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Summary

The interest in the field of speech enhancement emerges from the increased usage of
digital speech processing applications like mobile telephony, digital hearing aids and
human-machine communication systems in our daily life. The trend to make these
applications mobile increases the variety of potential sources for quality degradation.
Speech enhancement methods can be used to increase the quality of these speech
processing devices and make them more robust under noisy conditions.

The name “speech enhancement” refers to a large group of methods that are all
meant to improve certain quality aspects of these devices. Examples of speech en-
hancement algorithms are echo control, bandwidth extension, packet loss conceal-
ment and (additive) noise reduction. In this thesis we will focus on single-microphone
additive noise reduction and aim at methods that work in the discrete Fourier trans-
form (DFT) domain. The main objective of the presented research is to improve on
existing single-microphone schemes for an extended range of noise types and noise
levels, thereby making these methods more suitable for mobile speech communication
applications than state-of-the-art algorithms.

The research topics in this thesis are three-fold. At first, we focus on improved
estimation of the a priori signal-to-noise ratio (SNR) from the noisy speech. Good
a priori SNR estimation is crucial for speech enhancement, since many speech en-
hancement estimators depend on this parameter. We focus on two aspects of a priori
SNR estimation. Firstly, we present an adaptive time-segmentation algorithm, which
we use to reduce the variance of the estimated a priori SNR. Secondly, an approach
is presented to reduce the bias of the estimated a priori SNR, which is often present
during transitions between speech sounds or transitions from noisy speech to noise-
only and vice versa. The use of these improved a priori SNR estimators leads to both
objective and subjective quality improvement.

Secondly, we investigate the derivation of clean speech estimators under models
that take properties of speech into account. This problem is approached from two
different angles. At first, we consider the derivation of clean speech estimators un-
der the use of a combined stochastic/deterministic model for the complex DFT co-
efficients. The use of a deterministic model is based on the fact that certain speech
sounds have a more deterministic character. Secondly, we focus on the derivation of
complex DFT and magnitude DFT estimators under super-Gaussian densities. Deriva-
tion of clean speech estimators under these types of densities is based on measured
histograms of speech DFT coefficients. We present two different type of estimators
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under super-Gaussian densities. Minimum mean-square error (MMSE) estimators are
derived under a generalized Gamma density for the clean speech DFT coefficients
and DFT magnitudes. Maximum a posteriori (MAP) estimators are derived under
the multivariate normal inverse Gaussian (MNIG) density for the clean speech DFT
coefficients. Objective performance of the estimators derived under the MNIG den-
sity is slightly better than for the estimators derived under the generalized Gamma
density. Moreover, estimators derived under the MNIG density have some theoreti-
cal advantages over estimators derived under the generalized Gamma density. More
specifically, under the MNIG density the statistical models in the complex DFT do-
main and the polar domain are consistent, which is not the case for estimators derived
under the generalized Gamma density. In addition, the MNIG density can model vec-
tor processes, which allows for taking into account the dependency between the real
part and imaginary part of DFT coefficients.

Finally, we developed a method for tracking of the noise power spectral density
(PSD). The fact that all clean speech estimators are dependent on the noise PSD makes
this an important research topic. However, fast and accurate tracking of the noise PSD
is very challenging. The developed method is based on the eigenvalue decomposition
of correlation matrices that are constructed from time series of noisy DFT coefficients.
This approach makes it possible, in contrast to most existing methods, to update the
noise PSD even when speech is continuously present. Furthermore, the tracking delay
is considerably reduced compared to state-of-the-art noise tracking algorithms.

Some of the contributions presented in this thesis can be combined into a complete
speech enhancement system. A comparison is performed between a combination of
these individual components and a state-of-the-art speech enhancement system from
literature. Subjective experiments by means of a listening test show that the system
based on contributions of this thesis improves significantly over the state-of-the-art
speech enhancement system.
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Chapter 1

Introduction

Over the last two decades society experienced an increase in the use of speech-process-
ing devices like cellular phones, digital hearing aids and all kind of human-to-machine
speech-processing applications. With the increased use of these devices, also the vari-
ety of application environments increased. As a consequence, these speech processors
are potentially exposed to a large variety of acoustic noise sources. Although most of
these applications have originally been developed to work with noise-free signals, as
is e.g. the case for most speech coding and speech recognition algorithms, there has
been an increasing interest to make these systems robust to work under these noisy
conditions as well. Speech enhancement methods can be used to improve the quality
of these speech-processing devices. The term speech enhancement in fact refers to
a large group of methods that all aim at improving the quality of speech signals in
some way. Some examples of speech enhancement methods are bandwidth extension,
acoustic echo control (dereverberation), packet loss concealment and noise reduction.
In this thesis we use the expression speech enhancement in the meaning of additive
noise reduction.

The group of noise reduction methods for speech enhancement can be divided
into two broad classes; the class of single-microphone noise reduction and the class of
multi-microphone noise reduction.

Single-microphone speech enhancement algorithms estimate the clean speech sig-
nal using a realization of the noisy speech that is obtained using one microphone.
These methods have in general lower costs than multi-microphone algorithms. More-
over, single-microphone algorithms often impose less constraints on the system than
multi-microphone systems, for example requirements on the distance between the mi-
crophones. Multi-microphone enhancement algorithms on the other hand use more
than one microphone and can as such also exploit spatial information, and, as a con-
sequence, their performance is in general better than single-microphone speech en-
hancement systems. However, due to physical size limitation it is not always obvious
how to implement multi-microphone algorithms on small devices when one has to
fulfill for example the microphone inter-distance requirements.

In this thesis we focus on single-microphone speech enhancement. However,
notice that often single-microphone methods can be extended and used as a multi-
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microphone system as well. Moreover, single-microphone based methods can often
be combined with multi-microphone algorithms as a post-processor to obtain an even
better noise reduction.

There are several ways to classify existing single-microphone speech enhance-
ment algorithms. One way is to make a distinction between methods that are based on
signal subspace decompositions, methods based on parametric models, and methods
based on processing in the discrete Fourier transformation (DFT) domain. The above
mentioned classes of enhancement methods are not strictly disjoint and there are al-
gorithms which do not naturally fit into any of these classes. In the following we give
a brief overview of these classes.

The application of signal subspace decompositions within the context of speech
enhancement was proposed by Ephraim and Van Trees in [1]. The subspace based
approaches exploit the fact that the covariance matrix of a noisy speech signal frame
can be decomposed into two mutually orthogonal vector spaces: a signal (+noise)
subspace and a noise-only subspace. Noise reduction is obtained by discarding the
noise-only subspace completely, while modifying the noisy speech components in
the signal (+noise) subspace. A basic limitation of subspace based speech enhance-
ment is the relatively high computational complexity. More specifically, the method
is based on eigenvalue decompositions of the noisy speech covariance matrix. These
eigenvalue decompositions (EVD’s) are computationally quite expensive when the di-
mension of the covariance matrices become large. Another important aspect is the
fact that subspace based speech enhancement assumes the noise process to be white.
Extensions of subspace based enhancement methods that work for colored noise have
been proposed, see e.g. [2]. Other extensions that have been proposed take perceptual
aspects into account [3][4][5].

The second class contains methods where parametric models are fitted to the
speech signal and used in combination with a filter, e.g. a Wiener or Kalman filter,
to estimate the clean speech signal, see e.g. [6][7][8][9]. These methods often apply
certain constraints on the estimation process by using the fact that speech can be very
well represented as an autoregressive (AR) process. As such these methods can exploit
certain a priori information and can make sure that the enhanced speech signal satis-
fies certain spectral constraints or constraints on the time-evolution of the enhanced
speech spectra. These methods often use hidden Markov models (HMMs) [8] or code-
books [7][10] in order to determine the parametric description of the speech signal.
Some of these methods also use an HMM or codebook to model the noise process
with a parametric model, see e.g. [8][11]. Clearly, modelling the noise process with
an HMM or codebook constrains the system to work for certain noise-types only.

The final group that we mention here is the class of DFT-domain based methods.
These methods transform the noisy speech signal frame-by-frame to the spectral do-
main, e.g. using a discrete Fourier transform (DFT). Here, complex-valued DFT coef-
ficients of the clean signal are estimated by applying a gain function to the noisy DFT
coefficients. Subsequently, enhanced time-domain frames are generated using the in-
verse DFT. The enhanced waveform is constructed by overlap-adding the enhanced
frames. Initially, processing of the noisy DFT coefficients was mainly based on the
spectral subtraction type of methods, see e.g. [12][13]. Later, somewhat more sophis-
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ticated methods were proposed, where estimators were derived under a certain error
criterion and by exploiting (assumed) densities of noise and speech DFT coefficients
[14][15][16][17]. These estimators are a function of the distributional parameters, e.g.,
the variance of the noise and speech DFT coefficients. Also some variants have been
proposed where it is tried to take perception into account, see e.g. [18][19][20]. DFT-
domain based speech enhancement has received significant interest recently, partly
due to their relatively good performance and low computational complexity.

An important difference between the DFT-domain and the subspace based ap-
proaches is that the latter is based on a spectral transformation that is signal dependent.
Despite the possible gain of subspace based methods over DFT-domain based meth-
ods due to their somewhat more advanced signal transformation, the gain is rather low
and the added complexity is often hard to justify.

Parametric methods can be implemented in the DFT domain as well and can as
such be combined with other DFT-domain based methods. The advantage of para-
metric methods based on HMMs and codebooks is that they can incorporate good
statistical models of the speech process. However, they generally need a statistical
model of the noise process as well. This severely restricts the situations in which the
enhancement system will work. To overcome this restriction, methods have been pro-
posed that use a set of noise models and then use the noise model that fits best to the
situation at hand [11]. This of course broadens the applicability to more noise types,
but pays a price in terms of a increased complexity and memory usage. Moreover,
there is no guarantee that the system can handle a practical noise situation that it is not
trained for. Moreover, not all noise types can be described well with a low-order AR
model.

Notice that the list of references that we have given here is far from exhaustive,
since much research has been done in the field of speech enhancement. However, the
field of single-channel speech enhancement is still very challenging. There are many
scenarios, e.g. under low signal-to-noise ratio (SNR) or under non-stationary noise
conditions where existing systems fail to lead to a satisfying result.

In this thesis we mainly focus on the class of DFT-domain based methods for
single-channel speech enhancement. The work presented in this thesis was done
within the project single-microphone enhancement of noisy speech signals, supported
by STW and Philips research. The problem statement within this project was to de-
velop methods that can improve on existing single-microphone schemes for an ex-
tended range of noise types and noise levels. From this problem statement, the fol-
lowing three research topics were derived:

• To investigate clean speech estimators based on models that give a good de-
scription of the speech process.

• To develop a method for tracking of noise statistics (for stationary as well as
non-stationary noise sources) during speech activity and with a short delay.

• To improve estimation of parameters that are used to express speech estimators,
e.g. the variance of speech DFT coefficients, by taking into account that speech
is a time-varying process.
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In the next section we will give an overview of a general DFT-domain based speech
enhancement scheme and relate the aforementioned research topics to this scheme.

1.1 DFT-Domain Based Single-Channel Speech
Enhancement

framing &

windowing

windowing &

processing

overlap-add

DFT

IDFT

yt = xt + dt yt(i)

y(1, i) y(K, i)

x̂(1, i) x̂(K, i)

x̂t x̂t(i)

Figure 1.1: Overview of a DFT-domain based single-channel speech enhancement
system.

In Fig. 1.1 the basic block-scheme of a DFT-domain based single-channel speech
enhancement system is shown. The small letters indicate realizations of random vari-
ables and boldface letters indicate vectors. The input to this system is a signal yt,
where the subscript t indicates that this is a sampled time-domain signal. This sig-
nal is a noisy version of the (unknown) clean speech signal xt. The purpose of this
speech enhancement system is to make an estimate x̂t of xt that satisfies certain qual-
ity criteria. Speech signals are non-stationary by nature. Therefore, processing of yt

is performed on a frame-by-frame basis, where in general the frames have a length
of 10 up to 40 ms to satisfy quasi-stationarity conditions. A frame of noisy speech
is indicated by yt(i), where i indicates the frame number index. The frames have
a length of K samples, and are selected from the noisy time signal with an over-
lap of P samples. By cutting out a frame from the signal yt, implicitly a so-called
analysis window is applied. If no special actions are taken, this will be rectangular,
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Figure 1.2: Typical structure of a DFT-domain based single-channel speech enhance-
ment system, with indication how the chapters in this thesis relate to the different
blocks in the enhancement scheme.

however, often more smooth windows are desirable like a Hann or Hamming win-
dow. The windowed frame yt is transformed to the spectral domain by applying a
discrete Fourier transform (DFT), leading to a set of K DFT coefficients for frame
i, i.e. y(k, i), with k ∈ {1, ...,K} the frequency bin index. In the next block, la-
belled as processing, clean speech DFT coefficients are estimated by processing the
noisy DFT coefficients y(k, i). Estimated clean speech DFT coefficients are denoted
as x̂(k, i). This block is of most interest for us, since the following chapters will
deal with how to process the noisy speech DFT coefficients, such that an estimate of
the clean speech DFT coefficients is obtained. Subsequently, an inverse DFT is ap-
plied on the estimated clean speech DFT coefficients leading to an estimated clean
speech time-domain frame x̂t(i). Possibly x̂t(i) is windowed again, using a so-called
synthesis window, and the estimated clean speech signal is reconstructed using an
overlap-add procedure. Often, the analysis and synthesis windows are chosen such
that when no processing is performed in the block labelled as processing, a perfect
(possibly delayed) reconstruction of the input signal is given at the output.

Although the variety in DFT-domain based enhancement schemes is large, in gen-
eral a common structure for the processing block can be recognized, see Fig. 1.2.
Most DFT based enhancement systems assume that the DFT coefficients are indepen-
dent over frequency bins and time-frame indices and therefore process the noisy DFT
coefficients independently. The scheme in Fig. 1.2 is therefore drawn for a single DFT
coefficient at frequency bin k and frame i. The steps should be repeated for all other
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bins k ∈ {1, ...,K} and time-frames.
In general, a single-channel DFT-domain speech enhancement algorithm consists

of three main components. The actual estimation of the clean speech DFT coeffi-
cients is performed in the speech estimator block in Fig. 1.2, leading to an estimate
x̂(k, i) of x(k, i). The first research topic from the list on page 3 is related to this
block. Many procedures exist to obtain estimators for clean speech DFT coefficients.
Some are based on more or less heuristic argumentations, for example the spectral
subtraction based methods [12][13], while others consider the clean speech and noise
DFT coefficients as random variables X(k, i) and D(k, i), respectively, with a certain
density and employ so-called Bayes estimators, e.g. the minimum mean-square error
(MMSE) estimator [14] or the maximum a posteriori (MAP) estimator [17]. Most of
these estimators can be expressed in terms of the variance of the noise DFT coeffi-
cient σ2

D(k, i) and the variance of the clean speech DFT coefficient σ2
X(k, i). These

variances are computed over the ensembles of the stochastic processes D(k, i) and
X(k, i), respectively. The variances σ2

D(k, i) and σ2
X(k, i) are also referred to as the

noise and clean speech power spectral density (PSD), respectively. Often, these two
quantities are expressed as a ratio, namely as the a priori SNR ξ(k, i), which is defined
as

ξ(k, i) =
σ2

X(k, i)
σ2

D(k, i)
.

Since both these quantities are unknown, estimation from the noisy data is necessary.
This is done in the two other blocks in the block diagram of Fig. 1.2.

In the block labelled noise PSD estimation, the noise power spectral density is
estimated. Estimation of the noise power spectral density is related to the second
research topic on page 3. The estimated noise power spectral density is denoted by σ̂2

D.
A common method for estimation of the noise PSD is to exploit speech pauses, where
noise statistics can be measured. Detection of these pauses can be done using a voice
activity detector (VAD) [21][22]. However, this method is only valid for stationary
noise. Somewhat more advanced methods for noise PSD estimation are based on so-
called minimum statistics [23][24][25]. The minimum statistics based methods do
not need a VAD to estimate the noise PSD, but track the minimum power level in a
particular frequency bin seen across a sufficiently long time interval and compute the
noise PSD from this minimum.

Besides the noise PSD, most DFT-domain based noise reduction methods also
require an estimate of the clean speech PSD. This estimate is obtained in the block
labelled as clean speech PSD estimation and is related to the third and final research
topic on page 3. Under certain assumptions, which will be specified in the next chap-
ter, the speech PSD can be estimated by subtracting an estimate of the noise PSD
from the noisy speech PSD. Since the latter is unknown as well, it is often estimated
by averaging the power of noisy DFT coefficients from a few consecutive frames over
time, see e.g. [12]. Often, the estimated speech PSD shows variations due to random
fluctuation of the noisy speech realization. Since these variations can lead to percep-
tually annoying artifacts, other methods have been proposed that lead to estimates of
the speech PSD which exhibit smoother time variation. A very popular method that
leads to relatively smooth estimates is the so-called decision-directed approach [14].
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It makes use of an estimate of the clean speech magnitude spectrum from the previ-
ous frame, indicated by the 1-frame delay block in Fig. 1.2, in combination with the
estimated noise PSD and a periodogram estimate of the noisy speech PSD, to obtain
smooth estimates of the current clean speech PSD.

1.2 Contributions

In this thesis we mainly deal with DFT-domain based single-microphone speech en-
hancement. Our main focus is on three different, but related, topics within single-
microphone speech enhancement. First, we investigate improved estimation of the a
priori SNR. Secondly, our research focusses on speech enhancement estimators that
can take (statistical) properties of speech into account and as such lead to a better esti-
mate of the clean speech signal. Thirdly, research aimed at developing a noise tracking
method which can track the noise statistics when speech is continuously present. More
specifically, the main contributions of this thesis are the following:

1. Adaptive time segmentation for speech enhancement

We present an algorithm that can be used to obtain an adaptive time segmenta-
tion for noisy speech. The segmentation algorithm determines for each frame
of noisy speech a corresponding stationary segment. Such a segment can be
used to obtain an improved estimate of the noisy speech PSD, since it takes the
region in which the (noisy) data is stationary into account.

2. Improved a priori SNR estimation

Often, speech enhancement estimators are expressed in terms of the a priori
SNR. Since this quantity is unknown in advance, it is often estimated using
the so-called decision-directed [14] approach. There are two important aspects
related to the estimated a priori SNR. First, the estimated a priori SNR can
show some variations over time, leading to a rather annoying type of residual
noise. Secondly, the decision-directed approach can lead to underestimates or
overestimates around stationarity boundaries in the clean speech signal. With
respect to the first aspect, the aforementioned improved estimate of the noisy
speech PSD that is based on an adaptive time segmentation can be used within
the decision-directed approach. This reduces the variance of the estimated a
priori SNR.

With respect to the second aspect, we present a so-called backward decision-
directed approach. Combined with the standard decision-directed approach this
can overcome overestimates and underestimates of the a priori SNR at the start
of stationary regions.

3. Clean speech DFT estimator under a combined stochastic-deterministic
model

We present an MMSE estimator under a combined stochastic-deterministic mo-
del for the complex speech DFT coefficients. The use of the deterministic model
is based on the observation that certain speech sounds have a more deterministic
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character. Especially in frequency bins containing harmonics the deterministic
speech model is more appropriate and leads to improvements over the use of a
stochastic model.

4. Clean speech DFT estimators derived under super-Gaussian densities

We present clean speech complex DFT coefficient and DFT magnitude estima-
tors derived under two different densities that are known to be able to model
super-Gaussian or (semi-)heavy-tailed processes very well. More specifically,
we present MMSE estimators derived under the generalized Gamma density
and MAP estimators derived under the multivariate normal inverse Gaussian
(MNIG) density. These densities are of interest for the derivation of clean
speech DFT estimators, because they provide good models for super-Gaussian
or so-called (semi-)heavy tailed processes and show a much better fit to speech
DFT histograms than more conventional densities like the Gaussian density.
The presented MMSE estimator that is derived under the generalized Gamma
density is a generalization of existing complex DFT and magnitude estimators,
i.e. for specific parameter settings already existing estimators are obtained. The
MAP estimator that we derive under the MNIG density has some advantages
over the generalized Gamma density. At first, besides scalar processes it can
model vector processes as well. As such, dependencies between vector ele-
ments, e.g. the real part and imaginary part of DFT coefficients, can be taken
into account. With the generalized Gamma density this is in general not pos-
sible. Secondly, under the generalized Gamma density there is in general no
consistency between the statistical models in the complex DFT domain and the
polar domain. Under the MNIG density, on the other hand, the models are con-
sistent.

5. Tracking of noise statistics

A novel approach for noise tracking is proposed. In contrast to most existing
noise tracking algorithms, this method can track the noise statistics also when
speech is constantly present at a certain frequency bin. Moreover, the tracking
delay in comparison to existing schemes is considerably reduced. An increase
of the noise level of 15 dB per second can easily be tracked, which leads to an
increase of the final enhancement performance in terms of segmental SNR of
several dB’s.

How these contributions fit into a general DFT-domain enhancement scheme and
how they relate to each other can be indicated using the block-diagram in Fig. 1.2.
Contribution 1 uses the noisy input DFT coefficients y(k, i) to determine an adaptive
time segmentation. It can not be directly related to any of the indicated blocks, but it
can be used in combination with e.g. the blocks labelled as clean speech PSD esti-
mation or noise PSD estimation to improve estimation of time-varying parameters. In
this thesis, the adaptive time segmentation is used in contribution 2, which is related
to the block labelled as clean speech PSD estimation, to improve estimation of the a
priori SNR. From this (improved) estimate of the a priori SNR the speech PSD can be
computed. The estimators in contributions 3 and 4 can be used in the block labelled
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speech estimator to perform the actual estimation of the clean speech DFT coeffi-
cients. Finally, contribution 5 is used in the noise PSD estimation-block to estimate
the noise PSD σ2

D.

1.3 Thesis Outline

The notation and basic assumptions that we use throughout this thesis are introduced in
Chapter 2. Further, Chapter 2 provides some background information on DFT-domain
based speech enhancement and related topics on which other chapters are based.

In Chapter 3 an algorithm is presented that can be used to obtain an adaptive
time segmentation based on noisy speech. We use this segmentation to obtain better
estimates of the noisy speech PSD. Subsequently, this estimated noisy speech PSD is
used in combination with the decision-directed approach in order to obtain improved
estimates of the a priori SNR, which is a parameter that is frequently needed when
computing speech enhancement gain functions.

In Chapter 4 another method is presented that aims at obtaining improved esti-
mates of the a priori SNR. A property of the conventional decision-directed approach
is that in general it leads to wrong estimates of the a priori SNR at each start of a sta-
tionary region. This behavior is related to the fact that the decision-directed approach
makes use of clean speech estimates from the previous frame to make an estimate of
the a priori SNR for the current frame. In Chapter 4 a backward decision-directed ap-
proach is presented where the a priori SNR is estimated using clean speech estimates
from future frames. Estimates of the a priori SNR that are obtained using the con-
ventional decision-directed approach and the presented backward decision-directed
approach are combined into one single estimate by making use of the adaptive time-
segmentation algorithm presented in Chapter 3.

Many DFT-domain based speech enhancement estimators are based on the as-
sumption that speech DFT coefficients can be modelled as random variables with a
certain density. However, it is known that some classes of speech sounds can be very
well modelled with a deterministic model. Therefore, we investigate in Chapter 5 the
use of a mixture of a deterministic and a stochastic speech model for speech DFT co-
efficients. Under this combined stochastic-deterministic model, an estimator for clean
speech DFT coefficients is derived.

As mentioned above, an alternative to the use of such a combined stochastic-
deterministic model is to consider speech DFT coefficients to be random variables.
Several studies have been published where the density of speech DFT coefficients is
studied, see e.g. [16][17]. From these studies it followed that the observed density of
speech DFT coefficients has a so-called super-Gaussian shape, i.e. more heavy tailed
and more peaked than a Gaussian density. To be able to exploit this knowledge, we
derive in Chapters 6 and 7 speech estimators that can be used for a broad class of den-
sities. More specifically, in Chapter 6 we derive MMSE estimators for complex DFT
coefficients and DFT magnitudes under the generalized Gamma density. This leads
to a generalization of the estimators derived in [14][16][17]. A potential weakness of
the estimators derived under the generalized Gamma density is that real and imagi-
nary parts of DFT coefficients are assumed to be independent, which will be shown
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in Chapter 6 to be not completely in line with measured speech data. Further, un-
der the generalized Gamma density there is no consistency between the models in the
complex DFT domain and the polar domain for all parameter settings of the density.

In Chapter 7 MAP estimators for complex DFT coefficients and DFT magnitudes
are derived by assuming that the complex DFT coefficients are distributed with a mul-
tivariate normal inverse Gaussian density. Estimators derived under this density elimi-
nate the above mentioned potential weaknesses of the estimators under the generalized
Gamma density.

In Chapter 8 a method is proposed for tracking of the noise PSD. This method
is based on the eigenvalue decomposition of correlation matrices that are constructed
from time series of noisy DFT coefficients. This approach makes it possible to update
the noise PSD, even when speech is continuously present. Furthermore, the tracking
delay is considerably reduced compared to a state-of-the-art noise tracking algorithm.

Finally, in Chapter 9 we summarize the main results of this thesis and discuss
some directions that are interesting for future research.

1.4 List of Papers
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Chapter 2

Background

In this chapter we provide background information on DFT-domain based speech en-
hancement necessary to read this thesis.

2.1 Notation and Basic Assumptions

In this section we introduce the notation and basic assumptions that we use in this
thesis. We assume a signal model of the form

Y (k, i) = X(k, i) + D(k, i), (2.1)

where Y (k, i), X(k, i) and D(k, i) are DFT coefficients obtained at frequency bin
index k, with k ∈ {1, ...,K} and in time-frame i from the noisy speech, clean speech
and noise process, respectively. The signal model expressed in Eq. (2.1) is often re-
ferred to as the assumption of additive noise.

We assume that Y (k, i), X(k, i) and D(k, i) are zero-mean complex random vari-
ables, unless stated otherwise. We use upper case letters to denote random variables
and the corresponding lower case letters to denote their realizations. Vectors and ma-
trices are indicated by boldface letters, e.g. Y ∈ C

K is a K-dimensional complex
random vector. We use the standard assumption that X and D are independent. As a
consequence X and D are also uncorrelated, i.e.

E[X(k, i)D(k, i)] = 0∀ k, i. (2.2)

Notice that the aforementioned assumptions on additivity (Eq. (2.1)) and indepen-
dence of X and D are reasonable in a wide range of applications where speech is
distorted by environmental noise.

We use the following notation with respect to real and imaginary parts, as well as
the magnitude1 of the random variables in question

Y (k, i) = Y�(k, i) + jY�(k, i), |Y (k, i)| = R(k, i), (2.3)

1We will use the words magnitude and amplitude interchangeably. They mean the same, namely the
absolute value of a complex DFT coefficient.
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X(k, i) = X�(k, i) + jX�(k, i), |X(k, i)| = A(k, i), (2.4)

and

D(k, i) = D�(k, i) + jD�(k, i), (2.5)

where j =
√
−1, and where the subscripts � and � indicate the real and imaginary

part of a DFT coefficient and where R and A denote the magnitude of the noisy DFT
coefficient and the clean speech DFT coefficient, respectively.

It is of our interest to make an estimate x̂(k, i) of the clean speech DFT coeffi-
cient x(k, i). In order to obtain x̂(k, i), Bayes estimators that optimize a certain cost
function are often employed. In Section 2.2 we briefly discuss the topic of Bayes es-
timation. It turns out that, in general the estimate x̂(k, i) is a function of the noise
variance σ2

D(k, i) = E
{
|D(k, i)|2

}
, the speech variance σ2

X(k, i) = E
{
|X(k, i)|2

}
and the noisy DFT coefficient y(k, i), that is

x̂(k, i) = f(σ2
D(k, i), σ2

X(k, i), y(k, i)). (2.6)

The speech and noise variance are also often referred to as the speech and noise
power spectral density (PSD), respectively. Notice that the power spectral density
of a process D is defined as SDD(k, i) = 1

K E
{
|D(k, i)|2

}
, where K is the length

of the time frame in samples and where the expectation operator E {·} is computed
over the ensemble of the random process D(k, i). For notational convenience we
will leave out the scaling 1

K and use both the terms variance and PSD to denote
σ2

D(k, i) = E
{
|D(k, i)|2

}
.

An alternative notation that is frequently used for Eq. (2.6) is in terms of the a
posteriori SNR ζ(k, i) and the a priori SNR ξ(k, i), that is

x̂(k, i) = f(ζ(k, i), ξ(k, i), y(k, i)).

The a posteriori and a priori SNR are defined in [1] as

ζ(k, i) =
r2(k, i)
σ2

D(k, i)
(2.7)

and

ξ(k, i) =
σ2

X(k, i)
σ2

D(k, i)
, (2.8)

respectively. The a posteriori ζ(k, i) is dependent on the noisy magnitude realiza-
tion r(k, i) and the noise PSD σ2

D(k, i). The realization r(k, i) is known and can be
measured from the noisy data. The noise PSD is an expected value that is in gen-
eral unknown and needs to be estimated. The a priori SNR, on the other hand, is
completely defined in terms of expected values, which means that in practice besides
σ2

D(k, i), also σ2
X(k, i) needs to be estimated. Several methods exist for estimation of

the a priori SNR, given an estimate of the noise PSD σ2
D(k, i). The most popular one

is the so-called decision-directed approach that we will discuss in Section 2.4.
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2.2 Bayes Estimation

To facilitate the discussion in Chapters 6 and 7 on the derivation of speech enhance-
ment estimators under a minimum mean-square error (MMSE) and a maximum a
posteriori (MAP) criterion, respectively, we review in this section the so-called Bayes
estimators.

Let U and V be two related random variables and assume that we are interested in
an estimate of U , that is Û(V ), while we can only observe V , e.g. V = U +W , where
W can be seen as an additive distortion. Let c(U, Û(V )) be a specific non-negative
cost function and let fV,U (v, u) be the joint density of V and U , fV (v) and fU (u)
its marginal densities, and fU |V (u|v) the conditional density of U given V . A Bayes
estimator can then be defined as the estimator that minimizes the expected costs [2]

E
{

c(U, Û(V ))
}

, (2.9)

which is defined as

E
{

c(U, Û(V ))
}

=
∫ ∞

−∞

∫ ∞

−∞
c(u, û(v))fV,U (v, u)dvdu (2.10)

=
∫ ∞

−∞
I (û (v)) fV (v)dv, (2.11)

with

I(û(v)) =
∫ ∞

−∞
c(u, û(v))fU |V (u|v)du. (2.12)

Although Û(V ) is a function of V , we leave out V for notational convenience and sim-

ply write Û . In order to minimize E
{

c(U, Û)
}

it is sufficient to minimize Eq. (2.12),

because I(û) is non-negative and probability density functions, by definition, are non-
negative. A cost function that is of specific interest for speech enhancement is the
square-error cost function, that is

c(U, Û) = |U − Û |2.

The estimator under this cost function is often referred to as the MMSE estimator and
is found by minimization of

I(û) =
∫ ∞

−∞
|u − û|2fU |V (u|v)du. (2.13)

The solution can be shown to be equal to (see e.g. [3])

û =
∫ ∞

−∞
ufU |V (u|v)du = E{U |V = v}, (2.14)

that is, û is the conditional mean estimator. Using Bayes’ theorem we can express
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Eq. (2.14) in a somewhat more convenient way, that is

û =

∫∞
−∞ ufV |U (v|u)fU (u)du

fV (v)

=

∫∞
−∞ ufV |U (v|u)fU (u)du∫∞
−∞ fV |U (v|u)fU (u)du

. (2.15)

Estimators under the MMSE criterion can not always be derived analytically. In or-
der to avoid computationally overwhelming solutions (like numerical integration), the
uniform cost function is also often used as an alternative for derivation of speech en-
hancement estimators. This cost function is defined as

c(U, Û) =
{

0, |U − Û | < ε,
1, otherwise,

(2.16)

with ε an arbitrarily small positive number. The estimator under this cost function is
found by minimization of

I(û) = 1 −
∫
|u−û|<ε

fU |V (u|v)du. (2.17)

Because the integral in Eq. (2.17) is computed over an arbitrarily small region around
û, the estimate û is obtained by maximizing the density fU |V (u|v), i.e.

û = arg max
u

fU |V (u|v),

that is, û is the maximum a posteriori (MAP) estimator. Using Bayes rule we can
write this as

û = arg max
u

fV |U (v|u)fU (u)
fV (v)

. (2.18)

Because the denominator is independent of u, it is sufficient to maximize the numera-
tor, i.e.

û = arg max
u

fV |U (v|u)fU (u). (2.19)

Although the uniform weighting of the costs as in Eq. (2.16) might be less relevant
than the quadratic cost function, sometimes this cost function leads to somewhat sim-
pler and analytically better feasible solutions.

From Eqs. (2.15) and (2.19) we see that in order to compute the MMSE and MAP
estimator, respectively, the prior density fU (u) and the density fV |U (v|u) are needed.
Depending on whether the goal is to estimate clean speech complex DFT coefficients
or to estimate the magnitude of the clean speech DFT coefficients we thus need the
prior densities fX(x) or fA(a), and the densities fY |X(y|x) or fR|A(r|a), respec-
tively, to compute the corresponding MMSE or MAP estimators.
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2.3 Probability Distributions of Noise and Speech DFT
Coefficients

Based on the central limit theorem [4] it is often argued that the probability density
function fD(k,i)(d(k, i)) of a noise DFT coefficient D(k, i) is zero-mean Gaussian, as
each noise DFT coefficient is computed as a sum of time samples. This is true when
the frame size K → ∞ and when the time-span of dependency between the time-
domain samples in the frame is short compared to the frame size K [5]. Moreover,
none of the variances of the individual time samples should dominate the variance of
the sum of the time samples.

For many noise sources the time-span of dependency is relatively short and, as a
consequence, the distribution of noise DFT coefficients is often close to Gaussian [5].
Also, in many practical situations the observed noise process can be decomposed into
a sum of several independent noise processes, leading to a faster convergence of the
distribution of noise DFT coefficients to a Gaussian distribution. For these reasons,
we model the complex noise DFT coefficients with a complex Gaussian density, i.e.
the real and imaginary parts of D are jointly Gaussian, that is

fD(d) =
1

πσ2
D

exp
{
−|d|2

σ2
D

}
.

The density fY |X(y|x) is therefore complex Gaussian and can be written as

fY |X(y|x) =
1

πσ2
D

exp
{
−|y − x|2

σ2
D

}
. (2.20)

Let the polar representations of X and Y be defined as X = A exp (jΦ) and Y =
R exp (jΘ). In order to derive an expression for the density fR|A(r|a) we first write
Eq. (2.20) as

fY |A,Φ(y|a, φ) =
1

πσ2
D

exp
{
−a2 + r2 − 2ar cos(θ − φ)

σ2
D

}
. (2.21)

Transformation of (2.21) into polar coordinates and using Jacobian R then leads
to

fR,Θ|A,Φ(r, θ|a, φ) =
r

πσ2
D

exp
{
−a2 + r2 − 2ar cos(θ − φ)

σ2
D

}
.

Integrating out the noisy phase θ then gives

fR|A,Φ(r|a, φ) =
∫ 2π

0

fR,Θ|A,Φ(r, θ|a, φ)dθ

=
2r

σ2
D

exp
{
−a2 + r2

σ2
D

}
I0

(
2ar

σ2
D

)
,

where I0 is the 0th order modified Bessel function of the first kind [6]. Finally, the
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density fR|A(r|a) is found by

fR|A(r|a) =
∫ 2π

0

fR|A,φ(r|a, φ)fΦ|A(φ|a)dφ (2.22)

=
2r

σ2
D

exp
{
−a2 + r2

σ2
D

}
I0

(
2ar

σ2
D

)
. (2.23)

The expression in Eq. (2.23) has been derived in [7] as well by assuming a uniform
distribution for the clean speech phase. However, notice that here we made no as-
sumption about the clean speech phase distribution to derive this expression.

Speech DFT coefficients have been assumed Gaussian distributed as well [1]. How-
ever, measured histograms of speech DFT coefficients and speech DFT magnitude co-
efficients have shown that the speech DFT coefficients can be better modelled using
more leptokurtic or super-Gaussian pdfs [8][9]. Super-gaussian pdfs have in general
somewhat more heavy tails than the Gaussian density. There are several explanations
that play a role in these observed non-Gaussian densities. The first explanation is
related to the time-span of the dependency, which for speech is in general relatively
long compared to the frame size. Therefore, the central limit theorem is not applicable.
Secondly, histograms of speech DFT coefficients as presented in [8][9] are measured
conditioned on speech spectral variances estimated by the decision-directed approach,
which might be different from the distribution of speech DFT coefficients conditioned
on the true, but unknown, spectral variance. Thirdly, a frame of speech data is often to
some degree non-stationary. Even if the speech data were truly Gaussian, estimating
the pdf over a non-stationary signal region would lead to a density that is not Gaussian.

To be better in line with the observed super-Gaussian densities for the speech
DFT coefficients, we derive in Chapters 6 and 7 MMSE and MAP estimators under
generalized Gamma and multivariate normal inverse Gaussian densities, respectively.

2.4 Estimation of the A Priori SNR

Most of the DFT-domain based clean speech estimators are defined in terms of the a
priori SNR ξ = σ2

X/σ2
D. In practice ξ is unknown and has to be estimated from the

noisy speech data.
A method that can be used to make an estimate of ξ, denoted by ξ̂, is the so-called

maximum likelihood (ML) estimator [1]. To derive this ML estimator, the pdf of a vec-
tor of noisy DFT coefficients is considered, that is Y(k, i) = [Y (k, i − L), ..., Y (k, i)].
It is assumed that the elements in the vector are independent from each other and Gaus-
sian distributed. Notice that in practice the DFT coefficients Y (k, i − L), ..., Y (k, i)
are often computed using overlapping time frames. This will violate the assumption
that the elements in vector Y(k, i) are independent. Nevertheless, under the given
assumptions, the pdf of Y(k, i) conditioned on σ2

D and σ2
X is given by

fY(k,i)|σ2
D, σ2

X
(y(k, i)|σ2

D, σ2
X) =

L−1∏
l=0

1
π(σ2

D + σ2
X)

exp
[
−|y(k, i − l)|2

σ2
D + σ2

X

]
.

