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Robust Joint Estimation of Multimicrophone Signal
Model Parameters

Andreas I. Koutrouvelis , Richard C. Hendriks , Richard Heusdens , and Jesper Jensen

Abstract—One of the biggest challenges in multimicrophone ap-
plications is the estimation of the parameters of the signal model,
such as the power spectral densities (PSDs) of the sources, the early
(relative) acoustic transfer functions of the sources with respect to
the microphones, the PSD of late reverberation, and the PSDs of
microphone-self noise. Typically, existing methods estimate subsets
of the aforementioned parameters and assume some of the other
parameters to be known a priori. This may result in inconsisten-
cies and inaccurately estimated parameters and potential perfor-
mance degradation in the applications using these estimated pa-
rameters. So far, there is no method to jointly estimate all the
aforementioned parameters. In this paper, we propose a robust
method for jointly estimating all the aforementioned parameters
using confirmatory factor analysis. The estimation accuracy of the
signal-model parameters thus obtained outperforms existing meth-
ods in most cases. We experimentally show significant performance
gains in several multimicrophone applications over state-of-the-art
methods.

Index Terms—Confirmatory factor analysis, dereverberation,
joint diagonalization, multimicrophone, source separation, speech
enhancement.

I. INTRODUCTION

M ICROPHONE arrays (see e.g., [1] for an overview) are
used extensively in many applications, such as source

separation [2]–[6], multi-microphone noise reduction [1], [7]–
[13], dereverberation [14]–[19], sound source localization [20]–
[23], and room geometry estimation [24], [25]. All the afore-
mentioned applications are based on a similar multi-microphone
signal model, typically depending on the following parameters:
i) the early relative acoustic transfer functions (RATFs) of the
sources with respect to the microphones, ii) the power spec-
tral densities (PSDs) of the early components of the sources,
iii) the PSD of the late reverberation, and, iv) the PSDs of the
microphone-self noise. Other parameters, like the target cross
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power spectral density matrix (CPSDM), the noise CPSDM,
source locations and room geometry information, can be in-
ferred from (combinations of) the above mentioned parameters.
Often, none of these parameters are known a priori, while esti-
mation is challenging. Often, only a subset of the parameters is
estimated, see e.g., [14]–[17], [19], [26]–[30], typically requir-
ing rather strict assumptions with respect to stationarity and/or
knowledge of the remaining parameters.

In [15], [17] the target source PSD and the late reverberation
PSD are jointly estimated assuming that the early RATFs of the
target with respect to all microphones are known and all the
remaining noise components (e.g., interferers) are stationary in
time intervals typically much longer than a time-frame. In [19],
[26], [31], it was shown that the method in [15], [17] may lead
to inaccurate estimates of the late reverberation PSD, when the
early RATFs of the target include estimation errors. In [19], [26],
a more accurate estimator for only the late reverberation PSD
was proposed, independent of early RATF estimation errors.

The methods proposed in [27], [28] do not assume that some
noise components are stationary like in [17], but assume that
the total noise CPSDM has a constant [27] or slow-varying [28]
structure over time (i.e., it can be written as an unknown scaling
parameter multiplied with a constant spatial structure matrix).
This may not be realistic in practical acoustical scenarios, where
different interfering sources change their power and location
across time more rapidly and with different patterns. Moreover,
these methods do not separate the late reverberation from the
other noise components and only differentiate between the tar-
get source PSD and the overall noise PSD. As in [17], these
methods assume that the early RATFs of the target are known.
In [28], the structure of the noise CPSDM is estimated only in
target-absent time-frequency tiles using a voice activity detec-
tor (VAD), which may lead to erroneous estimates if the spatial
structure matrix of the noise changes during target-presence.

In [30], the early RATFs and the PSDs of all sources are es-
timated using the expectation maximization (EM) method [32].
This method assumes that only one source is active per time-
frequency tile and the noise CPSDM (excluding the contribu-
tions of the interfering point sources) is estimated assuming it is
time-invariant. Due to the time-varying nature of the late rever-
beration (included in the noise CPSDM), this assumption is often
violated. This method does not estimate the time-varying PSD of
the late reverberation, neither the PSDs of the microphone-self
noise.

While the aforementioned methods focus on estimation of
just one or several of the required model parameters, the method
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presented in [4] jointly estimates the early RATFs of the sources,
the PSDs of the sources and the PSDs of the microphone-self
noise. Unlike [30], the method in [4] does not assume single
source activity per time-frequency tile and, thus, it is applicable
to more general acoustic scenarios. The method in [4] is based on
the non-orthogonal joint-diagonalization of the noisy CPSDMs.
This method unfortunately does not guarantee non-negative es-
timated PSDs and, thus, the obtained target CPSDM may not
be positive semidefinite resulting in performance degradation.
Moreover, this approach does not estimate the PSD of the late
reverberation. In conclusion, most methods only focus on the
estimation of a subset of the required model parameters and/or
rely on assumptions which may be invalid and/or impractical.

In this paper, we propose a method which jointly estimates all
the aforementioned parameters of the multi-microphone signal
model. The proposed method is based on confirmatory factor
analysis (CFA) [33]–[36]—a statistical theory more known and
successfully applied in the field of psychology [36]—and on
the non-orthogonal joint-diagonalization principle introduced
in [4]. The combination of these two theories and the adjust-
ment to the multi-microphone case gives us a robust method,
which is applicable for temporally and spatially non-stationary
sources. Unlike the methods in [15], [17], [19], [26]–[28], the
proposed method uses linear constraints to reduce the feasibility
set of the parameter space and thus increase robustness. More-
over, the proposed method guarantees positive estimated PSDs
and, thus, positive semidefinite target and noise CPSDMs thanks
to the CFA framework. Although generally applicable, in this
manuscript, we will compare the performance of the proposed
method with state-of-the-art approaches in the context of source
separation and dereverberation.

The large number of parameters that are jointly estimated us-
ing the proposed method comes with its challenges. In this paper,
we provide several identifiability conditions which should be sat-
isfied in order to obtain reliable estimates of the parameters. For
instance, we need to guarantee that the system of equations is
sufficiently over-determined (i.e., more equations than param-
eters) in order to fit accurately the signal model to the noisy
estimated CPSDM. The over-determination is achieved either
by increasing the number of equations or by omitting the esti-
mation of some parameters which in some acoustic scenarios
do not play a significant role. For instance, if the late reverber-
ation is low and the number of equations is small, we may skip
estimating the late reverberation parameter and the estimation
accuracy of the remaining parameters might be improved due
to the increased over-determination. In this paper, we examine
scenarios with different levels of reverberation and we exper-
imentally show the trade-off between over-determination and
estimation accuracy.

The remaining part of this paper is organized as follows. In
Sec. II, the signal model, notation and used assumptions are
introduced. In Sec. III, we review the CFA theory and its re-
lation to the non-orthogonal joint diagonalization principle. In
Sec. IV, the proposed method is introduced. In Sec. V, we in-
troduce several constraints to increase the robustness of the pro-
posed method. In Sec. VI, we discuss the implementation and
practicality of the proposed method. In Sec. VII, we conduct

experiments in several multi-microphone applications using the
proposed method and existing state-of-the-art approaches. In
Sec. VIII, we draw conclusions.

