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A Convex Approximation of the Relaxed Binaural
Beamforming Optimization Problem

Andreas I. Koutrouvelis , Richard C. Hendriks , Richard Heusdens , and Jesper Jensen

Abstract—The recently proposed relaxed binaural beamforming
(RBB) optimization problem provides a flexible tradeoff between
noise suppression and binaural-cue preservation of the sound
sources in the acoustic scene. It minimizes the output noise power,
under the constraints, which guarantee that the target remains un-
changed after processing and the binaural-cue distortions of the
acoustic sources will be less than a user-defined threshold. How-
ever, the RBB problem is a computationally demanding non convex
optimization problem. The only existing suboptimal method which
approximately solves the RBB is a successive convex optimization
(SCO) method which, typically, requires to solve multiple convex
optimization problems per frequency bin, in order to converge.
Convergence is achieved when all constraints of the RBB optimiza-
tion problem are satisfied. In this paper, we propose a semidefinite
convex relaxation (SDCR) of the RBB optimization problem. The
proposed suboptimal SDCR method solves a single convex opti-
mization problem per frequency bin, resulting in a much lower
computational complexity than the SCO method. Unlike the SCO
method, the SDCR method does not guarantee user-controlled
upper-bounded binaural-cue distortions. To tackle this problem,
we also propose a suboptimal hybrid method that combines the
SDCR and SCO methods. Instrumental measures combined with a
listening test show that the SDCR and hybrid methods achieve sig-
nificantly lower computational complexity than the SCO method,
and in most cases better tradeoff between predicted intelligibility
and binaural-cue preservation than the SCO method.

Index Terms—Binaural beamforming, binaural cues, convex op-
timization, LCMV, noise reduction, semi-definite relaxation.

I. INTRODUCTION

B INAURAL beamforming (see e.g., [1] for an overview),
also known as binaural spatial filtering, plays an impor-

tant role in binaural hearing-aid (HA) systems [2]. Binaural
beamforming is typically described as an optimization problem,
where the objective is to i) minimize the output noise power,
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ii) preserve the target sound source at the left and right HA
reference microphone, and iii) preserve the binaural cues of all
sound sources after processing. The microphone array, which
is typically mounted on the HA devices, has only a few micro-
phones and, thus, there is only limited freedom (i.e., a small
feasibility set) to search for a good compromise between the
three aforementioned goals. Besides the challenge in finding a
good trade-off among all these goals, the complexity should re-
main as low as possible, due to the limited computational power
of the HA devices.

The binaural minimum variance distortionless response
(BMVDR) beamformer (BF) [1] provides the maximum pos-
sible noise suppression among all binaural target-distortionless
BFs [3]. Unfortunately, the BMVDR severely distorts the
binaural-cues of the residual noise at the output of the filter.
Specifically, the residual noise inherits the interaural transfer
function of the target and, hence, sounds as originating from the
target’s direction [1]. The lack of spatial separation between the
target and the noise after processing, may not only provide an
unnatural impression to the user, but may also negatively effect
the intelligiblity [4]. In [5], [6], the BMVDR was compared with
an oracle-based (i.e., non-practically implementable) method in
several noise fields (diffuse [5] and diffuse plus directional [6]).
The oracle-based method has the same noise suppression as the
BMVDR, but does not cause any binaural-cue distortions of
the acoustic scene. The spatially correct oracle-based method
achieved an improvement of about 3 dB in the 50% speech re-
ception threshold (SRT) over the BMVDR. Therefore, there are
several reasons to seek for methods that simultaneously pro-
vide the maximum possible noise suppression and binaural-cue
preservation of all sources in the acoustic scene.

Several modifications of the BMVDR BF have been pro-
posed, which can be roughly categorized into two groups. The
first group consists of BFs that add or maintain a portion of the
unprocessed scene at the output of the filter (see e.g., [5], [7]–
[10]). An interesting approach, which is referred to as BMVDR-
η [10], adds a portion of the unprocessed scene to the output
of the BMVDR BF such that the binaural cues of the noise
will be preserved in a certain extent. The second group consists
of BFs, whose optimization problems have the same objective
function as the BMVDR, but introduce extra equality [3], [11],
[12] or inequality [13] constraints in order to preserve the bin-
aural cues of the interferers after processing. These constraints
are functions of either i) the (relative) acoustic transfer functions
(R)(ATFs) of the interferers which can be estimated (see e.g.,
[14] for an overview), or ii) pre-determined anechoic (R)ATFs
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forming a grid around the head of the user as proposed in [15].
Moreover, these additional constraints in the optimization prob-
lem results in less degrees of freedom for noise reduction. With
equality constraints, closed-form solutions may be derived, but
the degrees of freedom can be easily exhausted when multiple
interferers exist in the acoustic scene, resulting in poor noise re-
duction. On the other hand, inequality constraints provide more
flexibility and can approximately preserve the binaural cues of,
typically, many more acoustic sources, or for the same number
of acoustic sources provide a larger amount of noise reduction
[13]. Unfortunately, closed-form solutions do not exist for the
inequality-constrained binaural BFs and, thus, iterative methods
with a larger complexity are used instead.

Recently, the relaxed binaural beamforming (RBB) optimiza-
tion problem was proposed, which uses inequality constraints
to preserve the binaural cues of the interfering sources [13].
The inequality constraints in the RBB are not convex, resulting
in a non-convex optimization problem. In [13], a suboptimal
successive convex optimization (SCO) method was proposed
to approximately solve the RBB problem. In most cases, the
SCO method needs to solve more than one convex optimization
problem, per frequency bin, in order to converge. Convergence
is achieved when all constraints of the RBB problem are satis-
fied. As a result, the SCO method guarantees an upper-bounded
binaural-cue distortion of the interferers (as expressed by the
interaural transfer function error), where the upper bound is
controlled by the user.