(2.24)
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Maximization of Eq. (2.24) with respect to σ2
X leads to

σ2
X(k, i) =

1
L

L−1∑
l=0

|y(k, i − l)|2 − σ2
D(k, i). (2.25)

Dividing Eq. (2.25) by σ2
D(k, i) then leads to

ξ̂(k, i) = max

[
1
L

L−1∑
l=0

ζ(k, i − l) − 1, 0

]
, (2.26)

where the maximum operator is applied to make sure that the estimated a priori SNR is
non-negative. The estimate in Eq. (2.26) is in fact based on an average of the a poste-
riori SNR. The number of terms L that is used in Eq. (2.26) is a compromise between
conflicting requirements. On one hand, L cannot be chosen too large, since speech
signals can in general only be considered to be short-time stationary. On the other
hand, larger L leads to more reduction of the variance of the estimate ξ̂(k, i). Notice,
that evaluation of Eq. (2.26) also implies knowledge on the noise PSD σ2

D. Estimation
of σ2

D can be performed using e.g. voice activity detection (VAD) [10][11], minimum
statistics [12][13][14] or by employing the in Chapter 8 discussed method based on
DFT-domain subspaces.

Although this estimator of ξ is relatively simple, and relatively easy to analyze, it
is not commonly used in combination with a clean speech estimator. The reason for
this is that the maximum likelihood estimate of ξ leads in general to a relatively large
amount of musical noise. This annoying effect is introduced because clean speech
DFT estimators are applied independently per frame. However, small variations on
the noisy DFT coefficients y(k, i) due to the noise process lead to variations in the
sequence of estimated a priori SNR values. As a consequence, a sequence of es-
timated clean speech DFT coefficients will show variations over time as well (even
if the original sequence of clean speech DFT coefficients was completely constant).
These variations give rise to the effect that is known as musical noise.

A method that reduces the effect of musical noise and which is commonly used
for a priori SNR estimation is the so-called decision-directed approach. The decision-
directed approach was originally defined in [1] as a linear combination between two
equally valid definitions of the a priori SNR, that are

ξ(k, i) =
E
[
|X(k, i)|2

]
σ2

D(k, i)

and
ξ(k, i) = E [ζ(k, i) − 1] .

The linear combination leads to

ξ(k, i) = E

[
α
|X(k, i)|2
σ2

D(k, i)
+ (1 − α) [ζ(k, i) − 1, 0]

]
, (2.27)

with 0 ≤ α ≤ 1. For implementation of Eq. (2.27) some approximations were needed;
the expectation operator was neglected and realizations of the random variables in
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question were used. Since the clean speech DFT coefficient x(k, i) of the current
frame i is unknown, the estimate of the previous frame was used instead, i.e. x̂(k, i−
1), which can be obtained from the noisy DFT coefficient in the previous frame by
applying a clean speech estimator. Altogether this led to [1]

ξ̂(k, i) = α
|x̂(k, i − 1)|2

σ2
D(k, i)

+ (1 − α)max[ζ(k, i) − 1, 0]. (2.28)

The parameter α determines how smooth the estimates ξ̂(k, i) will be across time and
is therefore often called the smoothing factor. The closer α is to one, the more smooth
the sequence of estimates will become. In return for this decrease in variance, the
price to pay is a delay in the estimation of ξ. This effect is eminent during transitions,
i.e. when there is a sudden increase of decrease in the true, but unknown, a priori
SNR. In that case Eq. (2.28) will lead to overestimates or underestimates of ξ and as
consequence to under- or oversuppression of the noise, respectively. This issue will be
discussed in more detail in Chapter 4. Similar as for the ML approach, the decision-
directed approach also assumes that knowledge of the noise PSD σ2

D is available. The
decision-directed approach is often preferred over the ML estimate of ξ(k, i), because
of its ability to highly reduce the effects of musical noise.

2.5 Overview of DFT-Domain Based Estimators

In this section we give a brief overview of existing clean speech estimators for DFT-
domain based speech enhancement. We will not provide here a complete historical
overview, but will discuss the most relevant methods for speech enhancement. One
of the first methods that was used for noise reduction in noisy speech signals was
spectral subtraction [15][16]. This method aims at estimating the clean speech DFT
magnitude by subtracting a smoothed noise magnitude from the noisy speech DFT
magnitude. Subsequently, the estimated complex clean speech DFT is reconstructed
by adding the noisy phase to the estimated clean speech magnitude. The concept of
spectral subtraction comes in a lot of varieties. A rather general formulation of an
estimator based on spectral subtraction is given by

X̂(k, i) =
(

max
[
1 − b

E {|D(k, i)|a}
|Y (k, i)|a , 0

])1/a

Y (k, i). (2.29)

The parameter b determines the amount of subtraction, i.e. b > 1 will lead to an over
subtraction of the noise and thus a somewhat more aggressive noise reduction, while
b < 1 leads to an under subtraction of the noise and will lead to a higher noise floor.
Parameter a determines the type of spectral subtraction that is applied. Some special
choices for a are a = 1 and a = 2 for which we obtain magnitude spectral subtraction
and power spectral subtraction, respectively.

Another well-known estimator that has been applied for noise reduction in noisy
speech signals is the Wiener filter [17]. Under the assumption of large frame size K,
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the Wiener filter can be implemented in the DFT domain as

X̂(k, i) =
σ2

X(k, i)
σ2

Y (k, i)
Y (k, i). (2.30)

Using the assumption that speech and noise are uncorrelated we can write Eq. (2.30)
as

X̂(k, i) =
σ2

Y (k, i) − σ2
D(k, i)

σ2
Y (k, i)

Y (k, i). (2.31)

In practice, estimates of the clean speech and noisy speech PSD are used in order to
compute Eq. (2.31), that is

X̂(k, i) =
max

[
σ̂2

Y (k, i) − σ̂2
D(k, i), 0

]
σ̂2

Y (k, i)
Y (k, i). (2.32)

The maximum operator is used to make sure that the estimate of the clean speech PSD,
i.e.

σ̂2
X(k, i) = σ̂2

Y (k, i) − σ̂2
D(k, i),

is always non-negative. Notice that this is not always guaranteed when using estimates
σ̂2

Y (k, i) and σ̂2
D(k, i).

Alternatively, Eq. (2.30) is also often written in terms of the a priori SNR ξ(k, i)
as

X̂(k, i) =
ξ(k, i)

ξ(k, i) + 1
Y (k, i), (2.33)

which can be obtained from Eq. (2.30) by dividing both numerator and denominator
by σ2

D(k, i). Among the linear estimators, the Wiener filter is the best estimator in
terms of mean-square error (MSE). When the clean speech and noise DFT coefficients,
respectively, are both Gaussian distributed, the Wiener filter is also the optimal non-
linear estimator.

In [1] an MMSE magnitude estimator was proposed under the same statistical
model as for the Wiener filter, i.e. both the speech and noise DFT coefficients were
assumed Gaussian distributed. This implies that the clean speech DFT magnitude was
assumed to be Rayleigh distributed. The reason to consider a magnitude estimator
instead of an estimator for the complex DFT coefficients was based on the argumen-
tation that the phase of speech DFT coefficients is perceptually less relevant than the
magnitude. The choice for complex DFT or DFT magnitude estimators depends on
the preference for the type of error criterion that is used and might be application
dependent.

However, the use of a Gaussian density to model speech DFT coefficients is de-
batable, as also mentioned in Section 2.3. In [8], the density of speech DFT coeffi-
cients has been thoroughly investigated. It was concluded by measuring histograms of
speech DFT coefficients conditioned on a priori SNR values that are estimated using
the decision-directed approach, that the observed density of speech DFT coefficients
is more super-Gaussian. It is important to realize that the preference for these super-
Gaussian densities is influenced by the conditioning on the a priori SNR and on the
method that is used to estimate the a priori SNR. More specifically, in [18] estimation
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of the a priori SNR was based on so-called GARCH models, leading to a preference
for a Gaussian density to model the speech DFT coefficients.

Because of the observed super-Gaussian densities for speech DFT coefficients,
there has been an increased interest over the last years to derive estimators for the clean
speech DFT coefficients under these densities. Important contributions with respect
to derivation of estimators under super-Gaussian densities can be found in [8][9]. In
[8] MMSE estimators for the complex DFT coefficients are proposed under Laplace
and Gamma densities. In [9] MAP magnitude estimators under super-Gaussian ap-
proximations are presented. In Chapter 6 we generalize the results presented in [8] by
deriving estimators under the generalized Gamma density. In Chapter 7 we present
MAP estimators under a different type of density, namely the MNIG density. This
density can model heavy-tailed processes very well and has some potential advan-
tages over the generalized Gamma density.
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3.1 Introduction

In Chapters 1 and 2 it was mentioned that speech enhancement estimators at frequency
bin k and time-frame i are typically expressed in terms of the noise power spectral
density (PSD) σ2

D(k, i) and the noisy speech PSD σ2
Y (k, i). The gain function can be

expressed in terms of σ2
D(k, i) and σ2

Y (k, i) directly, or indirectly using the definition
of the a priori SNR ξ(k, i), that is

ξ(k, i) =
σ2

X(k, i)
σ2

D(k, i)
=

σ2
Y (k, i) − σ2

D(k, i)
σ2

D(k, i)
(3.1)

with σ2
X(k, i) the clean speech PSD and where we used the commonly made assump-

tion that the noise and the clean speech are statistically uncorrelated. Clearly, in order
to compute the gain function, it is necessary to estimate the PSD of the noisy speech
as well as the PSD of the noise process. We denote estimates of the noisy speech PSD
by σ̂2

Y (k, i) and estimates of the noise PSD by σ̂2
D(k, i).

While the problem of estimating and tracking the noise PSD in the presence of
speech has received significant interest recently, see e.g. [1][2], methods for accurate
estimation of the noisy speech PSD appear to have been less explored. A well-known
estimator of the noisy speech PSD is the periodogram, computed as σ̂2

Y,P (k, i) =
|Y (k, i)|2, where Y (k, i) is a Fourier coefficient of noisy speech and the subscript
P indicates that it is a periodogram estimate. However, the periodogram estimator
suffers from a variance proportional to σ4

Y (k, i) [3]. To reduce the variance, smoothing
methods like the Bartlett method [3] can be used. The Bartlett method computes an
estimated (smoothed) PSD by averaging periodograms of, say N , uncorrelated frames,
hereby decreasing the variance of the PSD estimate by a factor N [3]. When the
frames are correlated, the variance is still reduced, but by a factor smaller than N . The
decrease in variance comes with a side effect; the frequency resolution is decreased
as well. In this chapter we use the Bartlett method to estimate the noisy PSD for a
frame using the noisy data from a certain segment, a sequence of consecutive frames
positioned around the frame to be enhanced. Fig. 3.1 illustrates the terms frame and
segment. A Bartlett estimate of a noisy PSD for a frame is thus computed using a
segment consisting of N frames including the frame to be enhanced.

In Boll’s work on spectral subtraction [4], the Bartlett method was used across seg-
ments consisting of 3 frames located symmetrically around the frame to be enhanced.
Although this leads to a decrease in variance, this approach has a number of disad-
vantages. First, the position of the segment with respect to the underlying noisy frame
that needs to be enhanced is fixed. However, if the onset of a speech sound is not
aligned with the start of the segment, the onset will be oversuppressed and the noise
only region preceding the onset will be undersuppressed, because of a wrong estimate
of the noisy PSD is used in the speech enhancement gain function. Secondly, ideally,
the length of segments should vary with speech sounds; some vowel sounds may be
considered stationary up to 40-50 ms, while stop consonants may be stationary for
less than 5 ms [5]. A fixed segment size has two potential drawbacks. First, in signal
regions which can be considered stationary for longer time than the segment used, the
variance of the spectral estimator is unnecessarily large. Secondly, if the stationar-
ity of the speech sound is shorter than this fixed segment size, smoothing is applied
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Figure 3.1: Noisy speech signal with frame to be enhanced. In this example a segment
consists of 5 consecutive frames.

across stationarity boundaries resulting in oversuppression of transients, leading to a
potential degradation of the speech intelligibility, and undersuppression of noise-only
regions preceding those transients.

In this chapter, we propose an adaptive time segmentation for estimation of the
noisy PSD to overcome the above mentioned problems. Notice that we keep the size
and position of the frames fixed, but make the size and position of the segments adap-
tive. The proposed segmentation algorithm is very general. It can work as a front-end
for most existing speech enhancement systems independently of the particular sup-
pression rule that is used in the enhancement algorithm. To be more specific, the pro-
posed method determines which noisy speech data should contribute in the estimation
of the noisy speech PSD for a given frame, leading to better estimates of σ2

Y (k, i).
The estimated σ2

Y (k, i) can then be used in, e.g. decision-directed (DD) approach
[6] based or maximum likelihood [6] based schemes for estimating the a priori SNR
ξ(k, i).

The remainder of this chapter is organized as follows. In Section 3.2 we present an
algorithm to determine an adaptive segmentation for speech enhancement. In Section
3.3 we show how this adaptive segmentation can be used to improve the estimation
of the a priori SNR ξ(k, i) using the DD approach. In Section 3.4 we evaluate the
presented segmentation method by means of objective and subjective experiments. In
Section 3.5 conclusions are drawn.

3.2 Adaptive Time Segmentation

To illustrate the impact of an adaptive segmentation within a speech enhancement
context we compare time-domain waveforms of a noisy speech signal enhanced using
an adaptive time segmentation with a scheme using a fixed segmentation. The noisy
speech signal is constructed by degrading a clean speech signal by white Gaussian
noise at an overall SNR of 10 dB. The enhanced signals are obtained using a Wiener
filter where the noisy speech PSD was estimated using both a Bartlett estimate with
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Figure 3.2: a) Clean speech signal. b) Noisy speech signal with SNR of 10 dB. c)
Enhanced noisy speech using an adaptive segmentation. d) Enhanced noisy speech
using a fixed segmentation. (sample frequency is 8 kHz)

adaptive time segmentation and a Bartlett estimate with fixed time segmentation. For
ease of illustration, the adaptive segmentation was found here under ideal conditions
(i.e. using the clean speech signal).

Fig. 3.2a shows the clean speech signal that contains a stop consonant. Fig. 3.2b
shows the noisy speech signal. Fig. 3.2c shows the enhanced speech signal that was
estimated using an adaptive time segmentation, whereas Fig. 3.2d shows the enhanced
speech signal using a fixed segmentation. The thick lines mark the location of the
signal frames, and the thin lines the segments that are used to estimate the noisy speech
PSD for each frame. Comparing Fig. 3.2c and Fig. 3.2d it is clear that the fixed
segmentation in Fig. 3.2d leads to a pre-echo present in front of the transient. This
pre-echo is due to the fact that the PSD of the noisy signal, and consequently the gain
value preceding the attack, is wrongly estimated and leads to undersuppression. With
the adaptive segmentation in Fig. 3.2c the pre-echo is much reduced, because segment
length and position of the segments are adapted to the speech signal.

Our goal in this section is to develop an adaptive segmentation algorithm that finds
for each frame a corresponding segment containing noisy speech samples which can
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be assumed stationary. To find an adaptive segmentation based on the noisy speech
signal, we propose here a segmentation algorithm based on a probabilistic framework.
The segment for a given frame is found based on the outcome of a sequence of hypoth-
esis tests. We test the hypotheses whether two consecutive sequences of time-samples
should be merged to form one segment. We regard the sequences as outcomes of ran-
dom processes and search for sequences that can be considered stationary to a certain
degree. Random variables will be denoted by capitals, whereas sample functions or
realizations are denoted by small letters. In particular, we will use a test statistic based
on a necessary condition for stationarity, namely that the zero-lag correlation coeffi-
cients of a random process Yt ≡ {Yt(m), m ∈ I}, where I is an arbitrary index set,
must remain invariant over time. Let E be the expectation operator. The correlation
coefficient with lag 0 is defined as

C[0] = E
{
|Yt(m)|2

}
∀ m ∈ I.

Let K be the frame size, P the frame shift and let us assume that within a frame the
time samples are drawn from a wide sense stationary process. Let Ĉi[0] then be an
estimator of C[0] for frame i, defined by

Ĉi[0] =
1
K

K∑
m=1

|Yt(m + iP )|2.

Equivalently, using Parseval’s identity [7], we can write this in the DFT domain as

Ĉi[0] =
1
K

K∑
k=1

|Y (k, i)|2,

where Y (k, i) is a random process representing DFT coefficients. The estimate ĉi[0]
of Ĉi[0] for a frame i can then be written as

ĉi[0] =
1
K

K∑
m=1

|yt(m + iP )|2,

or, by again using Parseval’s identity

ĉi[0] =
1
K

K∑
k=1

|y(k, i)|2, (3.2)

where yt and y denote realizations of the random processes Yt and Y , respectively.
Let s1 and s2 be two neighboring segments, which we assume to consist of statis-
tically independent frames with frame numbers i ∈ {n, ..., n + n0 − 1} and j ∈
{n + n0, ..., n + N − 1}, respectively. Fig. 3.3 shows how s1 and s2 are defined.
Let ĉi

1[0] and ĉj
2[0] denote estimates of C[0] for frame i and j in segments s1 and s2,

respectively. We can interpret ĉi
1[0] and ĉj

2[0] as realizations of random variables Ĉi
1[0]

and Ĉj
2 [0], respectively. The two hypotheses then are:
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s1 s2

n n + 1 n + n0 − 1 n + n0 n + n0 + 1 n + N − 1

ĉn
1 [0] ĉn+1

1 [0] ĉn+n0−1
1 [0] ĉn+n0

2 [0] ĉn+n0+1
2 [0] ĉn+N−1

2 [0]︸ ︷︷ ︸
ĉ1[0]

︸ ︷︷ ︸
ĉ2[0]︸ ︷︷ ︸

ĉ12[0]
Figure 3.3: Segments s1 and s2 with corresponding frames and estimates ĉi

1[0] and
ĉj
2[0].

H0 : Ĉ1[0] and Ĉ2[0] have the same distribution
( [s1, s2] is considered stationary)

H1 : Ĉ1[0] and Ĉ2[0] do not have the same distribution
( [s1, s2] cannot be considered stationary),

(3.3)

where [s1, s2] indicates the concatenation of s1 and s2. Let ĉ1[0] ∈ R
n0 and ĉ2[0] ∈

R
N−n0 be vectors containing n0 realizations of Ĉ1[0] and N − n0 realizations of

Ĉ2[0], respectively, and let ĉ12[0] =
[
ĉ1[0]T , ĉ2[0]T

]T ∈ R
N be the concatenation of

ĉ1[0] and ĉ2[0]. Moreover, let λth be a decision threshold, and fĈ12[0]|H0
(ĉ12[0]|H0)

and fĈ12[0]|H1
(ĉ12[0]|H1) the likelihood of observing the sequence ĉ12[0] under hy-

pothesis H0 and H1, respectively. The decision between the two hypotheses is then
made by the following likelihood ratio test (LRT) [8],

Reject H0 if
fĈ12[0]

(ĉ12[0]|H1)

fĈ12[0]
(ĉ12[0]|H0)

> λth. (3.4)

Assuming that the processes {Ĉi
1[0], i = n, ..., n + n0 − 1} and {Ĉj

2 [0], j = n +
n0, ..., n + N − 1} are iid, it follows that

fĈ12[0]
(ĉ12[0]) = fĈ1[0]

(ĉ1[0])fĈ2[0]
(ĉ2[0]), (3.5)

fĈ1[0]
(ĉ1[0]) =

n+n0−1∏
i=n

fĈi
1[0]

(ĉi
1[0]) (3.6)

and

fĈ2[0]
(ĉ2[0]) =

n+N−1∏
j=n+n0

fĈj
2 [0](ĉ

j
2[0]). (3.7)
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Strictly speaking, the frames in Fig. 3.3 are assumed to be non-overlapping. However,
in the experiments presented in Section 3.4 we used overlapping frames in order to
increase the amount of data per segment, such that more data is available to estimate
the parameters of the densities in (3.4).

We will argue in Section 3.2.1 that under certain assumptions, the pdfs fĈi
1[0]

and
fĈi

2[0]
are Gaussian and that we therefore can use the standard procedure of the Gen-

eralized LRT [8], i.e., substitute unknown pdf parameters with their maximum likeli-
hood estimates. In the case of Gaussian densities the unknown pdf parameters are the
mean and variance. In Section 3.2.2 we use the derived densities for Ĉi

1[0] and Ĉi
2[0]

to express the likelihood ratio into quantities that can be estimated from the noisy
speech data. In Section 3.2.3 we present the algorithm that is used in combination
with the LRT to find for each frame a corresponding segment.

3.2.1 Distribution of Ĉ[0]

In this section we argue that it is reasonable to assume the pdf of Ĉ[0] to be Gaussian.
To do so, we will reason that under certain conditions the DFT coefficients in a frame
are independent from each other and then use the central limit theorem [9] to obtain
the Gaussian density of Ĉ[0].

To derive the distribution of Ĉ[0], we use the aforementioned assumption that
within a frame the time samples are drawn from a wide sense stationary process.
Further, we assume the frames to be sufficiently long and assume that a K-dimensional
vector (frame) of noisy time samples for frame i, that is yt(i), is drawn from a K-
dimensional multivariate Gaussian distribution, i.e. Yt ∼ NK(0,CYt

), with CYt
a

Toeplitz noisy speech correlation matrix. Let F be the DFT matrix. Then Y = FYt

is distributed as Y ∼ NK(0,FCYt
FH) = NK(0,CY ). Since the DFT matrix F is an

asymptotic (in K) diagonalizer of any Toeplitz matrix, CY is asymptotically diagonal,
which implies that Y is an uncorrelated multivariate Gaussian random vector and
consequently also a vector of independent random variables. The estimator of Ci[0],

Ĉi[0] =
1
K

K∑
k=1

|Y (k, i)|2,

is therefore a sum of independent random variables. Using the central limit theorem
[9] it then follows that Ĉi[0] approaches a Gaussian distribution for sufficiently large
K.

In order to verify the density of Ĉ[0] we created a synthetic speech signal that was
degraded by white noise at an SNR of 10 dB and measured the pdf of Ĉi[0] for this
synthetic noisy signal. The synthetic speech signal was created by filtering an impulse
train through a time-invariant LPC-synthesis filter whose coefficients were extracted
from a natural speech signal. The pdf was measured by windowing the noisy speech
data followed by computation of Ĉi[0] per windowed frame. The reason to use a
synthetic speech signal is to be able to create a long, stationary sequence of speech
with enough data to reliably estimate the density. In Fig. 3.4a the estimated pdf of
Ĉi[0], based on the noisy synthetic speech signal shown in Fig. 3.4c, is compared to a
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Gaussian distribution whose mean and variance are computed using ĉi[0] values from
the synthetic noisy speech data. It is shown that the measured pdf approximates the
Gaussian distribution quite closely.
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Figure 3.4: a) Measured distribution of Ĉ[0] based on synthetic speech. b) Synthetic
clean speech signal. c) noisy synthetic speech with SNR = 10 dB.

3.2.2 Computation of the Likelihood Ratio

Using the argumentation from Section 3.2.1 it follows that Ĉi[0] can be assumed
Gaussian distributed. The hypothesis H0 and H1 from Eq. (3.3) can now be expressed
in terms of the Gaussian pdf. Let σ̂2

1 , σ̂2
2 and σ̂2

12 be maximum likelihood estimates
of the variance of Ĉ[0] in s1, s2 and the concatenation of s1, and s2, respectively.
Further, let μ̂1, μ̂2 and μ̂12 be the corresponding estimates of the mean.

By substitution of the Gaussian densities from Eqs. (3.5)-(3.7) into Eq. (3.4) we



3.2. Adaptive Time Segmentation 35

obtain the likelihood ratio

(2πσ̂2
1)−

n0
2 exp

[
−
∑n+n0−1

i=n (ĉ[0]i−μ̂1)2

2σ̂2
1

]
(2πσ̂2

2)−
N−n0

2 exp
[
−
∑n+N−1

i=n+n0(ĉ[0]i−μ̂2)2

2σ̂2
2

]
(2πσ̂2

12)
−N

2 exp
[
−
∑n+N−1

i=n (ĉ[0]i−μ̂12)
2

2σ̂2
12

] .

(3.8)
Substitution of maximum likelihood estimates of the model parameters

μ̂1 = 1
n0

∑n+n0−1
i=n ĉ[0]i

μ̂2 = 1
N−n0

∑n+N−1
i=n+n0

ĉ[0]i

μ̂12 = 1
N

∑n+N−1
i=n ĉ[0]i

(3.9)

and
σ̂2

1 = 1
n0

∑n+n0−1
i=n

(
ĉ[0]i − μ̂1

)2
σ̂2

2 = 1
N−n0

∑n+N−1
i=n+n0

(
ĉ[0]i − μ̂2

)2
σ̂2

12 = 1
N

∑n+N−1
i=n

(
ĉ[0]i − μ̂12

)2 (3.10)

then leads to the generalized LRT

σ̂N
12

σ̂n0
1 σ̂N−n0

2

> λth. (3.11)

The likelihood ratio is compared to a fixed threshold λth. Alternatively, the LRT could
also be applied using the Neyman-Pearson theorem, where the threshold λth is com-
pared to a significance level η, also known as the false alarm probability P (H1|H0).
For derivations and more details on this relation we refer the reader to [10].

3.2.3 Segmentation Procedure

Given the LRT in Eq. (3.11) it is possible to find for a given frame a corresponding
segment. To do so, we should in principle perform an exhaustive search over all
possible segments. To avoid this computationally demanding full-search approach,
we propose instead a computationally simpler algorithm. In [10] this computationally
simpler segmentation algorithm was compared to an algorithm that uses the clean
speech signal to obtain a segmentation that is optimal under the l2-distortion measure
between the clean speech signal and the clean speech estimate. It was shown that the
difference in terms of segmental SNR between using this ideal segmentation and using
the approach that we will follow here was on average smaller than 0.3 dB.

The procedure of the simplified algorithm is shown in Fig. 3.5. Initially, we start
with a very short segment s1 that is assumed to be stationary and consists of multiple
frames among which the frame to be enhanced, which is indicated in Fig. 3.5 by the
shaded area. We form a similar short segment s2, which is positioned to the right of
segment s1. Given the segments s1 and s2 we apply the LRT in Eq. (3.11). If the H0

hypothesis is accepted we extend segment s1 with one frame from s2 that is closest
to segment s1. We then form a new segment s2, but now positioned to the left of the
new extended segment s1 and again apply the LRT in Eq. (3.11) and merge one frame
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Figure 3.5: Segmentation algorithm based on hypothesis.

from segment s2 with segment s1 if the H0 hypothesis is accepted. This procedure
is iterated until on both the left and the right side of s1 the H0 hypothesis is rejected.
The final sequence s1, shown at the bottom of Fig. 3.5, is considered as the stationary
segment that can be used in a Bartlett estimate of the noisy speech PSD. Note that the
reason for having more frames in segment s2 than there are to be merged is the need
for accurate estimates of the mean and variances in (3.9) and (3.10).

This segmentation algorithm can be generalized by dividing the frequency range in
L sub-bands and determining a segmentation for each band independently. However,
in this case less information is present per band to estimate maximum likelihood pa-
rameters of the Gaussian pdf. This, in turn, means that the variance of these estimates
will be larger than in the full-band case. We expect that increasing the number of
bands may be beneficial for a small number of bands, but for larger number of bands
the advantage of having many bands may be overshadowed by the increased variance
of the parameters of the Gaussian pdf that are estimated in each band.

Fig. 3.6 shows a block scheme of the proposed segmentation algorithm in com-
bination with an enhancement algorithm, where we apply the adaptive segmentation
procedure to different sub-bands. First the noisy signal yt is divided into frames yt(i),
followed by a transform to the DFT domain, resulting in the DFT coefficients y(1, i)
up to y(K, i). The whole frequency range is now divided into L sub-bands. Per sub-
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Figure 3.6: Block diagram of adaptive segmentation speech enhancement system.

band the correlation coefficients with lag zero are computed, that is, ĉi
1[0] up to ĉi

L[0].
Per sub-band the segmentation is determined and used to compute σ̂2

Y (k, i) for each
frequency bin k in frame i. The clean speech DFT coefficients are then estimated in the
block named Enh. for each frequency bin using the estimated noisy speech and noise
PSDs, and the noisy speech DFT coefficient as input. The estimated clean speech DFT
coefficients are transformed to the time domain using an inverse DFT followed by an
overlap add resulting in the clean speech estimate x̂t.

In Figs. 3.7 and 3.8 we show the result of the above described hypothesis based
segmentation algorithm applied to two different speech signals degraded by white
noise at an SNR of 15 dB and 5 dB, respectively. In these two examples we used
for ease of visualization the full-band version of proposed segmentation algorithm.
In the figures the original clean speech signal is shown together with the resulting
segmentation. The thick lines mark the frames in which the signal is divided for
enhancement. The thin lines represent for each frame the corresponding segment
that is found by the hypothesis based algorithm. In Fig. 3.7, the speech signal under
consideration consists of four parts: an initial silence part, a transient, some ringing
after the transient and a voiced part. We see that frames in the silence and voiced
part have long segments associated which cover the whole silence and voiced part,
respectively. Frames in the transient part on the other hand have rather short segments,
which prevents oversuppression of the transient. Further, the onset of the voiced part
is resolved. In Fig. 3.8 the speech signal under consideration also consists of four
parts. A voiced speech sound, a silence region, another voiced sound and again a
silence region. In Fig. 3.8 we see that the frames in the two voiced regions have
corresponding segments that completely cover the whole voiced region. The frames
in the two silence regions have segments that cover the complete silence region.

Notice that the segments are found using future information, which implies a cer-



38 3. Adaptive Time Segmentation for Improved Speech Enhancement

1500 2000 2500 3000
time samples (fs = 8000 Hz)
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transient 
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voiced sound

Figure 3.7: Example Segmentation. Thick horizontal lines: Duration of frames. Thin
horizontal lines: Corresponding segments. Input SNR = 15 dB. The shown signal is
the original clean speech signal.

tain latency or lookahead. However, the latency in the presented segmentation algo-
rithm is adjustable. In Section 3.4 we demonstrate that also without or with limited
latency, the use of an adaptive time segmentation leads to performance improvements.

3.3 A Priori SNR Estimation Using Adaptive Segmen-
tation

As mentioned before, the Bartlett method reduces the variance of the estimate of σ2
Y

by a factor N if N uncorrelated periodograms are averaged. In principle, the Bartlett
estimate assumes no overlap and rectangularly windowed frames. However, the seg-
ments we find with the segmentation algorithm described in Section 3.2.3 may consist
of overlapping frames and may be windowed using a non-rectangular window. Other
methods, known as the Welch and Blackman-Tukey approach [3], are developed that
do allow overlap and other windows than the rectangular window. A side-effect of in-
creasing the overlap is that the decrease in variance will become smaller than a factor
N .

The Bartlett estimate is computed by dividing a segment of M samples in frames
of length K. The periodograms of these N = M

K frames are then averaged. Note also
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Figure 3.8: Example Segmentation. Thick horizontal lines: Duration of frames. Thin
horizontal lines: Corresponding segments. Input SNR = 5 dB. The shown signal is the
original clean speech signal.

that the decrease in variance comes with a side effect, namely that the frequency reso-
lution of a periodogram based on a single frame is smaller than that of a periodogram
based on the entire segment. Further, notice that the periodogram is asymptotically
unbiased in the frame size K.

In conventional systems σ2
Y is estimated using a periodogram estimator [6], de-

noted by subscript P , i.e.

σ̂2
Y,P (k, i) = |Y (k, i)|2, (3.12)

or a Bartlett estimate with fixed segment length and fixed start and end positions i−n
and i + n, respectively [4][6], denoted by subscript B, i.e.

σ̂2
Y,B(k, i) =

1
2n + 1

i+n∑
j=i−n

σ̂2
Y,P (k, j). (3.13)

The power spectral estimate can be improved by combining the Bartlett estimate with
an adaptive segmentation. Let subscript A denote the use of adaptive time segmen-
tation. The noisy speech PSD using the adaptive time segmentation can then be ex-
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pressed as

σ̂2
Y,A(k, i) =

1
N

i+n2∑
j=i−n1

σ̂2
Y,P (k, j), (3.14)

with i − n1 and i + n2 denoting the start and end points of the segment with respect
to frame number i and N = n2 + n1 + 1 the number of frames in the segment.

3.3.1 A Priori SNR Estimation Based on Improved
Decision-Directed Approach.

The decision-directed approach [6], described in Section 2.4, is a well-known and
often used method for estimation of the a priori SNR ξ, because it results in more
natural residual noise than e.g. the maximum likelihood based scheme [4][6]. The
decision-directed approach estimates ξ by taking a weighted average between two
different estimates of ξ, namely

ξ̂1(k, i) =
|x̂(k, i − 1)|2

σ̂2
D(k, i)

and

ξ̂2(k, i) = max

[
σ̂2

Y,P (k, i)
σ̂2

D(k, i)
− 1, 0

]
. (3.15)

See Section 2.4 for more details on the decision-directed approach. Instead of using
estimate ξ̂2(k, i) as in Eq. (3.15), that is based on the periodogram estimate we can
use the PSD estimate based on the adaptive time segmentation defined in Eq. (3.14)
as σ̂2

Y,A(k, i). The decision-directed approach then becomes

ξ̂(k, i) = α
|x̂(k, i − 1)|2

σ̂2
D(k, i)

+ (1 − α)max

[
σ̂2

Y,A(k, i)
σ̂2

D(k, i)
− 1, 0

]
. (3.16)

An advantage of (3.16) over the original decision-directed approach as specified in
Eq. (2.28) is that the variance of the second term is decreased. Therefore, it is possible
to decrease α, which means less influence of the first term in (3.16) and as a result a
smaller tracking delay for the a priori SNR.

3.4 Objective and Subjective Simulation Experiments

We evaluate the presented adaptive time segmentation algorithm by means of objec-
tive and subjective simulation experiments. For objective evaluation we use SNR per
frame, defined as

SNR(i) = 10 log10

‖xt(i)‖2

‖xt(i) − x̂t(i)‖2

and segmental SNR defined as [5]

SNRseg =
1
N

N−1∑
i=0

SNR(i).
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In all experiments we use speech signals that originate from the Timit database [11]
and that are re-sampled at 8 kHz. The frames have a size of 120 samples (15 ms)
taken with 50% overlap. Noise statistics are measured during silence regions pre-
ceding speech activity and are assumed to be constant. In all experiments we use
the Wiener filter as enhancement method and combine this with either the standard
decision-directed approach [6] referred to as the DD approach or the decision-directed
approach combined with adaptive time segmentation as presented in Eq. (3.16), re-
ferred to as the DDA approach.

The segmentation algorithm for the DDA approach follows the procedure in Fig.
3.5. All segments consist of frames that are taken with an overlap of approximately
90 %. The overlap is chosen in order to increase the amount of data per segment, such
that more data is available to estimate the mean and the variances of the densities in
Eq. (3.4), while still providing a good time resolution. For initialization of the segmen-
tation algorithm both s1 and s2 consist of 5 (90% overlapping) frames. The threshold
λth was chosen off line as λth = 107.5. This choice was based on experiments and
led to a maximum average performance in terms of segmental SNR.

Objective Results

As a first experiment we study the influence of the number of sub-bands that is used in
the segmentation algorithm on the speech enhancement performance. We expect a re-
lation between the number of sub-bands that is used and the smoothing factor α in Eq.
(3.16), because the larger α becomes, the smaller the influence of the second term in
Eq. (3.16) becomes on the estimated a priori SNR. As a consequence, the influence of
having multiple sub-bands on the performance will decrease. For this experiment we
degraded speech signals by white noise at an SNR of 10 dB. For enhancement we use
the DDA approach with L = 1, L = 2 and L = 4 sub-bands, respectively and com-
pute the performance in terms of segmental SNR. Additionally we also compute the
performance of the DD approach. In Fig. 3.9 we show the results of this experiment in
terms of segmental SNR averaged over 6 different speakers versus α. We see indeed
that the difference in terms of segmental SNR between using multiple sub-bands and
using a full-band version of the segmentation algorithm decreases when α increases.
For α in the range from 0.9 up to 1 we see that the difference between the several
sub-band versions is negligible. Since this is the range of α values that is most in-
teresting for speech enhancement we will use a full-band version of the segmentation
algorithm in the following experiments. Notice, that α = 0 in Fig. 3.9 corresponds
to the maximum likelihood approach for a priori SNR estimation [6], for which it
was also shown in [10] that an adaptive segmentation with multiple sub-bands leads
to performance improvements.

As a second objective evaluation we compare the DD approach with the DDA
approach in terms of segmental SNR as a function of the smoothing factor α, where
we now focus on α-values in the range from 0.8 up to 1. The results are averaged over
6 different speakers, 3 male and 3 female. The speech signals are degraded by white
noise at three different SNR levels, namely 5 dB, 10 dB and 15 dB. These results
are shown in Fig. 3.10. From Fig. 3.10 it follows that combining the DD approach
with an adaptive segmentation leads to an improved segmental SNR in the order of
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Figure 3.9: Comparison between DD and DDA with L = 1, L = 2 and L = 4
sub-bands.

approximately 0.7 dB. Further it can be seen that the DDA approach has its optimum
at a lower α than the DD approach, which means less tracking delay in the estimation
of ξ.

As a third evaluation we make a comparison between the DD approach and the
DDA approach in terms of SNR per frame. To do so, a clean speech signal was de-
graded by white noise at an SNR of 15 dB. In this experiment we use for the smoothing
factor in the DD approach α = 0.97 as proposed in [6] for the Wiener filter. For the
DDA approach we use α = 0.94, which is based on optimal average performance
in terms of segmental SNR. The comparison, which is depicted in Fig. 3.11, shows
that the DDA approach generally leads to better performance: in onset regions, during
sustained speech sounds and during silence intervals.