II. PRELIMINARIES

A. Notation

We use lower-case letters for scalars, bold-face lower-case
letters for vectors, and bold-face upper-case letters for matrices.
A matrix A can be expressed as A = [a1, . . . ,am], where ai
is its i-th column. The elements of a matrix A are denoted as
aij . We use the operand tr(·) to denote the trace of a matrix, E[·]
to denote the expected value of a random variable, diag(A) =
[a11, · · · , amm]T to denote the vector formed from the diagonal
of a matrixA ∈ Cm×m, and || · ||2F to denote the Frobenius norm
of a matrix. We use Diag(v) to form a square diagonal matrix
with diagonal v. A hermitian positive semi-definite matrix is
expressed as A � 0, where A = AH and its eigenvalues are
real and non-negative. The cardinality of a set is denoted as | · |.
The minimum element of a vectorv is obtained via the operation
min(v).

B. Signal Model

Consider an M -element microphone array of arbitrary struc-
ture within a possibly reverberant enclosure, in which there are r
acoustic point sources (target and interfering sources). The i-th
microphone signal (in the short-time Fourier transform (STFT)
domain) is modeled as

yi(t, k) =
r∑

j=1

eij(t, k) +
r∑

j=1

lij(t, k) + vi(t, k), (1)

where k is the frequency-bin index; t the time-frame index; eij
and lij the early and late components of the j-th point source, re-
spectively; and vi denotes the microphone self-noise. The early
components include the line of sight and a few initial strong re-
flections. The late components describe the effect of the remain-
ing reflections and are usually referred to as late reverberation.
The j-th early component is given by

eij(t, k) = aij(β, k)sj(t, k), (2)

where aij(β, k) is the corresponding RATF with respect to the
i-th microphone, sj(t, k) the j-th point-source at the reference
microphone, β is the index of a time-segment, which is a col-
lection of time-frames. That is, we assume that the source sig-
nal can vary faster (from time-frame to time-frame) than the
early RATFs, which are assumed to be constant over multiple
time-frames (which we call a time-segment). By stacking all mi-
crophone recordings into vectors, the multi-microphone signal
model is given by

y(t, k)=

r∑

j=1

aj(β, k)sj(t, k)︸ ︷︷ ︸
ej(t,k)

+
∑r

j=1
lj(t, k)

︸ ︷︷ ︸
l(t,k)

+v(t, k) ∈ CM×1,

(3)
wherey(t, k) = [y1(t, k), · · · , yM (t, k)]T and all the other vec-
tors can be similarly represented. If we assume that all sources
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in (3) are mutually uncorrelated and stationary within a time-
frame, the signal model of the CPSDM of the noisy recordings
is given by

Py(t, k) =

r∑

j=1

Pej
(t, k) +Pl(t, k) +Pv(k) ∈ CM×M ,

(4)
wherePej

(t, k)=pj(t, k)aj(β, k)a
H
j (β, k),pj=E[|sj(t, k)|2]

is the PSD of the j-th source at the reference microphone,
Pl(t, k) the CPSDM of the late reverberation and Pv(k) is a
diagonal matrix, which has as its diagonal elements the PSDs
of the microphone-self noise. Note that pj(t, k) and Pl(t, k)
are time-frame varying, while the microphone-self noise PSDs
are typically time-invariant. The CPSDM model in (4) can be
re-written as

Py(t, k) = Pe(t, k) +Pl(t, k) +Pv(k), (5)

where Pe(t, k) = A(β, k)P(t, k)AH(β, k) and A(β, k) ∈
CM×r is commonly referred to as mixing matrix and has
as its columns the early RATFs of the sources. As we work
with RATFs, the row of A(β, k) corresponding to the refer-
ence microphone is equal to a vector with only ones. More-
over, P(t, k) is a diagonal matrix, where diag (P(t, k)) =

[p1(t, k), · · · , pr(t, k)]T .

C. Late Reverberation Model

A commonly used assumption (adopted in this paper) is that
the late reverberation CPSDM has a known spatial structure,
Φ(k), which is time-invariant but varying over frequency [14],
[17]. Under this constant spatial-structure assumption, Pl(t, k)
is modeled as [14], [17]

Pl(t, k) = γ(t, k)Φ(k), (6)

with γ(t, k) the PSD of the late reverberation which is unknown
and needs to be estimated. By combining (5), and (6), we obtain
the final CPSDM model given by

Py(t, k) = Pe(t, k) + γ(t, k)Φ(k) +Pv(k). (7)

There are several existing methods [15], [17]–[19], [26] to es-
timate γ(t, k) under the assumption that Φ(k) is known. There
are mainly two methodologies of obtaining Φ(k). The first is
to use many pre-calculated impulse responses measured around
the array as in [7]. The second is to use a model which is based
on the fact that the off-diagonal elements of Φ(k) depend on
the distance between every microphone pair. The distances be-
tween any two microphone pairs is described by the symmetric
microphone-distance matrix D with elements dij which is the
distance between microphones i and j. Two commonly used
models for the spatial structure are the cylindrical and spherical
isotropic noise fields [10], [37]. The cylindrical isotropic noise
field is accurate for rooms where the ceiling and the floor are
more absorbing than the walls. These models are accurate for
sufficiently large rooms [10].

Fig. 1. Splitting time into time-segments (TS), time-frames (TF), and sub-
frames (SF).

D. Estimation of CPSDMs Using Subframes

The estimation ofPy(t, k) for the t-th time-frame, is achieved
using multiple overlapping sub-frames (each of lengthN ) within
the t-th time-frame. The length of a time-frame is T � N . Let
yθ(t, k) the noisy DFT coefficients at the θ-th sub-frame and
k-th frequency-bin of the t-th time-frame. The FFT length, K,
is selected as the next power of two that is larger than N . The set
of all used sub-frames within the t-th time-frame is denoted by
Θt, and the number of used sub-frames is |Θt|. We assume that
the noisy microphone signals within a time-frame are stationary
and, thus, we can estimate the noisy CPSDM using the sample
CPSDM, i.e.,

P̂y(t, k) =
1

|Θt|
∑

θ∈Θt

yθ(t, k)y
H
θ (t, k). (8)

To summarize, we have introduced sub-frames, time-frames
and time-segments, which split time at different levels of hier-
archy. This is visualized in Fig. 1.

E. Problem Formulation

The goal of this paper is to jointly estimate the parameters
A(β, k), P(t, k), γ(t, k), and Pv(k) for the β-th time-segment
of the signal model in (7) by only having estimates of the noisy
CPSDM matrices P̂y(t, k) for all time-frames belonging to the
β-th time-segment and depending on the exact method that we
discuss, an estimate of Φ(k) and/or D. From now on, we will
neglect time-frequency indices to simplify notation and only use
time-frequency indices wherever needed to avoid ambiguity.

III. CONFIRMATORY FACTOR ANALYSIS

In this section we review the confirmatory factor analysis
(CFA) method [33], [34], [36], the simultaneous CFA (SCFA)
method [35] and their relationship to the non-orthogonal joint di-
agonalization method proposed in [4]. This review is beneficial
for understanding the proposed method in Sec. IV. CFA aims at
estimating the parameters of the following CPSDM model:

Py = APAH +Pv ∈ CM×M , (9)

where Pv = Diag([q1, · · · , qM ]T ) and P � 0. The signal
model in (9) is different from our signal model that we pre-
sented in (5) and (7). At first, unlike (7), P is not necessarily
a diagonal matrix in (9). Secondly, unlike (7), the model in (9)
does not take into account the late reverberation component.

Since we have complex values in (9), there will be a real and an
imaginary part and, thus, the number of equations and unknowns
will be doubled compared to the case where (9) consists of
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purely real values. Specifically, sincePy � 0, there areM(M +
1)/2 complex-valued equations, which means M(M + 1) real-
valued equations in total. Similarly, P has r(r + 1) unknowns,
becauseP � 0, while the matrixA has 2Mr unknowns. Finally,
the matrix Pv has M unknowns because it is a real diagonal
matrix.