Unfortunately, the SCO method is computationally very de-
manding due to its need to solve multiple convex optimization
problems, per frequency bin, in order to converge. In this paper,
we propose a semi-definite convex relaxation (SDCR) of the
RBB optimization problem, which is significantly faster than
the SCO method. This is because, the SDCR method requires
to solve only one convex optimization problem per frequency
bin. The main drawback of the SDCR method is that it does
not guarantee user-controlled upper-bounded binaural-cue dis-
tortions as the SCO method. We solve this issue by combining
the SDCR and SCO methods into a suboptimal hybrid method.
The hybrid method guarantees user-controlled upper-bounded
binaural-cue distortions, and still has a significantly lower com-
putational complexity than the SCO method. Simulation exper-
iments combined with listening tests show that both proposed
methods, in most cases, provide a better trade-off between pre-
dicted intelligibility and binaural-cue preservation than the SCO
method.

II. SIGNAL MODEL AND NOTATION

We assume that there is one target point-source signal, r
point-source interferers, background noise, and two HAs with
M microphones in total. The processing is accomplished per
time-frequency bin independently. Neglecting time-frequency
indices for brevity, the acquired M -element noisy vector in the
DFT domain, for a single time-frequency bin, is given by

y = sa
︸︷︷︸

x

+
r

∑

i=1

vibi + u

︸ ︷︷ ︸

n

∈ CM×1 , (1)

where s and vi are the target and i-th interferer signals at the
original locations; a and bi the early acoustic transfer function
(ATF) vectors of the target and i-th interferer, respectively; u
the background noise, and n the total additive noise. The back-
ground noise is due to the diffuse late reverberation from all
point sources and the microphone-self noise. Assuming statis-
tical independence between all sources, the noisy cross-power
spectral density matrix (CPSDM) is given by

Py = E
[

yyH
]

= Px + Pn ∈ CM×M , (2)

with Px = E[xxH ] = psaaH and Pn = E[nnH ] the target
and noise CPSDMs, respectively, and ps = E[|s|2 ] the power
spectral density of the target signal.

III. BINAURAL BEAMFORMING PRELIMINARIES

Binaural BFs consist of two spatial filters, wL , wR ∈ CM×1 ,
which are both applied to the noisy measurements producing
two different outputs given by

[

x̂L

x̂R

]

=

[

wH
L y

wH
R y

]

, (3)

where x̂L , x̂R are played back by the loudspeakers of the left
and right HAs, respectively. Note that the subscripts L and R
are also used to refer to the two elements of the vectors in (1)
associated with the left and right reference microphones of the
binaural BF. Here, we select the first and the M -th microphones
as reference microphones and, thus, yL = y1 and yR = yM . The
same applies to all vectors in (1).

All BFs considered in this paper are target-distortionless.
Their goal is not only noise supression, but also preservation
of the binaural cues of all sources in the acoustic scene. In
this paper, we mainly focus on preserving, after processing,
the perceived direction of all point sources. Therefore, in the
following, we mean directional binaural cues when we use the
term binaural cues. A simple way of measuring the binaural cues
of a source is via the interaural transfer function (ITF), which
is a function of the ATF vector of the source [16]. The ITF of
the i-th interferer before and after applying the spatial filter is
given by [16]

ITFin
i =

biL

biR
, ITFout

i =
wH

L bi

wH
R bi

. (4)

The input and output ITF of the target is expressed similarly.
Ideally, to preserve the binaural cues of the point sources,
a binaural BF will produce the same ITF output as the in-
put for all point sources. In practice, this is very difficult to
achieve, when the number of interferers, r, is large and the
number of microphones, M , is small [13]. As a result, most BFs
will introduce some distortion to the ITF output, resulting in a
non-zero ITF error given by [13]

ITFe
i =

∣

∣ITFout
i − ITFin

i

∣

∣ =
∣

∣

∣

∣

wH
L bi

wH
R bi

− biL

biR

∣

∣

∣

∣
≥ 0. (5)
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A. BMVDR Beamforming

The BMVDR BF [1] achieves the maximum possible noise
suppression among all binaural BFs and is obtained from the
following simple optimization problem [1], [3]:

ŵL , ŵR = arg min
wL ,wR

[

wH
L wH

R

]

P̃
[

wL

wR

]

s.t. wH
L a = aL wH

R a = aR , (6)

where

P̃ =
[

Pn 0
0 Pn

]

. (7)

The optimization problem in (6) provides closed-form solutions
to the left and right spatial filters given by [1], [3]

ŵL =
P−1

n aa∗L
aH P−1

n a
, ŵR =

P−1
n aa∗R

aH P−1
n a

. (8)

It can easily be shown, that the output ITF of the i-th interferer
of the BMVDR spatial filter is given by [3], [13]

ITFout
i =

aL

aR
, (9)

which is the ITF input of the target. Therefore, all interferers
sound as coming from the target direction after applying the
BMVDR spatial filter. The BMVDR ITF error of the i-th inter-
ferer is given by [13]

ITFe,BMVDR
i =

∣

∣

∣

∣

aL

aR
− biL

biR

∣

∣

∣

∣
. (10)

B. Relaxed Binaural Beamforming

The relaxed binaural beamforming (RBB) optimization prob-
lem, introduced in [13], uses additional inequality constraints
(compared to the BMVDR problem) to preserve the interferers’
binaural cues. The RBB problem is given by [13]

ŵL , ŵR = arg min
wL ,wR

[

wH
L wH

R

]

P̃
[

wL

wR

]

s.t. wH
L a = aL wH

R a = aR ,

∣

∣

∣

∣

wH
L bi

wH
R bi

− biL

biR

∣

∣

∣

∣
≤ Ei , i = 1, . . . , m ≤ r, (11)

where

Ei = ciITFe,BMVDR
i , 0 ≤ ci ≤ 1.

Note that Ei is ci times the ITF error of the i-th interferer of the
BMVDR BF [13]. Recall that the BMVDR causes full collapse
of the binuaral cues of the interferers towards the binaural cues
of the target. Therefore, the inequality constraints in (11) control
the percentage of collapse. A small ci implies good preserva-
tion of binaural cues of the i-th interferer, but a smaller feasi-
bility set and, thus, less noise reduction. On the other hand, a
large ci implies worse binaural-cue preservation, but more noise
reduction.