To demonstrate the influence of the latency, or lookahead, of the segmentation al-
gorithm on the performance after enhancement we conducted an experiment as func-
tion of the maximum allowed latency. The signals in this experiment were degraded
by white noise at an input SNR of 10 dB. During the experiments the maximum la-
tency was limited to 0, 11, 24 and 36 ms and compared to the DD approach and the
DDA approach with infinite latency. In Fig. 3.12 it is shown that the segmentation
algorithm with a latency of approximately 36 ms has an almost similar performance
as with an infinite latency. Even without a latency the use of the segmentation algo-
rithm still leads to improvement compared to the DD approach without any adaptive
segmentation. Notice that even when we do not use any lookahead, the segmentation



3.4. Objective and Subjective Simulation Experiments 43

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

0

2

4
a)

S
N

R
se

g (
dB

)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

3

4

5

b)

S
N

R
se

g (
dB

)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
6.5

7

7.5

8

8.5
c)

α

S
N

R
se

g (
dB

)

Figure 3.10: Comparison between the standard DD approach (dashed) and the DDA
approach (solid) in terms of segmental SNR as a function of the smoothing factor α. a)
Input SNR of 5 dB (SNRseg = −8.23 dB). b) Input SNR of 10 dB (SNRseg = −3.23
dB). c) Input SNR of 15 dB (SNRseg = 1.77 dB).

algorithm still has access to frames from the past.

Residual Noise Analysis

Many enhancement methods suffer from a disturbing and unnatural sounding char-
acter of the residual noise. This is an important aspect of the quality of a speech
enhancement algorithm and is often called musical noise.

In a simulation environment the residual noise signal can be computed by making
a decomposition of the difference between the clean speech and its estimate into a
speech distortion component and a noise residual component [12], that is

x(k, i) − x̂(k, i) = x(k, i) − y(k, i)G(k, i)
= x(k, i) − {x(k, i) + d(k, i)}G(k, i)
= x(k, i) {1 − G(k, i)}︸ ︷︷ ︸

speech distortions

− d(k, i)G(k, i)︸ ︷︷ ︸
noise residual

,

where x(k, i), y(k, i) and d(k, i) are realizations of Fourier coefficients and G(k, i)
is the value of the gain function. The normalized energy of the residual noise is then
computed as |d(k, i)G(k, i)|2/σ2

D(k, i).
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Figure 3.11: SNR per frame after enhancement of noisy speech with 15 dB input SNR
after using the DD approach (dotted) and the DDA approach (solid).

We applied the above decomposition on a speech signal that was degraded by
white noise at an SNR of 5 dB and compared the behavior of the residual noise be-
tween the DD and DDA approach, respectively. In Fig. 3.13a we show the time-
domain waveform of the noisy speech signal. Fig. 3.13b shows the normalized energy
of the noise residual for a typical frequency bin over several consecutive frames for
both the DD (solid) approach and the DDA (dashed) approach. From Fig. 3.13b it is
clear that the energy of the residual noise has a smoother character when using the
DDA approach. With the DD approach the energy of the residual noise shows jumps
and irregularities. Informal listening tests also confirmed that the DDA results in less
residual noise with a less musical character. This is due to the decreased variance of
the second term in Eq. (3.16).

Subjective Results

For subjective evaluation an OAB listening test was performed with 9 participants,
the authors not included. Here, O is the original clean speech signal and A and B are
two noisy signals that are enhanced using two different enhancement methods that we
compare. The methods A and B are a Wiener filter where the a priori SNR was esti-
mated with the DD approach and a Wiener filter where the a priori SNR was estimated
with the DDA approach. In this listening test we used three different types of additive
noise at two different SNRs, namely, white noise, car noise and F16-cockpit noise at
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Figure 3.12: Performance in terms of segmental SNR versus latency for the DD ap-
proach (+), DDA approach with finite latency (solid) and DDA approach with infinite
latency (×).

SNRs of 5 dB and 15 dB. Car noise and F16-cockpit noise originate from the Noisex-
92 database [13]. For each noise type and noise power level we presented the listeners
two female sentences and two male sentences. The listeners were presented first the
original signal followed by the two different enhanced signals. The participants were
asked to choose the signal that sounds best in comparison to the original. Each se-
ries was repeated 3 times with the enhanced signals being randomly assigned to the
excerpts A and B. For speech signals corrupted with white noise at an SNR at 5 and
15 dB, the relative preference of the DDA approach over the DD approach was 80.6%
and 70.4%, respectively. For speech signals corrupted with F16-cockpit noise at an
SNR of 5 and 15 dB the DDA approach was preferred above the DD approach with
77.8% and 75%, respectively. A statistical Wilcoxon significance test revealed that
the difference between the two methods is indeed significant at a significance level of
5 · 10−3. The P-values of this test are tabulated in Table 3.1.

For speech signals corrupted by car noise the outcome of the listening test was
close to 50%. In this case the statistical significance test (Wilcoxon test) was applied
and revealed that the difference between the two methods indeed is insignificant, al-
though objective tests done by the authors showed improvement in terms of SNR. This
result can be explained by the fact that the energy of car noise is concentrated mainly
in a small frequency band where in general the majority of speech energy is present.
This means that most of the residual noise that is left after using the DD approach will
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Figure 3.13: a) Noisy speech signal at 5 dB SNR. b) Comparison between DD ap-
proach (solid) and the DDA approach (dashed) in terms of the normalized energy of
the residual noise.

be masked by the speech energy. As a result the perceptual difference between the DD
approach and the DDA approach becomes smaller.

From the comments that were given by the participants of the listening test it was
concluded that the main perceptual difference between the DD and DDA approach is
the fact that the latter leads to a reduced level of musical noise.

3.5 Conclusions

We presented in this chapter an adaptive time segmentation for speech enhancement to
improve estimation of the noisy speech PSD. The segmentation algorithm determines
for each frame which segment of noisy data should be used to estimate the noisy
speech PSD. The segments are formed based on the outcome of a sequence of hy-
pothesis tests. We used this adaptive estimate of the noisy speech PSD to improve the
decision-directed approach for speech enhancement methods. Objective experiments
showed that usage of the adaptive time segmentation to improve decision-directed
based speech enhancement leads to a better quality in terms of segmental SNR. Simu-
lation experiments showed that the improved decision-directed approach results in less
residual noise having a less musical character. Furthermore, subjective listening tests
with speech signals degraded by various noise sources and noise levels showed that in
terms of perceptual quality the decision-directed approach combined with the adaptive
time segmentation algorithm is preferred over the usage of standard decision-directed
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noise source input SNR P-value significant
white 5 dB 1.8 · 10−5 yes
noise 15 dB 3.53 · 10−3 yes
car 5 dB 0.33 no

noise 15 dB 0.55 no
F16 5 dB 1.7 · 10−4 yes

noise 15 dB 1.5 · 10−4 yes

Table 3.1: Wilcoxon test results to determine the significance of the difference between
the methods used in the listening experiment.

approach.
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Chapter 4

Forward-Backward
Decision-Directed Approach for
Speech Enhancement

This chapter is based on the article published as “Forward-Backward Decision Di-
rected Approach for Speech Enhancement”, by R. C. Hendriks, R. Heusdens and J.
Jensen in the Proceedings of Int. Workshop on Acoustic Echo and Noise Control, pages
109-112, September 2005.
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4.1 Introduction

Typically, DFT-domain based clean speech estimators can be written as a function of
the a priori SNR ξ, see e.g. [1][2][3][4]. Because ξ is defined in terms of expected
values, which are unknown in advance, estimation is necessary. Good estimation of ξ
turns out to be crucial for the quality of the estimated clean speech signal [5][6]. In
principle, there are two aspects related to a priori SNR estimation that influence the
speech quality. The first aspect is related to the bias of the estimate ξ̂ with respect to
the true, but unknown, value of ξ. A biased estimate of ξ will lead to an overestimation
or an underestimation of ξ and as a consequence to an undersuppression or oversup-
pression of the noise, respectively. A second aspect is the variance of ξ̂, which has a
huge impact on the perceptual quality of the estimated speech signal; the variance of ξ̂
results in the introduction of musical noise. Often, musical noise is perceived as more
annoying than the original noise. Several methods have been proposed for estimation
of ξ. Among them are the maximum likelihood approach [1][7], which exploits prop-
erties of the Bartlett power spectral density estimate, and the decision-directed (DD)
approach, presented in [1]. The DD approach has become quite popular for estimation
of ξ, because in general it leads to less musical noise than the maximum likelihood
approach.

The DD approach is defined as a weighted average between two different estimates
of ξ, namely

ξ̂1(k, i) =
|x̂(k, i − 1)|2

σ̂2
D(k, i)

and

ξ̂2(k, i) = max

[
σ̂2

Y,P (k, i)
σ̂2

D(k, i)
− 1, 0

]
, (4.1)

that is,

ξ̂F (k, i) = α
|x̂(k, i − 1)|2

σ̂2
D(k, i)

+ (1 − α)max

[
σ̂2

Y,P (k, 1)
σ̂2

D(k, i)
− 1, 0

]
. (4.2)

We see that the first term in Eq. (4.2) depends on an estimate of the clean speech
DFT magnitude from the previous frame. Therefore, we refer to the traditional DD
approach as the forward decision-directed (FDD) approach and denote the a priori
SNR ξ estimated by the FDD approach as ξ̂F . The second term in Eq. (4.2) is an
instantaneous estimate of the a priori SNR.

The FDD approach and in particular its ability to eliminate musical noise has been
studied in detail by Cappé in [5], where two important observations were made. First,
it was observed that the FDD based estimate ξ̂F (k, i) leads to a highly smoothed
version of ξ̂2(k, i) in low SNR regions, which leads to a reduction of musical noise.
Secondly, it was observed that Eq. (4.2) implicitly assumes the true underlying a priori
SNR to be roughly constant across any two consecutive frames. If the underlying a
priori SNR changes abruptly, e.g. in transitional regions between speech sounds or at
speech onsets and offsets, a tracking delay in the estimated a priori SNR results.
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Figure 4.1: Comparison between ξ̂F (k, i) and ξ̂2(k, i).

To demonstrate these two influences of the FDD approach on the a priori SNR
estimation we conducted a similar example for a priori SNR estimation as in [5]. In
this example we created a synthetic noisy speech signal, consisting of a noise only
region and a noisy voiced speech sound. The first 37 frames are noise only. Voiced
speech is constructed by filtering a pulse-train through a time-invariant LPC-synthesis
filter whose coefficients were extracted from a speech signal. We estimated ξ by
ξ̂F (k, i) using Eq. (4.2) with α = 0.98 and plotted this together with the instantaneous
SNR ξ̂2(k, i) in Fig. 4.1 for a frequency bin containing a harmonic. From Fig. 4.1
we can see two effects. Firstly, in the first 37 frames, where the SNR is very low
and the variance of ξ̂2(k, i) rather large, the FDD based estimate ξ̂F (k, i) leads to
a rather smoothed version of ξ̂2(k, i). Secondly, for higher SNRs, i.e. from frame
38 and further, we see that ξ̂F (k, i) follows ξ̂2(k, i) with one frame delay. Due to
this delay, the estimated a priori SNR is biased directly after the transition. The
closer the smoothing factor α is to one, the larger this delay becomes. The exact
choice for α is a tradeoff; in stationary regions α should be close to one and in non-
stationary regions a lower α should ideally be used. In a practical speech enhancement
setup, the delay on the estimated a priori SNR ξ̂F (k, i), will occur at each and every
transition. Depending on the type of transition, i.e. a transition from low to high
SNR or vise versa, ξ̂F (k, i) will be underestimated or overestimated, respectively. As
a consequence, the estimated gain function will be underestimated or overestimated,
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respectively, as well.
In this chapter we present a backward decision-directed (BDD) approach to over-

come over and underestimates of ξ at transitions when making use of the FDD ap-
proach. Instead of using the conventional order of time, we reverse the time index and
make the estimate of ξ for the current frame dependent on clean speech DFT amplitude
estimates from future frames. This implies the need for a (user-definable) algorithmic
delay. We will show that this delay can be limited to several frames. Compared to
the FDD approach, the BDD approach results in better estimates of ξ at the beginning
of stationary regions and worse estimates of ξ at the end of stationary regions. By
combining the BDD and FDD approach in a soft decision framework, a more efficient
use of the noisy speech data is provided. This leads to better estimates of ξ at both the
start and the end of stationary regions then when FDD is used alone. We will refer to
this combination as the forward-backward DD (FBDD) approach. The combination
between the estimates of ξ obtained by the BDD and the FDD approach is based on
the time-adaptive segmentation algorithm for noisy speech, presented in Chapter 3.

4.2 The Backward Decision-Directed Approach

To motivate the use of the backward decision-directed approach we conducted an ex-

periment, where we compute the true instantaneous SNR by |x(k,i)|2
σ̂2

D(k,i)
, and compare

that with the a priori SNR that is estimated using the FDD approach. To do so, we
created a piece-wise stationary signal consisting of a silence region, a synthetically
created voiced speech region and again a silence region. Voiced speech is constructed
by filtering a pulse-train through a time-invariant LPC-synthesis filter whose coeffi-
cients were extracted from a speech signal. This synthetic speech signal was degraded
by white Gaussian noise.

The comparison between the true instantaneous SNR and the a priori SNR esti-
mated by the FDD approach is shown in Fig. 4.2a for a representative frequency bin.
During the start of the voiced sound and the second noise-only region it is shown that
ξ̂F lags behind the true instantaneous SNR for one or two frames. This is a typical
behavior of the FDD approach as mentioned in the introduction. More specifically,
the estimate ξ̂F is always dependent on estimates from previous frames. However,
the a priori SNR is not necessarily constant over time, i.e. the a priori SNR of the
previous frame might be different from the current frame. The consequence then is a
wrong estimate of ξ(k, i), leading to an oversuppression or undersuppression of the
noisy speech DFT coefficient, particularly in transitional signal regions. In stationary
regions that are long enough this effect will die out after a couple of frames due to the
first term in (4.2) that is weighted by the forgetting factor α.

Let us now consider a system where we reverse the processing order of frames,
i.e. we make the estimate of ξ(k, i) dependent on the estimate |x̂(k, i + 1)| from the
future frame. We then define the backward decision-directed (BDD) approach as

ξ̂B(k, i) = α
|x̂(k, i + 1)|2

σ̂2
D(k, i)

+ (1 − α)max

[
σ̂2

Y,P (k, i)
σ̂2

D(k, i)
− 1, 0

]
, (4.3)
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Figure 4.2: Noisy speech signal, the true instantaneous SNR (dashed) and ξ estimated
by a) FDD approach (solid) b) BDD approach (solid).

where subscript B in ξ̂B(k, i) denotes that this is the a priori SNR estimated using the
BDD approach. From Eq. (4.3) we see that ξ̂B(k, i) is dependent on future frames.
A necessary assumption for implementation of (4.3) is an infinite delay. For now we
will stick to this assumption, although later on we will show that this assumption can
be weakened and that only a finite delay of a few frames is necessary. In Fig. 4.2b we
consider the same example as before, but now ξ is estimated with the BDD approach.
The estimate ξ̂B at the start of stationary regions is now approximately equal to the
true instantaneous SNR, while the bias in ξ̂B is now present at the end of stationary
regions.

To demonstrate that the difference in time dependency between FDD and BDD
has an effect on the enhancement performance as well, we conducted a second exper-
iment where a comparison is made between the FDD and the BDD approach. For this
experiment we degraded a natural speech signal by white noise at an SNR of 10 dB
and applied the MMSE amplitude estimator as proposed in [1] to estimate the clean
speech DFT amplitudes. As is often done [1], the clean speech time frames are recon-
structed by appending the noisy phase to the estimated clean speech DFT amplitudes
followed by an inverse DFT. For a priori SNR estimation the BDD and FDD approach
are both used with a smoothing factor α = 0.98. The comparison is shown in Fig. 4.3
together with the original clean speech signal. The comparison is made in terms of the
enhancement performance expressed by the SNR per frame.

From this example it is obvious that the FDD approach leads to better enhancement
performance at the end of speech sounds, while the BDD approach leads to higher
SNR values at the beginning of speech sounds. This difference between the FDD and
BDD can be explained by the fact that the FDD approach estimates the a priori SNR
using a clean speech DFT amplitude estimate from the previous frame. This means
that it observes a transition at the beginning of stationary regions. The BDD approach
makes an estimate of the a priori SNR using a clean speech DFT amplitude estimate
from the next (future) frame, which means that it observes a transition at the end of
stationary regions. This difference between the BDD and FDD approach suggests to
combine them in such a way that the advantages of both methods can be exploited.
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Figure 4.3: Comparison between FDD approach (dashed) and BDD approach (solid)
in terms of SNR.

4.3 Forward-Backward Decision-Directed Approach

The examples given in Figs. 4.2 and 4.3 indicate that the preference for FDD or BDD
depends on the position of the frame to be enhanced within a stationary region. We
propose to combine the estimates ξ̂F and ξ̂B dependent on the position of the frame
within the stationary region; at the beginning of a stationary region ξ̂B is preferred,
while at the end of stationary regions ξ̂F offers a better alternative. To do so, let N(i)
be the length in samples of a stationary region in which time frame i is positioned
and let n0(i) be the start-position in samples of the frame within the stationary region.
To identify N(i) we use the adaptive time-segmentation algorithm as described in
the previous chapter. Fig. 4.4 illustrates the definition of N(i) and n0(i) in a signal
example. In this example the segment containing the stationary region is represented
by the thin line and the frame to be enhanced is indicated by the thick line. Let
β (N(i), n0(i)), 0 ≤ β(N(i), n0(i)) ≤ 1 be a weighting function. The estimates ξ̂B

and ξ̂F can then be combined into a single estimate ξ̂FB(k, i) by

ξ̂FB(k, i) = ξ̂F (k, i)β(N(i), n0(i)) + ξ̂B(k, i)(1 − β(N(i), n0(i))). (4.4)
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In principle β(N(i), n0(i)) can also be made frequency dependent. However, in this
work we assume that β (N(i), n0(i)) is time-dependent only.

To study the behavior of the function β(N(i), n0(i)), a training procedure was
used where β(N(i), n0(i)) was tabulated as a function of enhancement performance
in terms of the SNR. To do so, β was sampled between 0 and 1. For each combination
of β, N and n0 the amount of improvement in terms of SNR, averaged over frames
and frequencies, was computed using a training-set of 6 different speech signals. This
leads to the average SNR improvement as a function of (β,N, n0). The estimates
ξ̂B and ξ̂F are then combined by selecting that β-value that leads for a given pair
(N,n0) to the largest SNR improvement based on the training data. It turned out that
the value of β(N(i), n0(i)) is especially important when n0(i) is positioned at the
beginning of a stationary region (here ξ̂B is typically a better estimate than ξ̂F , i.e.
β(N(i), n0(i)) ≈ 0), and when n0(i) is close to the end of a stationary region, (here
ξ̂F is typically a better estimate than ξ̂B , i.e. β(N(i), n0(i)) ≈ 1). Based on these
observations we define the following expression that fulfills these two requirements

β(N(i), n0(i)) =
1
2

(
sin
(

1.5π + π
n0(i) − 1
N(i) − K

)
+ 1
)

, (4.5)

where K is the frame size. This function is also shown in Fig. 4.4, where it is indicated
how β is chosen based on the values of N(i) and n0(i). Experiments presented in [8],
have shown that the use of Eq. (4.5) leads to enhancement performances in terms
of segmental SNR that are as good as the training based procedure described above.
Therefore, we use in the following sections Eq. (4.5) to combine ξ̂F and ξ̂B . We will
refer to this combination of the FDD and BDD approach as the FBDD approach.

4.3.1 Delay in the Backward Decision-Directed Approach

Until now, the BDD approach was assumed to run from the last frame, backwards
in time to the first frame. As a consequence, an infinite lookahead is needed, which
cannot be tolerated in many applications. As an alternative, we propose a method
that limits this delay of the BDD approach to a user-defined delay of, say L, future
frames. This method is based on an initialization of the BDD approach using the FDD
approach. The procedure to do this is visualized in Fig. 4.5 for estimating the a priori
SNR in frame i. First the FDD approach is run up to frame i + L resulting in the
estimate ξ̂F (k, i + L). This estimate can then be used to compute an estimate of the
clean speech DFT amplitude |x̂(k, i + L)| for frame i + L. The estimate |x̂(k, i + L)|
can then be used to initialize the BDD approach that is run from frame i+L backwards
in time to frame i. This procedure limits the delay to L frames.

4.3.2 Iterative Forward-Backward DD Approach

The procedure described above can be further extended by an iterative procedure, such
that the DD smoothing process is only applied within stationary regions. Both the
FDD and the BDD approach are then run alternately across the frames in a stationary
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region that surrounds the frame to be enhanced. As mentioned before, these station-
ary regions can be identified with a segmentation algorithm presented in Chapter 3.
The procedure for iterative forward-backward decision-directed (IFBDD) approach is
illustrated in Fig. 4.6 for a setup with two iterations. First the FDD approach is run
up to the frame with index i + L, where frame i is the frame to be enhanced. Then
the BDD approach is initialized with the clean speech estimate based on the FDD
approach and is run down to frame i − L. This ends the first iteration. Then the
second iteration starts with the FDD approach, initialized with the clean speech DFT
amplitude estimate based on the BDD approach of frame i − L. During this run, the
estimate of the a priori SNR of frame i is then used as ξ̂F . Then as a final step the
BDD approach is run for the last time, initialized with the clean speech estimate based
on the FDD approach of frame i + L, until this run reaches frame i. The estimate
of the a priori SNR of frame i is then used as ξ̂B , and so on. Experiments showed,
however, that the number of iterations can be limited to two.

Simulation results confirmed that when the number of iterations is larger than 1,
the difference between ξ̂F and ξ̂B is decreased and that the choice for β becomes less
sensitive.
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Figure 4.5: Procedure to apply the BDD approach with limited delay.

4.4 Experimental Results

In this section we evaluate the ideas presented in Section 4.2 and 4.3 by means of ob-
jective and subjective experiments. The speech signals that we use in the experiments
originate from the Timit database [9] and are re-sampled at 8 kHz. All speech sig-
nals are degraded by white Gaussian noise. Noise statistics are measured during noise
only regions, identified using an ideal voice activity detector, and are assumed to stay
constant across time. The frame size is 160 samples and the frames are taken with 50
percent overlap. As enhancement method we use in all experiments the MMSE am-
plitude estimator as proposed in [1]. Furthermore, we use in all methods a smoothing
factor α = 0.98. Computation of N and n0 is done per frame using the segmentation
algorithm as presented in Chapter 3. For evaluation we use SNR per frame, defined as

SNR(i) = 10 log10

‖xt(i)‖2

‖xt(i) − x̂t(i)‖2

where xt(i) and x̂t(i) are vectors and denote frame i of the clean speech signal and
the enhanced speech signal, respectively. Further, we use segmental SNR defined as
[10]

SNRseg =
1
N

N−1∑
i=0

SNR(i),

and SNR per time-frequency point, that is

SNR(k, i) = 10 log10

|x(k, i)|2
|x(k, i) − x̂(k, i)|2 .
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Figure 4.6: Procedure for iterative combined forward-backward decision-directed ap-
proach.

4.4.1 Objective Evaluation

Delay Limitation

As a first experiment we evaluate the influence of the delay limitation in the FBDD
approach on the enhancement performance. In this experiment speech signals were
degraded by white Gaussian noise at an SNR of 5 dB and enhanced using the frame-
work proposed Section in 4.3.1 and illustrated in Fig. 4.5. The results are averaged
over eight different speakers and expressed in terms of segmental SNR. The results
are shown in Fig. 4.7 for the FBDD approach versus the delay L. From Fig. 4.7 it
follows that a delay of two or three frames is already enough for good performance,
and that using more delay even decreases the performance a little bit. This can be ex-
plained by the fact that for large L, the initialization of the BDD approach gets more
dependent on estimated clean DFT amplitudes from different stationary regions in the
future. Based on this experiment we use in the following experiments a delay of L = 3
frames.

IFBDD versus FDD

As a second experiment IFBDD and FDD are compared in terms of SNR over time.
The signal under consideration originates from a female speaker degraded by white
noise at an input SNR of 15 dB. The IFBDD approach was implemented as demon-
strated in Fig. 4.6 using one iteration. Fig. 4.8 shows the comparison between IFBDD
and FDD together with the clean speech signal. As expected, Fig. 4.8 demonstrates
that the IFBDD approach performs better than the FDD approach, especially during
the start of each speech sound, but also in more stationary regions.

To investigate in which parts of the spectrum the SNR improvements in Fig. 4.8
are obtained, we compute the difference in SNR per time-frequency point between the
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Figure 4.7: Performance of the FBDD approach in terms of SNRseg in dB versus
adjusted delay in frames. Input SNR = 5 dB.

IFBDD approach and the FDD approach, that is

SNRdiff(k, i) = T {SNRIFBDD(k, i) − SNRFDD(k, i)} ,

where T {·} = min(max(·,−5), 5) is a clipping function, which limits the dynamic
range and is used for ease of visualization. In Fig. 4.9a we show the clean speech
spectrogram and in Figs. 4.9b and 4.9c we show SNRdiff(k, i) where IFBDD uses 1
and 2 iterations, respectively. The time-frequency points in Figs. 4.9b and 4.9c that
are indicated by the gray colors have a rather small difference between the IFBDD
and FDD approach. The time-frequency points indicated by the white color indicate
positive differences of 5 dB and more. We see that the time-frequency points indicated
with the white color occur mostly at the start of stationary regions (at both silence and
speech regions). Moreover, we see that the white areas get slightly larger when going
from 1 to 2 iterations.

To evaluate the influence on the enhancement performance of applying more itera-
tions, a comparison is made between IFBDD as a function of the number of iterations,
and the FDD approach. Moreover, in order to obtain a performance bound we also
consider a method where we select β per frame such that the enhancement perfor-
mance in terms of SNR per frame is optimal, i.e. we use the clean speech signal to
decide the value of β. To do so, we sample β between 0 and 1. The value for β in
a frame with number i is then chosen in an analysis-by-synthesis approach, such that
the SNR after enhancement is optimal per frame. Notice, that due to the dependencies
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Figure 4.8: Comparison between FDD (dashed) and IFBDD approach (solid) in terms
of SNR per frame versus time with α = 0.98, P=3, 1 iteration and input SNR of 15
dB.

between frames that are introduced by the FDD and BDD approach this method is not
guaranteed to be globally optimal.

For this comparison we degraded speech signals by white Gaussian noise at SNRs
of 5 and 15 dB. The results, shown in Fig. 4.10, are expressed in terms of segmental
SNR averaged over 8 speech signals. From Fig. 4.10 it follows that most improvement
is gained when going from one to two iterations. Furthermore, when β is chosen opti-
mally per frame by using the clean speech signal, an extra improvement of maximum
0.3 dB can be obtained. The improvement of IFBDD with two or more iterations over
FDD is 0.75 dB and 1.1 dB for respectively input SNRs of 5 dB and 15 dB.

Similarly to Eq. (3.16) for the FDD approach, we can modify Eq. (4.3) such that
instead of a periodogram estimate of the noisy PSD, an estimate σ̂2

Y,A based on the
adaptive time segmentation algorithm as discussed in Chapter 3 is used. With this
combination an additional improvement of the segmental SNR of approximately 0.5
dB can be obtained. This improvement is mainly audible in term of more noise sup-
pression. However, it results in somewhat more suppressed speech as well.

4.4.2 Subjective Evaluation

In this section we compare the perceptual quality difference between the FDD ap-
proach and the IFBDD approach. For this subjective performance evaluation an infor-
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Figure 4.9: a) Clean speech spectrogram. b) Improvement of IFBDD with 1 iteration
over FDD in terms of SNRdiff(k, i) c) Improvement of IFBDD with 2 iterations over
FDD in terms of SNRdiff(k, i).

mal OAB listening test was performed with 6 participants, the authors not included.
Here, O is the original clean speech signal and A and B are two noisy signals that are
enhanced using the FDD approach and the IFBDD approach with 2 iterations. The lis-
teners were presented first the original signal followed by the two different enhanced
signals in randomized order. The participants were asked to choose the signal that
sounds best in comparison to the original. Each series was repeated 4 times. In this
listening test we used white noise at input SNRs of 15 dB and 5 dB. The relative pref-
erence of the IFBDD approach over FDD approach was 68% for both input SNRs of
5 dB and 15 dB. A statistical Wilcoxon signed rank test revealed that for both input
SNRs the difference between the two methods was significant at a significance level of
p = 0.025. The preference for IFBDD is mainly due to the better estimation of the a
priori SNR, resulting in less suppressed speech at the start of stationary regions. Also,
echo-like artifacts at the start of noise-only regions that are introduced when using the
FDD approach are very much reduced due to a better estimation of the a priori SNR.

4.5 Conclusions

In this chapter a backward decision-directed (BDD) approach has been presented. This
approach overcomes the introduction of distortions at the start of stationary regions
and is based on a time-reversed processing order of frames. Consequently, estimation
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of the a priori SNR with BDD is dependent on future frames. A limited delay BDD
approach is presented, which makes it possible to reduce the delay to a few frames.
Using a soft-decision framework, the forward decision-directed (FDD) and BDD ap-
proach can be combined. This leads to less biased estimates of ξ at the beginning
of stationary regions. Objective experiments where the proposed approach is com-
pared with the FDD approach demonstrated improvements of more than 7 dB of local
SNR and improvements of more than 0.75 dB and 1.1 dB average segmental SNR for
input SNRs of 5 dB and 15 dB respectively. Informal listening tests show a statisti-
cal significant preference for the proposed method over the standard decision-directed
approach.
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5.1 Introduction

As discussed in Chapter 2, most DFT-domain enhancement algorithms rely on stochas-
tic signal models. However, it can be observed that certain speech sounds have a more
deterministic character. For example, it is well-known that voiced speech segments
may be represented well by a linear combination of sinusoidal functions with constant
frequency and exponentially decaying amplitude or, as a special case, a constant am-
plitude [1, Ch. 4]. With this signal representation, the sequence of DFT coefficients
seen across time for one particular frequency bin constitutes a completely determinis-
tic time series. In [2] a maximum likelihood based spectral amplitude estimator was
derived under a deterministic speech model. Here, the clean speech DFT coefficients
are characterized by deterministic, but unknown amplitude and phase values, while
the noise DFT coefficients are assumed to follow a zero-mean Gaussian pdf. This
estimator leads to less suppression as compared to the case where speech DFT coef-
ficients are assumed stochastic, see e.g. [3]. Obviously, a deterministic speech model
is not always appropriate. For example, for noise-like speech sounds, such as /s/, /f/,
etc. the DFT coefficients should rather be represented by a stochastic model.

Assuming that speech can not necessarily be modelled as either strictly stochastic
or deterministic, we present in this chapter an MMSE clean speech estimator where the
speech DFT coefficients are modelled as a mixture of a deterministic and a stochastic
speech model.

The remainder of this chapter is organized as follows. In Section 5.2 we con-
sider the individual deterministic and stochastic speech models and present their cor-
responding MMSE estimators. In Section 5.3 we specify the deterministic model and
explain how to estimate its parameters. In Section 5.4 we derive the MMSE estimator
under the combined stochastic-deterministic (SD) speech model. In Section 5.5 we
present experimental results and finally in Section 5.6 we draw some conclusions.

5.2 The Stochastic and Deterministic Speech Model

In this section we introduce the stochastic and the deterministic speech model. We
assume the noise process to be additive, i.e.

Y (k, i) = X(k, i) + D(k, i),

with Y (k, i), X(k, i) and D(k, i) the noisy speech, clean speech and noise DFT co-
efficient, respectively at frequency bin k and time frame i. Further we assume that
X(k, i) and D(k, i) are uncorrelated (for the stochastic model) and that the noise
DFT coefficients have a zero-mean complex Gaussian distribution, as is argued for in
Section 2.3.

By deriving an MMSE estimator under an SD speech model we exploit the idea
that certain speech DFT coefficients can be better modelled with a deterministic model
while others can be better modelled with a stochastic model. In the following deriva-
tions we use the complex zero-mean Gaussian distribution as stochastic representation
for the clean speech DFT coefficients. However, we note that this work is general and
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can also be extended to other distributions like the ones that are proposed in Chapters
6 and 7.

5.2.1 Probability Density Function of Noisy DFT Coefficients

In this subsection we consider the probability density functions of the noisy DFT co-
efficients under both the stochastic and the deterministic model, respectively. We in-
troduce a random variable M that can take on the realizations m ∈ {sm, dm, am}.
Here m = am, m = dm and m = sm indicate speech absence, that speech was
generated with a deterministic model and that speech was generated with a stochastic
model, respectively.

Stochastic Model

Assuming that clean speech DFT coefficients have a complex zero-mean Gaussian
distribution, the noisy speech DFT coefficients have the following zero-mean complex
Gaussian distribution

fY |M (y(k, i)|sm) =
1

πσY
2(k, i)

exp
{
− |y(k, i)|2

σY
2(k, i)

}
, (5.1)

where σ2
Y (k, i) is the variance of the noisy DFT coefficient Y (k, i) which equals

the sum of the noise variance and the clean speech variance, that is σ2
Y (k, i) =

σ2
X(k, i) + σ2

D(k, i).

Deterministic Model

Under the deterministic speech model we assume that Y (k, i) can be written as
the sum of a deterministic variable (due to X(k, i)) and a stochastic variable (due
to D(k, i)). Using the assumed (zero-mean) Gaussian distribution of the noise DFT
coefficients this leads to a non-zero mean Gaussian distribution for the noisy DFT
coefficients,

fY |M (y(k, i)|dm) =
1

πσD
2(k, i)

exp
{
−|y(k, i) − E[Y (k, i)]|2

σD
2(k, i)

}
, (5.2)

with E[Y (k, i)] = x(k, i). Apart from having a non-zero mean, we note that the
variance of Y (k, i) under the deterministic model may be significantly smaller than
that of Y (k, i) under a stochastic model1.

5.2.2 MMSE Estimators

In order to derive an MMSE estimator for the clean speech DFT coefficients under
an SD speech model, we first consider the individual MMSE estimators for stochastic

1The variance of Y (k, i) = X(k, i) + D(k, i) equals the sum of the individual variances of X(k, i)
and D(k, i). Under the deterministic model the variance of X(k, i) equals zero.
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and deterministic representations.

Stochastic Model

Under the stochastic Gaussian speech model it is well known that the Wiener filter
is the MMSE estimator, that is

x̂(k, i) = E [X(k, i)|y(k, i)] =
ξ(k, i)

1 + ξ(k, i)
y(k, i), (5.3)

with ξ(k, i) = E[X(k,i)2]
E[D(k,i)2] = σ2

X(k,i)

σ2
D(k,i)

the a priori SNR.

Deterministic Model

Under the deterministic speech model, the clean speech DFT coefficients are as-
sumed to be deterministic, but unknown. This means that fX(x(k, i)) = δ(x(k, i) −
x′(k, i)) with x′(k, i) the (unknown) value of the deterministic clean speech DFT co-
efficient itself and where δ(·) is a delta function. The MMSE estimator then is

x̂(k, i) = E[X(k, i)|y(k, i)] = x′(k, i), (5.4)

where we observe that x′(k, i) = E [Y (k, i)].
Notice that both estimators in (5.3) and (5.4) are expressed in terms of expected

values. Since in practice these expected values are unknown, estimation is neces-
sary. For estimation of ξ(k, i), the decision-directed approach or maximum likelihood
approach is often used [3]. Estimation of E[Y (k, i)] will be considered in the next
section.

5.3 Specification of the Deterministic Speech Model

So far we considered the use of a deterministic speech model, however we did not
specify the exact model itself. A reasonable deterministic model for the clean speech
signal is a representation by a sum of Q (exponentially damped) constant frequency
sinusoids. Let xt(m) denote an arbitrary time-domain sample at time index m, aq

the amplitude, φq the phase, dq the exponential decay factor and νq the frequency of
component q. The clean speech signal can then be represented as

xt(m) =
Q∑

q=1

aqe
jφqe(−dq+jνq)m.

Using this model, the DFT coefficients at each frequency bin k can be described by
a sum of Q complex exponentials seen across time. However, under the assumption
of sufficiently long frame sizes, there will be no more than one dominant exponential,
say component q, per frequency bin2. Let w(m), m = 0, . . . ,K − 1, be the analysis

2In principle, each frequency bin will have contributions due to smearing from complex exponentials at
other frequency bins. However, increasing the frame-size will reduce the effect of smearing. Moreover, in
speech signals the frequencies of the Q complex exponentials are in general spaced relatively far apart.
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window (of length K) used to define the signal frame, P (P ≤ K) the frame shift
and ωk = 2π

L k, where L is the DFT size (L ≥ K) and n the index of a certain frame.
Let us now assume that our deterministic model for a clean speech DFT coefficient
x(k, n) is indeed a single complex exponential, that is

x(k, n) =
K−1∑
m=0

aqe
jφqe(−dq+jνq)(m+nP )w(m)e−jωkm (5.5)

= e(−dq+jνq)nP x(k, 0). (5.6)

We can write (5.6) in the form x(k, n) = znx(k, 0), with z = e(−dq+jνq)P .
When the speech signal is degraded by noise that is wide sense stationary for

n = i − n1, ..., i + n2 and if P is sufficiently large with respect to the time-span of
dependency of the noise [4], then the noise that is observed in a sequence of DFT
coefficients at frequency bin k and at time indices n = i − n1, ..., i + n2 is white,
irrespective of the spectral color of the noise. Estimation of dq and νq from a sequence
of complex DFT coefficients is then known as a standard harmonic retrieval problem
[5] and estimation of dq and νq can be done from the noisy DFT coefficients using,
for example, the ESPRIT algorithm [6][5].