In CFA, some of the real and imaginary parts of the elements in
A andP are fixed such that the remaining variables are uniquely
identifiable (see below). Specifically, let ΥR and KR denote the
sets of the selected indices of the matricesA andP, respectively,
where the real part of their elements are fixed to a known constant
ãRij , and p̃Rkν . Similarly, let ΥI and KI denote the sets of the
selected indices of the matricesA andP, respectively, where the
imaginary part of their elements are fixed to a known constant
ãIεζ , and p̃Iηι. Furthermore, let Υ = ΥR ∪ΥI and K = KR ∪
KI .

There are several existing CFA methods (see e.g., [36], for
an overview). Most of these are special cases of the following
general CFA problem

Â, P̂, P̂v = arg min
A,P,Pv

F (P̂y,Py)

s.t. Py = APAH +Pv,

Pv = Diag([q1, · · · , qM ]T ) ∈ RM×M ,

qi ≥ 0, i = 1, · · · ,M,

P � 0,

�(aij) = ãRij , ∀(i, j) ∈ ΥR,

	(aεζ) = ãIεζ , ∀(ε, ζ) ∈ ΥI ,

�(pkν) = p̃Rkν , ∀(k, ν) ∈ KR,

	(pηι) = p̃Iηι, ∀(η, ι) ∈ KI (10)

withF (P̂y,Py) a cost function, which is typically one of the fol-
lowing cost functions: maximum likelihood (ML), least squares
(LS), or generalized least squares (GLS). That is,

F (P̂y,Py)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ML): log|Py|+ tr
(
P̂yP

−1
y

)
, [34],

(LS): 1
2 ||Py − P̂y||2F , [36], [38],

(GLS): 1
2 ||P̂

− 1
2

y (Py−P̂y)P̂
− 1

2
y ||2F, [39],

(11)
where Py is given in (9). Notice, that the problem in (10) is
not convex (due to the non-convex term APAH ) and may have
multiple local minima.

In (10), for notational convenience, the cost function F (·)
is written as a function of Py which is a combination of the
parameters that we want to estimate. In addition to F (P̂y,Py)

we also use the notation F (P̂y,A,P,Pv) to explicitly express
F (·) in terms of the desired model parameters.

There are two necessary conditions for the parameters of the
CPSDM model in (9) to be uniquely identifiable.1 The first iden-
tifiability condition states that the number of equations should
be larger than the number of unknowns [36], [40]. There are
2Mr − |Υ| unknowns due to A, r(r + 1)− |K| unknowns due
to P, and M unknowns due to Pv. Thus, the first identifiability
condition is given by

M(M + 1) ≥ 2Mr + r(r + 1)− |Υ| − |K|+M. (12)

The identifiability condition in (12) is not sufficient for guar-
anting unique identifiability [36]. Specifically, for any arbitary
non-singular matrix T ∈ Cr×r, we have APAH = ÃP̃ÃH ,
where Ã = AT−1 and P̃ = TPTH , and, therefore [34]

F (P̂y,A,P,Pv) = F (P̂y, Ã, P̃,Pv). (13)

This means that there are infinitly many optimal solutions
(Ã, P̃ � 0) of the problem in (10). Since there are r2 complex
variables (i.e., 2r2 unknown imaginary and real parts) in T,
the second identifiability condition of the CPSDM model in (9)
states that we need to fix at least 2r2 of the imaginary and real
parts of the parameters in A and P [34], [40], i.e.,

|Υ|+ |K| ≥ 2r2. (14)

This second condition is necessary but not sufficient, since we
need to fix the proper parameters and not just any 2r2 param-
eters [34], [40] such that T = I. For a general full-element P,
a recipe on which parameters to fix, in order to achieve unique
identifiability, is provided in [34].

A. Simultaneous CFA (SCFA) in Multiple Time-Frames

The β-th time-segment consists of the following |Bβ | time-
frames: t = β|Bβ |+ 1, · · · , (β + 1)|Bβ |, where Bβ is the set
of the time-frames in the β-th time-segment. For ease of nota-
tion, we can alternatively re-write this as ∀t ∈ Bβ . The problem
formulation in (10) considered that the β-th time-segment con-
sists of |Bβ | = 1 time-frame. Now we assume that we estimate
P̂y(t) for |Bβ | ≥ 1 time-frames in the β-th time-segment. We
also assume that ∀(ti, tj) ∈ Bβ , P̂y(ti) 
= P̂y(tj), if i 
= j. Re-
call that the mixing matrix A is assumed to be static within a
time-segment. Moreover, Pv is time-invariant and, thus, shared
among different time-frames within the same time-segment. One
can exploit these two facts in order to increase the ratio between
the number of equations and the number of unknown parame-
ters [33], [35] and thus satisfy the first and second identifiability
conditions with less microphones compared to the CFA prob-
lem in (10). This can be done by solving the following general
simultaneous CFA (SCFA) problem [35]

Â, {P̂(t) : ∀t ∈ Bβ}, P̂v= arg min
A,Pv

{P̂(t):∀t∈Bβ}

∑

∀τ∈Bβ

F (P̂y(τ),Py(τ))

s.t. Py(t) = AP(t)AH +Pv, ∀t ∈ Bβ ,

Pv = Diag([q1, · · · , qM ]T ) ∈ RM×M ,

1We say that the parameters of a function are uniquely identifiable if there is
one-to-one relationship between the parameters and the function value.
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qi ≥ 0, i = 1, · · · ,M,

P(t) � 0, ∀t ∈ Bβ ,

�(aij) = ãRij , ∀(i, j) ∈ ΥR,

	(aεζ) = ãIεζ , ∀(ε, ζ) ∈ ΥI ,

�(pkν)(t) = p̃Rkν(t), ∀(k, ν) ∈ KR
t , ∀t ∈ Bβ ,

	(pηι)(t) = p̃Iηι(t), ∀(η, ι) ∈ KI
t , ∀t ∈ Bβ . (15)

The CFA problem in (10) is a special case of SCFA, when we
select |Bβ | = 1. The first identifiability condition for the SCFA
problem becomes

|Bβ |M(M + 1) ≥ 2Mr + |Bβ |r(r + 1)− |Υ|

−
∑

∀t∈Bβ

|Kt|+M. (16)

We conclude from (12) and (16) that the SCFA problem (for
|Bβ | > 1) needs less microphones compared to the problem in
(10) to satisfy the first identifiability condition, assuming both
problems have the same number of sources. Moreover, the sec-
ond identifiability condtion in the SCFA problem becomes

|Υ|+
∑

∀t∈Bβ

|Kt| ≥ 2r2. (17)

From (14) and (17), we conclude that the SCFA problem
(for |Bβ | > 1) satisfies easier the second identifiability condi-
tion compared to the problem in (10), if both problems have the
same number of sources and microphones.

