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ABSTRACT

Binaural cues are important for sound localization. In addition, spa-
tially separated sound sources are more intelligible than when they
are co-located. Binaural cue preservation in multi-microphone hear-
ing assistive devices is therefore important for the user’s listening
experience and safety. A number of linearly-constrained-minimum-
variance (LCMV) based methods exist for this purpose. These are
all limited in the number of sources for which they can preserve
the binaural cues. We propose a method of automatically selecting
the most important interfering sources using convex optimization.
The proposed method is compared, using simulation experiments, to
existing methods in terms of noise suppression and localization er-
rors. It improves the performance of the joint binaural LCMV beam-
former, by giving it more degrees of freedom for noise reduction and
allows a larger number of (virtual) sources present in the scene.

Index Terms— Noise reduction, spatial cue preservation, bin-
aural beamforming, interferer selection, convex optimization.

1. INTRODUCTION

The use of hearing assistive devices (HADs) has significantly in-
creased in our aging society. The need for them is expected to fur-
ther increase, partly due to increased recreational exposure to loud
sound [2]. Typically, HADs come in pairs, called bilateral or bin-
aural HADs, each equipped with multiple microphones. These mi-
crophones can be used for beamforming. An important aspect of
binaural HADs is their ability to preserve the binaural cues of the
sound field, resulting in a more natural user experience. More im-
portantly, binaural cue preservation helps the HAD user to localize
sound in day-to-day situations, for example in traffic. Another im-
portant reason to preserve binaural cues is the ability of the human
auditory system to distinguish spatially separated sources better than
spatially co-located sources. This helps to focus on sources by their
location. The cocktail party effect is an example of this [3].

Beamforming can be performed in the short-time discrete
Fourier transform (STFT) domain by changing the magnitude and
phase of the STFT coefficients of the different microphones prior to
combining them. However, this could distort the spatial cues of the
output signals. Such binaural cue distortions may have considerable
consequences and should be prevented.

To this end, binaural beamformers are developed for simultane-
ous noise reduction and binaural cue preservation [4, 5, 6, 7]. In this
paper, we consider binaural beamformers where the target is undis-
torted, as in [4, 5, 7]. This is beneficial for the speech intelligibility.
Most binaural beamformers are limited in the amount of binaural
cues they can retain, as the degrees of freedom for noise reduction
and binaural cue preservation are limited and depend on the number
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of microphones. In general, noise reduction and binaural cue preser-
vation comes with a trade off of the available degrees of freedom.
Spending all degrees of freedom on interferer binaural cue preserva-
tion implies no controlled noise reduction and vice versa. An impor-
tant aspect of binaural noise reduction is therefore to efficiently use
the constraints for binaural cue preservation.

Existing binaural beamformers spend these degrees of freedom
in different manners. The binaural minimum variance distortion-
less response (BMVDR) beamformer [7], for example, spends all
degrees of freedom on noise reduction, and none on binaural cue
preservation. This causes all sound to appear to come from the tar-
get direction.The BMVDR can be generalized to the general binau-
ral linearly constrained minimum variance (GBLCMV) beamformer,
which can have at most 2M − 1 constraints and still perform con-
trolled noise reduction, where M is the amount of microphones on
both HADs. Typically, two constraints are used to binaurally con-
strain the target source, leaving 2M − 3 constraints to be used for
other purposes. The joint binaural linearly constrained minimum
variance (JBLCMV) beamformer [4, 7] is a distortionless binaural
beamformer that fits in the GBLCMV framework. It uses one con-
straint to binaurally constrain an interfering point source, meaning it
can at most binaurally constrain 2M − 3 interfering point sources,
while still being able to do noise suppression.

Typically, these methods use one constraint per interferer in all
time-frequency tiles. Even in the tiles where an interferer might be
(almost) inaudible, due to suppression by the beamformer, or due to
masking by other sources. Since the amount of microphones on cur-
rent HADs is relatively low, typically M = 4, degrees of freedom
are scarce. This not only means that degrees of freedom are quickly
exhausted, but it also means that degrees of freedom are spent on
inperceptual, and thus unnecessary, binaural cue constraints in some
time-frequency tiles. To be able to take into account even more in-
terfering sources, while still being able to do controlled noise re-
duction, we present in this paper a method to automatically select
the most important (e.g., audible or perceptually important) binaural
constraints for the final beamformer output. By doing so, interferers
inaudible at the output are not binaurally preserved, leaving degrees
of freedom to preserve other sources, or, apply more noise reduction.

