy (DP) [25] and the correlated
noise insertion approach (CNI) [30], where we compare the effect
of adding noise on the convergence rate of the algorithm. We con-
sidered three different noise levels: Γ = 0, 102, and 104, where
Γ denotes the ratio of noise variance to the variance of initial state
value. The case Γ = 0 corresponds to the situation where no noise
is added so that the initial state values are not protected. In the other
cases we inserted noise having an initial range approximately 10
and 100 times the range of initial state values, therefore we have
Γ = 102 and 104, respectively. We observe, as expected, that the
accuracy of the differential privacy approach (black lines) decreases
with increasing noise variance and that for Γ 6= 0 the algorithm does
not converge anymore. That is, with differential privacy, there is
a trade-off between privacy and accuracy. As for correlated noise
insertion (blue lines), high accuracy is obtained in the end (the al-
gorithm is guaranteed to converge) but the convergence rate slows
down with increasing noise variance. The convergence rate of the
proposed PDMM-based algorithm (red lines), on the other hand, is
independent of the noise level since the convergence rate of PDMM
depends on the graph topology and not on the initialisation; increas-
ing the noise variance will only result in a higher initial error.

6. CONCLUSIONS
In this paper, we proposed a novel lightweight privacy-preserving
distributed average consensus algorithm for WSNs based on PDMM,
a convex optimisation algorithm. By simply initialising the dual vari-
able with random numbers, the non-converging component of the
dual variable will obfuscate the initial state values, thereby protect-
ing them from being revealed. We showed that the proposed algo-
rithm achieves asymptotically perfect security under a passive ad-
versary, where the privacy is guaranteed as long as there is at least
one honest neighbour. For an eavesdropping adversary, the proposed
algorithm does not require secure channel encryption in the network
except for the initialisation step. Compared to existing information-
theoretically secure algorithms, the proposed algorithm has no trade-
off between accuracy and privacy, and converges at a rate indepen-
dent of the amount of inserted noise and, thus, of the level of privacy.
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