Notice that for overlapping frames the observed noise in the sequence of DFT
coefficients is not white. This might lead to wrong estimates of dq and νq for very
low SNRs. However, this is not necessarily a problem, since the deterministic model
is mainly used at harmonics, which have in general quite a high SNR. Alternatively,
one could use a whitening transform as discussed in Section 8.5.1.

When n = i − n1, ..., i + n2 is the time span across which we assume the deter-
ministic model to be valid, then we can approximate Eq. (5.4) using the relation in Eq.
(5.6). With Eq. (5.6) we correct for the exponential decay in amplitude and for the
phase shift. The estimate x̂(k, i) becomes

x̂(k, i) = E [Y (k, i)] (5.7)

≈ 1
n2 + n1 + 1

i+n2∑
n=i−n1

y(k, n)e(−dq+jνq)(i−n)P . (5.8)

The values for n1 and n2 should be chosen such that the deterministic model is valid.
This could be done by using fixed values such that the deterministic model is valid over
the interval n = i−n1, ..., i−n2 or adaptively, e.g. by using an adaptive segmentation
as presented in Chapter 3. Note that for dq = 0 we have a special case of the above
presented model, namely, with constant amplitude. In that case the clean speech signal
under the deterministic model is assumed to consist of a sum of sinusoids. Hence,

x̂(k, i) = E [Y (k, i)] (5.9)

≈ 1
n1 + n2 + 1

i+n2∑
n=i−n1

y(k, n)ejνq(i−n)P . (5.10)

We see that Eq. (5.8) and (5.10) modify magnitude as well as phase of the noisy DFT
coefficient y(k, i). Further, notice that when n1 = n2 = 0, the estimate of x(k, i)
becomes x̂(k, i) = y(k, i).
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Figure 5.1: y(k, n)e(−dq+jνq)(i−n)P at a frequency k containing a deterministic sig-
nal component (+) and at a frequency k containing a stochastic signal component (∗),
respectively.

5.3.1 Simulation Examples

To illustrate the idea of using a deterministic speech model we conducted two simu-
lation experiments. As a first experiment we generate a synthetic clean speech signal
consisting of the sum of five (deterministic) sinusoidal components and a (stochastic)
autoregressive process. Then we generate a noisy signal by adding white Gaussian
noise at an SNR of 10 dB to the clean synthetic signal. We now compute DFT coef-
ficients seen across time and plot in Fig. 5.1 the values of y(k, n)e(−dq+jνq)(i−n)P

for n = i − n1, ..., i + n2 originating from a frequency bin containing only the
stochastic noisy components (the cloud centered around the origin) and the values
of y(k, n)e(−dq+jνq)(i−n)P originating from a frequency bin containing one of the
deterministic components (the cloud with an offset from the origin). Notice that in
both cases the plotted values of y(k, n) are corrected for the exponential decay and
phase shift. As expected, the variance of the latter is smaller than the variance of the
first cloud and is only due to the noise variance. Notice, that for the cloud containing
noisy deterministic components, it is sufficient to compute the mean of the cloud to
estimate the clean deterministic signal component.

In Fig. 5.2 we present a second simulation example where the potential of distin-
guishing between a stochastic and a deterministic model on a natural speech signal is
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Figure 5.2: a) Clean speech signal. b) Clean speech spectrogram. c) Black: deter-
ministic model is optimal in terms of local SNR, White: stochastic model is optimal in
terms of local SNR.

demonstrated. In Fig. 5.2a and Fig. 5.2b an original clean speech time-domain signal
and its spectrogram are shown, respectively. The signal was degraded by white noise
at an SNR of 10 dB and enhanced using 2 different enhancement systems, one using
the stochastic model and one using the deterministic model. We compute for each
time-frequency point and for each method the resulting SNR and evaluate which of
the two models lead to the highest SNR. This is shown in Fig. 5.2c; a preference for
the deterministic model is expressed as a black dot and a preference for the stochas-
tic model as a white dot. As expected, the deterministic model performs better at
the spectral lines that are visible in the spectrogram (voiced regions), while in the
unvoiced speech regions, the stochastic model is preferred. For this experiment we
averaged the results over 100 different noise realizations and used the maximum like-
lihood (ML) approach [3] to estimate the a priori SNR ξ, where the number of frames
that is used in the ML approach is set to 1. We use the ML approach instead of the
often used decision-directed (DD) [3] approach to overcome a dependency on past
frames, as will be the case with the DD approach. Such a dependency can lead to
wrong, biased, estimates of the suppression gain under the stochastic speech model
when speech sound changes take place and as a result can lead to too much suppres-
sion or even complete removal of low energy speech components that only last for a
short time.
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5.4 MMSE Estimator under Stochastic-Deterministic
Speech Model

To find an MMSE estimator of the clean speech DFT coefficients under a combined
SD speech model, we present in this section two different setups: a completely general
model where a soft decision is made between the stochastic and deterministic model
based on estimated probabilities and where speech presence uncertainty is taken into
account. We will refer to this scheme as SOFT-SD-U. Secondly, a special case of
the first model is taken where instead of a soft decision a hard decision between the
stochastic and deterministic model is made without speech presence uncertainty, ab-
breviated as HARD-SD. Although all derivations in this section are per frequency bin
k and frame index i, we leave out these indices for notational convenience. This means
that PM |Y (dm|y(k, i)) is written as PM |Y (dm|y).

5.4.1 SOFT-SD-U Estimator

To find the MMSE estimator SOFT-SD-U, we compute the conditional expectation
E[X|y]. That is,

x̂ = E[X|y]

=
∫

x

xfX|Y (x|y)dx

=
∫

x

x
∑
m

fX|Y,M (x|y,m) fM |Y (m|y) dx

=
∫

x

x
{
fX|Y,M (x|y, dm) PM |Y (dm|y)

+ fX|Y,M (x|y, sm) PM |Y (sm|y)
}

dx (5.11)

= E[X|y, dm]PM |Y (dm|y) + E[X|y, sm]PM |Y (sm|y), (5.12)

where in (5.11) we used the fact that x = 0 when m = am. The conditional probabil-
ities PM |Y (dm|y) and PM |Y (sm|y) can be computed using Bayes rule as

PM |Y (dm|y) =
Λdm

Λdm + Λsm + 1
, (5.13)

PM |Y (sm|y) =
Λsm

Λdm + Λsm + 1
, (5.14)

with

Λdm =
fY |M (y|dm)PM (dm)
fY |M (y|am)PM (am)

and

Λsm =
fY |M (y|sm)PM (sm)
fY |M (y|am)PM (am)

,
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respectively. Here PM (am), PM (dm) and PM (sm) denote the prior probabilities
speech is absent, deterministic speech is present and stochastic speech is present, re-
spectively. The values chosen for these a priori probabilities will be discussed in
Section 5.5. Further, fY |M (y|am) is given by

fY |M (y|am) =
1

πσ2
D

exp
{
−|y|2

σ2
D

}

and fY |M (y|sm) and fY |M (y|dm) are given by (5.1) and (5.2), respectively. Com-
putation of (5.2) can be done by substitution of (5.10) in (5.2). Notice that Λsm can
efficiently be written in terms of the a priori and a posteriori SNR ξ(k, i) and ζ(k, i),
respectively, as presented in [3].

5.4.2 HARD-SD Estimator

For the HARD-SD estimator we assume that speech is always present, i.e. PM (am) =
0. The estimator HARD-SD follows from Eq. (5.12) by setting PM |Y (dm|y) either
equal to 1 (deterministic speech model), or to 0 (stochastic speech model). This means
that

x̂ =
{

E[X|y, dm] if speech DFT is classified as deterministic,
E[X|y, sm] if speech DFT is classified as stochastic.

(5.15)

The decision between the deterministic and stochastic speech model is made by the
following hypothesis test,

H0 : E [Y (k, i)] = 0
H1 : E [Y (k, i)] = x(k, i) and VAR [Y (k, i)] = σ2

D(k, i).

Under the H0 hypothesis the stochastic model is chosen (PM |Y (dm|y) = 0) and under
the H1 hypothesis the deterministic model is chosen (PM |Y (dm|y) = 1). We decide
between H0 and H1 using the Bayes criterion [7], that is

T =
fY |M (y|dm)
fY |M (y|sm)

H1

≷
H0

λth, (5.16)

where the threshold λth = 1−PM (dm)
PM (dm) .

In Fig. 5.3 the hypothesis test to distinguish between a stochastic (Gaussian) and
deterministic speech model in Eq. (5.16) is demonstrated using the same speech signal
as used in Fig. 5.2, degraded by white noise at an SNR of 10 dB. For this experiment
we used for PM (dm) the value that is specified in Section 5.5 and given in Table 5.1.
The top figure shows the clean speech spectrogram. The bottom figure shows in the
time-frequency plane the outcome of the hard decision of (5.16), where a black dot
means that the speech component is classified as deterministic and a white dot that it
is classified as stochastic. The hypothesis test appears to perform as expected: DFT
coefficients representing harmonics are classified as deterministic, while e.g. the DFT
coefficients in the region indicated with an arrow are classified as stochastic.
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Figure 5.3: a) clean speech signal spectrogram. b) Outcome of hypothesis test, Black:
speech component is classified as deterministic, White: speech component is classified
as stochastic.

5.5 Experimental Results and Discussion

In this section we compare the proposed SOFT-SD-U and HARD-SD enhancement
methods with a traditional enhancement method, similar to the one depicted in Fig.
1.2, where the speech estimator relies on a stochastic speech model alone with and
without speech presence uncertainty, respectively. For evaluation we use the percep-
tual evaluation of speech quality (PESQ) measure [8] and segmental SNR defined as
[9]

SNRseg =
1
N

N−1∑
i=0

T
{

10 log10

‖xt(i)‖2

‖xt(i) − x̂t(i)‖2

}
,

where xt(i) and x̂t(i) denote frame i of the clean speech signal and the enhanced
speech signal, respectively, N is the number of frames within the speech signal in
question and T (x) = min{max(x,−10), 35}, which confines the SNR at each frame
to a perceptually meaningful range between -10 dB and 35 dB. All results presented
below are averaged over 24 different speech signals that originate from the TIMIT
database [10].

In all experiments we use speech fragments sampled at 8 kHz and frame sizes of
256 samples taken with 50% overlap. To have good time resolution in the estimation
of (5.4), the DFT samples y(k, n) , n = i − n1, ..., i + n2, are computed from frames
with an overlap of 84%. This overlap was chosen based on a trade off, where on one
hand a small overlap is desirable to better satisfy the assumption made in Section 5.3,
i.e. frame shift P is sufficiently large with respect to the time-span of the dependency
of the noise. On the other hand, a large overlap is necessary when using multiple
samples in (5.8), i.e. n1, n2 > 0, because approximation of (5.4) by (5.8) is only valid
over relatively short time intervals. In all experiments, noise statistics are measured
during silence regions preceding speech activity.

Initial experiments have shown that in terms of SNRseg, the difference between
the use of Eq. (5.8) and (5.10) for estimating x(k, i) is negligible. Therefore, we use
(5.10) in all our experiments. Furthermore, n1 = n2 = 2 is chosen based on initial
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SOFT-SD-U HARD-SD
Probability value Probability value
PM (dm) 0.041 PM (dm) 0.041
PM (sm) 0.22 PM (sm) 0.959
PM (am) 0.739 PM (am) 0

Table 5.1: Probabilities used in experiments.

experiments.
With respect to the SOFT-SD-U estimator, Eqs. (5.13) and (5.14) require knowl-

edge of the prior probabilities PM (am), PM (dm), and PM (sm). To compute these
probabilities we assume that English speech on average can be classified as voiced in
78% of the time [11], that the fundamental frequency of speech is between f0 = 50
and f0 = 500 Hz [9] and that for most voiced speech sounds, speech energy is dom-
inantly present up to approximately fc = 2000 Hz. We then can compute the prior
probabilities as

PM (dm) = 0.78 ∗ fc

f0

2
K

PM (sm) = 0.22
PM (am) = 1 − PM (dm) − PM (sm),

where K is the window size. For a sample frequency fs = 8000 Hz, a window size
K = 256 samples and a typical fundamental frequency of f0 = 300 Hz this leads to
the values as listed in Table 5.1.

For the HARD-SD estimator it is assumed that speech is always present, that is
PM (am) = 0. To compute the threshold λth in Eq. (5.16), the prior probabilities
PM (dm) and PM (sm) are required. These are determined as

PM (dm) = 0.78 ∗ fc

f0

2
K

PM (sm) = 1 − PM (dm)

The values that are used in the experiment are listed in Table 5.1.
Estimation of νp in (5.10) is done using the ESPRIT algorithm as mentioned in

Section 5.3. Under very low SNRs, estimation of νp can lead to inaccurate estimates
and, consequently, inaccurate values for (5.13) and (5.14). This in turn leads to a
perceptually annoying switching between the deterministic and stochastic model. To
overcome this we do not use the deterministic model when ξ̂(k, i) < −7 dB and
use a stochastic model alone instead. To estimate the a priori SNR ξ(k, i) under the
stochastic speech model, the decision-directed approach [3] is used with a smoothing
factor α = 0.98 with ξ̂(k, i) = min(ξ̂(k, i),−15 dB).

To demonstrate that the proposed method is general and can also work with other
distributions under the stochastic speech model as well, we present experimental re-
sults for both the Gaussian and Laplace distribution. The reference methods used
in the experiments are named: Stoch-Gauss, which is when speech DFT coefficients
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Figure 5.4: Performance comparison for Gaussian stochastic model versus combined
Gaussian stochastic/deterministic model in terms of input SNR versus improvement in
SNRseg for speech signals degraded by a) white noise b) F16-fighter cockpit noise.

are always assumed to be Gaussian distributed and speech is always assumed to be
present. When speech presence uncertainty is taken into account this is referred to as
Stoch-Gauss-U. Similarly, when speech DFT coefficients are always assumed to be
Laplace distributed and speech is always assumed to be present, this is referred to as
Stoch-Lap. When speech presence uncertainty is taken into account this is referred to
as Stoch-Lap-U.

5.5.1 Experimental Results under Gaussian Stochastic Model

In this section we present objective results for the proposed algorithms, where we
model the clean speech DFT coefficients under the stochastic speech model with a
Gaussian distribution.

In Fig. 5.4a we compare the performance of the proposed algorithms with the ref-
erence methods in terms of improvement in SNRseg when speech signals are degraded
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by white noise at an SNR in the range from 5 dB to 20 dB. Over the whole range of
input SNRs the proposed methods improve the performance compared to the use of a
stochastic model alone. In terms of SNRseg, the performance improvement of HARD-
SD over Stoch-Gauss is approximately 0.82 dB. Incorporating the soft decision model
between speech absence, the deterministic speech model and the stochastic speech
model, i.e. SOFT-SD-U over HARD-SD, leads to an additional 0.2 dB improvement.
The improvement of SOFT-SD-U over Stoch-Gauss-U is approximately 0.87 dB.

In Fig. 5.4b objective results are shown for signals degraded by F16-fighter cockpit
noise, where similar performance is shown as for the white noise case.

5.5.2 Experimental Results under Laplace Stochastic Model

In this section we present objective results for the proposed algorithms, for the case
that clean speech DFT coefficients are modelled as Laplace distributed random vari-
ables under the stochastic model.

In Fig. 5.5a we compare the performance of the proposed algorithms with the
reference methods in terms of improvement in SNRseg for speech signals degraded
by white noise in the range from 5 to 20 dB. Similarly as for the Gaussian stochastic
model case also here SNRseg is improved for the SD based approaches with respect to
the use of Stoch-Lap and Stoch-Lap-U over the whole input range of SNRs. In general
the performance differences are smaller than when a Gaussian distribution is assumed
as in Section 5.5.1. We will comment on this in Section 5.5.5.

In terms of SNRseg, the performance improvement of HARD-SD over the use
of a stochastic Laplacian model alone is approximately 0.11 dB. Incorporating the
soft decision model between speech absence, the deterministic speech model and the
stochastic speech model, i.e. SOFT-SD-U over HARD-SD leads to an additional 0.21
dB improvement. The improvement of SOFT-SD-U over Stoch-Lap-U is approxi-
mately 0.22 dB.

In Fig. 5.5b similar objective results are shown, but now for signals degraded by
F16-fighter cockpit noise. The comparison between SOFT-SD-U and Stoch-Lap-U
shows improvements for SOFT-SD-U for input SNRs of 10 dB and larger. The per-
formance difference between HARD-SD and Stoch-Lap is negligible.

5.5.3 PESQ Evaluation

For a further evaluation of the proposed algorithms, we use the perceptual evalua-
tion of speech quality (PESQ) measure [8], which predicts the subjective quality of
speech signals with high correlation between subjective and objective results and ex-
presses the quality in a score from 1.0 (worst) up to 4.5 (best). In Fig. 5.6a and 5.6b
we compare PESQ scores for speech signals degraded by white noise and F16-fighter
cockpit noise, respectively, when it is assumed that speech is Gaussian distributed un-
der the stochastic speech model. Both SOFT-SD-U and HARD-SD lead to improved
PESQ scores with respect to Stoch-Gauss-U and Stoch-Gauss. For signals degraded
by white noise SOFT-SD-U and HARD-SD lead to an improvement of approximately
0.2 and 0.1 over Stoch-Gauss-U and Stoch-Gauss, respectively. For signals degraded
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Figure 5.5: Performance comparison for Laplacian stochastic model versus combined
Laplacian stochastic/deterministic model in terms of input SNR versus improvement
in SNRseg for speech signals degraded by a) white noise b) F16-fighter cockpit noise.

by F16-fighter cockpit noise, the improvement of Soft-SD-U and HARD-SD over
Stoch-Gauss-U and Stoch-Gaus is 0.16 and 0.11, respectively.

In Fig. 5.7a and 5.7b we compare PESQ scores when it is assumed that speech
DFT coefficients are Laplacian distributed under the stochastic speech model. For
both white noise and F16-fighter cockpit noise the PESQ difference between HARD-
SD and Stoch-Lap is more or less negligible. The PESQ improvement of SOFT-SD-U
over Stoch-Lap-U is 0.08 and 0.05 for signals degraded by white noise and F16-fighter
cockpit noise, respectively.

Notice that Figs. 5.6 and 5.7 show smaller differences in terms of PESQ score
between the several enhancement methods at lower input SNR (e.g. at 5 dB) than at
higher input SNR, while in Section 5.5.1 and 5.5.2 it is shown that over the whole
range of input SNRs the improvement in terms of SNRseg is approximately equal. Al-
though PESQ and SNRseg are both quality measures, we cannot expect them to mea-
sure the same kind of improvement, since they measure different aspects of quality.
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Figure 5.6: Performance comparison in terms of PESQ under a Gaussian stochastic
model for a) input signals degraded by white noise b) input signals degraded by F16-
fighter cockpit noise.

5.5.4 Subjective Evaluation

Informal listening was performed on the presented methods. In these listening exper-
iments we compared the proposed methods to the use of a stochastic model alone. As
densities under the stochastic model both the Gaussian and the Laplace density were
used.

When using a Gaussian density under the stochastic model, the difference between
SOFT-SD-U and HARD-SD is mainly reflected in a lower broadband noise floor and
less reverberant speech for SOFT-SD-U than for HARD-SD. Comparing SOFT-SD-U
using a Gaussian density under the stochastic model with Stoch-Gauss-U, it turns out
that SOFT-SD-U leads to less suppressed and better understandable speech. Further,
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Figure 5.7: Performance comparison in terms of PESQ under a Laplace stochastic
model for a) input signals degraded by white noise b) input signals degraded by F16-
fighter cockpit noise.

the residual noise is lower in level, but slightly more musical when using SOFT-SD-
U than when using Stoch-Gauss-U. From the comparison between HARD-SD and
Stoch-Gauss it follows that the speech sounds less suppressed when using HARD-SD
and also less reverberant than when using Stoch-Gauss.

Using a Laplace density under the stochastic model instead of a Gaussian model
leads in general to smaller differences between SOFT-SD-U and HARD-SD, but also
between SOFT-SD-U and Stoch-Lap-U, and between HARD-SD and Stoch-Lap.

Using SOFT-SD-U with a Laplace density under the stochastic model leads to
a somewhat better speech quality than Stoch-Lap-U. However, the performance dif-
ference is smaller than under the Gaussian stochastic model. Both Soft-SD-U and
Stoch-Lap-U lead to some musical tones, but SOFT-SD-U introduces slightly more
musical tones than Stoch-Lap-U.

Also between Hard-SD with a Laplace density under the stochastic model and



5.5. Experimental Results and Discussion 81

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08
x 10

4

−4

−2

0

2

4

6

8

Time samples (f
s
 = 8000 Hz)

S
N

R
 (

dB
)

a)

5 10 15 20

2

3

4

5

6

7

8

9

10

11

12

Input SNR (dB)

S
N

R
se

g (
dB

)

b)

Stoch−Gauss−U DD
Stoch−Gauss−U ML
Stoch−Lap−U DD
Stoch−Lap−U ML

Figure 5.8: Performance comparison in terms of SNR over time between a) Stoch-Lap-
U (dotted) and Stoch-Gauss-U (solid) b) Stoch-Lap-U versus Stoch-Gauss-U when ξ
is estimated with both the decision-directed and the maximum likelihood approach.

Stoch-Lap the difference is reflected in terms of a better speech quality for Hard-SD,
but less musical artifacts for Stoch-Lap.

5.5.5 Gaussian versus Laplace Stochastic Model

In this section we study the difference in performance between the Gaussian and
Laplace stochastic speech model as demonstrated in the experimental results in the
previous sections. We explain why there is a smaller performance difference between
SOFT-SD-U and Stoch-Lap-U than between SOFT-SD-U and Stoch-Gauss-U. To do
so, we compare in Table 5.2 the average SNRseg after enhancement of speech signals
that were originally degraded by white noise at an SNR of 10 dB. We see from Table
5.2 that the use of a Laplace distribution (Stoch-Lap-U) instead of a Gaussian distribu-
tion (Stoch-Gauss-U) for the speech DFT coefficients leads to improved SNRseg. This
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Speech Gaussian model Laplacian model
model SNRseg (dB) SNRseg (dB)

Stoch-Gaus/Lap-U 5.0 5.7
SOFT-SD-U 5.9 6.0

Table 5.2: Comparison between the use of a Gaussian and Laplace distribution.

is in accordance with the results in [12] where an improvement of approximately 0.5
dB was reported. Moreover, we see from Table 5.2 that also the proposed SOFT-SD-U
method with the Laplace distribution as a stochastic model performs slightly better in
terms of SNRseg as compared to SOFT-SD-U when using a Gaussian model. However,
comparing the results for SOFT-SD-U in Table 5.2 we see that the difference between
SOFT-SD-U under the two different stochastic models is decreased to approximately
0.1 dB.

Investigation of the Laplace gain function as presented in [13] and experimen-
tal analysis given in this section reveal that the 0.7 dB performance improvement of
Stoch-Lap over Stoch-Gauss is only partly due to a better speech model, but that there
are other beneficial side-effects of using the Laplace distribution that lead to perfor-
mance improvement. More specifically, it can be observed that the better performance
is partly related to the use of the decision-directed approach for estimating the a priori
SNR. From [13] we know that the gain function under the Laplace distribution applies
less suppression than the Wiener gain when the a posteriori SNR ζ(k, i) is high and
the a priori SNR ξ(k, i) low, a situation that typically arises for speech onsets. The
Wiener gain, using the Gaussian distribution, on the other hand does not have this
mechanism and will always apply high suppression when ξ(k, i) is low independent
of the a posteriori SNR. Because the decision-directed approach leads to an underes-
timated a priori SNR at speech onsets [14] due to a dependency on previous frames,
the Wiener filter will apply too much suppression on the onsets. The Laplace based
gain function, on the other hand, applies less suppression, due to the above described
mechanism, and will thus lead to less distorted speech. This effect is visualized in
Fig. 5.8a, where the SNR per frame after enhancement of a speech signal degraded
by white noise at an SNR of 5 dB is shown, together with the original clean speech
signal. It is clearly visible that especially at the first half of the speech sound the use of
the Laplace distribution leads to improved SNR. This is where the DD approach leads
to an underestimation of the a priori SNR. In the second half of the speech sound
there is still some improvement, although much smaller, because the influence on the
a priori SNR estimation of the noise only frames preceding the current speech sound
decreases as time evolves.

To support our discussion of the above described mechanism we compare enhance-
ment using Stoch-Lap with Stoch-Gauss in terms of SNRseg averaged over 24 different
speech signals degraded by white noise at an SNR of 10 dB. In this comparison we
use two different a priori SNR estimators, namely the DD approach and the maximum
likelihood approach [3][15]. With the maximum likelihood approach the a priori SNR
is computed based on noisy periodograms that are averaged over the current and the
two last frames. The latter approach leads in general to more musical noise than the
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DD approach, however, it has a smaller dependency on previous frames. Fig. 5.8b
shows that the Laplace distribution still leads to somewhat better performance, but
that by elimination of the dependency and consequently the above described mecha-
nism the performance gain of the Laplace distribution over the Gaussian distribution
is decreased from 0.7 dB to 0.15 dB. Moreover, this mechanism also explains why the
improvements of the SD methods are relatively smaller when the Laplace distribution
is used. Specifically, one advantage of the deterministic model is the independence of
the a priori SNR estimation and therefore it is independent of the use of a decision-
directed approach. This overcomes, similarly as with the Laplace gain function, an
oversuppression at the start of stationary speech sounds. It explains why combining
the Laplace model with the deterministic model leads to a relatively smaller improve-
ment than combining the Gaussian distribution as a stochastic model with the deter-
ministic speech model.

5.6 Conclusions

In this chapter we proposed the use of a combined stochastic-deterministic speech
model for DFT-domain based speech enhancement. Under the deterministic speech
model, clean speech DFT coefficients are modelled as a complex exponential across
time. Using the combined speech model we derived an MMSE estimator for clean
speech where speech presence uncertainty can be taken into account. We demon-
strated the use of the combined stochastic-deterministic speech model using the Gaus-
sian and Laplace distributions, however, the presented method is general and can be
extended to be used with other distributions under the stochastic representation. Ex-
periments showed that the use of the proposed MMSE estimator leads to improve-
ments in terms of segmental SNR over the use of a stochastic speech model alone.
Moreover, evaluation with PESQ demonstrated an improvement in speech quality.
However, performance differences tend to get smaller when using the Laplace density
as a stochastic model instead of a Gaussian density. A discussion was presented to
explain this performance difference.
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6.1 Introduction

As mentioned in Section 2.3, measured histograms of speech DFT coefficients show
under certain conditions a super-Gaussian shape. In this chapter we focus on MMSE
estimators of the clean speech DFT coefficient magnitudes, as well as of the complex-
valued DFT coefficients, under a density that can model this observed super-Gaussian
behavior. We assume that the noise DFT coefficients obey a (complex) Gaussian dis-
tribution as argued in Section 2.3 and investigate the use of the generalized Gamma
density to model the speech DFT magnitudes and DFT coefficients.

6.1.1 Modelling Speech DFT Magnitudes

For estimation of the speech DFT magnitudes, we assume that the speech DFT mag-
nitudes are distributed according to a one-sided prior of the general form

fA(a) =
γβν

Γ(ν)
aγν−1 exp(−βaγ), β > 0, γ > 0, ν > 0, a ≥ 0, (6.1)

where Γ(·) is the gamma function and the random variable A represents the DFT mag-
nitude. This density is known as the generalized Gamma density and is able to model
heavy-tailed densities, depending on the parameter settings in Eq. (6.1). Fig. 6.1
shows example densities for γ = 1 and γ = 2, respectively. For γ = 2 and ν = 1, the
Rayleigh distribution occurs as a special case, for which an MMSE amplitude estima-
tor and a MAP amplitude estimator have been derived in [1] and [2], respectively. For
γ = 2, a generalized MMSE amplitude estimator was derived in [3] as a function of
ν. Furthermore, [4] presented a generalized MAP estimator and an adaptive algorithm
for estimating the parameters of the generalized prior. For γ = 1, no generalized
MMSE amplitude estimator is known in closed form, but a numerical approximation
was presented in [3]. An approximate generalized MAP estimator for the case γ = 1
was derived in [5]. The first column of Table 6.1 summarizes the special cases of Eq.
(6.1) for which estimators (MAP or MMSE) have been documented in the literature.

The MMSE DFT magnitude estimators that we present in this chapter are derived
assuming that these random variables have a single-sided generalized gamma prior
as in Eq. (6.1). In contrast to the estimators presented in [3], we present analytical
expressions for both γ = 1 and γ = 2 and do not make use of numerical solutions.

6.1.2 Modelling Speech DFT Coefficients

For estimation of the complex-valued speech DFT coefficients we assume that the real
and imaginary parts of these coefficients are statistically independent. The validity of
this assumption will be discussed in Secion 6.2. We will derive MMSE estimators for
a two-sided generalized gamma prior density of the following form

fX�(x�) =
γβν

2Γ(ν)
|x�|γν−1 exp(−β|x�|γ), β > 0, γ > 0, ν > 0,−∞ < x� < ∞

(6.2)
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Figure 6.1: Prior densities fA(a) for a) γ = 1 with ν = {0.8, 1, 1.5}, and for b)
γ = 2 with ν = {0.5, 1, 1.5}. The densities have been normalized to unit variance.
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Figure 6.2: Prior densities fX�(x�) for a) γ = 1 with ν = {0.25, 0.5, 0.75, 1}, and
for b) γ = 2 with ν = {0.1, 0.2, 0.3, 0.5}. The densities have been normalized to unit
variance.

where the random variable X� represents the real part of a complex-valued DFT co-
efficient. A similar equation holds for the imaginary part. We consider the cases of
γ = 1 and γ = 2. Examples of the resulting prior densities are shown in Fig. 6.2.
These densities (parameterized by β and ν) contain a number of special cases for
which estimators are already known. Specifically, for γ = 2, the prior parameterizes
the Gaussian density (ν = 1/2) for which the Wiener estimator is the MMSE esti-
mator [6]. For γ = 1, Eq. (6.2) has the Gamma and the Laplacian density as special
cases (ν = 1/2 and ν = 1, respectively). MMSE estimators under these densities are
derived in [7]. Choosing ν > 1.0 with γ = 1 or ν > 0.5 with γ = 2 leads to bi-
modal priors. Although the estimators derived below remain valid for bimodal priors,
we have chosen to restrict ν in our evaluations to the range 0 < ν ≤ 1.0 for γ = 1
and 0 < ν ≤ 0.5 for γ = 2 to have unimodal priors and thus be better in line with
observed speech data, see e.g. [7]. Table 6.1 summarizes the special cases of Eq (6.2)
for which estimators (MMSE) have been documented in the literature.

The MMSE estimators of the complex clean speech DFT coefficients that we
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DFT magnitudes (fA(a)) Complex DFTs (fX�(x�))
γ = 1 Generalized gamma (MMSE) [3]∗ Laplacian (MMSE) [7]

Generalized gamma (MAP) [5]∗, [3]∗ Gamma (MMSE) [7]
γ = 2 Rayleigh (MMSE) [1] Gaussian (MMSE) [6]

Rayleigh (MAP) [2]
Generalized gamma (MMSE / MAP) [3][4]

Table 6.1: Special cases of the generalized priors in Eqs. (6.1) and (6.2) for which
estimators are known. For all estimators the noise is assumed to be additive and
the noise DFT coefficients are assumed to be Gaussian distributed. The ∗ indicates
estimators for which no exact closed-form solutions exist.

present in this chapter are derived assuming that the real and imaginary parts of clean
speech DFT coefficients have a two-sided generalized gamma distribution, as in Eq.
(6.2). As mentioned, specific choices of ν and β lead to special cases for which
MMSE estimators already exist. The derived estimators are more general and cover
all possible MMSE estimators (including the ones shown) in each of the quadrants of
Table 6.1.

The remaining sections in this chapter are organized as follows. In Section 6.2 we
discuss the validity of the assumptions made in the introduction and study the consis-
tency between the models of complex DFT coefficients and magnitudes. In Section
6.3, we introduce the signal model and the notation used throughout this chapter. Sec-
tion 6.4 treats MMSE estimation of DFT coefficient magnitudes, while Section 6.5
considers MMSE estimators of complex DFT coefficients. Filter characteristics cor-
responding to the derived estimators are shown in Section 6.6. In Section 6.7 we
present experimental results. In Section 6.8 concluding remarks are given.

6.2 Discussion of the Modelling Assumptions

As outlined in the previous section, existing DFT coefficient estimators, as well as the
ones derived here, rely on a number of assumptions with respect to speech DFT coef-
ficients. In this section we discuss the consistency and validity of these assumptions.
Let us first discuss the pdfs in Eqs. (6.1) and (6.2). The pdfs are dependent on the
parameter β which is related to the speech spectral variance σ2

X (See Appendix A).
Since in practice σ2

X is unknown, it is estimated from the noisy data, e.g. using the
decision-directed approach introduced by Ephraim and Malah in [1]. Consequently,
the pdfs in Eqs. (6.1) and (6.2) are actually models for the priors faced in practice
that are conditioned on the estimated speech spectral variance, rather than on the true
underlying (but unknown) value of σ2

X . Martin [7] and Lotter and Vary [5] showed
that super-Gaussian models of the real and imaginary parts as well as magnitudes of
DFT coefficients, conditioned on speech spectral variances estimated by the decision-
directed approach, offer a better fit than a gaussian model. Hence it is important
to notice that the appropriate distributional assumption is related to the speech vari-
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ance estimator that is used. For example, Cohen [8] suggests that for an a priori
SNR estimator based on GARCH models, the Gaussian speech model is superior. A
slight preference for complex Gaussian distributions has also been found for the DFT-
coefficients from short analysis frames of individual speech sound classes (vowels,
plosives, fricatives, etc.) using maximum likelihood estimates of the speech spectral
variance [9].

The second point concerns the consistency between the models in the complex do-
main (real and imaginary parts) and the polar domain (amplitude and phase). It is well-
known that independent and identically distributed (i.i.d.) Gaussian real and imagi-
nary parts correspond to a Rayleigh distribution for the amplitudes which are indepen-
dent of the uniformly distributed phase. We investigated whether i.i.d. generalized-
Gamma distributed real and imaginary parts lead to generalized-Gamma distributed
amplitudes. It is not difficult to show that this is indeed the case for the γ = 2 class
of distributions. The value of the parameter ν in the polar domain is then twice as
large as the corresponding value in the complex domain. Furthermore, amplitude and
phase are also independent, but the phase is not uniformly distributed (except for the
Gaussian case, of course). For the γ = 1 case, these results do not hold in an exact
mathematical sense. However, an accurate fit can be made to the resulting amplitude
distribution. As in the γ = 2 case, the resulting phase distribution is generally non-
uniform. When we start with a generalized-gamma model in the polar domain, and
assume uniformly distributed phase, the corresponding real and imaginary parts are
not independent, except for the Gaussian case. However, simulations showed that a
fairly accurate fit of the pdf in Eq. (6.2) can still be made to their marginal distribu-
tions.

This bring us to perhaps the most important issue; how well do the assumed dis-
tributions match real speech data? Martin [7], and Lotter and Vary [5] have measured
the distributions of speech DFT coefficients conditioned on a certain narrow range
of estimated a priori SNR values. Contour lines of the measured joint pdf of real
an imaginary parts of the DFT coefficients are nearly circular. A circularly symmetric
joint pdf means that the real and imaginary parts are uncorrelated (but, as we shall see,
they are not independent), and that the phase distribution is uniform and independent
from the amplitude distribution.

In order to gain further insights, we performed a similar experiment as in [5][7]
leading to the contour plots of measured histograms of real and imaginary parts shown
in Fig. 6.3. As in [5], only DFT coefficients have been taken into account for which
the a priori SNR estimated using the decision-directed approach was between 19 and
21 dB. The entire TIMIT-TRAIN database provided the speech material, limited to
telephone bandwidth, to which white Gaussian noise at an SNR of 30 dB was added.
The noise variance was estimated for each sentence from a noise-only segment of
0.64 seconds, preceding each sentence. Fig. 6.3a shows the contours for the joint
distribution; this distribution is very similar to the ones in [7, 5]. Fig. 6.3b shows the
contours for the product of the marginal distributions. This plot is different from Fig.
6.3a, and therefore, even though real and imaginary parts may be uncorrelated, there
is clearly some higher-order dependency between them.
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Figure 6.3: Contour lines of measured distributions of real and imaginary parts nor-
malized to unit variance: a) joint distribution; b) product of marginal distributions.

In the derivation of the complex DFT estimators, the real and imaginary parts are
assumed independent for mathematical tractability, but, as shown in Fig. 6.3b, this is
not entirely in line with measured speech data. Still, we cannot predict beforehand
whether the magnitude or complex DFT estimators lead to the best speech enhance-
ment performance, because the parametric distributions of Eqs. (6.1) and (6.2) are
only models of the actual conditional speech distributions. The fits to measured data
are not perfect in either domain and the derived estimators in each domain may not
be equally sensitive to the modelling errors. In this chapter we will investigate the
performance of the generalized estimators, and will show experimentally that the am-
plitude estimators perform slightly better than the complex DFT estimators under the
assumed models.

6.3 Signal Model and Notation

We assume that X(k, i) and D(k, i) are statistically independent across time and fre-
quency, which leads to estimators that are independent of time and frequency as well.
This allows us to increase readability by dropping the time/frequency indices, i.e. we
write Eq. (2.1) as

Y = X + D. (6.3)

We assume that the noise DFT coefficients D obey a Gaussian distribution, as argued
for in Section 2.3, with independent and identically distributed real and imaginary
parts, i.e.