It is clear from the above that the additional inequality
constraints of the RBB problem require the knowledge of
the (R)ATF vectors of the interferers. In practice, interferers’
(R)ATF vectors are unknown and estimation is required. Sev-
eral methods for estimating RATF vectors exist (see e.g., [14] for
an overview). An alternative approach is to use pre-determined
ancechoic (R)ATF vectors of fixed azimuths around the head
of the user, as proposed in [15]. These pre-determined (R)ATF
vectors are acoustic scene independent and need to be obtained
once for each user. This is useful when the (R)ATF vectors of the
interferers are difficult to estimate, because e.g., the locations of
the interferers relative to the head of the user are non-static. It
is worth noting that by using pre-determined (R)ATF vectors, a
larger number of inequality constraints, m > r, is typically used
in (11). This is because we do not know where the interferers
are located and we would like to cover the entire space around
the head of the user.

If ci > 0, i = 1, . . . ,m, the inequality constraints of the op-
timization problem in (11) are non-convex. As a result, the op-
timization problem in (11) is non-convex. In [13], a suboptimal
successive convex optimization (SCO) method [13], described
in Section III-C, was proposed to approximately solve the RBB
problem.

C. Successive Convex Optimization Method

The successive convex optimization (SCO) method [13]
approximately solves the RBB problem by solving multiple
second-order cone program (SOCP) convex optimization prob-
lems per frequency bin. The SCO method converges, when all
constraints of the RBB problem in (11) are satisfied. It has been
shown that the SCO method always converges to a solution sat-
isfying the constraints of the RBB problem if m ≤ 2M − 3.
This means that if the (R)ATF vectors of the interferers have
been estimated accurately enough, the SCO method will guar-
antee user-controlled upper-bounded ITF error of the interferers
[13]. For m > 2M − 3, no guarantees exist for convergence.
In case the method does not converge, it stops after solving
a pre-defined maximum number of convex optimization prob-
lems, kmax . Nevertheless, for a reasonable number of inequality
constraints, m, it has been experimentally shown that the SCO
method always converges [13], [15]. It has been experimen-
tally shown in [13], that for larger ci values, the SCO method
converges to solutions further away from the boundary of the
inequality constraints of the RBB problem. This results in a bet-
ter binaural-cue preservation and less noise reduction compared
to the expected trade-off set by the user through the parameters
ci, i = 1, . . . ,m.

IV. PROPOSED CONVEX APPROXIMATION METHOD

The proposed method is a semi-definite convex relaxation
(SDCR) of the optimization problem in (11). First, we review
two important properties that will be useful for understanding
the proposed optimization problem.
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Property 1: Any quadratic expression can be expressed as
[17]

qH Zq = tr
(

qH Zq
)

= tr
(

qqH Z
)

. (12)

Property 2: We have the following equivalence relation [18]

Z =
[

A B
BH C

]

� 0⇔

A � 0,
(

I−AA†
)

B = 0, S1 � 0, (13)

C � 0,
(

I−CC†
)

BH = 0, S2 � 0, (14)

with S1 = C−BH A†B the generalized Schur complement of
A in Z, S2 = A−BC†BH the generalized Schur complement
of C in Z, and A† is the pseudo-inverse of A [19].

Before, we present the proposed convex optimization prob-
lem, we first introduce an equivalent optimization problem to
the problem in (11). That is,

ŵL , ŵR = arg min
wL ,wR

[

wH
L wH

R

]

P̃
[

wL

wR

]

s.t. wH
L a = aL wH

R a = aR ,
∣

∣

∣

∣

wH
L bi

wH
R bi

− biL

biR

∣

∣

∣

∣

2

≤ E2
i , i = 1, . . . ,m ≤ r. (15)

By reformulating the inequality in (15), we obtain an equivalent
quadratic constraint given by

∣

∣

∣

∣

wH
L bi

wH
R bi

− biL

biR

∣

∣

∣

∣

2

≤ E2
i ⇒

[

wH
L wH

R

]

︸ ︷︷ ︸

wH

[

A B
BH C

]

︸ ︷︷ ︸

M i

[

wL

wR

]

︸ ︷︷ ︸

w

≤ 0, (16)

where A = |biR |2bibH
i , B = −b∗iL biRbibH

i , C = (|biL |2 −
|biR |2E2

i )bibH
i . Therefore, the optimization problem in (15)

can be re-written as

ŵ = arg min
w

wH P̃w

s.t. wH

[

a 0
0 a

]

=
[

aL aR

]

,

wH Miw ≤ 0, i = 1, . . . ,m. (17)

The matrix Mi is not positive semi-definite and, therefore, the
quadratic inequality constraint is not convex and, hence, the opti-
mization problem in (17) is not convex. The proof of non positive
semi-definiteness of Mi uses Property 2. Specifically, note that
A � 0, but S1 = −|biR |2E2

i bibH
i 	 0, because bibH

i � 0 and
−|biR |2E2

i ≤ 0 and, therefore, Mi is not positive semi-definite.
The optimization problem in (17) is a non-convex quadratic-

constrained quadratic program (QCQP) [18], [20]. Following
the methodology described in [20], we use Property 1 to re-write
the optimization problem in (17) into the following equivalent

formulation:

ŵ,Ŵ = arg min
w ,W

tr
(

WP̃
)

s.t. wH

[

a 0
0 a

]

=
[

aL aR

]

,

tr (WMi) ≤ 0, i = 1, . . . ,m,

W = wwH . (18)

In this problem, the trace inequality is convex, but the new
equality constraint, W = wwH is not convex. Following [20],
we apply the SDCR to the non-convex equality constraint of
the problem in (18) and obtain the convex optimization problem
given by

ŵ,Ŵ = arg min
w ,W

tr
(

WP̃
)

s.t. wH

[

a 0
0 a

]

=
[

aL aR

]

,

tr (WMi) ≤ 0, i = 1, . . . ,m.