B. Special Case (S)CFA: P(t) is Diagonal

A special case of (S)CFA, which is more suitable for the ap-
plication at hand, is when P(t), ∀t ∈ Bβ are constrained to be
diagonal. This is similar to our assumed signal model as ex-
pressed by (5) and (7). We refer to this special case as the diag-
onal (S)CFA problem. By constraining P(t) to be diagonal, the
total number of fixed parameters in A,P(t), ∀t ∈ Bβ is

|Υ|+
∑

∀t∈Bβ

|Kt| = |Υ|+ |Bβ |(r2 − r) + |Bβ |r︸ ︷︷ ︸
|Bβ |r2

. (18)

The term |Bβ |(r2 − r) is due to the constraints that set to
zero the upper-diagonal off-diagonal complex elements. Since
P(t) � 0, it is implied that the lower-diagonal off-diagonal com-
plex elements are also set to zero. The term |Bβ |r in (18) is due
to the constraint P(t) � 0 which means that the r unknown di-
agonal elements inP(t) should be real and, thus, their imaginary
part can be set to zero. It has been shown in [41], [42] that in this
case, and for r > 1, the class of the only possible T is T = ΠS,
where Π is a permutation matrix and S is a scaling matrix, if
the following condition is satisfied

2κA + κZ ≥ 2(r + 1), (19)

where

Z =
[
z1 z2 · · · z|Bβ |

]
, zt = diag (P(t)) , t ∈ Bβ , (20)

TABLE I
MAXIMUM r AS A FUNCTION OF VARYING M , |Bβ | SUCH THAT (23) AND (22)

ARE SATISFIED

and κA, κZ are the Kruskal-ranks [41] of the matrices A and
Z, respectively. We conclude, that if (16) is satisfied, and there
are at least 2r2 fixed real and imaginary parts of the variables
in A and P(t), ∀t ∈ Bβ , and the condition in (19) is satisfied,
then the parameters of (9) (for P(t) diagonal) will be uniquely
identifiable up to a possible scaling and/or permutation.

C. Diagonal SCFA versus Nonorthogonal Joint
Diagonalization

The diagonal SCFA problem in Sec. III-B is very similar to
the joint diagonalization method in [4], apart from the two pos-
itive semidefinite constraints that avoid improper solutions, and
which are lacking in [4]. Finally, it is worth mentioning that the
method proposed in [4] solves the scaling ambiguity by setting
�(aii) = 1,	(aii) = 0 (corresponding to a varying reference
microphone per-source), which means 2r fixed parameters in
A, i.e., |Υ| = 2r. Thus, in [4], the total number of fixed param-
eters in A,P(t), ∀t ∈ Bβ is given by

|Υ|+
∑

∀t∈Bβ

|Kt| = 2r + |Bβ |r2. (21)

By combining (21) and (17), the second identifiability condi-
tion becomes

2r + |Bβ |r2 ≥ 2r2. (22)

Note that for r ≥ 1, if |Bβ | ≥ 2, the second identifiability
condition is always satisfied, but the permutation ambiguity still
exists and needs extra steps to be resolved [4]. However, for r =
1, the second identifiability condition is satisfied for |Bβ | ≥ 1
and there are no permutation ambiguities. By combining (21),
and (16), the first identifiability condition for the diagonal SCFA
with |Υ| = 2r becomes

|Bβ |M(M + 1) ≥ 2Mr + |Bβ |r − 2r +M. (23)

Table I shows what is the maximum r for a varying M and
|Bβ | such that both (23) and (22) hold.

IV. PROPOSED DIAGONAL SCFA PROBLEMS

In this section, we will propose two methods based on the di-
agonal SCFA problem from Sec. III-B to estimate the different
signal model parameters in (7). Unlike the diagonal SCFA prob-
lem and the non-orthogonal joint diagonalization method in [4],
the first proposed method also estimates the late reverberation
PSD. The second proposed method skips the estimation of the
late reverberation PSD and thus is more similar to the diago-
nal SCFA problem and the non-orthogonal joint diagonalization



KOUTROUVELIS et al.: ROBUST JOINT ESTIMATION OF MULTIMICROPHONE SIGNAL MODEL PARAMETERS 1141

method in [4]. Since we are using the early RATFs as columns
of A, we fix all the elements of the ρ-th row of A to be equal to
1, where ρ is the reference microphone index. Thus, unlike the
method proposed in [4], which uses a varying reference micro-
phone (i.e., �(aii) = 1,	(aii) = 0), we use a single reference
microphone (i.e., �(aρj) = 1,	(aρj) = 0).

Although our proposed constraints �(aρj) = 1,	(aρj) = 0
will resolve the scaling ambiguity (described in Sec III-B), the
permutation ambiguity (described in Sec III-B) still exists and
needs extra steps to be resolved. In this paper, we do not focus
on this problem and we assume that we know the perfect permu-
tation matrix per time-frequency tile. The interested reader can
find more information on how to solve permutation ambiguities
in [4]–[6]. An exception occurs in the context of dereverbera-
tion where, typically, a single point source (i.e., r = 1) exists
and, therefore, a single fixed complex-valued parameter in A is
sufficient to solve both the permutation and scaling ambiguities.

A. Proposed Diagonal SCFA Problem

The proposed basic diagonal SCFA problem is based on the
signal model in (7), which takes into account the late reverber-
ation. Here we assume that we have computed a priori Φ̂. The
proposed diagonal SCFA problem is given by

Â,{P̂(t):∀t∈Bβ},
P̂v,{γ̂(t):∀t∈Bβ}

= arg min
A,{P(t):∀t∈Bβ},
Pv,{γ(t):∀t∈Bβ}

∑

∀τ∈Bβ

F (P̂y(τ),Py(τ))

s.t. Py(t) = AP(t)AH + γ(t)Φ̂+Pv, ∀t ∈ Bβ

Pv = Diag([q1, · · · , qM ]T ) ∈ RM×M ,

qi ≥ 0, i = 1, · · · ,M,

P(t)=Diag([p1(t), · · · , pr(t)]T ) ∈ RM×M , ∀t ∈ Bβ ,

pj(t) ≥ 0, ∀t ∈ Bβ , j = 1, · · · , r,
γ(t) ≥ 0, ∀t ∈ Bβ ,

�(aρj) = 1, for j = 1, · · · , r,
	(aρj) = 0, for j = 1, · · · , r. (24)

We will refer to the problem in (24) as the SCFArev prob-
lem. The cost function of the SCFArev problem depends on γ(t).
This means that we have |Bβ | additional real-valued unknowns
in (23). The first identifiability condition therefore becomes

|Bβ |M(M + 1) ≥ 2Mr + |Bβ |r − 2r + |Bβ |+M. (25)

A simplified version of the SCFArev problem is obtained when
the reverberation parameter γ is omitted. This problem therefore
uses the signal model of (9) instead of (7). We will refer to
this simplified problem as the SCFAno-rev problem. The only
differences between the SCFAno-rev and the method proposed [4],
is that in the SCFAno-rev we use a fixed reference microphone and
positivity constraints for the PSDs.

Since, we have 2r fixed parameters in A corresponding to
the reference microphone, in both proposed methods, the total
number of fixed parameters in A and P(t), ∀t ∈ Bβ is the same

as in (21). The second identifiability condition of all proposed
methods is therefore the same as in (22).

B. SCFArev versus SCFAno-rev

Although the SCFArev method typically fits a more accu-
rate signal model to the noisy measurements compared to the
SCFAno-rev method, it does not necessarily guarantee a better
performance over the SCFAno-rev method. In other words, the
model-mismatch error is not the only critical factor in achiev-
ing good performance. Another important factor is how over-
determined is the system of equations to be solved is, i.e., what is
the ratio of number of equations and number of unknowns. With
respect to the over-determination factor, the SCFAno-rev method
is more efficient, since it has less parameters to estimate, if Bβ

is the same in both methods. Consequently, the problem boils
down to how much is the model-mismatch error and the over-
determination. Thus, it is natural to expect that for not highly
reverberant environments, the SCFAno-rev method may perform
better than the SCFArev method, while for highly reverberant
environments the inverse may hold.