2. SIGNAL MODEL AND NOTATION

We consider the binaural HAD setting, with two collaborating HADs
that have a combined total of M microphones installed. The sig-
nals are assumed to be processed on a frame-by-frame basis in the
frequency domain. Since processing takes place independently per
frame, time-frame indices are omitted for convenience.

Assuming an additive distortion model, an STFT coefficient,
yj [k], at the jth microphone is composed as follows,

yj [k] = aj [k]s[k] +

b∑
i=1

bij [k]ui[k] + vj [k] , (1)
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where aj [k] and bij [k] are the acoustic transfer functions (ATFs) of
the desired source and i-th interferer to the j-th microphone respec-
tively, s[k] and ui[k] are the desired source and i-th interferer re-
spectively, b is the number of interferers, and vj [k] is additive uncor-
related noise. In the remainder of this work, the frequency variable
k will be omitted for simplicity, since all processing will be done per
frequency bin, assuming frequency bins are mutually independent.
All microphone signals can be combined using vector notation. Let

y = x + Bu + v ∈ CM×1 , (2)

where x = as and B =
[
b1 b2 . . . bb

]
∈ CM×b.

Assuming all sources mutually uncorrelated, the cross power
spectral density (CPSD) matrix P of all disturbances is defined as

P =

b∑
i=1

Pni + Pv ∈ CM×M , (3)

with Pni and Pv the CPSD matrices of ni = biui and v.
Finally, on each HAD we define a reference microphone. These

microphones are used as a reference with respect to the preservation
of the binaural cues of interfering point sources and the complete
preservation of the target signal on both the left and right HAD.

3. PROBLEM STATEMENT

We aim to find a method that more efficiently constrains the binaural
cues of interfering point sources. We propose to do this by automatic
optimal interferer subset selection by choosing the optimal subset of
known interferers for binaural cue preservation. As an example, we
apply this to the JBLCMV beamformer [4, 7].

3.1. JBLCMV

The JBLCMV preserves the target point source and the binaural cues
of up to 2M−3 interfering point sources, while still doing controlled
noise reduction [4, 7]. Let w =

[
wH
L wH

R

]H ∈ C2M×1, where
wL and wR are the filters that are both applied to all microphone
signals to obtain the left and right HAD output signal, respectively.
The optimization problem to obtain these filters is defined by

w =argmin
w

wHP̃w (4a)

s.t. wHC = fH , (4b)

where P̃ =

[
P 0
0 P

]
∈ C2M×2M , f =

[
aL aR 0Tb

]H ,

C =

[
a 0
0 a︸ ︷︷ ︸

Λa

b1L · · · bbL
−b1R · · · −bbR︸ ︷︷ ︸

Λb

]
∈ C2M×(b+2) , (5)

with biL = bib
−1
iL the ith left relative transfer function (RTF) and

similarly for biR. The first two columns of C in Eq. (5) provide
the binaural distortionless constraints, while each other column
provides (exact) binaural cue preservation for one interfering point
source based on preservation of the interaural transfer function, i.e.,
wH

L biL
wH

L
biR

= biL
biR

. We defined Λa and Λb to be the matrices containing
all constraints on the target and interferers, respectively.

The solution to this problem formulation is given by

w = P̃−1C
(
CHP̃−1C

)−1

f , (6)

when b ≤ 2M−3. When b > 2M−3, there is no solution that pro-
vides controlled noise reduction and a subset should be chosen to sat-
isfy the constraint b ≤ 2M −3. However, it is not clear which RTFs
should be chosen for binaural cues preservation. A naive choice
would be to select the 2M −3 RTFs that have the highest associated
powers. This is not optimal, as will be shown in Section 5, since it is
the output power that determines the (perceptual) importance of the
interferers. Moreover, this also changes with the filter. Furthermore,
constraining the binaural cues of an interferer that is inaudible at the
beamformer output needlessly lowers the noise reducing capabilities
of the beamformer. In this work, we will therefore consider an opti-
mal selection of the most important interferers. However, this is not
obvious as this is a non-convex and integer problem.

3.2. Pre-determined RTFs

The problem formulation outlined above depends on the RTFs. Esti-
mating RTFs of interferers in practical applications is challenging.
Instead of actual RTFs, one could also use predetermined RTFs,
where a number of virtual sources is placed in the far-field around the
head of the user, each with a known predetermined relative acoustic
transfer function (PRTF) [8].

To make sure that the mismatch between a PRTF and true RTF
cannot become too large, we would like to have many PRTFs. This is
problematic for the noise reduction versus binaural cue preservation
trade-off of LCMV-based beamformers, because more constraints
will lead to less noise reduction. Additionally, they can only handle
a limited number of constraints, so a subset of the PRTFs has to be
selected that is no larger than 2M − 3. This is, as mentioned in
Section 3.1, a non-convex and integer problem.