W � wwH . (19)

Using Property 2, the inequality constraint W � wwH can be
re-written as a linear matrix inequality, and the optimization
problem in (19) can be re-written into a standard-form semi-
definite program (SDP) [20]. That is,

ŵ,Ŵ = arg min
w ,W

tr
(

WP̃
)

s.t. wH

[

a 0
0 a

]

=
[

aL aR

]

,

tr (WMi) ≤ 0, i = 1, . . . ,m.
[

W w
wH 1

]

� 0. (20)

This is a convex problem, which can be solved efficiently [20].
If the solutions are on the boundary, i.e., Ŵ = ŵŵH , the min-
imizer, ŵ, of the problem in (20) is also the minimizer of
the non-convex RBB problem. This means, that in the case of
Ŵ = ŵŵH , the proposed problem in (20) is optimal and obtain
solutions which satisfy the inequalities in Eqs. (17), (15) (11).
Otherwise, if Ŵ 
 ŵŵH , the solution of the problem in (20)
may or may not satisfy the inequalities of the RBB, which means
that we lose the guarantee for user-controlled upper-bounded
ITF error when the (R)ATF vectors of the interferers have been
estimated accurately enough. In practice, Ŵ = ŵŵH never oc-
curred in our experiments and, thus, the two problems do not
produce exactly the same solutions. However, we will experi-
mentally show in Section V that the SDCR method always stays
relatively close to the boundary of the inequality constraints of
the RBB problem implying that it is a good approximation of
the RBB problem.

The proposed SDCR method reduces significantly the com-
putational complexity compared to the SCO method. Al-
though the SCO method solves SOCP problems which are less
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Algorithm 1: Hybrid Scheme.

ŵ1 ← SDCR Problem in (20)
if ŵ1 satisfies (21) then

return ŵ1
else

ŵ2 ← SCO method [13]
return ŵ2

end if

computational complex than SDP problems [21], we will exper-
imentally show in Section V that the proposed SDCR method is
much less computational complex since a single SDP problem
is solved compared to the many more SOCP problems that must
be solved in the SCO method per frequency bin.

A. Proposed Hybrid Method

In this section, we propose a hybrid method, which is a combi-
nation of the SDCR and the SCO methods. If the (R)ATF vectors
of the interferers are estimated accurately enough, the hybrid
method guarantees user-controlled upper-bounded binaural-cue
distortions of the interferers as the SCO method. The proposed
hybrid method is significantly faster than the SCO method and
slightly slower than the SDCR method. We will experimentally
show in Section V, that the hybrid proposed method achieves
solutions closer to the boundary of the inequality constraints of
the RBB problem compared to the SCO method.

For a particular frequency bin, the hybrid method first solves
the SDCR problem and then checks if there is a feasible solution
which satisfies the inequality constraints of (11). If all of them
are satisfied, the SDCR method will be used to approximately
solve the RBB problem. Otherwise the SCO method is used to
approximately solve the RBB problem in this frequency bin.
Note that the SCO method always obtains a feasible solution for
m ≤ 2M − 3 (see Section III-C) and, thus, the same holds for
the hybrid method. In such a way, the hybrid method will always
have a feasible solution (for m ≤ 2M − 3) which satisfies the
constraints of the RBB problem, while at the same time reducing
the overall computational complexity significantly. In order to
avoid switching to the SCO method for just negligibly larger
ITF errors than the user-controlled upper bounds Ei , we use the
following switching criterion:

∣

∣

∣

∣

wH
L bi

wH
R bi

− biL

biR

∣

∣

∣

∣
≤ Ẽi , i = 1, . . . ,m, (21)

where Ẽi is a slightly increased upper bound and is given by

Ẽi = (ci + ε)
∣

∣

∣

∣

aL

aR
− biL

biR

∣

∣

∣

∣
, i = 1, . . . , m, (22)

where ε is very small, e.g., 0 < ε < 0.1. This modification
avoids possible switching to the SCO method for negligibly
larger ITF errors than the Ei . The hybrid method is summarized
in Algorithm 1.

V. EXPERIMENTS

We conducted three sets of experiments. The first set (referred
to as Experiment 1) examines the theoretical performance dif-
ferences between the SCO method [13] (with kmax = 50), the
proposed SDCR method, and the proposed hybrid method (with
ε = 0.05) when the true early RATF vectors of the target and
interferers are used. The second more practical set of experi-
ments (referred to as Experiment 2) examines the performance
of the same methods, when estimated early RATFs are used. The
third practical set of experiments (referred to as Experiment 3)
examines the performance of the same methods, when the pre-
determined anechoic RATFs are used for preserving the binaural
cues of the interferers (as proposed in [15]) and an estimated
early RATF vector is used for preserving the binaural cues of
the target. We also included in all three sets of experiments the
reference methods BMVDR [1] and the BMVDR-η [5], [10].
The BMVDR-η depends on the parameter η (0 ≤ η ≤ 1) which
controls the trade-off between noise reduction and binaural-cue
preservation. Unlike the proposed methods in which a large c
increases both the noise reduction performance and binaural-
cue distortions, in the BMVDR-η, a large η decreases both the
noise reduction performance and binaural-cue distortions.

A. Acoustic Scene Setup

The acoustic scene, considered in our experiments, was a
reverberant office environment which consisted of one target
female talker in the look direction (i.e., 0◦), and 4 interferers,
where each had the same average power at its original location,
as the target signal at the original location. The first interferer
was a male talker on the right-hand side of the HA user with
azimuth of 80◦; the second interferer was a music signal on
the right-hand side of the HA user with azimuth of 50◦; the
third interferer was a vacuum cleaner on the left-hand side of
the HA user with azimuth −35◦; and the fourth interferer was
a high-frequency ringing mobile phone on the left-hand side
with azimuth −70◦. The microphone self-noise was set to have
a 40 dB SNR at the left reference microphone, and it had the
same power in all microphones.

B. Hearing-Aid Setup and Processing

The total number of microphones was M = 4; two at each
HA. The sampling frequency was 16 kHz. We used the overlap-
and-add processing method [22] for analyzing and synthesizing
our signals. The analysis and synthesis windows were square-
root Hanning windows and the overlap was 50%. The frame-
length was 10 ms, i.e., 160 samples, and the FFT size was 256.
The microphone signals were created using the head impulse
responses (with a length of 458 ms) from the reverberant of-
fice environment from the database in [23]. Note that the true
early RATF vectors were based on the first 10 ms of the impulse
responses. The late reverberation was generated from the con-
volution of the late (after 10 ms) part of the impulse responses
and the corresponding source signals.

In Experiments 2 and 3, the early RATF vector of a point
source was estimated using a time-segment of 5 s in which only
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this point source signal (including its late reverberation) and the
microphone-self noise was active. Specifically, we estimated the
CPSDM and its eigenvalue decomposition and then we assigned
to the early RATF vector the most significant (corresponding
to the largest eigenvalue) relative eigenvector of the estimated
CPSDM. The noise CPSDM was estimated using 5 seconds of
a noise-only segment, where all interferers were active, but the
target source was inactive.