V. ROBUST ESTIMATION OF PARAMETERS

In Secs. V-A–V-E, we propose additional constraints in or-
der to increase the robustness of the initial versions of the two
diagonal SCFA problems proposed in Sec. IV. The robustness
is needed in order to overcome CPSDM estimation errors and
model-mismatch errors. We use linear inequality constraints
(mainly simple box constraints) on the parameters to be esti-
mated. These constraints limit the feasibility set of the parame-
ters to be estimated and avoid unreasonable values.

A less efficient alternative procedure to increase robustness
would be to solve the proposed problems with a multi-start op-
timization technique such that a good local optimum will be
obtained. Note that this procedure is more computational de-
manding and also (without the box constraints) does not guar-
antee estimated parameters that belong in a meaningful region
of values.

A. Constraining the Summation of PSDs

If the model in (7) perfectly describes the acoustic scene, the
sum of the PSDs of the point sources, late reverberation, and
microphone self-noise at the reference microphone equals pyρρ
(where ρ is the reference microphone index and pyρρ is the (ρ, ρ)
element of Py). That is,

||diag (P) ||1 + γφρρ + qρ = pyρρ, (26)

where φρρ is the ρ-th diagonal element of Φ. In practice, the
model is not perfect and have an estimate p̂yρρ. Therefore, the
following box constraint is introduced, that is,

0 ≤ ||diag (P) ||1 + γφ̂ρρ + qρ ≤ δ1p̂
y
ρρ, (27)

where δ1 is a constant which implicitly depends on the variance
of the estimator of pyρρ and which effectively controls the under-
estimation or overestimation of the PSDs. This box constraint
can be used to improve the robustness of the SCFArev problem,
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but cannot be used by the SCFAno-rev problem, since it does not
estimate γ. A less tight box constraint that can be used for both
SCFAno-rev, SCFArev problems is

0 ≤ ||diag (P) ||1 ≤ δ2p̂
y
ρρ. (28)

One may see the inequality in (28) as a sparsity constraint,
natural in audio and speech processing as the number of the
active sound sources is small (typically much smaller than the
maximum number of sources, r, existing in the acoustic scene)
for a single time-frequency tile. In this case, δ2 controls the
sparsity. A low δ2 implies large sparsity, while a large δ2 implies
low sparsity. The sparsity is over frequency and time.

B. Box Constraints for the Early RATFs

Extra robustness can be achieved if the elements of the early
RATFs are box-constrained as follows:

lij,R ≤ �(aij) ≤ uij,R, lij,I ≤ 	(aij) ≤ uij,I , (29)

where uij,R and lij,R are some upper and lower bounds, re-
spectively of �(aij), while uij,I , and lij,I are some upper and
lower bounds, respectively of 	(aij).2 We select the values of
uij,R, lij,R, uij,I , and lij,I based on relative Green functions. Let
us denote with fj ∈ R3×1 the location of the j-th source, withmi

the location of the i-th microphone, and with dij = ||fj −mi||2
the distance between the j-th source and i-th microphone. The
anechoic ATF (direct path only) at the frequency-bin k between
the j-th source i-th microphone is given by [43]

ãij(k) =
1

4πdij
exp

(
−j2πk

K

dij
c

)
, (30)

where K is the FFT length, c is the speed of sound, and dij/c
is the time of arrival (TOA) of the j-th source to the i-th micro-
phone. The corresponding anechoic relative ATF with respect to
the reference microphone ρ is given by

aij(k) =
ãij(k)

ãρj(k)
=

dρj
dij

exp

(
−j2πk

K

(dij − dρj)

c

)
, (31)

where (dij − dρj) /c is the time difference of arrival (TDOA)
of the j-th source between microphones i and ρ. What becomes
clear from (31) is that the anechoic relative ATF depends only
on the two unknown parameters dij , dρj . The upper and lower
bounds of the real and imaginary parts of (31) can be written
compactly using the following box inequality

− dρj
dij

≤ � (aij(k)) ,	 (aij(k)) ≤
dρj
dij

. (32)

Among all the points on the circle with any constant radius
and center the middle point between microphones with indices i
and ρ, the inequality in (32) becomes maximally relaxed for the
maximum possible dρj and minimum possible dij , i.e., when the
ratio dρj/dij becomes maximum. This happens when the j-th
source is in the endfire direction of the two microphones and

2An alternative method would be to constrain ||aij || with lower and upper
bounds but that would lead to a non-linear inequality constraint and, thus, a more
complicated implementation.

closest to i-th microphone. In this case we have dρj = dρi + dij
and, therefore, (32) becomes

−dρi + dij
dij

≤ � (aij(k)) ,	 (aij(k)) ≤
dρi + dij

dij
. (33)

In the inequality in (33), the parameters dρi, dij are unknown.
Now, we try to relax this inequality and find ways that are inde-
pendent of these unknown parameters.

Note that the quantity |dij − dρj |/c (in seconds) should not
be allowed to be greater than the sub-frame length in seconds,
i.e., N/fs, where N is the sub-frame length in samples. If it
is greater than N/fs, the signal model given in (7) is invalid,
i.e., the CPSDM of the j-th point source cannot be written as
a rank-1 matrix, because it will not be fully correlated between
microphones i, ρ. Therefore, we have

|dij − dρj |
c

≤ N

fs
⇐⇒ |dij − dρj | ≤

Nc

fs
. (34)

Note that the inequality in (34) should also hold in the endfire
direction of the two microphones, which means

dρi ≤
Nc

fs
. (35)

The inequality in (33) is maximally relaxed for the maximum
possible dρi and the minimum possible dij . The maximum al-
lowable dρi is given by (35). Moreover, another practical obser-
vation is that the sources cannot be in the same location as the
microphones. Therefore, we have

dij ≥ λ, (36)

where λ is a very small distance (e.g., 0.01 m). Therefore, the
maximum range of the real and imaginary parts of the relative
anechoic ATF is given by

−
Nc
fs

+ λ

λ
≤ � (aij(k)) ,	 (aij(k)) ≤

Nc
fs

+ λ

λ
. (37)

The above inequality is based on anechoic free-field RATFs.
In practice, we have early RATFs which include early echoes
and/or directivity patterns which means that we might want to
make the box constraint in (37) less tight.

C. Tight Box Constraints for the Early RATFs Based on D̂

In Sec. V-B we proposed the box constraints in (37) based
on practical considerations without knowing the distance be-
tween sensors or between sources and sensors. In this section
we assume that we have an estimate of the distance matrix (see
Sec. II-C), D̂. Consequently we know d̂ρi and, therefore, we can
make the box constraint in (37) even tighter. That is,

− d̂ρi + λ

λ
≤ � (aij(k)) ,	 (aij(k)) ≤

d̂ρi + λ

λ
. (38)

D. Box Constraints for the Late Reverberation PSD

In this section, we take into consideration the late reverbera-
tion. We can be almost certain that the following box constraint
is satisfied:

0 ≤ γ(t, k)min
(

diag(Φ̂)
)
≤ min

[
diag

(
P̂y(t, k)

)]
. (39)
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This box constraint is only applicable in the SCFArev problem.
The box-constraint in (39) prevents large overestimation errors
which may result in speech intelligibility reduction in noise re-
duction applications [18], [44].

E. All Microphones Have the Same Microphone-Self
Noise PSD

Here we examine the special case where Pv(k) = q(k)I, i.e.,
all microphones have the same self-noise PSD. Moreover, since
the microphone self-noise is stationary, we can be almost certain
that the following box-constraint holds

0 ≤ q(k) ≤ min
∀t∈Bβ

(
min

[
diag

(
P̂y(t)

)])
. (40)

Similar to the constraint in (39), the constraint in (40) avoids
large overestimation errors.