σ2
D = σ2

D� + σ2
D� , and σ2

D� = σ2
D� . (6.4)

Next to the a priori SNR ξ and the a posteriori SNR ζ, as defined in Chapter 2,
we also define the a posteriori SNR with respect to the real and imaginary part of Y ,
that is ζ� = y2

�/σ2
D� , and ζ� = y2

�/σ2
D� . From Eq. (6.4) we have ζ = (ζ� + ζ�)/2.
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6.4 MMSE Estimation of Magnitudes of DFT Coeffi-
cients

In this section we derive MMSE estimators of the magnitude of the clean speech DFT
coefficients. The MMSE estimator is identical to the conditional mean [10] given by

E{A|r} =

∫∞
0

afR|A(r|a)fA(a)da∫∞
0

fR|A(r|a)fA(a)da
. (6.5)

Further, since the noise DFT coefficients are assumed to be Gaussian distributed,
fR|A(r|a) can be written as shown in Section 2.3 as

fR|A(r|a) =
2r

σ2
D

exp
(
−r2 + a2

σ2
D

)
I0

(
2ar

σ2
D

)
, (6.6)

where I0 is the 0th order modified Bessel function of the first kind. No assumption
about the clean speech phase distribution has to be made to derive this expression.

We will consider the case γ = 2 first, because the corresponding estimator can be
derived without any approximations.

6.4.1 DFT Magnitudes, γ=2

Let the superscript (2) indicate that γ = 2. Inserting Eqs. (6.1) with γ = 2 and (6.6)
into Eq. (6.5) gives

Â(2) =

∫∞
0

a2ν exp
(
− a2

σ2
D
− βa2

)
I0

(
2ar
σ2

D

)
da∫∞

0
a2ν−1 exp

(
− a2

σ2
D
− βa2

)
I0

(
2ar
σ2

D

)
da

. (6.7)

Let 1F1(a; b;x) denote the confluent hypergeometric function [11, Ch. 13]. Using
[12, Eqs. 6.643.2, 9.210.1, and 9.220.2] we can solve the integrals for ν > 0 and find

Â(2) =
Γ(ν + 0.5)

Γ(ν)

√
ξ

ζ(ν + ξ)

1F1

(
ν + 0.5; 1; ζξ

ν+ξ

)
1F1

(
ν; 1; ζξ

ν+ξ

) r, (6.8)

where we have inserted in Eq. (6.8) the relation between β and E{A2} given in Eq.
(A.2). This result has also recently been derived in [3].

6.4.2 DFT Magnitudes, γ=1

Let the superscript (1) denote that γ = 1. Substitution of Eqs. (6.1) with γ = 1 and
(6.6) into Eq. (6.5) then gives the following expression for the amplitude estimator

Â(1) =

∫∞
0

aν exp
(
− a2

σ2
D
− βa

)
I0

(
2ar
σ2

D

)
da∫∞

0
aν−1 exp

(
− a2

σ2
D
− βa

)
I0

(
2ar
σ2

D

)
da

. (6.9)
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Unfortunately, no closed-form solutions are known. Therefore, we introduce two
approximations of the Bessel function in Eq. (6.9). One of these approximations is
most accurate at low SNRs , while the other is most accurate at high SNRs. With
these approximations, the integrals can be solved in closed-form. Before discussing
the approximations we introduce a change of variable that makes it more clear to see
under which conditions the various approximations are expected to be accurate.

Change of Variable

For convenience the following transformation is made: w = 2ar/σ2
D. In addition,

we make use of the relation in Eq. (A.1) between β and the second moment of A,
β =
√

ν(ν + 1)/σX . The expression for Â(1) now becomes

Â(1) =
σ2

D

2r

∫∞
0

wν exp
[
−w2

4ζ − μw
2
√

ζξ

]
I0 (w) dw∫∞

0
wν−1 exp

[
−w2

4ζ − μw
2
√

ζξ

]
I0 (w) dw

, (6.10)

where we have introduced μ =
√

ν(ν + 1). The approximations of Eq. (6.10) dis-

cussed below concern the Bessel function I0 (w). The function wν exp[−w2

4ζ − μw
2
√

ζξ
]

attains its maximum at a small value of w when the exponentials decay fast and wν

rises slowly. In this case it is especially important to approximate the Bessel func-
tion well at small arguments. This happens when ζ and/or

√
ζξ are small, i.e., at low

SNRs. Note that ζ is the more dominant parameter of ζ and ξ, because ξ is not present
in the quadratic term in the exponentials. In other cases, namely high SNR conditions,
the Bessel function should be accurately approximated for large arguments.

Approximation of E{A|r}, Low SNR Conditions

For low SNR conditions we approximate I0 by a Taylor series expansion around w =
0. The Taylor series of I0, truncated after N terms, is given by [11, Eq. 9.6.10]

I0(w;N) =
N−1∑
n=0

(w

2

)2n 1
(n!)2

. (6.11)

Fig. 6.4a shows I0 and several truncated Taylor series expansions. We see that for
small arguments, I0 is approximated well by only a few terms. Let Dν(·) denote the
parabolic cylinder function of order ν [11, Ch. 19]. Substituting Eq. (6.11) into Eq.
(6.10) and using [12, Eq.3.462.1] gives us an estimator, Â(1)

�,N , which is most accurate
for low SNRs, that is,

Â
(1)
�,N =

1√
2ζ

N−1∑
n=0

(
1
n!

)2 ( ζ
2

)n

Γ(ν + 2n + 1)D−(ν+2n+1)

(
μ√
2ξ

)
N−1∑
n=0

(
1
n!

)2 ( ζ
2

)n

Γ(ν + 2n)D−(ν+2n)

(
μ√
2ξ

) r.(6.12)

The subscript �,N indicates that the approximation from Eq. (6.11) uses N terms and
is valid at low SNRs.
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For N → ∞, Â
(1)
�,N converges to Â(1). This is because the Taylor expansion

in Eq. (6.11) converges for all w and because changing the order of integration and
summation as is used in the derivation of Eq. (6.12) is allowed for N → ∞ according
to Fubini’s theorem [13].

Approximation of E{A|r}, High SNR Conditions

Using the approximate estimator Â
(1)
�,N under high SNR conditions, requires the num-

ber of terms N in the Taylor expansion to be large for an accurate result. Large N leads
to a high computational load and numerical problems may result when evaluating Eq.
(6.12). In order to avoid these complications, we investigate an approximation of
Eq. (6.10) that is more accurate under high SNR conditions. We apply the following
well-known large-argument approximation of I0 [11, Eq. 9.7.1]

I0(w) ∼ 1√
2πw

exp(w). (6.13)

Fig. 6.4b shows I0 and its approximation for large arguments. Substituting this ap-
proximation in Eq. (6.10) and using [12, Eq. 3.462.1] we find for ν > 0.5:

Â
(1)
	 =

(ν − 1/2)√
2ζ

D−(ν+1/2)

(
μ√
2ξ

−
√

2ζ
)

D−(ν−1/2)

(
μ√
2ξ

−
√

2ζ
)r. (6.14)

The approximation in Eq. (6.14) is most accurate when ζ and
√

ζξ are large and ν is
large too.

6.4.3 Combining the Estimators

In this section we present a procedure that can be used to decide which of the two
approximations to use under which circumstances.

From Eq. (6.10) it is clear that the faster the exponential term in the integrals
decreases, the less important it becomes how well the Bessel function is approximated
for large values of w. So, generally speaking, the approximation for small arguments
is most accurate for low SNRs. The approximation Eq. (6.14) is more accurate for
high SNRs and large ν. Fortunately, the behavior of the approximations is such that a
simple binary decision strategy can be found that leads to good results. Specifically,
it turns out that taking the maximum of Eq. (6.12) and Eq. (6.14) is generally a good
approximation of Â(1) for, say, N > 4. This procedure is motivated as follows. In [14]
it was shown that the approximation for low SNRs, Â(1)

�,N , is always smaller than Â(1),

for all N . The approximation for high SNRs, Â
(1)
	 , can be both smaller and larger

than Â(1), depending on the values of the parameters. As we will show by simulation
experiments in Section 6.4.4, however, Â

(1)
	 can be only slightly larger than Â(1). It

turns out that the combined estimator Â
(1)
C,N = max

[
Â

(1)
�,N , Â

(1)
	
]

obtained from a
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simple binary decision leads to an accurate approximation of Â(1) for all values of ζ, ξ,

and ν. To illustrate the practical use of the decision rule Â
(1)
C,N = max

[
Â

(1)
�,N , Â

(1)
	
]

we computed Eq. (6.10) by numerical integration, denoted by Â
(1)
MMSE . Let the gain

G be defined as G = Â/r. In Fig. 6.5 gain curves versus the a posteriori SNR ζ are
shown for ν = 0.6 and for several values of ξ. In each plot we show G

(1)
�,5 = Â

(1)
�,5/r,

G
(1)
	 = Â

(1)
	 /r and G

(1)
MMSE = Â

(1)
MMSE/r and see that taking the maximum of

G
(1)
�,5 and G

(1)
	 leads to a gain G

(1)
C,5 close to G

(1)
MMSE .

6.4.4 Experimental Analysis of Errors Due to Approximations

The errors in the combined estimator have been investigated for the range 0.6 � ν �
3.2, −20 dB � ξ � +20 dB, −20 dB � ζ � +14 dB. For this range, Â

(1)
MMSE

could be evaluated numerically. For larger ζ, the accuracy of Â
(1)
	 only increases,

so its error will be smaller. For the binary decision max[Â(1)
�,5, Â

(1)
	 ], the maximum

positive error was +3.7 dB, and the maximum negative error was −0.2 dB. A posi-
tive error means that Â

(1)
MMSE was larger than the approximate gain function. Using

max[Â(1)
�,20, Â

(1)
	 ] the maximum positive error decreases to +0.1 dB. The largest pos-

itive errors occur for the lowest values of ν, and, for a given value of a priori SNR,
only for a small range of a posteriori SNRs, as can be seen in Fig. 6.5. These results
show that the simple binary decision procedure generally works well.

6.4.5 Computational Complexity

MATLAB implementations of the algorithms in [15] (implementations available from
[16]) have been used to evaluate the parabolic cylinder and confluent hypergeometric
functions. We have adapted these programs so that they can handle vector arguments.
The estimator for γ = 2 can be evaluated in real-time on a PC with a Pentium 4 pro-
cessor. The combined estimator for γ = 1 is more complex, because two estimators
have to be evaluated and because of the sums in Eq. (6.12). The sums can be effi-
ciently computed by making use of recursive relations [11, Eq. 19.6.4]. In this way,
the combined estimator can be evaluated in 2-3 times real-time. In a practical system,
for a fixed value of ν, all gain functions can be evaluated off-line for the relevant range
of the parameters and stored in a table. Computational complexity is not an issue then.

6.5 MMSE Estimation of Complex DFT Coefficients

In this section we derive the MMSE estimator of the clean speech DFT coefficient
X . Assuming that the real and imaginary parts of X , X� and X�, are statistically
independent, it follows that [7]

E{X|y} = E{X�|y�} + jE{X�|y�}. (6.15)
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We now consider estimation of X�. A similar procedure can be followed for X�. We
have

E{X�|y�} =

∫
x�

x�fY�|x�(y�|x�)fX�(x�)dx�∫
x�

fY�|x�(y�|x�)fX�(x�)dx�
. (6.16)

Using the Gaussian noise assumption it follows

fY�|x�(y�|x�) = (2πσ2
D�)−

1
2 exp(− 1

2σ2
D�

(y2
� + x2

� − 2y�x�)). (6.17)

6.5.1 Complex DFTs, γ = 1

Using Eq. (6.2) with γ = 1, [12, Eq. 3.462.1] and the relation between β and σ2
X�

given by Eq. (A.3) in Appendix A, we find the following expression for the conditional
mean [17][18]

E{X�|y�} = σD�ν
exp( 1

4y2
−)D−(ν+1)(y−) − exp( 1

4y2
+)D−(ν+1)(y+)

exp( 1
4y2−)D−ν(y−) + exp(1

4y2
+)D−ν(y+)

, (6.18)
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where

y± =

√
ν(ν + 1)

ξ
± y�

σD�
. (6.19)

6.5.2 Complex DFTs, γ=2

We now consider the MMSE estimator for γ = 2. Maintaining the Gaussian noise
assumption, the conditional density fY�|x�(y�|x�) given in Eq. (6.17) remains valid.
Using Eq. (6.2) with γ = 2 and [12, Eq. 3.462.1], it can be shown that the conditional
mean estimator can be written as

E{X�|y�} = 2ν
σD�√

1 + 2νξ−1

D−(2ν+1)(y−) −D−(2ν+1)(−y−)
D−2ν(y−) + D−2ν(−y−)

, (6.20)

where
y− = − y�

σD�

(
1 + 2νξ−1

)−1/2
. (6.21)

It is easy to see that when ν/ξ is small and ζ� is not, the estimators for γ = 1 (Eq.
(6.18)) and γ = 2 (Eq. (6.20)) are approximately equal when the quantity γν has the
same value for both estimators.

6.6 Filter Characteristics

In this section we study the input-output characteristics for the DFT magnitude esti-
mators as well as for the complex DFT coefficient estimators.

6.6.1 Magnitudes of DFT Coefficients

Fig. 6.6 shows examples of input-output characteristics for the magnitude estimators.
In Fig. 6.6a we consider the case γ = 1 and ν ∈ {0.8, 1, 1.5} for the combined
estimator Â

(1)
C = max[ Â(1)

�,5, Â
(1)
	 ]. In Fig. 6.6b we consider the case γ = 2 for

ν ∈ {0.5, 1, 1.5}. Further, the constraint σ2
X + σ2

D = 2 is used, and we consider the
a priori SNRs ξ = −5 dB and ξ = 5 dB. The input-output characteristics are more
sensitive to ν values for the γ = 2 case than for the γ = 1 case, and a smaller ν value
clearly leads to less suppression at higher input values and to more suppression for
lower input values.

6.6.2 Complex DFT Coefficients

Fig. 6.7a shows examples of input-output characteristics of the complex DFT estima-
tors for the case of γ = 1 and ν ∈ {0.25, 0.50, 0.75, 1}. For ν = 1.0 we recognize
the input-output characteristic of the Laplacian (two-sided exponential) prior and for
ν = 0.5 we get the input-output characteristics of the two-sided Gamma distribution.
For high a priori SNRs, the relation between y� and the estimator E{X�|y�} is
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Figure 6.6: Input-output characteristics for DFT magnitude estimators (σ2
X + σ2

D =
2). a) γ = 1 b) γ = 2.

almost linear. At low a priori SNRs, the relation is non-linear, especially for small
values of ν, i.e., more peaked priors.

For the γ = 2 case we consider ν ∈ {0.1, 0.2, 0.3, 0.5}. Choosing ν = 0.5 gives
a Gaussian prior, while lower values of ν correspond to more peaked distributions.
Fig. 6.7b shows input-output characteristics for the resulting MMSE estimators. For
ν = 0.5 the Wiener estimator occurs (solid line in Fig. 6.7b). For all other choices of
ν, the estimators are non-linear in the noisy observation y�.

6.7 Experimental Results

In this section we present experimental results obtained with the complex DFT and
magnitude estimators. For the experiments we use the Noizeus database [19], which
consists of 30 IRS-filtered speech signals sampled at 8 kHz, contaminated by vari-
ous additive noise sources. We added computer-generated telephone-bandwidth white
Gaussian noise as an extra noise source, since it is not present in the data base. The
frames have a size of 256 samples and are taken with an overlap of 50 %. The decision-
directed approach with a smoothing factor α = 0.98 was used to estimate ξ [1]. The
noise variance was estimated using the minimum statistics approach [20]. Further, for
perceptual reasons, in all experiments the maximum suppression was limited to 0.1
[7]. Experiments with a lower limit did not change the conclusions.
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6.7.1 Objective Quality Measures

We measure the performance of the proposed estimators using several objective speech
quality measures. First, we introduce the squared error distortion measures

Dampl =
∑

(k,i)∈Q
(a(k, i) − â(k, i))2 (6.22)

and
DDFT =

∑
(k,i)∈Q

|x(k, i) − x̂(k, i)|2 (6.23)

for the magnitude and complex DFT estimators, respectively. Our estimators assume
speech presence. In order to avoid contamination of our experimental results by noise-
only regions, we discard non-speech frequency bins by using an index set Q denoting
the DFT bins with energy no less than 50 dB below the maximum bin energy in the
particular speech signal. These distortion measures evaluate the quantities for which
the estimators are optimized.

In an attempt to express the objective performance of the estimators in terms of
speech distortion and noise reduction separately, we follow the approach in [5] and
measure speech attenuation as

SATTseg =
1
|P|
∑
i∈P

10 log10

(
‖xt(i)‖2

2

‖xt(i) − x̃t(i)‖2
2

)
, (6.24)

where the vector xt(i) represents a clean speech (time-domain) frame and x̃t(i) is the
result of applying the gain functions to the clean speech frame. To discard non-speech
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frames, an index set P is used of all clean speech frames with energy within 30 dB of
the maximum frame energy in a particular speech signal. |P| denotes the cardinality
of P . Similarly, noise attenuation is measured as

NATTseg =
1
|P|
∑
p∈P

10 log10

(
‖dt(i)‖2

2

‖d̃t(i)‖2
2

)
, (6.25)

where dt(i) is a noise frame, and d̃t(i) is the residual noise frame resulting from
applying the noise suppression filter to dt(i).

Further, we use segmental SNR defined as

SNRseg =
1
M

M∑
i=1

T
(

10 log10

‖xt(i)‖2
2

‖xt(i) − x̂t(i)‖2
2

)
, (6.26)

where x̂t(i) denotes an enhanced signal frame, M is the total number of frames, and
T [y] = max(min(y, 35),−10), confining the local SNR to a perceptual meaningful
range [21]. Finally, we apply the PESQ speech quality measure [22].

6.7.2 Magnitude Estimators

We evaluate the performance of the MMSE amplitude estimator Â(2) and two approx-
imations of Â(1), namely Â

(1)
	 and Â

(1)
C,5 = max[ Â(1)

�,5, Â
(1)
	 ]. We included Â

(1)
	 in

this comparison to show that the combined estimator Â
(1)
C,N has clear advantages over

using just the well-known high-SNR approximation used for Â
(1)
	 . Further, we make

a comparison to a modification of the MAP amplitude estimator as presented in [5],
which is in fact a MAP estimator under the generalized gamma distribution Eq. (6.1)
with γ = 1. Details on the modified MAP estimator, which we refer to as Â

(1)
MAP , can

be found in Appendix A.2.
Fig. 6.8 plots Dampl versus ν for speech signals degraded by white noise at SNRs

of 0 and 10 dB. We see that Â
(1)
C,5 improves over Â

(1)
	 and Â

(1)
MAP , and that Â(2) does

very well for ν ≈ 0.1.
Fig. 6.9 shows performance in terms of SATTseg versus NATTseg for several

values of ν and speech signals degraded by white noise at SNRs of 0, 5, 10 and 15 dB.
It is shown that for a fixed NATTseg performance, Â

(1)
C,5 often leads to the best speech

quality. Furthermore, we see that Â(2) has the worst SATTseg versus NATTseg trade-
off.

In Fig. 6.10 an evaluation in terms of segmental SNR versus ν is shown for the
input SNRs of 5 and 15 dB and speech signals degraded by street noise and white
noise. The estimators Â

(1)
C,5, Â

(1)
	 and Â

(1)
MAP have a comparable performance and are

relatively insensitive to ν. The estimator Â(2) is much more sensitive to ν and shows
maximum performance at ν ≈ 0.1. The maximum performance of all four estimators
Â

(1)
C,5, Â

(1)
	 , Â

(1)
MAP and Â(2) is approximately the same.

Fig. 6.11 plots PESQ versus ν for the input SNRs of 5 and 15 dB and speech
signals degraded by street noise and white noise. We see that the shape of the graphs
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Figure 6.8: Measured squared error Dampl for white noise with a) SNR = 0 dB. b)
SNR = 10 dB.

representing the performance in terms of PESQ are very similar to the shape of the
graphs representing the performance in terms of segmental SNR in Fig. 6.10.

6.7.3 Complex DFT Estimators

We first consider the squared error distortion measure DDFT. Fig. 6.12 plots DDFT ver-
sus ν. The estimator based on a Gamma prior [7], i.e. γ = 1 and ν = 0.5, is indicated
by (+) and performs well. Choosing ν ≈ 0.3 leads to a slightly better performance.
In Fig. 6.12 the amplitude estimators Â

(1)
C,5 and Â(2) are evaluated with DDFT as well.

Although counterintuitive, it shows that the amplitude estimators perform better as
measured by the DDFT distortion measure than the complex DFT estimators. This
indicates that the underlying model assumptions for the complex DFT estimators are
less valid for natural speech than those of the amplitude estimators.

Fig. 6.13 shows performance in terms of SATTseg versus NATTseg as a function
of ν for the complex DFT estimators and speech signals degraded by white noise.
Clearly, the estimator based on the two-sided gamma prior (+) gives relatively low
speech distortions (high SATTseg) for a given residual noise level. Further, the Wiener
estimator (x) provides the weakest SATTseg vs. NATTseg tradeoff; as discussed in
Section 6.2 this suggests that the speech distribution conditional on the estimated a
priori SNR is not well described by a Gaussian model. The Gaussian model and thus
the Wiener estimator may perform better for a different a priori SNR estimator, see
e.g. [8]. As expected (see comment after Eq. (6.21)), choosing low ν values leads to
similar performance of both classes γ = 1 and γ = 2. Comparing with Fig. 6.9, we
see that the maximum achievable speech quality in terms of SATTseg is lower than
for the amplitude estimators.

6.7.4 Subjective Evaluation

Andrianakis and White [3] report that the MMSE amplitude estimators generally per-
form better than their MAP counterparts, in the sense that weaker speech spectral
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Figure 6.9: SATTseg plotted vs. NATTseg while varying ν for Â
(1)
C,5, Â

(1)
	 , Â(2), the

MAP estimator and the estimator of [1] for: a) Input SNR = 0 dB, b) SNR = 5 dB, c)
SNR = 10 dB, d) SNR = 15 dB. ν decreases along the curves from the left to the right.
The range of ν values is the same as for Fig. 6.8.

components are better preserved, while the residual noise has a much more broad-
band character. The better preservation of weak speech components is confirmed by
our informal listening, although the differences between the various estimators are
generally small, partly because the maximum suppression was limited to 0.1 for all
methods. The combined MMSE estimator Â

(1)
C,5 introduces slightly less speech distor-

tions than the MAP estimator, Â
(1)
	 , and Â(2). The complex DFT estimators appear to

give better noise suppression and seem to introduce slightly less noise artifacts than
the amplitude estimators, although at the cost of somewhat higher speech distortions
(see also Figs. 6.9 and 6.13). Informal listening tests are in line with the objective
results presented above concerning the influence of the parameter ν. For γ = 1, the
perceived quality was rather insensitive to adjustments of ν, while for γ = 2 changes
in ν had a bigger effect: for large values of ν, more residual noise, but less musical
noise was present as compared to the smallest values of ν.
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6.8 Concluding Remarks

In this chapter we considered DFT based techniques for single-channel speech en-
hancement. In the first part, we extended existing MMSE estimators of the magnitude
estimators for DFT-based noise suppression. The optimal estimators are found under
a one-sided generalized Gamma distribution, which takes as special cases (different
parameter settings) all priors used in known noise suppression schemes so far. De-
riving the MMSE estimators involves integration of (weighted) Bessel functions. In
order to find analytical solutions, approximations were necessary for some parameter
settings. Ultimately, we combined two types of Bessel function approximations using
a simple binary decision between the two. We showed by computer simulations that
the estimator thus obtained is very close to the exact MMSE estimator for all SNR
conditions. The presented estimators lead to improved performance compared to the
suppression rule proposed by Ephraim and Malah [1].

The second part of this chapter dealt with MMSE estimators of complex DFT coef-
ficients by deriving two classes of estimators based on generalized gamma prior pdfs.
Estimators from the class γ = 1 typically perform better than the γ = 2 class, except
for small values of the parameter ν, where the estimators are very similar. Applying a
complex Gaussian model assumption for the complex speech DFT coefficients clearly
leads to suboptimal results. The amplitude estimators performed better than the com-
plex DFT estimators, even under the DFT distortion measure because the modelling
assumptions in the complex domain are less accurate than those in the polar domain.

Super-Gaussian priors have been proposed in the literature because they fit better
to measured distributions than the Gaussian/Rayleigh priors. These measured distri-
butions are conditional on the estimated spectral variance parameters. However, the
super-Gaussian priors still do not perfectly match the measured distributions. The
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independency assumption in the complex domain is also inconsistent with the data.
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Chapter 7

MAP Estimators for Speech
Enhancement under Normal
and Rayleigh Inverse Gaussian
Distributions
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7.1 Introduction

In the previous chapter, estimators were presented under the generalized Gamma den-
sity. In order to derive estimators for the complex DFT coefficients under this density
we assumed that the real and imaginary parts of DFT coefficients are independent.
However, as shown in Fig. 6.3 this assumption is not completely in line with measured
speech data. Further, as discussed in Section 6.2 there is no consistency between the
models in the complex domain and the polar domain for all parameter settings of the
density.

In this chapter we present a class of clean speech estimators based on scale mix-
tures of normals [1][2] that do not have the above mentioned inconsistencies. Scale
mixtures of normals have received an increased amount of interest in several signal
processing applications, because they can be used to model non-Gaussian heavy-tailed
processes [3][4]. A random variable X is distributed as a scale mixture of normals if
it can be expressed as a product of two random variables, that is

X =
√

ΛXZ, (7.1)

with Z ∼ N(0, 1), i.e. a standard normal density, and ΛX the mixing or scaling
random variable, which is drawn from an arbitrary nonnegative distribution. Notice
that the random variable X|ΛX is Gaussian with variance ΛX and that the variance
is a random variable. This is different from the generalized Gamma densities used in
Chapter 6, where X|σ2

X was assumed to be generalized Gamma distributed and where
the variance σ2

X was assumed to be deterministic. However, the variance of speech
DFT coefficients is unknown in practice and cannot directly be observed, but must
be estimated. Moreover, the variance of speech DFT coefficients is not entirely fixed
in practice, but shows some variations over time. A reasonable alternative is to take
these variations of the variance into account and assume the variance of speech DFT
coefficients be to a random variable. This is in line with [5], where Cohen proposed
to model the speech variance as a (stochastic) GARCH process. Further, notice that
the definition in Eq. (7.1) can be extended to model multivariate processes having
non-zero mean and skewness [3]. An example of a scale mixture of normals that
obtained increased interest recently is the so-called normal inverse Gaussian (NIG)
density that was presented in [6] by Barndorff-Nielsen to model stochastic volatility
of heavy-tailed data for financial data modelling applications. More recently, the NIG
distribution and its multivariate extension, known as the multivariate NIG (MNIG) [3],
have shown to be very suitable to model a large class of heavy-tailed processes [3].

We assume that the complex speech DFT coefficients follow an MNIG distribu-
tion. Under this assumption, the speech DFT amplitudes can be shown to be Rayleigh
inverse Gaussian (RIG) distributed [7]. Under the MNIG and RIG distribution we de-
rive clean speech MAP estimators for the complex DFT coefficients and speech ampli-
tudes, respectively. The MNIG and RIG distribution parameters of the resulting gain
functions can be adapted to the speech signal using the expectation-maximization pro-
cedure presented in [3]. Hence, the shape of the assumed density, and consequently the
suppression characteristics, can be adapted to the observed distribution of the speech
DFT coefficients over time and frequency. Moreover, in contrast to the generalized
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Gamma based estimators presented in Chapter 6, the MNIG density is suitable for
modelling vector processes as well. As such, the 2-dimensional version of the MNIG
based estimator can take the dependency between the real and imaginary part of DFT
coefficients into account.

The remaining sections of this chapter are organized as follows. In Section 7.2 the
MNIG distribution and its most relevant properties are briefly reviewed. In Section 7.3
we present the assumed speech model and derive MAP estimators for complex DFT
coefficients and amplitudes. Further, in Section 7.6 experimental results are presented.
Finally, in Section 7.7 conclusions are drawn.

7.2 The Normal and Rayleigh Inverse Gaussian Distri-
bution

In order to facilitate our discussion on the clean speech estimators that we will derive
in this chapter, we summarize in this section the relevant properties of the MNIG
distribution and derive the RIG distribution. For more detailed information we refer
the reader to [6][3].

A d-dimensional MNIG distributed random variable X is defined as

X = μ + ΛXΓβ +
√

ΛXΓ
1
2 Z, (7.2)

where Z ∼ Nd(0, I), so that X given ΛX has a Gaussian distribution, i.e. X|ΛX ∼
Nd(μ + ΛXΓβ,ΛXΓ), with ΛX ∼ IG(δ2, α2 − βTΓβ). IG denotes the inverse
Gaussian distribution with scalar parameters α > 0 and δ > 0, vector parameters
β ∈ R

d and μ ∈ R
d and a correlation matrix Γ ∈ R

d×d, which is assumed to be
positive definite. The IG distribution is defined for λX > 0 as

fΛX
(λX) =

(
δ2

2πλX
3

)1/2

exp
[√

δ2(α2 − βTΓβ)
]

× exp
[
−1

2

(
δ2λ−1

X + (α2 − βTΓβ)λX

)]
. (7.3)

The name inverse Gaussian was introduced by Tweedie [8] who noted an inverse re-
lationship between cumulant generating functions of IG distributions and those of
Gaussian distributions.

Let K(d+1)/2 denote the modified Bessel function of the second kind of order
(d + 1)/2. Further, let

p(x) = δ

√
α2 − βT Γβ + βT (x − μ) (7.4)

and

q(x) =
√

δ2 + [(x − μ)T Γ−1(x − μ)]. (7.5)
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The MNIG distribution of X can then be computed using [9, Th. 3.471,9] and substi-
tution of Eq. (7.3) into

fX(x) =
∫

fX|ΛX
(x|λX)fΛX

(λX)dλX (7.6)

leading to

fX(x) =
δ

2(d−1)/2

(
α

πq(x)

)(d+1)/2

exp [p(x)]

× K(d+1)/2 [αq(x)] . (7.7)

Notice that when d is even, K(d+1)/2 can be written in a closed form expression
[3]. The density fX(x) is parameterized by α, β, δ and μ. The shape of the density is
determined by α such that the smaller α is, the heavier the tails become. Parameter β
determines the skewness of the density; for β �= 0 the density will be asymmetrical.
Further, δ is the scale parameter and μ a translation parameter. The MNIG distribution
provides a very flexible model for the clean speech DFT coefficients, where the distri-
bution can be adapted to the speech signal by estimation of the parameters, e.g. using
the expectation-maximization algorithm as presented in [3]. Based on the measured
histograms of speech DFT coefficients in Chapter 6 we assume in this work that the
distribution of X is symmetrical with zero mean, which means that μ = 0 and β = 0.
Those choices for μ and β will be used in the remainder of this chapter.

Although the MNIG probability density function (7.6) appears to be rather com-
plicated, its cumulant generating function has a relatively simple form, that is,

ΨX(ω) = δ

[
α −
√

α2 − (jω)T Γ(jω)
]

. (7.8)

From the cumulant generating function it follows that the Gaussian distribution is
a limiting distribution of fX(x) when α → ∞. This also becomes clear from the
MNIG pdf in (7.6) when observing the shape of the IG distribution for increasing
α in Fig. 7.1. In Fig. 7.1 it is shown for δ = 1 that when α becomes larger, the
IG distribution becomes more and more peaked and will become a delta impulse for
α → ∞. Therefore, (7.6) is asymptotically equivalent to a Gaussian distribution.
Furthermore, from the cumulant generating function it follows that the covariance
matrix of the MNIG distribution is given by [6][3] (for μ = 0 and β = 0)

Σ =
δ

α
Γ. (7.9)

In Fig. 7.2 we show some examples of an MNIG probability density function
fX(x) for β = μ = 0, Σ = I, d = 1 and several combinations of δ and α. Com-
paring this with a zero-mean Gaussian distribution, we see that the NIG distribution
approximates the Gaussian distribution as α gets larger. Further, the NIG distributions
become more peaked and heavy-tailed as α becomes smaller.

The RIG distribution can be derived from the 2-dimensional MNIG distribution
by a transformation of (7.6) into polar coordinates [7]. Consider a 2 dimensional
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Figure 7.1: IG distribution for (δ, α)=(1,20) (solid line), (δ, α)=(1,10) (dashed line),
(δ, α)=(1,5) (dash-dotted line) and (δ, α)=(1,2.5) (dotted line).

vector X = X = [X�,X�], with X ∼ MNIG(δ, α,μ,β) = MNIG(δ, α, 0, 0)
and Γ = I, i.e. X� and X� are assumed to be uncorrelated. Then, the distribution
of the amplitude A =

√
X2

� + X2
� of X is a scale mixture of Rayleigh distributions.

Indeed, consider the 2-dimensional case of (7.6), that is

fX(x�, x�) =
δ√
2

(
α

π
√

δ2 + x2
� + x2

�

)3/2

exp [δα]

×K3/2

[
α
√

δ2 + x2
� + x2

�

]
. (7.10)

Transformation of (7.6) into polar coordinates with X� = A cos(Φ) and X� =
A sin(Φ), Jacobian A and integration over Φ then gives

fA(a) =
∫ 2π

0

fA,Φ(a, φ)dφ =
a
√

2α3/2δ√
π(δ2 + a2)3/4

exp [δα]

×K3/2

[
α
√

δ2 + a2
]
, (7.11)

which, in analogy to (7.6), can be written as

fA(a) =
∫

λX

fA|ΛX
(a|λX)fΛX

(λX)dλX , (7.12)

with fA|ΛX
(a|λX) = a

λX
exp
[
− a2

2λX

]
the Rayleigh distribution and fΛX

(λX) as in

(7.3).
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Figure 7.2: The Normal inverse Gaussian distribution for several values of δ and α,
and the Gaussian distribution. The abbreviations NIG and N in the legend indicate
the normal inverse Gaussian and the Gaussian distribution, respectively.

7.3 Speech Models and Distributions

In the remaining part of this chapter we consider DFT-domain speech enhancement
where we assume an additive noise model, i.e. Y (k, i) = X(k, i) + D(k, i), where Y
is a noisy speech DFT coefficient, X a clean speech DFT coefficient, D a noise DFT
coefficient, k the frequency index and i the time frame index. The DFT coefficients
Y , X and D are assumed to be complex zero-mean random variables with X and D
uncorrelated, i.e. E[X(k, i)D(k, i)] = 0 ∀ k, i. We assume that X(k, i) and D(k, i)
are statistically independent across time and frequency, which allows us to increase
readability by leaving out the time/frequency indices. We assume the noise DFT co-
efficients to have a complex Gaussian distribution, as is argued for in Section 2.3. The
real and imaginary part of the noise DFT coefficients are assumed to be independent
and identically distributed with

σ2
D = σ2

D� + σ2
D� , and σ2

D� = σ2
D� . (7.13)

Here � and � denote the real and imaginary part of a DFT coefficient, respectively.

Experimental Data for Complex DFT Coefficients

In this section we study how well the MNIG density with preselected parameters α and
δ fits measured histograms of speech in comparison to the Laplace density, which was
reported to provide a much better fit to the histogram of speech DFT coefficients than
the Gaussian density [10][11]. Histograms of the real part of speech DFT coefficients
are obtained using a procedure similar to [11]. First only DFT coefficients with an
estimated a priori SNR between 28 dB and 31 dB are selected. To do so, signal
frames of 512 samples were taken with 50 % overlap and with a sample frequency
of 16 kHz. For all frequency bins separate histograms were measured, normalized
to unit variance. Finally, the histograms were averaged over frequencies. Both the
Laplace and NIG distributions are fitted to the histogram with normalized variance.
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Figure 7.3: Histogram of speech DFT coefficients and fitted distributions.

The histogram is shown in Fig. 7.3 with the fitted densities. The figure demonstrates
that the Laplace and NIG distribution have similar fit around the tails, but that the NIG
has a better fit in between the top and the tail of the histogram.

The better fit is also reflected by the estimated Kullback-Leibler discrimination
information [12]

IKB =
∑

x

fH(x)log
(

fH(x)
f(x)

)
, (7.14)

between the histogram fH(x) and one of the densities depicted in Fig. 7.3. It turns
out that the Kullback-Leibler discrimination measure is about 4.4 times smaller for an
NIG distribution with α = 0.6 than for the Laplace distribution.

An interesting property of the MNIG distribution is that for a correlation matrix
Γ = I, the density is spherically symmetric. This can be of special interest when
jointly modelling the real and imaginary parts of DFT coefficients. In Chapter 6,
complex DFT estimators were derived under a generalized Gamma density assuming
that the real and imaginary parts of DFT coefficients were independent. However, the
jointly measured histogram of real and imaginary parts of DFT coefficients in Fig. 6.3
showed that real and imaginary parts of speech DFT coefficients are uncorrelated, but
not independent. To investigate the potential use of the 2-dimensional MNIG density
for joint estimation of the real and imaginary parts of speech DFT coefficients we show
in Fig. 7.4a the same measured histogram as in Fig. 6.3a. In Fig. 7.4b we show contour
lines for the joint 2-dimensional MNIG density using correlation matrix Γ = I. We
see that, similar as for the estimated density in Fig. 7.4a, indeed the MNIG density
is spherical invariant. Furthermore, we see that the increase in height of the contour
lines of the 2-dimensional MNIG density matches the measured histogram, as was
also shown for the 1-dimensional case in Fig. 7.3. In Figs 7.5a and 7.5b contour lines
of a complex Gaussian pdf and a complex Laplace pdf, respectively, are shown. Here
it is assumed that real and imaginary part of speech DFT coefficients are independent,
i.e. we show in Fig 7.5 not the joint distribution, but the product of the marginal
densities. We see that the complex Gaussian pdf is spherical invariant, while the
complex Laplace pdf is not. Further, we see that the height of the contour lines of
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Figure 7.4: a) Contour lines of jointly measured histogram of real and imaginary
parts of speech DFT coefficients, normalized to unit variance. b) Contour lines of
2-dimensional MNIG pdf with α = 0.6 and Γ = I, normalized to unit variance.

the Gaussian pdf shows a weaker match with the contours of the histogram in Fig.
7.4a than the MNIG density.