We used the CVX toolbox [24] to solve the convex optimiza-
tion problems associated with the SCO, SDCR and hybrid meth-
ods. The CVX toolbox uses an interior point method to solve
the convex optimization problems [18]. We also used a com-
mon c value for all interferers in the inequality constraints, i.e.,
ci = c,∀i. The spatial filters of all methods were estimated only
once using the same estimated noise CPSDM and, thus, they
were time invariant. In the Experiment 3, for the pre-determined
RATF vectors, we used the RATF vectors corresponding to
24 pre-determined anechoic head impulse responses from the
database in [23]. The pre-determined RATF vectors were as-
sociated with azimuths uniformly spaced around the head with
a resolution of 360/24 = 15◦, starting from −90◦. The pre-
determined RATF vector at 0◦ was omitted from the constraints,
because it was in the same direction as the RATF vector of the
target. Note that the true RATF vectors of all interferers had
an azimuth mismatch with the pre-determined RATF vectors’
azimuths.

C. Evaluation Methodology

We measured the noise-reduction performance in terms of the
segmental signal-to-noise-ratio (SSNR) only in target-presence
time-regions. Let X̂L (t) and YL (t) denote the t-th time-frame
of the estimated target and noisy signals, respectively, at the left
reference microphone at the time domain, and N the set of the
time-frames where the target is present. The SSNR at the left
reference microphone is given by

SSNRL = 10log10
1
|N |

∑

t∈N

||X̂L (t)||22
||ŶL (t)− X̂L (t)||22

dB. (23)

We also predicted intelligibility using the STOI measure [25].
We measured binaural-cue distortions with instrumental mea-

sures and a listening test. The instrumental measures were the
average ITF error, interaural level difference (ILD) error and
interaural phase difference (IPD) error per point source. These
averages were calculated only over frequency (ommiting fre-
quency bins with almost zero power), since we had fixed BFs
over time. For the IPD error, we averaged only the frequency
bins in the range of 0− 1.5 kHz, while for the ILD error, we
averaged only the frequency bins in the range of 3− 8 kHz.
This is because the ILDs are perceptually more important for
localization above 3 kHz, while the IPDs are perceptually more
important for localization below 1.5 kHz [26]. We used the ex-
pressions from [16] to compute the ILD and IPD errors for a
single frequency bin.

The listening test was supplamentary to the Experiment 3 and
is performed using the methodology described in [6]. Ten self-
reported normal-hearing subjects participated (excluding the

authors) and their age range was 26–37 years. They were asked
to determine the azimuths of all point-sources in the acous-
tic scene when listening to signals processed by the compared
methods as well as the unprocessed scene. The tested c val-
ues were 0.3 and 0.7 for the SCO, SDCR and hybrid methods.
In addition to listening to the noisy and processed signals, the
subjects also listened to the clean unprocessed point sources in
isolation, in order to determine the reference azimuthms of the
point sources. The localization errors were calculated with re-
spect to the reference (and not the true) azimuths as in [6]. This
is because we used only one set of head impulse responses from
[23] to construct the binaural signals, which means that every
subject will have a different reference azimuth. In this way, a
significant estimation bias was removed. Two repetitions of the
listening test were conducted. The reference azimuth of each
source and every subject was computed as the average between
the two repetitions, and the error was computed with respect to
this averaged reference azimuth. The localization errors of the
sources were averaged over subjects and repetitions. A two-way
analysis of variance (ANOVA) test [27] was performed which
involves the processing method and the point source as the two
factors. The ANOVA test determines i) if there are at least two
of the localization error mean values significantly different for
the processing method factor, ii) if there are at least two of
the localization error mean values significantly different for the
point source factor, iii) if there is an interaction between the
two factors. Finally, multiple pairwise comparisons were under-
taken through the t-test with the Bonferroni correction [27] in
order determine which specific methods resulted in significantly
different localization error mean values. We also measured the
complexity of the compared methods in terms of the average
number of convex optimization problems and average execu-
tion time per-frequency bin. Note that the BFs are fixed over
time and, therefore, we do not measure varying complexity
over time.

D. Experiment 1: Results With True Early RATF Vectors

In this section, the compared methods use the true early
RATF vectors of the sources in the constraints. Fig. 1 depicts
the noise reduction performance and intelligibility prediction
of the unprocessed scene, the SCO, SDCR, hybrid, BMVDR,
and BMVDR-η methods at both reference microphones. The
performance of SCO, SDCR and hybrid methods is measured
for c values ranging from 0.1 to 0.9 with a step-size of 0.1. The
performance of the BMVDR-η method is measured for η values
ranging from 0.1 to 0.9 with a step-size of 0.1. In all figures, for
illustration purposes, the η and c values are related as c = 1− η.
As expected, as c increases (and η decreases), the noise reduction
and predicted intelligibility increase. As expected the BMVDR
has the best noise reduction performance and predicted intelli-
gibility. All methods based on the RBB problem achieve similar
performances for the left reference microphone, while for the
right reference microphone the SCO method achieves the worst
noise reduction performance among all, especially for c ≥ 0.5.
Note that the SDCR method has almost identical performance
as the hybrid method. This is because, in this example the hybrid
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Fig. 1. Experiment 1: Noise reduction and intelligiblity prediction performances.

Fig. 2. Experiment 1: Binaural-cue distortions (averaged over frequency) of interferers.

method switched to the SCO method only a few times. Finally,
the BMVDR-η method has a comparable predicted intelligibil-
ity with the proposed methods only for small η values.