By having a common self-noise PSD for all microphones, the
number of parameters are reduced byM − 1, since we have only
one microphone-self noise PSD for all microphones. Hence, the
first identifiability condition for the SCFAno-rev problem is now
given by

|Bβ |M(M + 1) ≥ 2Mr + |Bβ |r − 2r + 1. (41)

Similarly, the first identifiability condition for the SCFArev

problem is now given by

|Bβ |M(M + 1) ≥ 2Mr + |Bβ |r − 2r + |Bβ |+ 1. (42)

VI. PRACTICAL CONSIDERATIONS

In this section, we discuss practical problems regarding
the choice of several parameters of the proposed methods
and implementation aspects. Although, we have already ex-
plained the problem of over-determination in Sec. IV-B, in
Sec VI-A, we discuss additional ways of achieving over-
determination. In Sec. VI-B, we discuss about some limitations
of the proposed methods. Finally, in Secs. VI-C and VI-D, we
discuss how to implement the proposed methods.

A. Over-Determination Considerations

Increasing the ratio of the number of equations over the num-
ber of unknowns obviously fits better the CPSDM model to
the measurements under the assumption that the model is accu-
rate enough and the early RATFs do not change within a time-
segment. There are two main approaches to increase the ratio of
the number of equations over the number of unknowns. The first
approach is to reduce the number of the parameters to be esti-
mated while fixing the number of equations as already explained
in Sec. IV-B. In addition to the explanation provided in IV-B, we
could also reduce the number of parameters by source counting
per time-frequency tile and adapt r. However, this is out of the
scope of the present paper and here we assume that we have
a constant r in the entire time-frequency horizon which is the
maximum possible r. The second approach is to increase the
number of time-frames |Bβ | in a time-segment and/or the num-
ber of microphones M . Increasing |Bβ | is not practical, because
typically, the acoustic sources are moving. Thus, |Bβ | should

not be too small but also not too large. Note that |Bβ | is also ef-
fected by the time-frame length denoted by T . If T is small we
can use a larger |Bβ |, while if T is large, we should use a small
|Bβ | in order to be able to also track moving sources. However,
if we select T to be very small, the number of sub-frames will
be smaller and consequently the estimation error in P̂y will be
large and will cause performance degradation.

B. Limitations of the Proposed Methods

From the identifiability conditions in (23), (25), (41) and (42)
for fixed |Bβ | and r, we can obtain the minimum number of mi-
crophones needed to satisfy these inequalities. Alternatively, for
a fixed M and r we can obtain the minimum number of time-
frames |Bβ | needed to satisfy these inequalities. Finally, for a
fixed M and |Bβ | we can find the maximum number of sources
r for which we can identify their parameters (early RATFs and
PSDs). Let M1, M2, M3 and M4 the minimum number of mi-
crophones satisfying the identifiability conditions in (23), (25),
(41) and (42), respectively. Moreover, let J1, J2, J3 and J4 the
minimum number of time-frames satisfying the identifiability
conditions in (23), (25), (41) and (42), respectively. In addition,
let R1, R2, R3 and R4 the maximum number of sources satis-
fying the identifiability conditions in (23), (25), (41) and (42),
respectively. The following inequalities can be easily proved:

M3 ≤ M4, M1 ≤ M2, M4 ≤ M2, M3 ≤ M1,

J3 ≤ J4, J1 ≤ J2, J4 ≤ J2, J3 ≤ J1,

R3 ≥ R4, R1 ≥ R2, R4 ≥ R2, R3 ≥ R1.

C. Online Implementation Using Warm-Start

The estimation of the parameters is carried out for all time-
frames within one time-segment. Subsequently, in order to have
low latency, we shift the time-segment one time-frame. For the
|Bβ | − 1 time-frames in the current time-segment that overlap
with the time-frames in the previous time-segment, the param-
eters are initialized using the estimates from the corresponding
|Bβ | − 1 time-frames in the previous time-segment. The param-
eters of the most recent time-frame are initialized by selecting a
value that is drawn from a uniform distribution with boundaries
corresponding to the lower and upper bound of the correspond-
ing box constraint. Only for the first time-segment, the early
RATFs are initialized with the r most dominant relative eigen-
vectors from the averaged CPSDM over all time-frames of the
first time-segment.

D. Solver

For a single frequency-bin of the β-th time segment, the vari-
ables of our proposed optimization problem are stacked in a
real-valued vector ξ ∈ R(r(2M−2)+r|Bβ |+|Bβ |+M)×1. The vec-
tor ξ can be mapped to the matrix Py through the function
f(ξ) = Py.

The optimal ξ̂ is computed iteratively. Specifically, in the k +
1-th iteration, the vector ξ is computed as

ξ(k+1) = U
(
ξ(k),∇ξF

(
P̂y, f(ξ

(k))
)
,∇2

ξF (P̂y, f(ξ
(k)))

)
,
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where ∇ξF (P̂y, f(ξ
(k))), ∇2

ξF (P̂y, f(ξ
(k))) are the gradient

and Hessian matrix ofF (·)with respect to ξ at ξ(k), respectively,
and U(·) is the update procedure. The update procedure updates
ξ such that all the inequality constraints that we have proposed
are satisfied and

F
(
P̂y, f(ξ

(k+1))
)
≤ F

(
P̂y, f(ξ

(k))
)
. (43)

The update procedure terminates when a local minimum is
found. The first-order derivatives of the cost functions in (11)
with respect to most parameters have been obtained already
in [4], [34]–[36] without taking into account the late reverbera-
tion PSD. Thus, here we provide only the first-order derivatives
with respect to the late reverberation PSD parameter. We have

ML:
∂F (P̂y,Py)

∂γ
= tr

(
P−1

y

(
Py − P̂y

)
P−1

y Φ̂
)
,

LS:
∂F (P̂y,Py)

∂γ
= tr

((
Py − P̂y

)
Φ̂
)
,

GLS:
∂F (P̂y,Py)

∂γ
= tr

(
P̂−1

y

(
Py − P̂y

)
P̂−1

y Φ̂
)
.

In this paper, we computed the Hessian using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) approximation [36]. The
non-convex optimization problems that we proposed can be
solved with various existing update procedures within the lit-
erature such as [45]–[48]. In this paper, we used the update
procedure fmincon from the standard MATLAB optimization
toolbox to solve the optimization problems which implements a
combination of the iterative methods in [46]–[48].

VII. EXPERIMENTS

In this section, we evaluate the performance of the proposed
methods in the context of two multi-microphone applications.
The first application is dereverberation of a single point source
(r = 1). The second application is source separation combined
with dereverberation examined in an acoustic scene with r = 3
point sources. In this paper, we use the perfect permutation
matrix for all compared methods in the source separation ex-
periments. For these experiments we selected the maximum-
likelihood (ML) cost function in (11). The values of the param-
eters that we selected for both applications are summarized in
Table II. All methods based on the diagonal SCFA methodology
are implemented using the online implementation explained in
Sec. VI-C. The acoustic scene we consider for the source sepa-
ration example is depicted in Fig. 2. The acoustic scene we con-
sider for the dereverberation example is similar with the only
difference that the music signal and male talker sources (see
Fig. 2) are not present. The room dimensions are 7 × 5 × 4 m.
The reverberation time for the dereverberation application is se-
lected T60 = 1 s, while for the source separation, T60 = 0.2 and
0.6 s. The microphone signals have a duration of 50 s and the
duration of the impulse responses used to construct the micro-
phone signals is 0.5 s. The microphone signals were constructed
using the image method [43]. The microphone array is circular
with a consecutive microphone distance of 2 cm. The reference

TABLE II
SUMMARY OF PARAMETERS USED IN THE EXPERIMENTS

Fig. 2. Acoustic scene with r = 3 sources and M = 4 microphones.

microphone is the right-top microphone in Fig. 2. Moreover, we
assume that the microphone-self noise has the same PSD at all
microphones. Finally, it is worth mentioning that the early part
of a room impulse response (see Sec. II-B) is of the same length
as the sub-frame length.