Experimental Data for DFT Amplitudes

Fig. 7.6 shows a histogram of measured amplitudes. The data for this histogram is
obtained in a similar way as for Fig. 7.3. To this histogram we fit in Fig. 7.6 the RIG
distribution for several α values. Moreover, we show the super-Gaussian approxima-
tions defined in [13] as

fA(a) =
μν+1aν

Γ(ν + 1)σν+1
X

exp
[
−μ

a

σX

]
, (7.15)

with σ2
X = E

[
A2
]

and parameters (ν, μ) = (1, 2.5) and (ν, μ) = (0.126, 1.74) that
are based on choices made in [13]. The latter set was chosen in [13] to optimize for
the dataset used in [13]. From Fig. 7.6 we conclude that especially for amplitudes in
the range of 1 ≤ A ≤ 2 the RIG distribution shows a better fit than the two super-
Gaussian approximations.

The Kullback-Leibler discrimination measure (7.14) is about the same for the RIG
distribution with α = 0.6 and the super-Gaussian distribution with parameter settings
(ν, μ) = (0.126, 1.74). Compared to the super-Gaussian distribution with parameter
settings (ν, μ) = (1, 2.5) the RIG distribution with α = 0.6 has a Kullback-Leibler
discrimination measure that is more than 7 times smaller.

7.4 MAP Estimator of Complex DFT Coefficients

The complex DFT MAP estimator that we present is rather general and allows to
model speech vector processes. Let Y ∈ R

d, X ∈ R
d and D ∈ R

d, whose elements
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Figure 7.6: Histogram of speech DFT amplitudes and fitted distributions.

for example can be the real or imaginary part of a DFT coefficient, respectively, at
a frequency bin k (d = 1), both the real and imaginary part of DFT coefficients at
a frequency bin k (d = 2) or even at a series of frequency bins k = k1, . . . , k2

(d = 2(k2 − k1 + 1)). We define the correlation matrix of D as

λD = E
[
DDH

]
= diag

(
σ2

D1
, σ2

D2
, ..., σ2

Dd

)
.

Notice, that when we model the real or imaginary part of a DFT coefficient (i.e.,
d = 1), λD = σ2

D� or λD = σ2
D� , respectively. In the case that we model the real

and imaginary part jointly, i.e. d = 2, then

λD =
(

σ2
D� 0
0 σ2

D�

)
. (7.16)
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The MAP estimate x̂ of x is found, see Section 2.2, by computing

x̂ = arg max
x

fX|Y(x|y)

= arg max
x

fY|X(y|x)fX(x)
fY(y)

. (7.17)

Because fY(y) is independent of x and the natural logarithm is a monotonic increas-
ing function, it is sufficient to maximize

ln fY|X(y|x)fX(x). (7.18)

A Posteriori Distributions for Complex DFT Coefficients

Under the assumption that D ∼ Nd(0,λD), we can write the distribution of Y con-
ditioned on X as

fY|X(y|x) =
1

(2π)d/2|λD| 12
exp
[
−1

2
(y − x)T λ−1

D (y − x)
]

. (7.19)

We assume that X is a d-dimensional scale mixture of normals with an MNIG dis-
tribution with μ = β = 0. This simplifies (7.2) to X =

√
ΛXΓ

1
2 Z with distribution

fX(x) =
∫

fX|ΛX
(x|λX)fΛX

(λX)dλX , (7.20)

where

fX|ΛX
(x|λX) =

1
(2π)d/2|λXΓ| 12

exp
[
− 1

2λX
xT Γ−1x

]
, (7.21)

and with the mixing distribution fΛX
(λX) as in (7.3).

Map Estimator

In order to compute a MAP estimate x̂ of x we first substitute (7.3) and (7.19)-(7.21)
in (7.18). Then the derivative of (7.18) is taken with respect to x using rules for
matrix calculation and using [9, Th. 3.471,9]. This gives the following derivative f ′

(see Appendix B.1 for more details)

f ′ = λ−1
D (y − x)

−
∫

λX
λ−1

X fX|ΛX
(x|λX)fΛX

(λX)dλX∫
λX

fX|ΛX
(x|λX)fΛX

(λX)dλX
Γ−1x (7.22)

= λ−1
D (y − x) −

(
α2

δ2 + xT Γ−1x

) 1
2

×
K 3+d

2

(√
α2(δ2 + xT Γ−1x)

)
K 1+d

2

(√
α2(δ2 + xT Γ−1x)

)Γ−1x. (7.23)
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To find the MAP estimate of x, the derivative f ′ is equated to 0 and solved for x.
Unfortunately, it is, to our knowledge, not possible to do this analytically. However,
we can compute an approximate solution. Specifically, the ratio of integrals in (7.22)
constitutes an MMSE estimate of the inverse first moment of ΛX , that is

E
[
Λ−1

X |x
]

=

∫
λX

λ−1
X fX|ΛX

(x|λX)fΛX
(λX)dλX∫

λX
fX|ΛX

(x|λX)fΛX
(λX)dλX

. (7.24)

Assuming that we are given a pre-estimate of x, denoted by x̃, we can compute (7.24),
that is E

[
Λ−1

X |x̃
]
, subsequently this is substituted in Eq. (7.22) after which we can

solve f ′ = 0, leading to

x̂ = (λ−1
D + E

[
Λ−1

X |x̃
]
Γ−1)−1λ−1

D y (7.25)

with

E
[
Λ−1

X |x̃
]

=
(

α2

δ2 + x̃T Γ−1x̃

) 1
2 K 3+d

2

(√
α2(δ2 + x̃T Γ−1x̃)

)
K 1+d

2

(√
α2(δ2 + x̃T Γ−1x̃)

) . (7.26)

For now we assume x̃ to be known. In section 7.6 we will specify how we obtain x̃ in
practice. Further, notice that the Wiener filter is a special case of (7.25), namely when
there is no uncertainty in ΛX so that fΛX

(λX) becomes a delta function.
For x̂ in (7.25) to constitute the maximum, it is necessary that the second derivative

f ′′ evaluated at x̂ is negative. Using [9, Th. 8.486,11], the second derivative is given
by

f ′′ = −λ−1
D −

K 3+d
2

(z)

K 1+d
2

(z)

×
(

Γ−1α√
δ2 + xT Γ−1x

− αxT Γ−2x

(δ2 + xT Γ−1x)1
1
2

)

− xT Γ−2xα2

δ2 + xT Γ−1x

K2
3+d
2

(z) + K 3+d
2

(z)K−1+d
2

(z) −K2
1+d
2

(z)

2K2
1+d
2

(z)

+
xT Γ−2xα2

δ2 + xT Γ−1X

K 5+d
2

(z)

2K 1+d
2

(z)
, (7.27)

with z = α
√

δ2 + xT Γ−1x. Unfortunately, the last term of f ′′ can become positive,
which means that f ′′ can become positive. In practice this does only happen for very
low SNR, i.e. when no speech energy is present. In order to overcome this problem,
we detect in practice whether f ′′ is positive. When this occasionally is the case we
assume that there is no uncertainty on ΛX and replace (7.3) in (7.6) by a delta function
and make use of (7.9), that is ΛX = δ

α .
Fig. 7.7a shows the input-output characteristics of (7.25) for d = 1 applied on the

real part of the noisy DFT coefficients Y� for 0 ≤ Y� ≤ 5, with E
[
X2

�
]
+E
[
D2

�
]

=
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Figure 7.7: Input versus Output characteristics for a priori SNR values 10 dB, 0 dB
and -10 dB and α = 3 (dashed) and α = 1 (dotted) for a) the NIG based estimator
compared to the Wiener gain (solid) and b) the RIG based estimator compared to the
Rayleigh based amplitude estimator (solid).

2, for the a priori SNR values of 10, 0 and -10 dB and several values of α. This is
compared with the input-output characteristic of the Wiener filter which assumes that
the DFT coefficients are Gaussian distributed. Compared to the Wiener filter the NIG
based estimator shows similar characteristics for an a priori SNR of 10 dB and high α
values, while for lower α values the NIG based estimator leads to less suppression for
the higher input values. For an a priori SNR value of 0 dB the NIG estimator shows
a more pronounced non-linear characteristics. Compared to the Wiener filter there is
more suppression for smaller input values and less suppression for larger input values.
For an a priori SNR of -10 dB the NIG MAP estimator leads to more suppression.
Notice that the behavior of the NIG estimator is in principle similar to the super-
Gaussian distribution based estimators as presented in [11].

7.5 Map Estimator of DFT Amplitudes

For the amplitude MAP estimator we consider 2-dimensional MNIG distributed vec-
tors X = [X�,X�]T such that X = X� + jX� = AejΦ with j =

√
−1. Further,

Y = [Y�, Y�]T such that Y = Y� + jY� = RejΘ and D = [D�,D�]T with
D = D� + jD�.

An amplitude MAP estimator â is found, see Section 2.2, by computing

â = arg max
a

fA|R(a|r)

= arg max
a

fR|A(r|a)fA(a)
fR(r)

. (7.28)

Again, because of the monotonic property of the natural logarithm and the indepen-
dence of fR(r) from a it is sufficient to compute,

â = arg max
a

ln
[
fR|A(r|a)fA(a)

]
. (7.29)
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A Posteriori Distributions for Amplitudes of Complex DFT Coefficients

The distribution of R given A can be derived from transformation of Eq. (7.19) into
polar coordinates as shown in Sec. 2.2, such that

fR|A(r|a) =
2r

σ2
D

exp
[
−r2 + a2

σ2
D

]
I0

(
2ar

σ2
D

)
. (7.30)

For 2ar
σ2

D
≥ 3, it is reasonable to approximate I0(x) by I0 ≈ 1√

2πx
exp[x] [14], such

that

fR|A(r|a) =
2r

σ2
D

exp
[
−r2 − 2ar + a2

σ2
D

]√
σ2

D

4πar
. (7.31)

We assume that the speech amplitudes A are RIG distributed and its distribution is
given by (7.11) and (7.12).

MAP Estimator for Amplitudes

Substitution of (7.11) and (7.31) in (7.29) and taking the derivative with respect to a
using [9, Th. 3.471,9] gives the derivative f ′ (see Appendix B.2 for more details)

f ′ = 2
−a + r

σ2
D

+
1
2a

− a

∫
λ−1

X fA|ΛX
(a|λX)fΛX

(λX)dλX∫
fA|ΛX

(a|λX)fΛX
(λX)dλX

(7.32)

= 2
−a + r

σ2
D

+
1
2a

− a

(
α2

δ2 + a2

) 1
2 K2 1

2

(
α
√

δ2 + a2
)

K1 1
2

(
α
√

δ2 + a2
) . (7.33)

The amplitude MAP estimator is then given by solving f ′ = 0 for a. As for the
complex DFT MAP estimator it is not possible to solve this equation analytically for
a. Therefore, we use the approximate solution where the ratio of integrals in (7.32)
constitute an MMSE estimate of the inverse first moment of ΛX , that is

E
[
Λ−1

X |a
]

=
(

α2

δ2 + a2

) 1
2 K2 1

2

(
α
√

δ2 + a2
)

K1 1
2

(
α
√

δ2 + a2
) . (7.34)

Given a pre-estimate of a, denoted by ã, we can compute (7.34) as E[Λ−1
X |ã]. E[Λ−1

X |ã]
is then substituted in (7.32) and subsequently f ′ = 0 is solved for a using elementary
calculus leading to

â =

2
σ2

D
+
√

4
σ4

D
+ 2
(

2
r2σ2

D
+ E[Λ−1

X |ã]

r2

)
2
(

2
σ2

D
+ E[Λ−1

X |ã]
) r. (7.35)

The second solution that follows from solving f ′ = 0 for a is neglected since that
leads to a < 0. Notice, that the MAP amplitude estimator proposed in [15] is a special
case of (7.35), namely when there is no uncertainty on λX and fΛX

(λX) becomes a
delta function.
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Again, as with the complex DFT estimator, for â in (7.35) to constitute the maxi-
mum, it is necessary that the second derivative f ′′ evaluated at â is negative. Using [9,
Th. 8.486,11], the second derivative of the amplitude estimator is given by

f ′′ = − 2
σ2

D

− 1
2a2

−
K2

1
2 (α

√
δ2 + a2)

K1
1
2 (α

√
δ2 + a2)

×
(

α√
δ2 + a2

− αa2

√
δ2 + a2 (δ2 + a2)

)
− α2a2

δ2 + a2

×
K2

1
2 (z)2 + K2

1
2 (z)K 1

2
(z) −K1

1
2 (z)2 −K1

1
2 (z)K3

1
2 (z)

2K1
1
2 (z)2

(7.36)

with z = α
√

δ2 + a2. As for the complex DFT estimator, f ′′ can become positive
when z is very small and the noise level very high. To overcome this problem, we take
the same measures as mentioned in Section 7.4.

In Fig. 7.7b the input-output characteristics of the RIG amplitude estimator are
shown and compared with the characteristics of the MAP estimator under the Rayleigh
distribution as presented in [15]. The characteristics are normalized to E

[
X2

�
]

+
E
[
D2

�
]

= 2. The exact characteristics of the RIG based estimator depend on the α
parameter. When α gets larger, the characteristics are close to that of the Rayleigh
distribution based estimator, while for smaller α values, the characteristics show less
suppression for the larger input values, which will preserve speech components, and
more suppression for the lower input values which will lead to more noise reduction.

7.6 Experimental Results

In this section we evaluate the performance of the presented clean speech estimators.
For evaluation we use segmental SNR defined as [16]

SNRseg =
1
N

N−1∑
i=0

T
{

10 log10

‖xt(i)‖2

‖xt(i) − x̂t(i)‖2

}
, (7.37)

where xt(i) and x̂t(i) are time-domain vectors and denote frame i of the clean speech
signal xt and the enhanced speech signal x̂t, respectively. N is the number of frames
within the speech signal in question and T (z) = min{max(z,−10), 35} a function
which limits the SNR to a perceptually meaningful range.

In addition to SNRseg we use intelligibility weighted segmental SNR [17], defined
as

IWSNRseg =
1
N

N−1∑
i=0

B∑
b=1

w(b)T
{

10 log10

‖xt(i, b)‖2

‖xt(i, b) − x̂t(i, b)‖2

}
, (7.38)

where the weight w(b), emphasizes the importance of the bth frequency band and
where xt(i, b) is a time-domain vector in band b.
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Let G(i) denote the speech enhancement filter that is used to enhance the ith noisy
signal frame. To get an indication whether a difference in SNRseg is due to more noise
reduction or less speech distortion we process the clean signal and the noise signal
with the same filters G and measure noise attenuation NATTseg, defined as

NATTseg =
1
N

N−1∑
i=0

10 log10

‖dt(i)‖2

‖G(i)dt(i)‖2
, (7.39)

where d(i) is a vector and denotes frame i of the noise sequence. Speech attenuation
is defined as

SATTseg =
1
N

N−1∑
i=0

10 log10

‖xt(i)‖2

‖xt(i) − G(i)xt(i)‖2
. (7.40)

For both NATTseg and SATTseg only those frame are taken into account where the
SNR of the noisy frame i is larger than -10 dB.

Experiments are done with speech signals degraded by white noise, F16 noise, car
noise and factory noise, at the input SNRs of 5, 10 and 15 dB. The speech and noise
signals originate from the Timit-database [18] and Noisex-92-database [19], respec-
tively. All results are averaged over 32 different speech signals that sampled at 16 kHz.
We use a frame size of 512 samples with an overlap of 50% between adjacent frames.
Noise statistics are measured using the minimum statistics approach [20]. For percep-
tual reasons we set the lower bound of the enhancement gain at 0.0316. Increasing this
bound will lead to a smaller dynamic range of the estimated gain functions. Decreas-
ing this bound will in general lead to somewhat more suppression. To compute (7.26)
and (7.34) we make use of a preliminary estimate of the clean signal by applying a
Wiener filter to the noisy speech signal. The parameters α and δ in (7.26) and (7.34)
are computed per frame and per frequency bin using the expectation-maximization
procedure presented in [3].

7.6.1 Evaluation of 1d-MNIG and RIG Based MAP Estimators

In this section we evaluate the performance of MAP estimators under the MNIG den-
sity with d = 1, i.e. under the NIG density, and the RIG density and compare that
with several other existing estimators.

To evaluate the performance of the MNIG MAP estimator we use (7.25) with
d = 1 and assume that the real and imaginary part of speech DFT coefficients are
independent. We form the estimate X̂(k, i) of the clean speech DFT coefficients by
estimation of the real and imaginary parts X̂� and X̂� of the clean speech DFT co-
efficients, respectively, and combine them by X̂(k, i) = X̂�(k, i) + jX̂�(k, i). The
NIG based MAP estimator is compared with the Laplace based MMSE estimator [11]
and the Wiener filter (notice that these are special cases of the generalized Gamma
based MMSE estimator presented in Chapter 6). The results in Table 7.1 show that
the improvement of the NIG MAP estimator over the Laplace based MMSE estimator
in terms of SNRseg varies, dependent on noise source and noise level, from 0.2 to 0.6
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dB. Compared to the Wiener filter the improvement in terms of SNRseg varies from
0.6 to 1.4 dB.

The performance of the RIG based amplitude MAP estimator in (7.35) is compared
with the Rayleigh distribution based MAP amplitude estimator proposed in [15], the
super-Gaussian MAP amplitude estimator and the joint MAP amplitude and phase es-
timator as proposed in [13] with the distribution as in (7.15) with (ν, μ) = (1, 2.5) and
(ν, μ) = (0.126, 1.74), abbreviated with supergauss1 and supergauss2, respectively
and with the MMSE estimator under the generalized Gamma density as proposed in
Chapter 6 with γ = 1 and ν = 0.6 denoted by Â

(1)
C,5. Table 7.1 shows that the RIG

based MAP estimator has an improvement in terms of SNRseg of 0.2 to 0.5 dB over
the supergauss1 estimator and an improvement in terms of SNRseg of 0.2 to 0.4 dB

over the supergauss2 estimator. In comparison to the MMSE estimator Â
(1)
C,5 the im-

provement is 0.1 to 0.7 dB. The performance difference between the MMSE estimator
Â

(1)
C,5 and the RIG based estimator is more sensitive for the type of noise source than

for the supergauss1 and supergauss2 estimators. Compared to the estimator under the
Rayleigh distribution, the improvement in terms of SNRseg is in the order of 0.8 to
1.5 dB.

In addition to segmental SNR we show in Table 7.2 the performance improvement
in terms of intelligibility weighted segmental SNR. The MNIG MAP estimator with
d = 1 has an improvement in terms of IWSNRseg of 0.3 to 0.5 dB compared to the
Laplace based estimator and 0.6 to 1.2 dB compared to the Wiener filter. The RIG
based amplitude MAP estimator has an improvement in terms of IWSNRseg of 0.1
to 0.7 dB and 0.1 to 0.5 dB compared to supergauss1 and supergauss2, respectively,
and an improvement of 1.0 to 1.3 dB compared to the estimator under the Rayleigh
distribution. In comparison to the MMSE estimator Â

(1)
C,5, the improvement is 0.2 to

0.8 dB.
In Table 7.3 and 7.4 we show the SATTseg and NATTseg scores, respectively.

It reveals that the proposed MNIG and RIG MAP estimators in general have a bet-
ter speech quality in terms of SATTseg, but a somewhat smaller noise reduction
than the estimators based on pre-selected super-Gaussian densities, i.e. the Laplace,
supergauss1 and supergauss2 based estimators. In terms of SATTseg both the RIG

based MAP estimator and the MMSE estimator Â
(1)
C,5 have more or less the same

speech quality. However, the RIG based MAP estimator leads to a better performance
in terms of NATTseg.

7.6.2 Evaluation of 2d-MNIG estimator

The experiments with the complex DFT estimator in Section 7.6.1 (MNIG with d = 1)
were performed using the assumption that the real and imaginary part of DFT coeffi-
cients are independent. However, from the discussion in Section 6.2 it followed that it
is reasonable to assume the real and imaginary parts of DFT coefficients to be uncor-
related, but not independent. The MNIG based MAP estimator offers a possibility to
estimate the real and imaginary part jointly, i.e. take the dependency between real and
imaginary parts into account.
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input SNRseg (dB) DFT est. SNRseg (dB) Amplitude est.

noise SNR NIG Wiener Laplace RIG Ray- Super- Super- Â
(1)
C,5

source (dB) leigh gauss1 gauss2

5 6.2 5.2 5.7 6.1 4.9 5.7 5.9 5.6
white 10 5.3 4.1 4.8 5.2 3.8 4.7 4.9 4.8

15 4.3 2.9 3.7 4.2 2.7 3.7 3.9 3.9
5 5.3 4.3 4.8 5.2 4.0 4.8 5.0 4.8

F16 10 4.5 3.4 4.0 4.4 3.1 4.0 4.1 4.1
15 3.7 2.4 3.2 3.6 2.2 3.2 3.3 3.4
5 6.9 6.1 6.5 6.9 5.6 6.6 6.6 6.0

Car 10 5.5 4.5 5.0 5.4 4.2 5.1 5.1 4.7
15 3.7 2.6 3.2 3.7 2.5 3.2 3.3 3.1
5 3.8 3.2 3.6 3.7 2.9 3.5 3.6 3.5

Factory 10 3.3 2.4 3.0 3.2 2.2 2.9 3.0 3.1
15 2.8 1.7 2.4 2.8 1.5 2.3 2.5 2.5

Table 7.1: Improvement in SNRseg (dB).

input IWSNRseg (dB) DFT est. IWSNRseg (dB) Amplitude est.

noise SNR NIG Wiener Laplace RIG Ray- Super- Super- Â
(1)
C,5

source (dB) leigh gauss1 gauss2

5 4.8 4.1 4.4 4.7 3.4 4.5 4.6 3.9
white 10 4.2 3.5 3.9 4.2 2.9 3.9 4.0 3.5

15 3.5 2.6 3.1 3.4 2.1 3.1 3.2 2.9
5 4.6 3.9 4.2 4.5 3.2 4.3 4.4 3.7

F16 10 4.0 3.1 3.6 3.9 2.6 3.7 3.8 3.3
15 3.3 2.3 2.9 3.2 1.9 2.9 3.0 2.8
5 -0.59 -1.8 -1.1 -0.53 -1.7 -1.1 -0.90 -0.85

Car 10 -1.8 -3.0 -2.3 -1.7 -2.8 -2.3 -2.1 -2.0
15 -3.1 -4.3 -3.6 -2.9 -3.9 -3.6 -3.4 -3.3
5 3.6 3.0 3.3 3.5 2.4 3.4 3.3 2.9

Factory 10 3.2 2.4 2.8 3.1 1.9 2.8 2.9 2.6
15 2.6 1.6 2.2 2.6 1.3 2.2 2.3 2.1

Table 7.2: Improvement in IWSNRseg (dB).

To investigate the influence on the enhancement performance of taking depen-
dencies into account we can consider the real and imaginary parts of speech DFT
coefficients as a vector process, that is X = [X�,X�]T and use the MNIG based
MAP estimator with d = 2 and Γ = I, i.e. X� and X� are assumed uncorrelated, but
not independent. Experiments were performed with speech signals degraded by white
noise at SNRs of 5, 10 and 15 dB. It turned out that there was no significant perfor-
mance difference in terms of segmental SNR between an MNIG based estimator that
assumes independent real and imaginary parts (d = 1) and an MNIG based estimator
that assumes dependent real and imaginary parts (d = 2).

The reason for no significant difference between these two estimators may be that
the impact of the independence assumption is relatively small compared to other im-
perfections in the speech enhancement system, e.g. estimation of the noise variance,
estimation of the distribution parameters α and δ and the fact that the MNIG density
is not identical to the true, but unknown, density of speech DFT coefficients. More-
over, it could be that the difference between the two estimators is so small that it is



126
7. MAP Estimators for Speech Enhancement under Normal and Rayleigh

Inverse Gaussian Distributions

input SATTseg (dB) DFT est. SATTseg (dB) Amplitude est.

noise SNR NIG Wiener Laplace RIG Ray- Super- Super- Â
(1)
C,5

source (dB) leigh gauss1 gauss2

5 10.1 8.2 9.3 10.3 9.0 9.1 9.7 10.6
white 10 12.8 10.6 11.8 13.1 11.5 11.7 12.4 13.2

15 15.8 13.2 14.6 16.1 14.1 14.5 15.2 16.1
5 10.2 8.0 9.2 10.4 9.0 9.1 9.8 10.7

F16 10 13.5 10.8 12.2 13.7 11.9 12.1 12.9 13.8
15 17.0 13.8 15.4 17.3 15.0 15.3 16.2 17.0
5 23.8 20.7 21.9 24.2 22.2 22.0 22.8 23.3

Car 10 26.6 23.1 24.4 27.1 24.6 24.5 25.3 25.7
15 28.7 25.2 26.5 29.4 26.5 26.6 27.4 27.7
5 10.5 8.2 9.5 10.8 9.4 9.3 10.1 11.0

Factory 10 13.9 11.0 12.5 14.2 12.2 12.4 13.3 14.1
15 17.6 14.1 15.7 18.0 15.3 15.7 16.6 17.2

Table 7.3: SATTseg (dB)

input NATTseg (dB) DFT est. NATTseg (dB) Amplitude est.

noise SNR NIG Wiener Laplace RIG Ray- Super- Super- Â
(1)
C,5

source (dB) leigh gauss1 gauss2

5 14.7 16.1 16.3 13.5 12.9 15.1 14.3 12.5
white 10 11.9 13.3 13.5 10.8 10.4 12.2 11.6 10.4

15 9.7 10.8 11.3 8.6 8.2 9.8 9.4 8.6
5 12.2 13.8 14.0 11.2 10.7 12.8 12.0 10.5

F16 10 9.8 11.2 11.6 8.7 8.5 10.2 9.7 8.7
15 8.0 9.1 9.7 6.9 6.8 8.3 7.9 7.3
5 12.4 13.6 13.7 11.5 10.8 12.9 12.3 10.7

Car 10 11.0 12.1 12.4 10.0 9.5 11.4 10.9 9.6
15 9.9 10.8 11.3 8.6 8.2 10.2 9.8 8.5
5 9.6 11.5 11.2 8.7 8.7 10.3 9.5 8.5

Factory 10 8.0 9.6 9.7 7.1 7.1 8.5 8.0 7.3
15 6.8 8.0 8.4 5.8 5.8 7.1 6.7 6.3

Table 7.4: NATTseg (dB)

not measurable due to the use of a lower limit on the enhancement gain function of
0.0316 and the fact that the definition of segmental SNR uses a lower limit of -10 dB.
Therefore, experiments were also performed without the use of a lower limit on the
gain function and without a lower limit on the segmental SNR. These experiments,
shown in Table 7.5, show a small improvement in terms of segmental SNR in the or-
der of 0.1 dB when using the MNIG based MAP estimator with d = 2. Despite the
fact that the performance improvement when incorporating dependency between real
and imaginary parts of DFT coefficients is relatively small, the MNIG based estimator
with d = 2 has the advantage over the MNIG density with d = 1 that closed form
solutions of the Bessel functions in Eq. (7.26) do exist, leading to lower computational
complexity.
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input SNR (dB) MNIG d = 2 MNIG d = 1
5 12.2 12.0

10 9.7 9.6
15 7.5 7.4

Table 7.5: Comparison between MNIG with d = 2 and MNIG with d = 1 in terms of
improvement in SNRseg (dB).

7.6.3 Subjective Evaluation

Informal listening confirmed the aforementioned objective results. With respect to
the complex DFT estimators, the proposed 1d-MNIG based estimator leads to much
less suppressed speech than the Wiener filter. Also, compared to the Laplace based
estimator the speech quality was judged slightly better. In terms of residual noise, the
Laplace based estimator leads to slightly less residual noise, but slightly more musical
tones than the 1d-MNIG based estimator. When comparing the Wiener filter and the
1d-MNIG based estimator in terms of residual noise, it gives the perceptual impression
that the Wiener filter leads to more residual noise, but with a less musical character.
However, when listening to the noise filtered signal G(i)nt(i), i.e. the noise only
signal filtered with the speech enhancement gain functions, then it turns out that the
1d-MNIG based estimator leads to more residual noise than the Wiener filter, but also
more concentrated at places where speech is present. That might lead to more masking
of the residual noise by speech energy. No perceptual difference was found between
the 1d-MNIG and the 2d-MNIG based estimator.

With respect to the amplitude estimators, the proposed RIG based amplitude esti-
mator leads to much better speech quality than the amplitude estimator derived under
the Rayleigh density. The speech sounds less suppressed, but also less reverberant.
Moreover, the RIG based amplitude estimator leads to a reduced amount of resid-
ual noise. The speech quality of the RIG based estimator is slightly better than that
of the Supergauss1 estimator. The difference in terms of speech quality between the
Supergauss2 and the RIG based estimator is rather small. The RIG based estima-
tor leads to slightly more residual noise, but with a less musical character than the
Supergauss2 estimator. In comparison to the MMSE estimator Â

(1)
C,5 the RIG based

estimator has more or less the same speech quality, but much less residual noise.

7.7 Conclusions

In this chapter we presented a new class of complex DFT and amplitude estimators
for DFT-domain based speech enhancement. The estimators are derived under a mul-
tivariate normal inverse Gaussian (MNIG) distribution for the DFT coefficients. The
MNIG distribution is very flexible and can model a wide range of densities, from
heavy-tailed to less heavy-tailed. Under the MNIG distribution we derived complex
DFT and amplitude estimators. Measurements of speech histograms based on speech
DFT coefficients and DFT amplitudes showed a slightly better fit for the MNIG and
RIG distribution, respectively, than for the pre-selected super-Gaussian distributions.
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Experimental results demonstrated improvement in comparison to complex DFT and
amplitude estimators that are based on Gaussian and pre-selected super-Gaussian dis-
tributions. Further, the derived complex MNIG based estimator allows for vector pro-
cessing, where dependency and correlation between vector elements can be taken
into account. In experiments the 2-dimensional MNIG based estimator was used
to jointly estimate the real and imaginary parts of DFT coefficients. Experiments
showed very small improvements when using the 2-dimensional MNIG instead of the
1-dimensional MNIG, the latter assuming independent real and imaginary parts of
DFT coefficients.
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8.1 Introduction

In the Chapters 6 and 7, MMSE and MAP estimators under super-gaussian densities
have been discussed. Common for these estimators is that they are dependent on
knowledge of the noise power spectral density (PSD). This does not only hold for the
estimators derived in Chapters 6 and 7, but holds in general for most, if not all, speech
enhancement estimators, e.g. [1][2][3][4]. Since in general the noise PSD is unknown,
it has to be estimated from the noisy speech signal. An overestimation of the noise
PSD will lead to oversuppression and, as a consequence, to a potential loss of speech
quality, while an underestimation will lead to an unnecessary high level of residual
noise. An accurate tracking of the noise PSD is therefore essential to obtain proper
quality of the enhanced speech signal. Furthermore, fast tracking is important for non-
stationary noise. However, both fast and accurate noise tracking is very challenging,
especially under these non-stationary noise conditions.

A conventional method for estimating the spectral noise variance is to exploit
speech pauses. Here, a voice activity detector [5][6] (VAD) is used and only in case
of speech absence the noise PSD is estimated and updated. Although this is effec-
tive when the noise is stationary, it often fails when the noise statistics change during
speech presence. Moreover, accurate voice activity detection under very low signal-
to-noise-ratio (SNR) conditions is not trivial.

Minimum statistics (MS) based noise trackers [7][8] offer a more advanced alter-
native to VAD based methods. These methods exploit the property that the minimum
power level in a particular frequency bin seen across a sufficiently long time interval
is due to the noise process. From this minimum the average noise power can be esti-
mated by applying a bias compensation. The size of the time interval should be such
that there is at least one noise-only observation within the window. The minimum size
of the time window is therefore dependent on the duration of speech presence in a
frequency bin. If the time window is chosen too short and speech energy is constantly
present in the search window, MS will track the PSD of the noisy speech instead of
the noise PSD. This will lead to an overestimate of the noise level. If, on the other
hand, the time window is chosen too long, changes in the noise power level are not
tracked or can only be tracked with a large delay.

In this chapter we present a novel approach for noise tracking, which updates the
noise PSD for each DFT coefficient even when both speech and noise are present.
This method is based on the eigenvalue decomposition of correlation matrices that
are constructed from time series of noisy DFT coefficients. We exploit the fact that
these correlation matrices can be decomposed using an eigenvalue decomposition into
two sub-matrices of which the columns span two mutually orthogonal vector spaces,
namely a signal (+ noise) subspace and a noise-only subspace. We use the property
that speech signals can often be expressed as a linear combination of a small number
of complex exponentials [9]. Therefore, speech signals seen in a particular frequency
bin can be described by a low-rank model. In that case, the eigenvalues that describe
the energy in the noise-only subspace allow for an update of the noise statistics, even
when speech is constantly present. Noise types that are described by a low-rank model
itself, i.e. deterministic types of noise, will be represented in the signal subspace as
well and need different measures to be estimated. How to track these deterministic
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types of noise will be discussed as well.

The remainder of this chapter is organized as follows. In Section 8.2 we illustrate
the potential of the proposed method of noise tracking. In Section 8.3 we explain the
signal model and the concept of DFT-domain subspace decompositions that we use
to derive the noise tracking method. In Section 8.4, the procedure for noise variance
estimation is presented. Furthermore, in Section 8.5 we focus on some implemen-
tational aspects of the proposed noise tracking algorithm. In Section 8.6 we present
experimental results and discuss tracking of deterministic types of noise. Finally, in
Section 8.7 concluding remarks are given.

8.2 Illustration of DFT-Domain Subspace Based Noise
Tracking

To illustrate the potential of the proposed method of noise tracking, we compare our
new method to the MS method, which is known as the state-of-the-art for noise track-
ing in single-microphone speech enhancement applications. To do so, we create a
synthetic signal in which the speech signal is modelled by a sinusoid of approximately
190 Hz. With this simplistic, but relevant model of a speech signal we can simulate the
situation where speech energy is constantly present and demonstrate that our proposed
method has great potential for tracking of the noise PSD in the presence of speech. In
the first 2 seconds, (125 time frames) the signal consists of white noise only. Then,
after 2 seconds a sinusoidal component is turned on and remains constantly present
with a global SNR of 5 dB. This sinusoid simulates the continuous presence of speech
energy. Finally, 0.5 seconds later, at frame number i = 157, the noise PSD decreases
by 6 dB while the sinusoid remains present. We use both the MS approach and the
proposed method to estimate the noise PSD. In Fig. 8.1 we compare their estimated
noise PSDs together with the true noise PSD obtained by recursively smoothed pe-
riodogram estimates. The dotted line denotes the true noise PSD, the dashed-dotted
line the noise PSD estimated using minimum statistics and the dashed line the noise
PSD estimated with the proposed approach, all in the same frequency bin. We see
that in the first approximately 156 frames both methods lead to a fairly good estimate
of the true noise PSD. After 156 frames, however the proposed method follows the
decrease in the noise PSD even though the sinusoid is present, while the MS method,
on the other hand, is not able to follow this change. Moreover, approximately 100
frames after the sinusoid is turned on, the MS approach takes the energy of the noisy
sinusoid as the new minimum and wrongly updates the estimated noise PSD. To avoid
this problem, the search window could be enlarged. However, enlarging the search
window will result in a larger delay and is harmful for tracking changes in the noise
power.
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Figure 8.1: Synthetic example of noise tracking.

8.3 Signal Model and DFT-Domain Subspace Decom-
positions

In this chapter we consider the discrete Fourier transform of speech signals as being
the outcome of a random process. That is, Y (k, i), X(k, i) an D(k, i) are complex
random variables denoting the noisy speech, clean speech and noise DFT coefficients
of frame i and frequency bin k, with k ∈ {1, ...,K}, and K the total number of
frequency bins. We assume the noise to be additive, i.e. Y (k, i) = X(k, i) + D(k, i),
zero mean and uncorrelated with the clean speech signal, i.e., E[X(k, i)D(k, i)] = 0,
∀ (k, i).

We collect DFT coefficients per frequency bin k that originate from the time
frames i−p1 up to frame i+p2 and form a vector Y(k, i) ∈ C

M with M = p1+p2+1.
That is,

Y(k, i) = [Y (k, i − p1), ..., Y (k, i + p2)]
T

. (8.1)

Let CY (k, i) ∈ C
M×M be the noisy speech correlation matrix related to frequency

bin k and time frame i defined as

CY (k, i) = E
[
Y(k, i)YH(k, i)

]
, (8.2)

where H indicates Hermitian transposition. The construction of CY (k, i) is illustrated
in Fig. 8.2. Similarly we can define the speech correlation matrix CX(k, i) ∈ C

M×M ,
that is

CX(k, i) = E
[
X(k, i)XH(k, i)

]
,
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and the noise correlation matrix CD(k, i) ∈ C
M×M , that is

CD(k, i) = E
[
D(k, i)DH(k, i)

]
.

Using the assumption that speech and noise are uncorrelated we can write the noisy
speech correlation matrix CY (k, i) as

CY (k, i) = CX(k, i) + CD(k, i).

Let us assume that CD(k, i) = σ2
D(k, i)IM , that is, the noise DFT coefficients in

D(k, i) are uncorrelated. This assumption is valid when frames do not overlap and
the correlation time of the noise is small enough [10]. In case of overlapping frames
this assumption will be violated. This violation can be overcome by applying a pre-
whitening transform, as we describe in Section 8.5.

As mentioned before, we make use of the property that speech signals can often
be modelled by a sum of complex exponentials. In particular this is true for voiced
speech sounds [9]. Under this signal model and under assumption that the frame size is
long enough, ideally each frequency bin will observe at most one complex exponential
across time. The clean speech correlation matrix CX(k, i) can therefore be assumed
to be of low-rank. When the noise-only subspace is of full-rank and the speech signal
can be described using such a low-rank signal subspace, the eigenvalues that describe
the energy in the noise-only subspace allow for an update of the noise PSD, even when
speech is constantly present. A validation of the low-rank assumption of CX(k, i) is
given in Section 8.4.3.