Fig. 2 shows the binaural-cue distortions of the compared
methods per interfering source. The binaural-cue distortions of
the target source are always zero in Experiment 1. As expected,
as c increases (and η decreases), the binaural-cue distortions
increase. For the ITF errors, we also display the c times the
average ITF error of the BMVDR (which is labeled as av. Ei)
in order to visualize the closeness of the estimated spatial fil-
ters at the boundary of the inequality constraints of the RBB
problem. It is clear that both SDCR and hybrid methods are
closer to the boundary compared to the SCO method for the
same c value. Moreover, the hybrid method is for all c values
(on average) below the boundary, even if we used the extended
switch criterion in (21). On the other hand, the ITF error of
the SDCR method sometimes (see ringing mobile phone) is
slightly above the boundary. As explained in Section IV, this is
because the SDCR method does not guarantee a user-controlled
upper-bounded ITF error as the SCO or the hybrid methods do.
Notably, the SCO method for large c values (e.g., c ≥ 0.6), is
not close to the boundary, while the SDCR and hybrid methods
are closer to the boundary. Thus, the SDCR and hybrid methods
achieve more expected binaural-cue distortions according to the
trade-off parameter set by the user compared to the SCO method.
Note also that the IPD error for the ringing mobile phone was
not computed because it has almost zero power below 1.5 kHz.

Fig. 3. Experiment 1: Computational complexity measured as the average
number of solved convex optimization problems and average computation time
(seconds) per frequency bin.

Fig. 3 shows the computational complexity of the compared
methods in terms of average number of convex optimization
problems required to solve for convergence and average cpu
time in seconds per frequency bin. The SDCR method requires
to solve much less convex problems than the SCO method (espe-
cially at larger c values) and slightly less compared to the hybrid
method. The hybrid method requires to solve much less convex
problems than the SCO method. The fastest method among all is
obviously the BMVDR-η method because it has a closed-form
solution while all the other methods are iterative.

We can conclude from the above that, in most cases, both pro-
posed methods are more optimal than the SCO method. Specif-
ically, both proposed methods provide solutions that are closer
to the expected solutions of the original RBB problem, since
both proposed methods are closer to the boundary. This means
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Fig. 4. Experiment 2: Noise reduction and intelligiblity prediction performances.

Fig. 5. Experiment 2: Binaural-cue distortions (averaged over frequency) of point sources.

Fig. 6. Experiment 3: Noise reduction and intelligiblity prediction performances.

that both methods provide a more user-controlled trade-off be-
tween noise reduction and binaural-cue preservation than the
SCO method, especially in large c values. Finally both proposed
methods are significantly less computationally demanding than
the SCO method.

E. Experiment 2: Results With Estimated Early RATF Vectors

In this section, the compared methods use estimated RATF
vectors. Fig. 4 shows the noise reduction performance and in-
telligibility prediction of the compared methods which is very
similar to the one in Fig. 1. Fig. 5 shows the binaural-cue dis-
tortions of the compared methods per point source (including
the target source). As expected, here we have ITF errors which
are sometimes above Ei , because of the estimation errors in the
RATF vectors. The computational complexity performance is
omitted because is very similar to Fig. 3. Finally, the BMVDR-η

method has a similar performance as with Experiment 1, since
the only thing that has changed is the estimation error in the
target RATF vector.

F. Experiment 3: Results with Pre-Determined RATF Vectors

In this section, the SCO, SDCR and hybrid methods use the
pre-determined RATF vectors for the interferers’ binaural-cue
preservation and an estimated early RATF vector for the target.
Fig. 6 shows the noise reduction performance and intelligibility
prediction of the compared methods. Here the gap in perfor-
mance (for the same c value) between the proposed methods
and the SCO method is bigger compared to the case where the
true RATF vectors were used. The proposed methods (especially
the SDCR method) significantly improved both noise reduction
and predicted intelligibility at both reference microphones for
the same c value compared to the SCO method. The reason why
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Fig. 7. Experiment 3: Binaural-cue distortions (averaged over frequency) of point sources.

Fig. 8. Experiment 3: Computational complexity measured as the average
number of solved convex optimization problems and average computation time
(seconds) per frequency bin.

the performance gap between the SDCR method and the hybrid
method is increased compared to Experiment 1 is because the
hybrid method switched many more times to the SCO method
(see Algorithm 1) in Experiment 3. In conclusion, for the same
c value, both proposed methods achieved in most cases a bet-
ter noise reduction and predicted intelligibility than the SCO
method, especially for larger c values. The BMVDR-η method
has the same performance as with the Experiment 2 and now
has a comparable intelligibility improvement for all η values
compared to the proposed methods.

Fig. 7 shows the binaural-cue distortions of the compared
methods per point source (including the target source). As ex-
pected, when pre-determined RATF vectors are used, all meth-
ods do not guarantee a user-controlled upper-bounded ITF error
of the interferers which will be c times the BMVDR ITF error.
Thus, sometimes, all methods (see vacuum cleaner and ringing
phone), result in a larger ITF error than the average Ei . The SCO
method has the lowest binaural-cue distortions compared to the
proposed methods since it is further away from the boundary of
the inequality constraints of the RBB problem. Nevertheless, we
will see later on in the listening test that the compared methods
do not have significantly different binaural-cue distortions for
the same c value.

In Fig. 8, we show the computational complexities of the
compared methods. The results are similar to the results in Fig. 3

TABLE I
TWO-WAY ANOVA TEST WITH THE POINT SOURCE AND PROCESSING

METHOD AS THE TWO FACTORS

with the only difference that now the hybrid method does not
achieve significant computational savings over the SCO method
as with Experiment 1. However, the usage of the hybrid method
using pre-determined RATF vectors is not critical, since no
method can guarantee user-controlled upper-bounded ITF error
of the interferers, unless the number of pre-determined RATF
vectors is huge. However, this is not practical as it may result in
non-feasible solutions or the noise reduction will be negligible.

Fig. 9 shows the results of the subjective localization test
of Experiment 3. The examined values for the SCO, SDCR
and hybrid methods are c = 0.3, 0.7, while for BMVDR-η we
choose η = 0.8. A similar behavior as with the instrumental
binaural-cue distortion measures is observed here. For a large c
value we have in most cases a larger localization error. Moreover,
as expected the BMVDR method has the largest localization
error. Finally, the BMVDR-η method for η = 0.8 has a similar
performance with the RBB-based methods for c = 0.3. Note
that among all interferers the mobile ringing phone was the
most difficult to localize for c = 0.7. Several users also reported
difficulty in localizing the ringing phone after completing the
test. We believe that this is because of the high frequency content
of the ringing tone of the mobile phone and only the ILDs might
have been used for localization.