A. Performance Evaluation

We will perform two types of performance evaluations in both
applications. The first one measures the error of the estimated pa-
rameters, while the second one measures the performance using
the estimated parameters in a source estimation algorithm and
measure instrumental intelligibility and sound quality of the es-
timated source waveforms. We measure the average PSD errors
of the sources, the average PSD error of the late reverberation,
and the average PSD error of the microphone-self noise using
the following three measures [49]:

Es =
10

C(K/2 + 1)r

C∑

t=1

K/2+1∑

k=1

r∑

j=1

∣∣∣∣log
pj(t, k)

p̂j(t, k)

∣∣∣∣ (dB), (44)
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Fig. 3. Dereverberation results: The proposed methods are denoted by
SCFArev1 and SCFArev2. The ref. is the reference method reviewed in Sec. VII-B.

Eγ =
10

C(K/2 + 1)

C∑

t=1

K/2+1∑

k=1

∣∣∣∣log
γ(t, k)

γ̂(t, k)

∣∣∣∣ (dB), (45)

Ev =
10

C(K/2 + 1)

C∑

t=1

K/2+1∑

k=1

∣∣∣∣log
q(t, k)

q̂(t, k)

∣∣∣∣ (dB), (46)

whereC is the number of time-frames in the microphone record-
ings. We also compute the underestimates (denoted as above
with superscript un) and overestimates (denoted as above with
superscript ov) of the above averages as in [44] since a large
overestimation error in the noise PSDs and a large underestima-
tion error in the target PSD typically results in large target source
distortions in the context of a noise reduction framework [44].
On the other hand, a large underestimation error in the noise
PSDs may result in musical noise [44]. We also evaluate the
average early RATF estimation error using the Hermitian angle
measure [50] given by

EA=

∑r
j=1

∑V
β=1

∑K/2+1
k=1 acos

( |aH
j (β,k)âj(β,k)|

||aH
j (β,k)||2||âj(β,k)||2

)

V (K/2 + 1)r
(rad),

(47)
where V is the number of time-segments in the micro-
phone recordings. Since, we use the warm-start procedure in

Fig. 4. Underestimates (with superscript un) and overestimates (with super-
script ov): The proposed methods are denoted by SCFArev1 and SCFArev2. The
ref. is the reference method described in Sec. VII-B.

Sec. VI-C in which the consecutive time-segments highly over-
lap, V is approximately equal to C. If the PSD of a source in
a frequency-bin is negligible for all time-frames within a time-
segment, the estimated PSD and RATF of this source at that
time-frequency tile are skipped from the above averages.

To evaluate the intelligibility and quality of the j-th target
source signal, the estimated parameters are used to construct
a multi-channel Wiener filter (MWF) as a concatenation of a
single-channel Wiener filter (SWF) and a minimum variance
distortionless response (MVDR) beamformer [1]. That is,

ŵj =
p̂j

p̂j + ŵH
j,MVDRP̂j,nŵj,MVDR

ŵj,MVDR, (48)

and

ŵj,MVDR =
P̂−1

j,nâj

âHj P̂−1
j,nâj

, (49)

where

P̂j,n =
∑

∀i
=j

p̂iâiâ
H
i + γ̂Φ+ q̂I. (50)

The noise reduction of the j-th source is evaluated using
the segmental-signal-to-noise-ratio (SSNR) [51] for the j-th
source only in sub-frames where the j-th source is active af-
ter which we average the SSNRs over all sources. Moreover,
for speech sources, we measure the predicted intelligibility with
the speech intelligibility in bits (SIIB) measure [52], [53], as
it has been shown in [53] that SIIB correlates reasonably well
with speech intelligibility in scenarios of processed reverberated
noisy speech. Subsequently, we average SIIB over all speech
sources. Finally, for the dereverberation application we mea-
sure the predicted quality and intelligibility with the speech to
reverberation modulation energy ratio (SRMR) measure [54].
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Fig. 5. Source separation results for T60 = 0.2 s: Comparison of m. Parra method and the proposed blind methods SCFAno-rev and SCFAno-rev1.

B. Reference State-of-the-Art Dereverberation and
Parameter-Estimation Methods

The reference method that we use in our comparison is a
combination of the methods in [8], [15], [19], [26], [28], [55].
Specifically, we first estimate the PSD of the late reverberation
using the method proposed in [19], [26]. That is, we first com-
pute the Cholesky decomposition Φ̂ = LΦL

H
Φ after which we

compute the whitened estimated noisy CPSDM as

Pw1 = L−1
Φ P̂y(L

H
Φ)−1. (51)

Next, we compute the eigenvalue decomposition Pw1 =
VRVH , where the diagonal entries of R are sorted in descend-
ing order. The PSD of the late reverberation is then computed
as

γ̂ =
1

M − 1

M∑

i=2

Rii. (52)

Having an estimate of the late reverberation, we compute the
noise CPSDM matrix as P̂n = γ̂Φ̂+Pv and use it to estimate
the early RATF and PSD of the target in the sequel.

We estimate the early RATF of the target using the method
proposed in [8], [55]. We first compute the Cholesky decompo-
sition P̂n = LnL

H
n . We then compute the whitened estimated

noisy CPSDM as Pw2 = L−1
n P̂y(L

H
n )−1. Next, we compute

the eigenvalue decomposition Pw2 = VRVH , where the diag-
onal entries of R are sorted in descending order. We compute
the early RATF as

â =
LnV1

eT1 LnV1
, (53)

with e1 = [1, 0, · · · , 0]T . We improve even further the accuracy
of the estimated RATF by estimating the RATFs of all time-
frames within each time-segment and then use the average of
these as the RATF estimate. Finally, the target PSD is estimated
as proposed in [15], [28], i.e.,

p̂ = ŵH
MVDR

(
P̂y − P̂n

)
ŵMVDR, (54)

where ŵMVDR is given in (49).

C. Dereverberation

We compare two different versions of the proposed SCFArev

problem in (24) referred to as SCFArev1 and SCFArev2. Unlike the
SCFAno-rev problem (see Sec. IV-A), the SCFArev problem also

Fig. 6. Source separation results forT60 = 0.2 s: Comparison of the proposed
SCFAno-rev2, SCFArev1 and SCFArev2 methods, which assume knowledge of D,
and the proposed blind method denoted by SCFAno-rev1.

estimates the late reverberation PSD and thus is more appropriate
in the context of dereverberation. Both versions use the box
constraint for the γ parameter in (39) and the box constraint
of the early RATF in (38). Moreover, since we assume that the
microphones-self noise PSDs are all equal, both versions will
use the box constraint in (40). Both methods use the true distance
matrix D̂ = D. The SCFArev1 uses the linear inequality in (27),
while the SCFArev2 does not use a constraint for the sum of PSDs.
We also include in the comparisons the state-of-the-art approach
described in Sec. VII-B (denoted as ref.). The reference method
does not estimate the microphone-self noise PSD and we assume
for the reference method that we have a perfect estimate, i.e.,
Pv = qI. We consider a single target source without interfering
signals so that the signal model in (7) reduces to

Py = p1a1a
H
1 + γΦ+ qI︸ ︷︷ ︸

Pn

. (55)
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Fig. 7. Source separation results for T60 = 0.6 s: Comparison of m. Parra method and the proposed blind methods SCFAno-rev and SCFAno-rev1.