Let CX(k, i) = UΛXUH denote the eigenvalue decomposition of the clean
speech correlation matrix related to frequency bin k and time frame i. Here, U ∈
C

M×M is a unitary matrix and contains the eigenvectors as columns and

ΛX = diag
(
λX1 , ..., λXQ

, 0, ..., 0
)

is a diagonal matrix with the non-negative eigenvalues

λX1 ≥ λX2 ≥ ... ≥ λXQ
≥ 0

on the main diagonal and where Q ≤ M is the dimension of the signal subspace. Us-
ing the assumption that CD(k, i) is a scaled diagonal matrix and X(k, i) and D(k, i)
are uncorrelated we can write the eigenvalue decomposition of CY (k, i) as

CY (k, i) = U
(
ΛX(k, i) + σ2

D(k, i)IM

)
UH , (8.3)

i.e. CY (k, i), CX(k, i) and CD(k, i) have the same eigenvectors and the eigenvalues
of CY (k, i) are simply obtained by adding the eigenvalues of CX(k, i) and CD(k, i).

The eigenvector matrix U can be partitioned as U = [U1;U2], where the columns
of U1 ∈ C

M×Q form a basis for the signal subspace and the columns of U2 ∈
C

M×M−Q form a basis for the noise-only subspace. Assuming that there indeed
exists a low-dimensional signal subspace, i.e. Q < M , the eigenvalues in the noise-
only subspace can be used to determine the noise PSD σ2

D(k, i), as the noise-only
subspace eigenvalue matrix equals I(M−Q)σ

2
D(k, i).
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Figure 8.2: Schematic overview of how correlation matrices in the DFT domain are
computed.

8.4 Estimation of σ2
D(k, i)

In the previous section we considered the eigenvalue decomposition of CY (k, i) in or-
der to estimate the noise PSD from the eigenvalues in the noise-only subspace. How-
ever, in practice the correlation matrix CY (k, i) in Eq. (8.2) is unknown and estimated
based on realizations. Therefore, we consider in this section estimation of σ2

D(k, i)
based on an estimate of the correlation matrix CY (k, i).

The correlation matrix CY (k, i) can be estimated from a limited number of sam-
ples by

ĈY (k, i) =
1
L
Y(k, i)YH(k, i), (8.4)

where Y ∈ C
M×L is a Hankel-structured data-matrix defined as

Y(k, i) =

⎛
⎜⎝ y(k, i − n1) · · · y(k, i − n1 + L − 1)

...
...

y(k, i − n1 + M − 1) · · · y(k, i + n2)

⎞
⎟⎠ , (8.5)

where the small letters y indicate realizations of the random variable Y .
Let λ̂Yl

, indicate an eigenvalue of the estimated correlation matrix ĈY (k, i). Given
the eigenvalue decomposition of ĈY (k, i) and the dimension of the signal subspace
Q, it is shown in Appendix C.3, that under the assumption that the vector Y(k, i) has
a multivariate Gaussian density, a maximum likelihood estimate of the noise PSD is
given by

σ̂2
D(k, i) =

1
M − Q

M∑
l=Q+1

λ̂Yl
. (8.6)

That is, the noise PSD is estimated by taking the average of the eigenvalues in the
noise-only subspace.
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In order to compute Eq. (8.6) it is necessary to estimate the signal subspace di-
mension Q. Estimation of Q for noisy signals is a well-known problem for large
data-records, and can be performed using e.g. Akaike information criterium (AIC)
[11][12], minimum description length (MDL) criterium [12][13] or the Bayesian in-
formation criterium (BIC) [14]. However, when CY (k, i) is estimated based on a few
data samples only, which is the case in our situation1, existing model order estimators
lead to inaccurate estimates of Q. Moreover, due to the inaccurate model order esti-
mation and not always clear distinction between the noise-only and signal subspace,
the noise power spectral estimate may be biased depending on whether the dimension
of the signal subspace is over or underestimated. To increase the accuracy of the es-
timated model order, we present an alternative approach for model order estimation
in Section 8.4.1, where we assume that some a priori knowledge of the noise level in
each frequency bin is available. In order to correct for a possible bias we introduce a
bias compensation factor for the estimation of σ̂2

D(k, i) in Section 8.4.2.

8.4.1 Model Order Estimation

We consider an alternative approach for estimation of the signal subspace dimension,
where we exploit the fact that some a priori information of the noise PSD is present.
In this work we use the noise PSD estimate of the previous frame. This implicitly
assumes relatively slowly varying noise. However, this does not limit the practical
performance as will be shown in simulation experiments in Section 8.6. There it
is shown that a change in the noise level of 15 dB per second can successfully be
tracked. Furthermore, we assume that the eigenvalues in the noise-only subspace have
an exponential distribution. Although we can not give any strict theoretical reasons
that the distribution is truly exponential, the choice for an exponential distribution for
the noise eigenvalues shows a reasonable fit in validation experiments [15].

A noisy eigenvalue λ̂Yl
is decided to belong to the signal subspace when the prob-

ability of observing an eigenvalue equal or larger than λ̂Yl
is smaller than a pre-chosen

minimum probability Pmin. We can write this as

∫ +∞

λ̂Yl

fΛD
(λD)dλD < Pmin, (8.7)

where fΛD
(λD) denotes the assumed pdf of the noise eigenvalues with its mean equal

to the a priori known noise PSD, which we will take to be the noise PSD estimate of
the previous frame. The decision procedure is visualized in Fig. 8.3. The dotted curve
in Fig. 8.3 denotes the exponential pdf fΛD

of the noise eigenvalues belonging to the
noise-only subspace. This approach can be seen within a hypothesis based framework

1In our experiments CY (k, i) ∈ CM×M has dimension M = 7 and is estimated from 13 data-
samples, i.e. 13 DFT coefficients at a fixed frequency bin k and from consecutive (overlapping) frames.
Using much more data-samples might lead to a higher model order Q because the speech signal might
becomes less stationary and as a consequence more complex exponentials are needed to model the speech
signal.
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Figure 8.3: Example showing how the noise-only subspace dimension is determined.

where H0 and H1 are defined as

H0 : λ̂Yl
belongs to the noise-only subspace

H1 : λ̂Yl
belongs to the signal subspace.

(8.8)

Given a threshold λth, H1 is decided when λ̂Yl
> λth. When λ̂Yl

≤ λth, λ̂Yl
is

decided to belong to the noise-only subspace. The hypothesis is evaluated for all
eigenvalues in increasing order until H0 is rejected, which determines then the dimen-
sion of the noise and the signal subspace. The threshold λth can be expressed in terms
of the false alarm probability Pfa = Pmin and is given by λth = −σ2

DlnPfa [16].
For evaluation, the proposed model order is compared to an MDL based model

order estimator. Comparing to the existing MDL based model order estimator [12] is
not completely fair and will be in advantage of the proposed method, because it uses
a priori knowledge on the noise variance while the traditional MDL estimator in [12]
does not. Therefore, to have a fair comparison we derive in Appendix C.2 a modified
MDL model order estimator where a priori knowledge on the noise variance is also
taken into account.

For the comparison a synthetic signal was constructed, consisting of a sinusoid at
frequency bin number 11 in additive white noise. The sinusoid will not only have a
contribution to bin k = 11, but to neighboring bins as well, because the period of
the sinusoid is not an integer multiple of the minimum period visible with the used
DFT size. The overall SNR between the sinusoid and white noise was 0 dB. For each
frequency bin we estimate a correlation matrix CY (k, i) ∈ C

7×7 and use either the
proposed approach or the modified MDL method to estimate the dimension of the
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Figure 8.4: a) MDL model order estimator with a priori knowledge on noise variance
b) proposed model order estimator.

noise-only subspace. At those frequency bins where the sinusoid is present, a noise-
only subspace dimension of 6 is expected, while at all other bins a noise-only subspace
dimension of 7 is expected.

In Fig. 8.4 the outcome of the comparison between modified MDL derived in Ap-
pendix C.2 and the proposed method are shown with CY (k, i) ∈ C

M×M estimated
based on a data-matrix Y ∈ C

7×7. For each successive frequency bin the model order
is estimated. This is repeated for many frames. The average noise-only subspace di-
mension and the variance of noise-only subspace dimension are shown in Fig. 8.4. We
see that the modified MDL approach leads to a larger variance in the estimated model
order than the proposed approach. We use in the following the proposed approach to
estimate the model order of the noise-only subspace because of its smaller variance.

8.4.2 Bias Compensation of σ̂2
D(k, i)

When the dimension Q of the signal subspace is overestimated or underestimated,
evaluating Eq. (8.6) can result in the introduction of a bias in the noise PSD estimate.
To correct for such a bias in the estimated noise PSD as a result of consistent over
or underestimates of Q, we introduce a signal subspace dimension dependent bias
compensation factor B(Q) and compute σ̂2

D(k, i) as

σ̂2
D(k, i) =

1
B(Q)

1
(M − Q)

M∑
l=Q+1

λ̂Yl
(k, i). (8.9)

The argumentation that we use to define the bias compensation factor is similar to the
one introduced in [17].

The use of this bias compensation factor B(Q) is based on the fact that

E

⎡
⎣ 1

(M − Q)

M∑
l=Q+1

λ̂Yl
(k, i)

⎤
⎦
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is proportional to σ2
D. We therefore write

σ̂2
D(k, i) =

σ2
D(k, i)

E
[

1
(M−Q)

∑M
l=Q+1 λ̂Yl

(k, i)
] 1

(M − Q)

M∑
l=Q+1

λ̂Yl
(k, i),

with

B(Q) =
E
[

1
(M−Q)

∑M
l=Q+1 λ̂Yl

(k, i)
]

σ2
D(k, i)

. (8.10)

In order to compute the bias compensation factor B(Q), for Q = 0, 1, ...,M , we
approximate Eq. (8.10) by making use of a training procedure based on speech data
degraded by white noise with a known variance σ2

D(k, i) = 1 ∀ (k, i). Let B̃(k, i) be
defined as

B̃(k, i) =
1

M−Q

∑M
l=Q+1 λ̂Yl

(k, i)

σ2
D

. (8.11)

and let Q(Q) be the set of time-frequency points in the training data for which the
signal subspace dimension is estimated to be Q. B(Q), Q = 0, 1, ...,M , is then
computed by averaging B̃(k, i) over the set Q(Q) leading to

B(Q) =
1

|Q(Q)|
∑

(k,i)∈Q(Q)

[
B̃(k, i)

]
,

where |Q(Q)| is the cardinality of the set Q(Q). Notice that computing the bias
compensation factor in the training phase using the same signal subspace dimension
estimator as when used in practice has the advantage that it can help to overcome
systematic errors due to the signal subspace dimension estimator. Further, notice that
B(Q) can show some dependency on the SNR of the training data. This can be taken
into account by computing B(Q) also as a function of SNR.

8.4.3 Dimension of CY (k, i)

A requirement for the noise-only subspace to exist is that the signal subspace is not of
full rank. For many speech sounds it holds that they can be modelled using a (limited)
number of basis functions. Consider, for example, the voiced speech sounds that can
be modelled using a sum of complex exponentials. In that case, a particular frequency
bin containing a harmonic will only observe a small number of complex exponentials
and results in a low dimensional signal subspace. The dimension of the correlation ma-
trix can then be chosen such that the noise-only subspace has sufficiently high dimen-
sion to make an accurate estimate of the noise variance. To show that the dimension of
the signal subspace is usually relatively low, we estimated for each DFT coefficient in
the time-frequency plane the correlation matrix CX ∈ C

M×M with M = 7. For each
estimated correlation matrix we defined the model order as the number of eigenvalues
needed to contain at least 95 % of the energy. In Fig. 8.5 we illustrate this experi-
ment. The clean speech signal is shown in Fig. 8.5a. For each time-frequency point
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Figure 8.5: a) Clean speech signal. b) Dimension of the signal subspace Q for each
time-frequency point (k,i). Q is estimated by measuring in how many of the M eigen-
values 95 % of the energy is distributed. c) Color legend.

the estimated model order Q is indicated in Fig. 8.5b using colors from the legend in
Fig. 8.5c. The white color in the legend indicates speech absence, i.e. Q = 0. Time-
frequency points are classified as speech absence when their energy is 40 dB below
the DFT coefficient with maximum energy. We see that in general the dimension of
the signal subspace Q is relatively low, especially at the harmonic tracks. Further we
see that M = 7 is a sufficient dimension for the correlation matrix, since the model
order of 5 is hardly exceeded.

8.5 Implementational Aspects

In this section we focus on some implementational aspects and present a summary of
the proposed algorithm.

8.5.1 Pre-Whitening

In Section 8.3 the assumption was made that CD(k, i) = σ2
D(k, i)IM . Although this

assumption holds as long as the DFT coefficients in D(k, i) are computed from time
frames that are not overlapping and/or when the correlation time of the noise is small
enough [10], this assumption becomes less valid when an overlap is introduced. In
this section we show how the inter-frame correlation is affected by the window overlap



142 8. Noise Tracking using DFT-Domain Subspace Decompositions

and indicate how a pre-whitening matrix can be obtained such that the aforementioned
assumption is fulfilled.

Let Dt(m) denote a time-domain sample considered as a random variable, let
Dt(m) indicate complex conjugation of Dt(m) and let P denote the frame shift. Let
CD(k, i; p) denote the correlation between a noise DFT coefficient D(k, i + p) and
D(k, i) with frame lag p. The correlation CD(k, i; p) can then be written as

CD(k, i; p) = E[D(k, i + p)D(k, i)]

= E

⎡
⎣(K−1∑

m=0

Dt(m + (i + p)P )e−
j2πkm

K

)
K−1∑
n=0

Dt(n + iP )e−
j2πkn

K

⎤
⎦

= e
j2πkpP

K E

⎡
⎣K−1+pP∑

m=pP

Dt(m + iP )e−
j2πkm

K

K−1∑
n=0

Dt(n + iP )e
j2πkn

K

⎤
⎦

= ej2πkpP/K
K−1∑

m=pP

E
[
|Dt(m + iP )|2

]
︸ ︷︷ ︸

C̃D(k,i;p)

(8.12)

+
K−1+pP∑

m=pP

K−1∑
n=0

m �=n+pP

ej2πk(pP+n−m)/KE
[
Dt(m + iP )Dt(n + iP )

]
︸ ︷︷ ︸

CC(k,i;p)

.

We conclude that the correlation CD(k, i; p) consists of two components; a term
C̃D(k, i; p) and a term CC(k, i; p). CC(k, i; p) contains all the cross-terms and is
dependent on the cross-correlation between the time samples. In general it holds
that CC(k, i; p) decreases for increasing P . Also, the shorter the correlation time
in the noise, the smaller CC(k, i; p) becomes. For CD(k, i; p) with p > 0 it follows
from Eq. (8.12) that even if the time-domain process Dt(·) is completely uncorrelated
CD(k, i; p) �= 0, unless P > K − 1, which means no overlap between consecutive
frames.

Using simulations with white noise training data we can estimate the first term
C̃D(k, i; p) for a given overlap and also take some windowing effects into account.
The second term CC(k, i; p) is signal dependent and is therefore in general unknown.

We can write C̃D(k, i; p) in Toeplitz matrix form, that is

C̃D(k, i) =

⎛
⎜⎜⎜⎝

C̃D(k, i; 0) C̃D(k, i; 1) · · · C̃D(k, i; p)
C̃D(k, i;−1) C̃D(k, i; 0)

...
. . .

C̃D(k, i;−p) · · · C̃D(k, i; 0)

⎞
⎟⎟⎟⎠ .

Let the relative error between the two correlation matrices CD(k, i) and C̃D(k, i)
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be defined as,

Errrel(CD(k, i), C̃D(k, i)) =
‖CD(k, i) − C̃D(k, i)‖2

F

‖CD(k, i)‖2
F

,

with ‖·‖F the Frobenius norm [18]. In a simulation environment we can then compute
the error that would have been made between CD(k, i) and C̃D(k, i) by neglecting
the second correlation term CC(k, i; p).

To investigate the influence of neglecting the second correlation term CC(k, i; p)
we conducted an experiment where K = 256 and P = 32, i.e. the overlap be-
tween time frames was 87.5 %. Then we computed for 3 different non-white noise
sources, i.e. babble noise, factory noise 1 and factory noise 2, the true correlation
matrix CD(k, i) and computed C̃D(k, i) based on white noise. The relative error
Errrel(CD(k, i), C̃D(k, i)) that is made by replacing CD(k, i) by C̃D(k, i) based on
white noise and averaged over all frequency bins is shown in Table 8.1. We see that
the relative error is always lower than 12 · 10−3. This indicates that neglecting the
cross-terms leads to a relatively small error for these type of noise sources and that
CD(k, i) is mainly determined by C̃D(k, i). In the experimental results presented in
Section 8.6 we will therefore neglect the correlation term CC(k, i; p) and use a cor-
relation matrix C̃D(k, i) trained on white noise to whiten possibly colored noise in
Y(k, i).

Let C
1
2 denote the principle square root of a matrix C [19]. The whitening of a

vector Y(k, i) can then be written as

Ypre(k, i) = C̃− 1
2

D (k, i)Y(k, i). (8.13)

Ypre(k, i) is then used in Eq. (8.2). We denote the noise PSD when estimated in the
whitened domain by σ̂2

D,pre(k, i). Notice, that if σ2
D(k, i) is estimated in the whitened

domain, we have to correct with a scaling factor
tr[C̃D(k)]

M , with tr[ · ] the trace opera-
tor [19], to obtain the noise PSD estimate in the non-whitened domain.

For some highly correlated noise types, i.e. with long correlation time, the afore-
mentioned assumption of neglecting the correlation term CC(k, i; p) might be less
valid. In that case Eq. (8.13) is not sufficient to whiten the noise process. A possible
solution is to estimate the whitening transform matrix CD(k, i) online during speech
absence using a VAD. A somewhat more advanced method would be to exploit the sig-
nal subspace dimension estimator and update the estimated correlation matrix when
the estimated noise-only subspace is full rank, i.e. Q = 0. Moreover, using a smaller
overlap would also make the assumption of neglecting the correlation term CC(k, i; p)
more valid. However, the experimental results that are presented in Section 8.6 are ob-
tained using Eq. (8.13) with an overlap of 87.5 % between successive frames.

8.5.2 Algorithm Summary

In order to apply the proposed algorithm, the following steps should be taken:

1. Compute ĈY (k, i) using Eq. (8.4) and (8.5). The DFT coefficients necessary
to form data-matrix Y in Eq. (8.5) are computed using an FFT of frames with a
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noise type Babble Factory 1 Factory 2
Errrel(C(k, i), C̃(k, i)) 12 · 10−3 5.5 · 10−3 8.2 · 10−3

Table 8.1: Relative error for three non-white noise sources.

pre-defined overlap. The choice for this overlap is a tradeoff between variance
reduction of ĈY (k, i) and stationarity of the data in the data-matrix.

2. Apply pre-whitening using Eq. (8.13) to remove the correlation in the noise
introduced in step 1.

3. Compute the eigenvalue decomposition of the correlation matrix ĈY (k, i) in
the pre-whitened domain.

4. Estimate the noise PSD σ2
D,pre(k, i) using Eq. (8.9)

5. Correct for scaling due to the pre-whitening in step 2

σ̂2
D(k, i) =

tr
[
C̃D(k, i)

]
M

σ̂2
D,pre(k, i).

8.6 Experimental Results

For performance evaluation we compare the proposed method with the minimum
statistics based noise tracking algorithm [8] and with the situation where the noise
PSD is computed using an ideal VAD. The speech and noise signals originate from
the Noizeus database [20]. This database was extended with stationary computer gen-
erated white Gaussian noise, babble noise from the Noisex-92 database [21], noise
originating from a passing train and non-stationary white Gaussian noise, respectively.
Noisy signals are constructed synthetically at input SNRs of 0, 5, 10 and 15 dB. For
the non-stationary white Gaussian noise, the initial noise level is 0, 5, 10 and 15 dB,
respectively, and then gradually increases in one second by 15 dB where it stays at
that level for 2 seconds after which it decreases again by 15 dB in one second. All
signals are filtered at telephone bandwidth and sampled at 8 kHz. The noisy time-
domain signals are divided in frames of 256 samples with 50 % overlap. For both
analysis and synthesis a square root Hann window is used. The DFT coefficients that
are used to form the data-matrix Y originate from time frames taken with an overlap
of 87.5 %. The dimensions of Y were chosen as M = L = 7 and n1 = n2 = 6.
The estimated noise PSDs σ̂2

D(k, i) are smoothed using an exponential smoother with
adaptive smoothing factors [8].

8.6.1 Performance Evaluation

To illustrate the noise tracking performance of the proposed approach within a typical
example of noisy speech, we concatenated four speech signals and degraded this by
noise originating from a passing train at 5 dB global SNR. In Fig. 8.6 the estimated
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noise PSDs are shown for the proposed approach and the MS approach together with
the true noise variance for a single frequency bin k = 20. This bin index corresponds
to a frequency band centered around 625 Hz. We see that the proposed approach fol-
lows the increase in the noise level much better than the minimum statistics approach.
This is due to the fact that the proposed approach can track changes in the noise level
during speech presence. The MS approach on the other hand is limited in its update
rate due to its search window and the fact that it can not track the noise when speech
is continuously present in a bin. This results for MS in the delayed tracking of a rising
noise level in Fig. 8.6.

In Fig. 8.7 another example is shown where the same speech signal is degraded by
the non-stationary white noise described above. The initial part of the speech signal
is degraded at an SNR of 10 dB. We again see that the proposed approach tracks the
increase in noise level much faster than the MS approach.

Objective Performance Evaluation

For objective performance evaluation we use the segmental relative estimation error
defined in [22] as

Errseg =
1
N

N∑
i=1

∑K
k=1

[
σ̂2

D(k, i) − σ2
D(k, i)

]2∑K
k=1 σ4

D(k, i)
,

where N is the total number of frames in the signal and where σ2
D(k, i) is the ideal

noise PSD measured using noise periodograms smoothed over time using an exponen-
tial window, i.e.

σ2
D(k, i) = ασ2

D(k, i − 1) + (1 − α)|D(k, i)|2,

with a smoothing factor α = 0.9 [8]. The measure Errseg is non-symmetric and is more
sensitive to overestimates than to underestimates. Therefore, we propose a symmetric
segmental logarithmic estimation error, defined as

LOG-Errseg =
1

NK

K∑
k=1

N∑
i=1

∣∣∣∣10 log
[
σ2

D(k, i)
σ̂2

D(k, i)

]∣∣∣∣ .
In order to evaluate the influence of the proposed noise tracking algorithm on speech
enhancement performance we use the estimated noise PSDs within a DFT-domain
based speech enhancement algorithm, similar as the one depicted in Fig. 1.2. As
estimator we use the MMSE amplitude estimator under the generalized Gamma model
as presented in Chapter 6 with γ = 2 and ν = 0.1. The maximum suppression was
limited to 0.1 for perceptual reasons. For a priori SNR estimation we use the decision-
directed (DD) approach [1] where a smoothing factor α = 0.98 was used as proposed
in [1]. For performance comparison we use segmental SNR, i.e.,

SNRseg =
1
N

N∑
i=1

10 log10

∑
k |x(k, i)|2∑

k |x(k, i) − x̂(k, i)|2 , (8.14)
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Figure 8.6: Comparison between proposed method and minimum statistics. The es-
timated noise levels for bin k = 20 are shown. The noisy signal consists of speech
degraded by non-stationary train noise at an overall input SNR of 5 dB.

where x(k, i) is a realization of a clean speech DFT and x̂(k, i) is its clean speech DFT
estimate, respectively. The definition of segmental SNR in Eq. (8.14) differs slightly
from the ones used in Chapters 6 and 7 where an upper and lower limit was applied on
the measured SNR. We left out these limits, because our interest here is to express the
performance difference between different noise trackers. The tracking performance
of a sudden increase or decrease of the noise level is better reflected without these
limits. Notice that the performance measured using SNRseg is unlike LOG-Errseg and
Errseg not only influenced by the noise tracking algorithm, but also by the chosen gain
function and a priori SNR estimator.

In Tables 8.2-8.4 we show performance evaluations for several noise types aver-
aged over speech signals originating from the Noizeus database. We compare noise
tracking using VAD, MS and the proposed approach. We see that in general for all
three objective measures the performance is increased when using the proposed ap-
proach. Especially for noise sources that are characterized by a gradual change in the
noise power (passing train and non-stationary white Gaussian noise) we see that the
proposed approach outperforms MS and VAD. This is mainly due to the fact that a
continuous update of the noise PSD allows for a faster update of changes in the noise
power. Such an improved estimate of the noise PSD will increase the overall quality
of a speech enhancement system as also reflected by the performance expressed in
terms of SNRseg in Table 8.4.
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Figure 8.7: Comparison between proposed method and minimum statistics. The es-
timated noise levels for bin k = 20 are shown. The noisy signal consists of speech
degraded by non-stationary white noise.

Subjective Performance Evaluation

For subjective evaluation an OAB listening test was performed with 8 participants,
the authors not included. Here, O is the original clean speech signal and A and B
are two noisy signals that are enhanced using the aforementioned DFT-domain based
speech enhancement algorithm with two different methods for noise tracking. Method
A uses the proposed noise tracking method, and method B uses the minimum statistics
approach. The listeners were presented first the original signal followed by the two
different enhanced signals A and B played in random order. The participants had to
indicate their preference for excerpt A or B. Each series was repeated 4 times, with
each time a randomized order of the signals A and B. In this listening test we used
four different types of additive noise at two different SNRs, namely, white noise, street
noise, noise originating from a passing train and non-stationary white noise at SNRs of
5 dB and 15 dB. For each noise type and noise power level we presented the listeners
two female sentences and two male sentences. The average preference for method A
under each test condition is shown in Table 8.5. Under all test conditions the proposed
method for noise tracking was preferred over the minimum statistics approach.

8.6.2 Deterministic Noise

Deterministic noise components can in principle not be tracked with the proposed
method, since they will appear in the signal subspace and not in the noise-only sub-
space. The noise is thus implicitly assumed to be stochastic. This is not only a prop-
erty of the proposed method. Minimum statistics [8] implicitly assumes the noise to
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noise input VAD MS prop.
source SNR (dB) method
train 0 1.6 0.31 0.17

5 0.77 0.35 0.20
10 0.75 0.35 0.22
15 1.2 0.42 0.29

street 0 26.7 0.41 0.35
5 18.3 0.43 0.31

10 17.4 0.48 0.34
15 18.6 0.94 0.53

white 0 0.19 0.13 0.074
5 0.20 0.13 0.093

10 0.18 0.15 0.15
15 0.19 0.45 0.24

babble 0 0.47 0.48 0.34
5 0.47 0.47 0.37

10 0.47 0.47 0.40
15 0.47 0.50 0.43

passing train 0 0.52 0.33 0.16
5 0.52 0.38 0.18

10 0.52 0.45 0.28
15 0.52 1.2 0.37

non-stationary 0 0.66 0.33 0.068
WGN 5 0.66 0.35 0.075

10 0.66 0.38 0.096
15 0.66 0.42 0.13

Table 8.2: Performance in terms of Errseg

be stochastic as well. More specifically, the bias-compensation that is applied within
minimum statistics is based on the assumption that the noise is stochastic. However,
it is applied to deterministic components as well. A consequence of this is that after
bias-compensation the deterministic noise components are in general slightly overes-
timated. However, in practice minimum statistics is less sensitive than the proposed
method when violating this assumption.

When deterministic noise components are present they are often mixed with stochas-
tic noise components. Therefore it is not obvious how to estimate them. One way to
estimate the deterministic noise components as well, is to make use of the fact that
for stochastic noise the minimum of the last T minimum statistics based noise PSD
estimates σ̂2

D,min is always smaller than or equal to the current noise PSD estimate
made by the proposed noise tracker (8.9), i.e.

min
[
σ̂2

D,min(k, i − T + 1), ..., σ̂2
D,min(k, i)

]
≤ σ̂2

D(k, i).

Whenever this minimum is larger than σ̂2
D(k, i) this is due to the fact that deterministic

noise components are present. In that case we can estimate the deterministic part of
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noise input VAD MS prop.
source SNR (dB) method
train 0 3.3 2.6 1.9

5 3.2 2.9 1.9
10 3.0 2.6 2.0
15 3.1 2.7 2.1

street 0 4.1 2.3 2.0
5 4.0 2.8 2.0
10 4.4 3.1 2.2
15 3.6 2.7 2.5

white 0 1.6 1.3 1.0
5 1.6 1.3 1.1
10 1.6 1.4 1.2
15 1.6 1.5 1.5

babble 0 4.4 3.9 2.1
5 4.4 3.7 2.3
10 4.4 3.5 2.6
15 4.4 3.4 3.0

passing train 0 7.7 3.7 1.6
5 7.7 3.6 1.9
10 7.7 3.5 2.3
15 7.7 3.6 3.0

non-stationary 0 8.6 4.0 0.94
WGN 5 8.6 4.1 1.0

10 8.6 4.1 1.1
15 8.6 4.0 1.4

Table 8.3: Performance in terms of LOG-Errseg

σ2
D(k, i) by

σ̂2
D,det(k, i) =

[
σ̂2

D,min(k, i) − σ̂2
D(k, i)

]
B−1

min(k, i), (8.15)

where Bmin is the bias-compensation as used in the minimum statistics method and
which is used here to correct for the wrongly applied bias compensation on the deter-
ministic component. The total estimate of σ2

D(k, i) is then given by adding σ̂2
D,det(k, i)

and the estimate obtained by the proposed method in (8.9).
In Fig. 8.8a a comparison is shown where a speech signal was degraded by white

noise (filtered at telephone bandwidth) at an SNR of 5 dB. As deterministic noise a
signal consisting of a sum of three harmonically related sinusoids with fundamental
frequency of 656 Hz was added at an SNR of 10 dB with respect to the original clean
speech signal. We see in Fig. 8.8a that with the DFT-domain subspace noise tracking
approach it is not possible to estimate the sinusoidal noise components. In Fig. 8.8b
we combine DFT-domain subspace noise tracking method with (8.15) and see that we
also determine the deterministic noise components. In Table 8.6 we show a compari-
son in terms of LOG-Errseg for speech signals degraded by the above described noise.
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noise source input VAD MS prop.
SNR (dB) method

train 0 -3.3 -4.1 -2.3
5 -0.29 -0.48 1.1

10 3.9 3.6 4.7
15 7.4 7.4 8.0

street 0 -4.1 -4.1 -3.5
5 -1.1 -0.85 0.34

10 2.9 3.2 4.1
15 6.8 7.0 7.1

white 0 -0.65 -0.22 0.42
5 2.9 3.1 3.7

10 6.3 6.4 6.9
15 9.8 9.8 10.0

babble 0 -8.4 -8.8 -6.8
5 -4.1 -4.2 -2.8

10 0.26 0.25 1.2
15 4.6 4.7 5.1

passing train 0 -6.2 -4.3 -1.7
5 -1.8 -0.037 1.8

10 2.6 4.2 4.9
15 7.0 8.3 8.4

non-stationary 0 -19.2 -14.5 -9.4
WGN 5 -14.6 -10.5 -5.8

10 -10.0 -6.5 -2.5
15 -5.5 -2.5 0.60

Table 8.4: Performance in terms of SNRseg (dB)

Here the SNR between the stochastic noise and the speech signal is 5 dB, and the SNR
between the deterministic noise and the speech signal is 0, 5, 10 and 15 dB, respec-
tively. Moreover, we also show a comparison for the natural noise source Destroyer
operations room background noise that originates from the Noisex-92 database [21].
This is a noise source containing both stochastic and some deterministic components
The comparison is made between minimum statistics, the proposed DFT-domain sub-
space noise tracking approach and the DFT-domain subspace noise tracking method
combined with (8.15). The obtained distortion for these partly deterministic noise
types is decreased by combining the proposed noise tracker with (8.15). Notice that
the experimental results in Section 8.6.1 are based on the use of the DFT-domain sub-
space noise tracker without the use of a deterministic noise tracker.
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noise source input SNR mean score
for method A

white 5 dB 82.0 %
noise 15 dB 85.9 %
street 5 dB 77.3 %
noise 15 dB 67.2 %

passing 5 dB 77.3 %
train 15 dB 92.2 %

Non-stat. 5 dB 96.1 %
white noise 15 dB 89.1 %

Table 8.5: Listening test results.

noise source input SNR MS prop. noise prop. noise
(dB) tracker tracker

combined with (8.15)
white noise 0 1.2 2.1 1.1

with sinusoids 5 1.2 1.7 1.1
10 1.2 1.5 1.1
15 1.2 1.3 1.2

Destroyer 0 1.8 1.7 1.5
operations 5 1.9 1.9 1.7

room 10 2.0 2.1 1.9
15 2.1 2.5 2.3

Table 8.6: Performance in terms of LOG-Errseg to compare the influence of a deter-
ministic noise tracker.

8.7 Concluding Remarks

In this chapter we presented a novel approach for noise tracking. The method is based
on construction of correlation matrices in the DFT-domain per time-frequency point.
Each correlation matrix can be decomposed into a signal subspace and a noise-only
subspace. When the signal subspace is not full rank, the noise-only subspace can be
used to estimate the noise PSD. The advantage of this approach is that the noise PSD
can be updated for a DFT coefficient where both speech and noise are present. Com-
parisons showed that the presented method decreases the error between the true noise
and the estimated noise spectrum, compared to the minimum statistics. Further, en-
hancement performance is improved, especially for speech signals degraded by noise
types that change gradually in power. Deterministic noise sources appear in the signal
subspace and can not be estimated by observing the noise-only subspace. However,
these noise components can be tracked by observing T last minimum statistics based
noise PSD estimates.

The improved noise tracking performance of the proposed DFT-domain subspace
noise tracker over minimum statistics comes with an increase in the computational
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Figure 8.8: a) Noise tracking performed with DFT-domain subspace decompositions
only. b) Noise tracking performed with DFT-domain subspace decompositions com-
bined with a tracker for deterministic components.

complexity. Although the dimensions of the correlation matrices are rather small, most
of the computation time is spent on eigenvalue decompositions of the noisy correlation
matrices. However, the MATLAB implementation of the proposed algorithm runs
approximately two times real time on a PC with pentium 4 processor.
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Chapter 9

Conclusions and Discussion

9.1 Summary and Discussion of Results

In this thesis we considered DFT-domain based speech enhancement and focussed on
three different aspects. First we considered methods to improve estimation of the a
priori SNR. Good estimation of the a priori SNR is important, because most speech
enhancement estimators are a function of this quantity. Wrong estimates, i.e. an
underestimate or overestimate of the a priori SNR, can lead to oversuppression or
undersuppression of the noisy speech DFT coefficients, respectively.

Most methods for a priori SNR estimation are (partly) based on an estimate of
the noisy speech PSD. In order to improve estimation of the noisy speech PSD, and
therefore also estimation of the a priori SNR, we exploited the fact that speech is
a time-varying process and presented an adaptive time-segmentation algorithm for
noisy speech. This algorithm finds for each frame a corresponding segment in which
the data can be considered stationary. We applied this segmentation algorithm to ob-
tain better estimates of the noisy speech PSD. We showed that estimation of the a
priori SNR with the decision-directed approach can be improved using this improved
estimate of the noisy speech PSD instead of a periodogram based estimate. Further,
we presented a backward decision-directed approach which can be combined with the
standard (forward) decision-directed approach to overcome a consistent overestimate
or underestimate of the a priori SNR at the start of stationary regions. This backward
decision-directed approach is dependent on the next future frame instead of on the
previous frame. As such it overcomes wrong estimates of the a priori SNR at the start
of stationary regions.

Secondly, we investigated estimators for clean speech DFT coefficients that take
properties of speech DFT coefficients into account. We presented an MMSE estimator
under a combined stochastic-deterministic speech model. The use of a deterministic
speech model is based on the idea that certain speech sounds have a more determin-
istic character, e.g. voiced sounds. Especially in frequency bins containing a speech
harmonic this combined stochastic-deterministic speech model leads to improved en-
hancement performance in comparison to the use of a stochastic model alone. Besides
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estimators under a combined stochastic-deterministic model, we presented estimators
under super-Gaussian densities as well. MMSE estimators for complex DFT coeffi-
cients and DFT magnitudes are derived under the assumption that they have a double-
sided and single-sided generalized Gamma density, respectively. These estimators are
a generalization of existing MMSE estimators proposed in [1] and [2]. Further, MAP
estimators for complex DFT coefficients and DFT magnitudes were derived under
the assumption that clean speech DFT coefficients have a multivariate normal inverse
Gaussian density (MNIG). The MNIG density can model scalar processes as well as
vector processes. The estimators derived under the MNIG density can exploit this
property and take the dependency between real and imaginary parts of DFT coeffi-
cients into account. This is a potential advantage over the generalized Gamma density
based estimators, since these estimators assume that real and imaginary parts are in-
dependent. However, taking the dependency into account leads only to a very small
improvement in terms of enhancement performance. A second advantage of estima-
tors derived under the MNIG density over the generalized Gamma density is the fact
that under the MNIG density the models in the complex DFT domain and the polar
domain are consistent, which is not the case for the generalized Gamma density.

Thirdly, we presented a new method for tracking of noise statistics. The method
that we propose is based on the eigenvalue decomposition of correlation matrices that
are constructed from time series of noisy DFT coefficients. The noise level is esti-
mated per frequency bin by observing the noise-only subspace of these correlation
matrices. Hence, even when speech is continuously present, the proposed method can
estimate the noise level. Changes in the noise PSD can be tracked much faster than
with existing noise tracking algorithms like minimum statistics [3] that has a delay of
approximately 1 second when the noise level increases.

9.1.1 Discussion on Contributions

In this section we present a further discussion on the contributions of this thesis.

1. Adaptive time segmentation for speech enhancement

The algorithm for adaptive time segmentation of noisy speech is rather gen-
eral and uses the noisy speech signal as an input. It can therefore be combined
with almost any enhancement system. The algorithm uses time frames from
the past as well as frames from the future in order to determine the segmenta-
tion of the noisy speech signal. Because latency is application dependent, the
number of future frames that are used in the algorithm can be adjusted. For
human-to-human applications hardly any (e.g. hearing aids) or some (e.g. mo-
bile telephony) latency is allowed, while for human-to-machine communication
the amount of latency is less of an issue. The more latency is allowed in the en-
hancement system, the higher the gain of using the adaptive time-segmentation
algorithm. However, it was shown that the performance obtained with a latency
of approximately 30 ms is fairly close to the use of an infinite latency.