Table I shows the results of the ANOVA test. We can con-
clude from the results that i) at least two of the mean values of
the factor point source are significantly different, ii) at least two
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Fig. 9. Experiment 2: Localization test measuring the localization error in
degrees for all compared methods and point sources. The bottom figure is the
average localization error over all point sources.

of the mean values of the factor processing method are signifi-
cantly different and iii) there is a significant interaction between
the two factors. Since there is a significant interaction between
the two factors we have undertaken comparisons between pairs
of methods for each interferer separately with several t-tests.
The significance level was set to 1%. For the female talker all
methods are not significantly different. For the male talker, mu-
sic and vacuum cleaner, all methods are significantly different
from the BMVDR method, but, surprisingly are not significantly
different with each other. This means that even though in the
instrumental measures we observed a not negligible difference
in binaural-cue distortions between c = 0.3 and c = 0.7, the
subjective evaluation contradicts that. For the mobile phone, the
SDCR (c = 0.3), hybrid (c = 0.3), SCO (c = 0.3), BMVDR-η
(η = 0.8) and unprocessed methods are all not significantly dif-
ferent, but are all significantly different with all the remaining
methods. Furthermore, the SDCR (c = 0.7), hybrid (c = 0.7),
SCO (c = 0.7) and BMVDR are not significantly different.

We can conclude from the above comparisons that the pro-
posed methods do not cause significantly different binaural-cue
distortions compared to the SCO method for the same c value
and for all point sources in the acoustic scene. This means
that even though we observed less binaural-cue distortions in
the SCO method in Figs 2 and 7, compared to the proposed

methods for the same c value, these differences are not percep-
tually important. However, recall that the proposed methods
achieve a better noise reduction and predicted intelligibility
compared to the SCO method. Thus, the proposed methods
provide a better perceptual trade-off compared to the SCO
method. Finally, note that the SCO, SDCR, hybrid for c = 0.3
and BMVDR-η for η = 0.8 methods are not statistically
significantly different from the unprocessed scene for all point
sources in the acoustic scene. This means that in all four
methods the subjects managed (on average) to localize as good
as in the unprocessed scene. However, unlike the unprocessed
scene, all four methods improved noise reduction and predicted
intelligibility.

VI. CONCLUSION

We proposed two new suboptimal methods for approxi-
mately solving the non-convex relaxed binaural beamforming
(RBB) optimization problem. Both the proposed methods have
much lower computational complexity compared to the exist-
ing successive convex optimization (SCO) method. For each
frequency bin, the SCO method requires to solve many more
convex optimization problems in order to converge compared
to the proposed methods. The first proposed method, which is
a semi-definite convex relaxation (SDCR) of the RBB problem,
solves only one convex optimization problem per frequency bin.
Apart from the computational advantage, the SDCR method
also achieves in most cases a better trade-off between intelli-
gibility and binaural-cue preservation than the SCO method.
However, the SDCR method does not guarantee user-controlled
upper bounded ITF error when the RATF vectors of the inter-
ferers are estimated accurately enough. This problem is solved
by the second proposed method, which is a hybrid combina-
tion of the SDCR and SCO methods. This method guarantees
user-controlled upper-bounded ITF error, and at the same time
is computationally much less demanding than the SCO method.
Finally, listening tests showed that all three methods achieve not
significantly different localization errors for the same amount
of binaural-cue error relaxation.

REFERENCES

[1] S. Doclo, W. Kellermann, S. Makino, and S. Nordholm, “Multichannel
signal enhancement algorithms for assisted listening devices,” IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 18–30, Mar. 2015.

[2] J. M. Kates, Digital Hearing Aids. San Diego, CA, USA: Plural, 2008.
[3] E. Hadad, D. Marquardt, S. Doclo, and S. Gannot, “Theoretical analysis

of binaural transfer function MVDR beamformers with interference cue
preservation constraints,” IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., vol. 23, no. 12, pp. 2449–2464, Dec. 2015.

[4] A. W. Bronkhorst, “The cocktail party phenomenon: A review of research
on speech intelligibility in multiple-talker conditions,” Acta Acoust.,
vol. 86, no. 1, pp. 117–128, 2000.

[5] D. Marquardt, “Development and evaluation of psychoacoustically mo-
tivated binaural noise reduction and cue preservation techniques,” Ph.D.
dissertation, Carl von Ossietzky Universität Oldenburg, Oldenburg, Ger-
many, 2015.

[6] A. I. Koutrouvelis, R. C. Hendriks, R. Heusdens, S. van de Par, J. Jensen,
and M. Guo, “Evaluation of binaural noise reduction methods in terms
of intelligibility and perceived localization,” in Proc. EURASIP Europ.
Signal Process. Conf., 2018.



KOUTROUVELIS et al.: CONVEX APPROXIMATION OF THE RELAXED BINAURAL BEAMFORMING OPTIMIZATION PROBLEM 331

[7] J. G. Desloge, W. M. Rabinowitz, and P. M. Zurek, “Microphone-array
hearing aids with binaural output .I. Fixed-processing systems,” IEEE
Trans. Speech Audio Process., vol. 5, no. 6, pp. 529–542, Nov. 1997.

[8] D. P. Welker, J. E. Greenberg, J. G. Desloge, and P. M. Zurek,
“Microphone-array hearing aids with binaural output .II. A two-
microphone adaptive system,” IEEE Trans. Speech Audio Process., vol. 5,
no. 6, pp. 543–551, Nov. 1997.

[9] T. Klasen, T. Van den Bogaert, M. Moonen, and J. Wouters, “Binaural
noise reduction algorithms for hearing aids that preserve interaural time
delay cues,” IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1579–1585,
Apr. 2007.

[10] D. Marquardt and S. Doclo, “Interaural coherence preservation for bin-
aural noise reduction using partial noise estimation and spectral postfil-
tering,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 26, no. 7,
pp. 1261–1274, Jul. 2018.

[11] A. I. Koutrouvelis, R. C. Hendriks, J. Jensen, and R. Heusdens, “Im-
proved multi-microphone noise reduction preserving binaural cues,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Mar. 2016.

[12] E. Hadad, S. Doclo, and S. Gannot, “The binaural LCMV beamformer
and its performance analysis,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 24, no. 3, pp. 543–558, Jan. 2016.