After having estimated all the model parameters for the pro-
posed and reference methods, the estimated parameters are used
within the MWF given in (48), which is applied to the reverber-
ant target source in order to enhance it.

Fig. 3 shows the results of the compared methods. The in-
put SSNR of the female talker at the reference microphone is
−9.73 dB. It is clear that in almost all evaluation criteria both
proposed methods are significantly outperforming the reference
method, except for the overall source PSD error Es. However,
the proposed methods have all larger intelligibility gain and
better noise reduction performance compared to the reference
method for |Bβ | ≥ 2. Fig. 4 shows the underestimates and over-
estimates for the PSDs. It is clear that although the overall PSD
error Es is lower for the reference method, the proposed method
has a lower underestimation error for the target,Eun

s , and a lower
overestimation for the noise, Eov

γ , which means less distortions
to the target signal and therefore increased intelligibility.

D. Source Separation

We consider r = 3 source signals. In this acoustic scenario,
the signal model is given by

Py = Pe + γΦ+ qI. (56)

First we estimate the signal model parameters. We exam-
ine the performance of the proposed SCFAno-rev method (see
Sec. IV-A) and the proposed methods SCFAno-rev1, SCFAno-rev2,
SCFArev1, SCFArev2. Unlike the methods SCFArev1, SCFArev2,
the methods SCFAno-rev1 and SCFAno-rev2 are based on the
SCFAno-rev problem. The SCFAno-rev2 method uses the box con-
straints in (28), (38) (which assumes full knowledge of D̂ = D),
and (40). We also use the method SCFAno-rev1 where the only
difference with SCFAno-rev2 is that SCFAno-rev1 uses the RATF
box constraint in (37) which does not depend on D̂. For the ref-
erence method, we use the method proposed in [4] (denoted as
m. Parra), modified such that is as much aligned as possible with
the proposed methods. Specifically, we solved the optimization
problem of the reference method differently compared to [4].
Unlike [4] which uses the constraints aii = 1, we set the ref-
erence microphone row of A equal to the all-ones vector, as
we did in all proposed methods. In addition, instead of the LS
cost function used in [4], we used the ML cost function as with
the proposed methods. We also used the same solver (see Sec.
VI-D) for all compared methods. Note that the authors in [4]
have solved the iterative problem using first-order derivatives

only, while here we also use an approximation of the Hessian.
Finally, the extracted parameters for both the reference and pro-
posed methods are combined with the MWF in (48) where for
each different source signal we use a different MWF ŵi.

1) Low reverberation time. T60 = 0.2s: The input SSNR of
the female talker, male talker and music signal at the reference
microphone are −7.98, −10.35, and −4.71 dB, respectively.
In order to have a clear visualization of the performance differ-
ences, we group the comparisons in two figures. Fig. 5 compares
all blind methods that do not depend on D̂ or Φ̂, i.e., SCFAno-rev,
SCFAno-rev1 and the reference method (referred to as m. Parra).
Recall that the only difference between the SCFAno-rev method
and the m. Parra is the positivity constraints for the PSDs. It
is clear that using these positivity constraints improves perfor-
mance significantly. In contrast, the m. Parra often obtains nega-
tive PSD estimates which lead to an unpredicted noise reduction
gain. This problem becomes more profound when |Bβ | is small.
For instance, for |Bβ | = 2, 1.8% and 97.2% of the sources’
PSD estimates and microphone self noise PSD estimates, re-
spectively, are negative, while for |Bβ | = 16, 0.5% and 94.1%
of the sources’ PSD estimates and microphone self noise PSD
estimates are negative. Finally, note that the usage of extra in-
equality constraints from SCFAno-rev1 is beneficial for improving
the performance even more significantly.

In Fig. 6, we compare the best-performing SCFAno-rev1 method
of Fig. 5 with SCFAno-rev2, SCFArev1 and SCFArev2. The prob-
lems that estimate the late reverberation parameter γ have worse
estimation accuracy for the PSD of the sources and microphone-
self noise and worse predicted intelligibility improvement com-
pared to the SCFAno-rev2 method. This is mainly due to the low
reverberation time (T60 = 0.2 s) and the large number of param-
eters of SCFArev1 and SCFArev2 as argued in Sec. IV-B. However,
SCFArev1 achieve a better noise reduction performance than the
other methods when |Bβ | becomes large.

2) Large reverberation time. T60 = 0.6s: In Figs. 7 and 8,
we compare the same methods as in Fig. 5 and 6, respectively,
but with T60 = 0.6. Here, the input SSNR of the female talker,
male talker, and music signal at the reference microphone are
−13.84, −16.56, and −11.53 dB, respectively. Here we observe
that the methods which estimate γ become more accurate in
RATF estimation, since now the contribution of late reverber-
ation is significant (see the explanation in Sec. IV-B). More-
over, when the number of time-frames per time-segment |Bβ |
increases significantly the methods SCFArev1 and SCFArev2 have
approximately the same predicted intelligibility improvement
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Fig. 8. Source separation results forT60 = 0.6 s: Comparison of the proposed
SCFAno-rev2, SCFArev1 and SCFArev2 methods, which assume knowledge of D,
and the proposed blind method denoted by SCFAno-rev1.

compared to the SCFAno-rev2 method but have a much better
noise reduction performance. Finally, the SCFAno-rev2 method
outperforms the SCFAno-rev1 method in most cases. This is due
to the tight box constraint in (38) used in SCFAno-rev2.

In conclusion, we observe that in both applications the pro-
posed approaches have shown remarkable robustness in highly
reverberant environments. The box constraints that we used in-
deed provided estimates that are useful in both examined appli-
cations. Specifically, the box constraints avoided large overesti-
mation errors in the late reverberation and microphone-self noise
PSDs and large underestimation errors for the point sources
PSDs. As a result the sources were not distorted significantly
and combined with the good noise reduction performance we
achieved large predicted intelligibility gains compared to the
reference methods.

VIII. CONCLUSION

In this paper, we proposed several methods based on the
combination of confirmatory factor analysis (CFA) and non-
orthogonal joint diagonalization principles for estimating jointly
several parameters of the multi-microphone signal model. The
proposed methods achieved, in most cases, a better parame-
ter estimation accuracy and a better performance in the con-
text of dereverberation and source separation compared to ex-
isting state-of-the-art approaches. The inequality constraints in-
troduced to limit the feasibility set in the proposed methods
resulted in increased robustness in highly reverberant environ-
ments in both applications.

For future research it will be interesting to extend the proposed
CFA problems to more general acoustic environments with for
instance an additional diffuse noise component such as vehicle
cabin noise. In this case, the signal model in (7) will become

Py = Pe + γΦ+ ωΩ+Pv, (57)

where the additional terms ω and Ω are the PSD and spatial co-
herence matrix of the new diffuse noise component. Moreover,
is interesting to examine whether the matrices Φ and Ω can
be estimated as well via the proposed CFA problems. Such ex-
tended signal models might be more accurate in some acoustical
scenarios, but at the price of increased number of parameters to
be estimated.
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