In this thesis we used the adaptive time segmentation in Chapter 3 to improve es-
timation of the noisy speech PSD. These improved estimates of the noisy speech
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PSD are then used to obtain improved estimates of the a priori SNR or of the
speech PSD. In Chapter 4 adaptive time segmentation was used to combine the
forward and backward decision-directed approach, in order to obtain improved
estimates of the a priori SNR. In [4] the adaptive time-segmentation algorithm
was used within a subspace based speech enhancement context, where the adap-
tive segmentation was used to obtain better estimates of the noisy speech corre-
lation matrix.

2. Improved a priori SNR estimation

Two methods were presented to improve estimation of the a priori SNR. The
first method was presented in Chapter 3 and is based on a modification of the
decision-directed approach. Instead of a noisy speech periodogram, an estimate
of the noisy PSD based on the presented adaptive time segmentation was used.
As mentioned in the discussion on the previous contribution, the adaptive time
segmentation implies a certain delay when using future frames to determine the
segmentation. Although some improvement is still obtained when no future in-
formation is used, most improvement is obtained when a delay of approximately
30 ms is allowed.

The second method for improved a priori SNR estimation is based on the in
Chapter 4 presented backward decision-directed approach. Combined with the
forward decision-directed approach an improved estimate of the a priori SNR
is made. A potential disadvantage of this method is that the backward decision-
directed approach has a dependency on future frames and therefore implies a
delay. By combining the forward and the backward approach it is possible to
limit the delay to one frame.

Both methods for improved a priori SNR estimation are thus based on the use
of some future information. Although the resulting delay can be limited, both
methods are less applicable when absolutely no delay is allowed. By combining
these two approaches for improved a priori SNR estimation an improvement in
terms of segmental SNR of approximately 0.5 dB can be achieved over the sit-
uation when only one of the two methods is used. The obtained performance
improvement is mainly reflected in terms of a better noise suppression. How-
ever, it results in somewhat more suppressed speech as well.

The two methods for improved a priori SNR estimation can be combined with
any DFT-domain based clean speech estimator that can be expressed in terms of
the a priori SNR, e.g. estimators presented in [5][1][6][2][7] and the estimators
presented in Chapter 6. These methods for improved a priori SNR estima-
tion can be used in combination with estimators under the combined stochastic-
deterministic model that is proposed in Chapter 5 as well. However, it is not
expected that this combination will lead to the same amount of enhancement
performance as it does for the estimator used in Chapters 3 and 4. This can
be explained by the fact that under the deterministic model the estimator is not
dependent on the a priori SNR. Estimators under the MNIG density that are
presented in Chapter 7 can not be written as a function of the a priori SNR
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Figure 9.1: Comparison between gain curves.

and can therefore not directly be combined with these improved a priori SNR
estimators.

The amount of performance improvement that is obtained by combining a clean
speech estimator with the forward-backward decision-directed approach for a
priori SNR estimation is dependent on the type of estimator that is used. More
specifically, some estimators are able to compensate for under or overestimates
of the a priori SNR. This also holds, under certain parameter settings, for the
complex DFT and DFT magnitude estimators that are derived under the gen-
eralized Gamma density in Chapter 6. In particular this is true when the as-
sumed underlying density for the speech DFT coefficients corresponds to a
super-Gaussian density. Estimators under these densities have the tendency to
increase the value of the gain function when the a priori SNR is underestimated
and much lower than the a posteriori SNR. A similar situation occurs when the
a priori SNR is overestimated and larger than the a posteriori SNR. In that case,
the value of the gain function is somewhat decreased. To visualize this effect,
we show in Fig. 9.1 gain curves of the MMSE magnitude estimator under a gen-
eralized Gamma density with γ = 1 and ν = 0.6 (denoted by Ĝ

(1)
C,5, ν = 0.6)

and under the generalized Gamma density with γ = 2 and ν = 1 (the Rayleigh
density, denoted by Ĝ(2), ν = 1). The latter gain function corresponds to the
MMSE magnitude estimator presented in [1]. The gain curves in Fig. 9.1 are
plotted as a function of the a posteriori SNR for the a priori SNRs of -5 dB
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and 15 dB. We see that the gain curves for the estimator with parameter set-
tings γ = 1 and ν = 0.6 show a much higher degree of sensitivity to the a
posteriori SNR than the estimator with parameter settings γ = 2 and ν = 1.
This sensitivity to the a posteriori SNR makes it possible to compensate for an
underestimated or overestimated a priori SNR.

Estimators with these properties have a smaller benefit of improved a priori
SNR estimation. To demonstrate the impact of this mechanism we compare
the decision-directed approach and the iterative forward-backward decision-
directed approach in terms of enhancement performance. Both a priori SNR
estimators are combined with an MMSE magnitude estimator under the gener-
alized Gamma density for a wide range of parameter settings. The performance
is shown in Fig. 9.2 in terms of average segmental SNR versus the ν-parameter.
We see that the performance difference between the decision-directed approach
and the iterative forward-backward decision-directed approach is decreased when
the parameter settings of the assumed underlying density for the DFT magni-
tudes corresponds to super-Gaussian densities (γ = 1 and γ = 2 with small
ν). The estimator that was used in Chapter 4 corresponds to parameter settings
γ = 2 and ν = 1 (Rayleigh density) and is indicated in Fig. 9.2 by the + and
the × for the decision-directed approach and the iterative forward-backward
decision-directed approach, respectively.
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3. Clean speech DFT estimator under a combined stochastic-deterministic
model

In Chapter 5 experiments were presented where the estimator derived under a
combined stochastic-deterministic model was compared with an estimator us-
ing a stochastic model alone. For both estimators we used in these comparisons
as stochastic speech model the Gaussian and Laplace density. The combined
stochastic-deterministic model is not restricted to be used with these densities,
but can also be combined with the generalized Gamma or MNIG density that
were used in Chapters 6 and 7, respectively. However, the performance im-
provement of the combined stochastic-deterministic model over the use of a
stochastic model alone gets smaller when the stochastic speech model that is
used tends to be more super-Gaussian. This can be explained by the fact that
both the deterministic model and stochastic super-Gaussian models partly im-
prove on the same aspects. More specifically, both the deterministic model and
stochastic super-Gaussian models are better resistant towards underestimates or
overestimates of the a priori SNR. Secondly, both the deterministic and super-
Gaussian models are improved models for DFT coefficients containing speech
harmonics.

4. Clean speech DFT estimators under super-Gaussian densities

Clean speech complex DFT and magnitude DFT estimators were presented un-
der the generalized Gamma density and under the multivariate normal inverse
Gaussian (MNIG) density. Objective performance of the estimators under the
MNIG density is somewhat better than for the estimators under the the gen-
eralized Gamma density. Moreover, estimators under the MNIG density have
some theoretical advantages over estimators under the generalize Gamma den-
sity. For the MNIG density, the models in the complex DFT domain and the
polar domain are consistent, which is not the case for the generalized Gamma
density. Secondly, the MNIG density can model vector processes and can take
the dependency between the real part and imaginary part of DFT coefficients
into account. However, taking the dependency between real and imaginary parts
of DFT coefficients into account hardly leads to any performance improvement
in practice. Despite these theoretical advantages, the computational complexity
for computing the parameters that specify the estimator under the MNIG density
is higher than for estimators under the generalized Gamma density. This makes
the MNIG based estimators less applicable in situations where computational
complexity is an issue.

5. Tracking of noise statistics

The DFT-domain subspace based method for noise tracking that was presented
in Chapter 8 clearly improves over existing, state-of-the-art, noise tracking meth-
ods like minimum statistics, especially for non-stationary noise where the track-
ing delay is considerably reduced. This followed from direct measurements of
the noise tracking performance as well as from measurements of the enhance-
ment performance when combined with an enhancement system. The com-
putational complexity of the algorithm is mainly dominated by the eigenvalue
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Figure 9.3: DFT-domain enhancement scheme based on contributions of this thesis.

decompositions that have to be performed and is therefore somewhat higher
than for minimum statistics based noise tracking. The proposed noise tracking
method is not dependent on the type of clean speech estimator and can as such
be combined within any type of DFT-domain based enhancement algorithm, for
example the estimators presented in Chapters 5, 6 and 7 or the improved a priori
SNR estimators from Chapters 3 and 4.

9.1.2 Comparison to State-of-the-art Speech Enhancement Sys-
tem

As discussed in Section 9.1.1, some of the contributions of this thesis can be combined
to form a complete DFT-domain based speech enhancement system. In this section
we make a comparison between such a system and a state-of-the-art system by means
of a listening test. The system that is based on contributions of this thesis is depicted
in Fig. 9.3 and will be referred to as method A. Here we use the adaptive time segmen-
tation discussed in Chapter 3 to obtain an estimate of the noisy speech PSD, denoted
by σ̂2

Y,A(k, i). For estimation of the noise PSD we use the DFT-domain subspace
based method that is proposed in Chapter 8. Using these estimates of the noise PSD,
noisy speech PSD and the estimated clean speech DFT from the previous frame, the
speech PSD is estimated based on the method for improved a priori SNR estimation
that was presented in Chapter 3, denoted by DDA. To estimate the magnitude of the
clean speech DFT coefficients, the magnitude estimator under the generalized Gamma
density is used, which is proposed in Chapter 6. Here we use parameter settings γ = 2
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and ν = 0.05, that are based on initial experiments with this complete system.
The state-or-the-art system that we compare to is shown in Fig. 9.4. We refer to this

system as method B. For noise PSD estimation we use minimum statistics as proposed
in [3]. Estimation of the speech PSD is based on the decision-directed approach [1]
and the estimator that we use for estimation of the clean speech magnitudes is the joint
MAP amplitude and phase estimator presented in [7].

The listening test that we perform is a so-called OAB test with 8 participants.
Here, O is the original clean speech signal and A and B are two noisy signals that are
enhanced using method A and method B, respectively. The listeners were presented
first the original signal followed by the two different enhanced signals A and B played
in random order. The participants had to indicate their preference for excerpt A or B.
Each series was repeated 4 times, with each time a randomized order of the signals
A and B. This leads for each set to a score of 0, 25, 50, 75 or 100 %, indicating the
relative preference for excerpt A. This procedure is repeated for four different speech
signals (two male and two female sentences). The speech signals that were used in
the listening test were degraded under 6 different conditions, namely with three dif-
ferent noise types (white noise, street noise and noise from a passing train) and at two
different SNRs (5 dB and 15 dB). The histograms of the listening-test scores for each
of the test conditions are shown in Fig. 9.5. From these histograms we see that under
all conditions the majority of the participants had a preference for method A, the sys-
tem based on contributions of this thesis. Notice that for speech signals degraded by
passing train noise at 5 dB SNR a clear minority of the participants preferred method
B. For these signals the noise source is rather non-stationary and increases a lot in
power. The proposed DFT-domain subspace based method for noise tracking per-
forms a much better tracking of the noise level than minimum statistics, as also shown
in Fig. 8.6. This leads to more suppression of the noise, but implies more suppression
of the speech as well. Analysis of the results and discussion with the participants of
the listening test revealed that some of the participants preferred method B for these
signals, because the underestimated noise PSD leads to less suppression of speech.
Too much suppression of speech could be overcome by limiting the clean speech es-
timator to a maximum suppression. The average preference for method A under each
test condition is shown in Table 9.1. A Wilcoxon signed-ranks test [8] was performed
to find out whether the difference between the two tested systems based on the scores
of the listening test is significant. The P-values of the Wilcoxon signed-ranks test are
shown in Table 9.1 as well. They indicate that under all test conditions, the differ-
ence between our proposed system and the state-of-the-art system is significant at a
significance level of 1.2 · 10−3.

9.2 Directions for Future Research

Although the world of DFT-domain based speech enhancement has almost become
mature, there are still many challenges that can lead to a further quality improvement
of single-channel speech enhancement algorithms.

An important aspect is the further development of algorithms for fast and accurate
tracking of noise statistics, without constraining these systems too work only under
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Figure 9.4: State-of-the-art enhancement scheme.

specific situations, e.g. a certain speaker or noise-type. Imposing such constraints
restricts the applicability of these algorithms. Fast and accurate tracking of noise
statistics is of vital importance, because all clean speech estimators are dependent on
these noise statistics. Using more sophisticated models and making better use of the
available data can help in the development of improved noise tracking algorithms.
The method for tracking of noise statistics that we presented in Chapter 8 is based on
processing of the noisy speech data in the DFT subspace domain. It was shown that
large improvements are obtained over minimum statistics based schemes. A further
development of these types of approaches, that even allow tracking of noise statistics
when speech is constantly present, will lead to a further improvement of the enhance-
ment performance. A suggestion for further development of the method presented in
Chapter 8 is to take into account that speech is a time-varying process. By doing so,
estimation of the noisy speech correlation matrix in Eq. (8.4) can be improved, pos-
sibly resulting in a lower dimension of the signal subspace and lower variance on the
estimated noisy speech correlation matrix and as a consequence a better estimate of
the noise PSD.

Another important direction for future research is to study how intelligibility of
enhanced speech signals can be improved with respect to existing enhancement algo-
rithms. In general, existing methods improve quality in terms of noise suppression, but
decrease quality in terms of speech intelligibility. A challenging direction of research
would be to investigate how the decrease in intelligibility can be restricted while still
obtaining good noise reduction.
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Figure 9.5: Histograms of listening-test scores indicating the preference for method
A.

An interesting development with respect to clean speech estimators is presented
in [9][10], where a methodology is proposed to estimate speech enhancement gain
functions directly from speech signals in a training data-base. The advantage of this
procedure is that no explicit assumption is made about the density of the speech DFT
coefficients. Moreover, the approach that is followed in [9][10] takes into account
that the true a priori SNR is unknown, but that only an estimate is available. This
data-driven approach has the advantage that certain systematic modelling errors and
estimation inaccuracies and consistencies can automatically be taken into account.
Moreover, this approach can optimize for all kind of distortion measures for which
analytical results are hard to obtain.

Another interesting direction for future research is to take correlation across time
into account. Most speech enhancement algorithms apply the estimators indepen-
dently for each time and frequency point, see e.g. Chapters 6 and 7, but also [1][2][7].
When no special measures are taken, these types of methods will lead to musical noise
when estimates of the noise and clean speech PSD are substituted in the clean speech
estimator. Smoothing methods like the decision-directed approach are used to avoid
this. Although the decision-directed approach leads to a reduction of musical noise, it
is also conflicting with the assumption that the clean speech estimators can be applied
independently across time.

It would be interesting to develop estimators that automatically take (some of)
the correlation between DFT coefficients across time into account. As an example,
the framework presented in Chapter 8 could be very well used for this purpose. In
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noise source input SNR mean score P-value significant
for method A

white 5 dB 98.4 % 2.6 · 10−8 yes
noise 15 dB 93.8 % 1.8 · 10−7 yes
street 5 dB 95.3 % 9.5 · 10−8 yes
noise 15 dB 83.6 % 6.1 · 10−5 yes

passing 5 dB 73.4 % 1.2 · 10−3 yes
train 15 dB 94.5 % 3.0 · 10−7 yes

Table 9.1: Results of the listening test.

this framework, correlation matrices are constructed from time series of noisy DFT
coefficients. In Chapter 8 the noise PSD is obtained from these correlation matrices
by exploiting the noise-only subspace. Instead of only estimating the noise PSD, this
framework could be applied as well to estimate a series of clean DFT coefficients
while taking into account their correlation across time.

Besides further development of single and multi-microphone enhancement schemes,
it would also be interesting to investigate how multiple speech enhancement systems
can cooperate in an adaptive manner. More specifically, the current generation of
voice processors work individually, although in some situations several voice proces-
sors share the same information. Consider the situation where several hearing aid
users are on the same location. Instead of processing the noisy acoustical environ-
ment for all persons individually, their processors should be combined, form a larger
microphone array and distribute the work load. Research on this jointly type of pro-
cessing will be challenging, and might lead to a different and new view on speech
enhancement and might change the insight in how to solve the speech enhancement
problem.
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Appendix A

Derivations for Chapter 6

A.1 Second Moments

In this appendix we derive expressions for the second moments of the random vari-
ables with densities fA(a) and fX�(x�) as given by Eqs. (6.1) and (6.2) for the cases
γ = 1 and γ = 2.

A.1.1 The Single-sided Prior fA(a)

The second moment of A for the case γ = 1

Using the assumption E{X} = 0, we can write σ2
X = E{A2}. Using [1, Eq. 3.381.4]

and (6.1) with γ = 1, it can be shown that

σ2
X =

∫ ∞

−∞
a2fA(a)da =

ν(ν + 1)
β2

. (A.1)

The second moment of A for the case γ = 2

Using the assumption E{X} = 0, we can write σ2
X = E{A2}. Using [1, Eq. 3.381.4],

Eq. (6.1) with γ = 2 and the substitution a =
√

t, it can be shown that

σ2
X =

∫ ∞

−∞
a2fA(a)da =

ν

β
. (A.2)

A.1.2 The Two-sided Prior fX�(x�)

The second moment of X� for γ = 1

Using the assumption E{X�} = 0, we can write σ2
X� = E{X2

�}, i.e. the variance
equals the second moment. Using [1, Eq. 3.462.9] and (6.2) with γ = 1, it can be
shown that

σ2
X� =

∫ ∞

−∞
x2
�fX�(x�)dx� =

ν(ν + 1)
β2

. (A.3)
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The second moment of X� for γ = 2

Using the assumption E{X�} = 0, we can write σ2
X� = E{X2

�}. Using [1, Eq.
3.462.9] and (6.2) with γ = 2, it can be shown that

σ2
X� =

∫ ∞

−∞
x2
�fX�(x�)dx� =

ν

β
. (A.4)

A.2 Modified MAP Estimator

The estimator originally proposed in [2] was computed as

max
a

log fA(a)fR|A(r|a) (A.5)

with fR|A(r|a) as in Eq. (6.6). However, in [2] fA(a) was not used in the form Eq.
(6.1) with γ = 1, but in a slightly different form:

fA(a) =
aν−1

Γ(ν)

(
μ

σX

)ν

exp
{
−a

μ

σX

}
, (A.6)

where μ and ν were treated as independent parameters although μ is in fact completely
specified by ν, see Eq. (A.9) below. Since an analytical solution to Eq. (A.5) is hard
to find, the approximation Eq. (6.13) for the Bessel function was made before taking
the derivative with respect to a in Eq. (A.5). This led to the gain function

G
(1)
MAP = u +

√
u2 +

ν′ − 0.5
2ζ

, u = 1/2 − μ

4
√

ζξ
, (A.7)

where ν ′ = ν − 1, and which is only valid for ν′ > 0.5. A joint amplitude and phase
MAP estimator was proposed as well. The gain function G

(1)
JMAP of the joint MAP

estimator is given by

G
(1)
JMAP = u +

√
u2 +

ν′

2ζ
, u = 1/2 − μ

4
√

ζξ
, (A.8)

which allows for a broader range of ν ′-values, namely ν ′ > 0. The parameters ν ′

and μ were estimated in [2] by fitting Eq. (A.6) to clean-speech amplitude distributions
conditioned on a small range of high values of estimated a priori SNR.

The first of the modifications we make to this estimator concerns the number of
free parameters in Eqs. (A.6), (A.7), and (A.8). We see that μ and σS do not appear
independently in Eq. (A.6), but only as the quotient μ/σX , and therefore only repre-
sent one degree of freedom. The parameter ν represents the second degree of freedom.
Since E{A2} equals σ2

X by definition, it follows from Eq. (A.1) that

μ =
√

ν(ν + 1). (A.9)

The second modification concerns the order in which the approximation of the
bessel function is used and the derivative of Eq. (A.5) is taken. More specifically, we
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compute the amplitude MAP estimator by first taking the derivative and then using the
large-argument approximation I1/I0 ≈ 1, where I1 is the first-order modified Bessel
function of the first kind. Interestingly, the resulting MAP gain function is identical to
the joint MAP gain function in Eq. (A.8), with μ given by Eq. (A.9).
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Appendix B

Derivations for Chapter 7

B.1

In this appendix we outline the steps to compute the MAP estimator under the MNIG
distribution for the complex DFT coefficients. The derivative of fX|Y(x|y) can be
computed as

d

dx
ln[fX|Y(x|y)] =

d

dx
ln[fY|X(y|x)] +

d

dx
ln[fX(x)]

= λD
−1(y − x) +

d
dx

∫
λX

fX|ΛX
(x|λX)fΛX

(λX)dλX∫
λX

fX|ΛX
(x|λX)fΛX

(λX)dλX

= λD
−1(y − x) −

∫
λX

λ−1
X fX|ΛX

(x|λX)fΛX
(λX)dλX∫

λX
fX|ΛX

(x|λX)fΛX
(λX)dλX

Γ−1x

= λD
−1(y − x) − E

[
Λ−1

X |x
]
Γ−1x. (B.1)

Solving
d

dx
ln[fX|Y(x|y)] = 0

then leads to (7.25). Further, using [1, Th. 3.471,9] it can be shown that

E
[
Λ−1

X |x
]

=

∫
λX

λ−1
X fX|ΛX

(x|λX)fΛX
(λX)dλX∫

λX
fX|ΛX

(x|λX)fΛX
(λX)dλX

=

∫∞
λX=0

λ
−2 1

2−d/2

X exp
[
− 1

2

(
(δ2 + xT Γ−1x)λ−1

X + α2λX

)]
dλX∫∞

λX=0
λ
−1 1

2−d/2

X exp
[
− 1

2

(
(δ2 + xT Γ−1x)λ−1

X + α2λX

)]
dλX

=
(

α2

δ2 + xT Γ−1x

) 1
2 K 3+d

2

(√
α2(δ2 + xT Γ−1x)

)
K 1+d

2

(√
α2(δ2 + xT Γ−1x)

) , (B.2)

where Kd′ denotes the modified Bessel function of the second kind with order d′.
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B.2

In this appendix we outline the steps to compute the MAP estimator under the RIG
distribution for the DFT amplitudes coefficients. The derivative of fA|R(a|r) can be
computed as

d

da
ln[fA|R(a|r)] =

d

da
ln[fR|A(r|a)] +

d

da
ln[fA(a)]

= 2
−a + r

σ2
D

− 1
2a

+

∫
d
dafA|ΛX

(a|λX)fΛX
(λX)dλX∫

fA|ΛX
(a|λX)fΛX

(λX)dλX

= 2
−a + r

σ2
D

+
1
2a

− a

∫
λ−1

X fA|ΛX
(a|λX)fΛX

(λX)dλX∫
fA|ΛX

(a|λX)fΛX
(λX)dλX

= 2
−a + r

σ2
D

+
1
2a

− aE
[
Λ−1

X |a
]

(B.3)

Solving

d

da
ln[fA|R(a|r)] = 0 (B.4)

then leads to (7.35). Further, using [1, Th. 3.471,9] it can be shown that

E
[
Λ−1

X |a
]

=

∫
λ−1

X fA|ΛX
(a|λX)fΛ(λX)dλX∫

fA|ΛX
(a|λX)fΛX

(λX)dλX

=

∫
λ
−3 1

2
X exp

[
− 1

2

(
δ2 + a2

)
λ−1

X − 1
2α2λX

]
dλX∫

λ
−2 1

2
X exp

[
− 1

2 (δ2 + a2) λ−1
X − 1

2α2λX

]
dλX

=
(

α2

δ2 + a2

) 1
2 K2 1

2

(
α
√

δ2 + a2
)

K1 1
2

(
α
√

δ2 + a2
) , (B.5)

where Kd′ denotes the modified Bessel function of the second kind with order d′.
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Appendix C

Derivations for Chapter 8

C.1 Derivation of MDL Based Model Order Estimator
Without a Priori Knowledge on the Noise Level

For completeness the most important steps in deriving the standard MDL model order
estimator as derived in [1] (assuming no knowledge of the noise variance) are given
here.

The MDL criterion is defined as [1]

MDL = −log(f(y1, ...,yN |Θ)) +
1
2
z log N,

where y1, ...,yN are N iid zero mean M -dimensional multivariate Gaussian obser-
vation vectors, Θ a parameter vector of the model under consideration and z the
degree of freedom. Let ΘQ be the parameter vector of the assumed model, i.e.
ΘQ =

[
a1, ...aQ, σ2

D, CH
1 , ..., CH

Q

]
, where al, with l ∈ {1, ..., Q} are the eigenvalues

in the signal subspace, σ2
D is the noise variance and Cl, with l ∈ {1, ..., Q} are the

eigenvectors in the signal subspace. The joint probability density f(y1, ...,yN |ΘQ)
can then be written as

f(y1, ...,yN |ΘQ) =
N∏

i=1

1
πM detC(Q)

exp
[
−yH

i C(Q)−1
yi

]
. (C.1)

The log likelihood of Eq. (C.1) is then given by

L(Θ(Q)) = −N log[detC(Q)] − Ntr
[
C(Q)−1

Ĉ
]
, (C.2)

where Ĉ is the estimate of the correlation matrix, Ĉ = U

(
ΛQ 0
0 ΛM−Q

)
UH .

C(Q) is now substituted with ML estimates:

C(Q) = U

(
ΛQ 0
0 σ̂2

DIM−Q

)
UH ,
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where ΛQ ∈ R
Q×Q is a diagonal matrix with the estimated eigenvalues λ̂l with

l ∈ {1, ..., Q} of the assumed Q-dimensional signal subspace on the main diagonal.
Further, U is a ML estimate of the eigenvector matrix and σ̂2

D = 1
M−Q

∑M
l=Q+1 λ̂l is

the ML estimate of the noise under the assumed Q-dimensional signal subspace. That
U , ΛQ and σ̂2

D = 1
M−Q

∑M
l=Q+1 λ̂l are ML estimates of the eigenvector matrix, the

signal subspace eigenvalues, and noise variance will be shown in Appendix C.3.
Using the relation

det Ĉ =

(
Q∏

l=1

λ̂l

)⎛⎝ M∏
l=Q+1

λ̂l

⎞
⎠⇔

(
Q∏

l=1

λ̂−1
l

)
=

(∏M
l=Q+1 λ̂l

)
det Ĉ

,

it can be shown that L(Θ(Q)) can be written as:

L(Θ(Q)) ≡ N log

⎡
⎣

(∏M
l=Q+1 λ̂l

)
( 1

M−Q

∑M
l=Q+1 λ̂l)(M−Q)

⎤
⎦ . (C.3)

Eq. (C.3) agrees with the result in [1].

C.2 MDL Model Order Estimator with a Priori Knowl-
edge on the Noise Level

When a priori information on the noise level is present C(Q) in (C.1) is substituted
with:

C(Q) = U

(
ΛQ 0
0 σ2

DIM−Q

)
UH ,

L(Θ(Q)) then becomes

L(Θ(Q)) = −N log
[
det
(

ΛQ 0
0 σ2

DIM−Q

)]
︸ ︷︷ ︸

A

− Ntr
[(

Λ−1
Q 0
0 σ−2

D IM−Q

)(
ΛQ 0
0 ΛM−Q

)]
︸ ︷︷ ︸

B

.

part A

A = −N log
[
det
(

ΛQ 0
0 σD

2IM−Q

)]
(C.4)

= N log

⎡
⎣
(∏Q

l=1 λ̂−1
l

)
(σ2

D)(M−Q)

⎤
⎦
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using the relation: det Ĉ =
(∏Q

l=1 λ̂l

)(∏M
l=Q+1 λl

)
⇔
(∏Q

l=1 λ̂−1
l

)
=

(∏M
l=Q+1 λ̂l)
det Ĉ

A = N log

⎡
⎣ (∏M

l=Q+1 λ̂l)
det Ĉ

(σD
2)(M−Q)

⎤
⎦

= N log

⎡
⎣
(∏M

l=Q+1 λ̂l

)
(σ2

D)(M−Q)

⎤
⎦− N log

[
det Ĉ

]

part B

B = Ntr
[(

Λ−1
Q 0
0 σ−2

D IM−Q

)(
ΛQ 0
0 ΛM−Q

)]

= Ntr
[(

IQ 0
0 σ−2

D ΛM−Q

)]

= N

⎛
⎝Q + σ−2

D

M∑
l=Q+1

λ̂l

⎞
⎠

= N
(
Q + σ−2

D (M − Q)σ̂2
D

)
Combining part A and B gives:

L(Θ(Q)) = N log

⎡
⎣
(∏M

l=Q+1 λ̂l

)
(σ2

D)(M−Q)

⎤
⎦− N log

[
det Ĉ

]
− N

(
Q + (M − Q)

σ̂2

σ2
D

)

≡ N log

⎡
⎣
(∏M

l=Q+1 λ̂l

)
(σ2

D)(M−Q)

⎤
⎦− N

(
Q + (M − Q)

σ̂2
D

σ2
D

)

= N log

⎡
⎣
(∏M

l=Q+1 λ̂l

)
(σ2

D)(M−Q)

⎤
⎦− N

(
Q +

∑M
l=Q+1 λ̂l

σ2
D

)

where we left out the constant N log
[
det Ĉ

]
.

C.3 ML Estimates for MDL and Modified MDL Esti-
mator

In this appendix we derive maximum likelihood estimates for the noise variance σ2
D,

the eigenvectors Cl and the eigenvalues al, for l ∈ {1, .., Q}.
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The ML estimate σ̂2
D = 1

M−Q

∑M
l=Q+1 λ̂l can be derived by maximization of Eq.

(C.2) with respect to σ̂2
D, that is

max
σ̂2

D

L(Θ(Q))

dL(Θ(Q))
dσ̂2

D

= −N
(M − Q)

σ̂2
D

+ N

(
1

σ̂2
D

)2 M∑
l=Q+1

λ̂l = 0,

which leads when solving for σ̂2
D to σ̂2

D = 1
M−Q

∑M
l=Q+1 λ̂l

ML estimates of the eigenvectors and signal subspace eigenvalues of C(Q) can be
derived by considering the eigenvalue decomposition of C(Q)

C(Q) = C
(

AQ 0
0 AM−Q

)
CH ,

When we use a priori information on the noise level we can write AM−Q = σ2IM−Q.
To find ML estimates of the eigenvectors C we consider the log-likelihood of Eq.
(C.1), i.e.

L(Θ(Q)) = −N log[detC(Q)] − Ntr
[
C(Q)−1

Ĉ
]

(C.5)

= −N log

[
M∏
l=1

al

]
− Ntr

[
CA−1CHUΛUH

]

= −N log

[
M∏
l=1

al

]
− Ntr

⎡
⎣A−1 CHUΛUHC︸ ︷︷ ︸

G

⎤
⎦

Let G = CHUΛUHC. The matrix CHU is now an orthogonal matrix and CHUΛUHC
the eigenvalue decomposition of G. Now we can write

tr
[
A−1G

]
= tr

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

a−1
1 0 · · · 0
0 a−1

2 · · · 0
...

...
. . .

...
0 0 · · · a−1

M

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

g11 g12 · · · g1M

g21 g22

...
. . .

gM1 g1MM

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

=
M∑
l=1

a−1
l gll

and

L(Θ(Q)) = −N

M∑
l=1

log [al] − N

M∑
l=1

a−1
l gll

ML estimates of al are then found as

∂L

∂al
= −Na−1

l + Na−2
l gll,
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which leads to al = gll

Inserting this in L leads to

L = −N log

[
M∏
l=1

gll

]
− NM

To maximize L we need to minimize
∏M

l=1 gll. To find this minimum we use Hadamards
inequality:

detG ≤
M∏
l=1

gll,

with equality if and only if G is diagonal and G should be positive definite. We know
that G = CHUΛUHC. The orthogonal matrix C does not influence the determinant
of G. Therefore we can choose C = U such that Hadamards inequality leads to
equality.

Let us now use the fact that U are ML estimates of C. ML estimates of the
eigenvalues of C(Q) can then be computed by taking partial derivatives of Eq.(C.5),
i.e.

∂L(Θ(Q)

∂aj
= −N

1
aj

+ Na−2
j λ̂j = 0,

so that
aj = λ̂j .
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Samenvatting

Het belang van het vakgebied van speech enhancement, of ook wel spraakverbeter-
ing genoemd, komt voort uit het groeiende gebruik van digitale spraakverwerkende
applicaties zoals mobiele telefonie, digitale gehoorapparaten en verschillende mens-
machine communicatiesystemen. De trend dat deze applicaties meer en meer mobiel
worden gemaakt, vergroot de variëteit van potentiële storingsbronnen. Speech en-
hancement methoden kunnen worden gebruikt om de kwaliteit van deze spraakverw-
erkende applicaties te verhogen en robuuster te maken voor het gebruik onder ruizige
condities.

De naam speech enhancement refereert naar een grote groep van methoden die
allemaal tot doel hebben om bepaalde kwaliteitsaspecten van deze apparaten te ver-
hogen. Voorbeelden daarvan zijn echoreductie in spraaksignalen, het kunstmatig ver-
breden van de bandbreedte van spraaksignalen, packet loss concealment en (additieve)
ruisonderdrukking. In dit proefschrift richten we ons op additieve ruisonderdrukking
met behulp van één microfoon. In het bijzonder richten we ons op methoden die
werken in het discrete Fourier Transformatie (DFT) domein. Het hoofddoel van het
gepresenteerde onderzoek is om bestaande methoden, welke gebaseerd zijn op het
gebruik van slechts één microfoon, te verbeteren voor een uitgebreide range aan ruis-
soorten en ruisniveaus.

Het gepresenteerde onderzoek richt zich op drie verschillende onderwerpen. Al-
lereerst onderzoeken we hoe een betere schatting van de a priori signal-to-noise ratio
(SNR) uit ruizige spraak verkregen kan worden. Een goede schatting van de a priori
SNR is van cruciaal belang voor speech enhancement, omdat veel speech enhancement
schatters van deze parameter afhankelijk zijn. We richten ons op twee verschillende
aspecten van het schatten van de a priori SNR. Als eerste presenteren we een adap-
tief tijd segmentatie algoritme, wat vervolgens gebruikt wordt om de variantie van de
geschatte a priori SNR te verkleinen. Ten tweede beschrijven we een methode om de
bias van de a priori SNR te verkleinen. Deze bias is vaak aanwezig tijdens overgan-
gen tussen verschillende spraakklanken en overgangen van ruizige spraak naar ruis en
vice versa. Het gebruik van deze verbeterde schatters voor de a priori SNR leidt tot
objectieve en subjectieve verbeteringen van de kwaliteit.

Ten tweede onderzoeken we schatters voor schone spraak DFT coëfficiënten on-
der modellen waarbij rekening gehouden wordt met de eigenschappen van spraak. Dit
onderwerp wordt van twee verschillende kanten benaderd. Ten eerste beschouwen
we de afleiding van schone spraakschatters onder het gebruik van een gecombineerd
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stochastisch/deterministisch model voor de complexe spraak DFT coëfficiënten. Het
gebruik van dit model is gebaseerd op het feit dat bepaalde spraakklanken een meer de-
terministisch karakter hebben. Daarnaast beschouwen we schatters voor de complexe
schone spraak DFT coëfficiënten en de magnitude van de DFT coëfficiënten onder
de aanname dat deze super-Gaussisch verdeeld zijn. Deze aanname is gebaseerd op
gemeten histogrammen van schone spraak DFT coëfficiënten. Onder super-Gaussische
verdelingen beschrijven we twee verschillende schatters. Minimum mean-square error
(MMSE) schatters worden afgeleid onder de aanname dat de spraak DFT coëfficiënten
en spraak DFT magnitudes een gegeneraliseerde Gamma verdeling hebben. Maxi-
mum a posteriori (MAP) schatters worden afgeleid onder de aanname dat de spraak
DFT coëfficiënten verdeeld zijn volgens een multivariate normale inverse Gaussische
(MNIG) verdeling. Volgens objectieve experimenten is de performance van de schat-
ters afgeleid onder de MNIG distributie iets beter dan de performance van de schatters
afgeleid onder de gegeneraliseerde Gamma verdeling. Bovendien hebben de schatters
afgeleid onder de MNIG verdeling een aantal theoretische voordelen boven de schat-
ters afgeleid onder de gegeneraliseerde Gamma verdeling. Namelijk, de statistische
modellen in het complexe DFT domein en in het polar domein zijn consistent onder
de MNIG verdeling, wat niet het geval is voor schatters afgeleid onder de gegener-
aliseerde Gamma verdeling. Verder is het met de MNIG verdeling ook mogelijk om
vector processen te modelleren. Dit maakt het mogelijk om de afhankelijkheid tussen
reëel en imaginair deel van de DFT coëfficiënten mee te nemen.

Als laatste presenteren we een methode voor het schatten van het vermogens-
dichtheidspectrum van de ruis. Het belang voor speech enhancement van een goede
schatting van dit vermogensdichtheidspectrum volgt uit het feit dat alle schone spraak
DFT-domein gebaseerde schatters hiervan afhankelijk zijn. De ontwikkelde methode
is gebaseerd op de eigenwaarde decompositie van correlatie matrices die opgebouwd
zijn uit een tijdserie van ruizige DFT coëfficiënten. De gepresenteerde methode maakt
het mogelijk om, in tegenstelling tot de meeste bestaande methoden, het vermogens-
dichtheidspectrum van de ruis te schatten zelfs wanneer spraak continu aanwezig is.
Verder is de vertraging in het schatten van een veranderend ruisspectrum aanzienlijk
verkort in vergelijking tot bestaande state-of-the-art algoritmes.

Een aantal van de contributies in dit proefschrift kunnen worden gecombineerd
tot een compleet speech enhancement systeem. Een vergelijking is gemaakt op basis
van een luistertest tussen een systeem gebaseerd op bijdragen uit dit proefschrift en
een state-of-the-art speech enhancement systeem. Hieruit komt naar voren dat het
systeem gebaseerd op bijdragen uit dit proefschrift tot een significant betere kwaliteit
leidt.
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