[13] A. I. Koutrouvelis, R. C. Hendriks, R. Heusdens, and J. Jensen, “Relaxed
binaural LCMV beamforming,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 25, no. 1, pp. 137–152, Jan. 2017.

[14] S. Gannot, E. Vincet, S. Markovich-Golan, and A. Ozerov, “A consoli-
dated perspective on multi-microphone speech enhancement and source
separation,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 25,
no. 4, pp. 692–730, Apr. 2017.

[15] A. I. Koutrouvelis, R. C. Hendriks, R. Heusdens, J. Jensen, and M. Guo,
“Binaural beamforming using pre-determined relative acoustic transfer
functions,” in Proc. EURASIP Eur. Signal Process. Conf., Aug. 2017.

[16] B. Cornelis, S. Doclo, T. Van den Bogaert, M. Moonen, and J. Wouters,
“Theoretical analysis of binaural multimicrophone noise reduction tech-
niques,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 2,
pp. 342–355, Feb. 2010.

[17] H. Anton, Elementary Linear Algebra. Hoboken, NJ, USA: Wiley, 2010.
[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:

Cambridge Univ. Press, 2004.
[19] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Oxford, U.K.:

North Oxford Academic, 1983.
[20] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.,

vol. 38, no. 1, pp. 49–95, Mar. 1996.
[21] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math.

Program., vol. 95, no. 1, pp. 3–51, 2003.
[22] J. B. Allen, “Short-term spectral analysis, and modification by discrete

Fourier transform,” IEEE Trans. Acoust. Speech Signal Process., vol. 25,
no. 3, pp. 235–238, Jun. 1977.

[23] H. Kayser, S. Ewert, J. Annemuller, T. Rohdenburg, V. Hohmann, and
B. Kollmeier, “Database of multichannel in-ear and behind-the-ear head-
related and binaural room impulse responses,” EURASIP J. Adv. Signal
Process., vol. 2009, pp. 1–10, Dec. 2009.

[24] Cvx: Matlab Software for Disciplined Convex Programming, 2008.
[25] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for

intelligibility prediction of time-frequency weighted noisy speech,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 19, no. 7, pp. 2125–2136, Sep.
2011.

[26] W. M. Hartmann, “How we localize sound,” Phys. Today, vol. 52, no. 11,
pp. 24–29, Nov. 1999.

[27] D. J. Sheskin, Parametric and Nonparametric Statistical Procedures.:
Boca Raton, FL, USA: Chapman & Hall/CRC, 2000.

Andreas I. Koutrouvelis received the B.Sc. degree
in computer science from the University of Crete,
Heraklion, Greece, in 2011, and the M.Sc. degree in
electrical engineering from the Delft University of
Technology (TU-Delft), Delft, The Netherlands, in
2014. From February 2012 to July 2012, he was a
Research Intern with Philips Research, Eindhoven,
the Netherlands, and from October 2014 to Decem-
ber 2014, he was Researcher with the Circuits and
Systems Group, TU-Delft. Since January 2015, he
has been working toward the Ph.D. degree from the

TU-Delft (CAS). His research interests include speech analysis and multichan-
nel speech enhancement.

Richard Christian Hendriks was born in Schiedam,
The Netherlands. He received the B.Sc., M.Sc. (cum
laude), and Ph.D. (cum laude) degrees in electrical
engineering from the Delft University of Technol-
ogy, Delft, The Netherlands, in 2001, 2003, and 2008,
respectively. He is currently an Associate Professor
with the Circuits and Systems Group, Faculty of Elec-
trical Engineering, Mathematics and Computer Sci-
ence, Delft University of Technology. His research
interests include biomedical signal processing, and,
audio and speech processing, including speech en-

hancement, speech intelligibility improvement, and intelligibility modeling. In
March 2010, he was the recepient of the prestigious VENI grant for his pro-
posal Intelligibility Enhancement for Speech Communication Systems. He was
the recepient of the several best paper awards, among which the IEEE Signal
Processing Society best paper award in 2016. He is an Associate Editor for the
IEEE/ACM TRANSACTION ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

and the EURASIP Journal on Advances in Signal Processing.

Richard Heusdens received the M.Sc. and Ph.D. de-
grees from the Delft University of Technology, Delft,
The Netherlands, in 1992 and 1997, respectively.
Since 2002, he has been an Associate Professor in the
Faculty of Electrical Engineering, Mathematics and
Computer Science, The Delft University of Technol-
ogy. In the spring of 1992, he joined the digital signal
processing group at the Philips Research Laborato-
ries, Eindhoven, The Netherlands. He has worked on
various topics in the field of signal processing, such as
image/video compression and VLSI architectures for

image processing algorithms. In 1997, he joined the Circuits and Systems Group
of Delft University of Technology, where he was a Postdoctoral Researcher. In
2000, he moved to the Information and Communication Theory (ICT) Group,
where he became an Assistant Professor responsible for the audio/speech signal
processing activities within the ICT group. He held visiting positions at KTH
(Royal Institute of Technology, Sweden) in 2002 and 2008 and is a Part-time
Professor at Aalborg University. He is involved in research projects that cover
subjects, such as audio and acoustic signal processing, speech enhancement,
and distributed signal processing for sensor networks.

Jesper Jensen received the M.Sc. degree in electrical
engineering and the Ph.D. degree in signal processing
from Aalborg University, Aalborg, Denmark, in 1996
and 2000, respectively. From 1996 to 2000, he was
with the Center for Person Kommunikation, Aalborg
University, as a Ph.D. student and Assistant Research
Professor. From 2000 to 2007, he was a Postdoctoral
Researcher and Assistant Professor with the Delft
University of Technology, Delft, The Netherlands,
and an External Associate Professor with Aalborg
University. Currently, he is a Senior Researcher with

Oticon A/S, Copenhagen, Denmark, where his main responsibility is scouting
and development of new signal processing concepts for hearing aid applications.
He is also a Professor with the Section for Signal and Information Processing,
Department of Electronic Systems, Aalborg University. His main interests are
in the area of acoustic signal processing, including signal retrieval from noisy
observations, coding, speech and audio modification and synthesis, intelligibility
enhancement of speech signals, signal processing for hearing aid applications,
and perceptual aspects of signal processing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