3.3. Research Question

From the above, it is clear that the set of RTFs that are binaurally
constrained, has a big impact on the final performance in terms of
noise reduction and binaural cue preservation. This holds for both
the framework using the true RTFs as well as when one uses the pre-
determined RTFs. In this paper we therefore investigate automatic
selection of RTFs for binaurally constrained beamformers.

This method decides which RTFs are most important to con-
strain, based on the amount of noise reduction and the amount of
binaurally unconstrained noise power after filtering. This will ad-
ditionally allow for more potential noise reduction, since interfering
sources that are deemed inaudible after filtering can be binaurally un-
constrained, leaving more degrees of freedom for noise reduction.

4. PROPOSED METHOD

We propose a method that can select from all interferer constraints
the b ≤ 2M − 3 most important constraints. As such, a constraint
matrix C as in Eq. (5) is constructed that always satisfies the limit
on the number of constraints that the JBLCMV can handle.

Let Λa =

[
a 0
0 a

]
∈ C2M×2 and Λb ∈ C2M×l be the con-

straint matrices for the target and all l (virtual) interferers, respec-
tively. Let

Λ =
[
Λa Λb

]
∈ C2M×(2+l) , (7)

be the matrix containing all the constraints, defined similar as
Eq. (5). We then define a selection vector and matrix p ∈ {0, 1}l
and Φp, respectively, that are used to select columns from Eq. (7).
Matrix Φp is a submatrix of diag

([
1 1 pT

])
with its zero
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columns removed. The selected columns are put into the constraint
matrix Cp that is presented to the JBLCMV. This allows us to define

Cp = ΛΦp ∈ C2M×(|p|+2) . (8)

We now define an optimization problem with p as the minimiza-
tion variable, the total output noise power as cost function and as
constraints the power of binaurally unconstrained sources and the
maximum number of constraints selected by p [9]. Let

p =argmin
p∈{0,1}l

wH
p P̃wp (9a)

s.t.
∥∥∥(I− diag(p))UB̂Hwp

∥∥∥2
2
≤ β−1Px (9b)

1Tp ≤ 2M − 3 , (9c)

where Px is the estimated power of the target, β is the desired
minimum signal-to-binaurally-unconstrained-interferer-power ratio,
B̂ =

[
BH BH

]H ∈ C2M×l contains the binaural (P)RTFs,
U = diag(u) ∈ Cl×l with u a vector with the power of each
interferer and we choose wp as

wp = P̃−1Cp

(
CH

p P̃−1Cp

)−1

f ∈ C2M , (10)

which is the JBLCMV filter for the interferer subset determined by
p. Eq. (9b) guarantees that the power of the unconstrained interferers
is below a certain level. Although we do not explicitly incorporate
formal models of audibility or perception in this paper in order to
focus on solving the problem formulation itself, this could be taken
into account in Eq. (9b) in future research.

The problem in Eq. (9) is non-convex and may have multiple
local minima. To solve this optimization problem, we propose a
number of relaxations to reformulate the problem into a convex form
that always has a feasible solution.

4.1. Threshold Relaxation

When l ≤ 2M − 3, the norm in Eq. (9b) can always be made 0. As
such, that constraint can never cause an infeasible problem as long
as l ≤ 2M − 3. As discussed in Section 3.2, we typically want a
larger amount of PRTFs, and as such, it might not always be possible
to satisfy Eq. (9b), because of the cardinality constraint in Eq. (9c).
Since an infeasible problem is generally useless, we implement a
relaxation on the power constraint Eq. (9b), such that the feasible
region is only expanded minimally to allow a solution to exist.

Let the updated problem be

min
p∈{0,1}l, t1

wH
p P̃wp + αmax

(
0, t1 − β−1Px

)
(11a)

s.t.
∥∥∥(I− diag(p))UB̂Hwp

∥∥∥2
2
≤ t1 (11b)

1Tp ≤ 2M − 3 , (11c)

where t1 is the new relaxation variable and α is the penalty weight
for violation of the original threshold.

4.2. Cost Function Relaxation

To relax the cost function in Eq. (9a) to a convex form, we re-
write it using Eqs. (8) and (10) and use the following properties
of the selection matrix Φp: ΦT

pΦp = I2+|p| and ΦpΦT
p =

diag
([
1 1 pT

])
. Consider the following decomposition [1]:

ΛHP̃Λ = λI + G , using λ > λmax

(
ΛHP̃Λ

)
. (12)

We use this decomposition such that we can formulate the relaxation
of the cost function as a linear matrix inequality (LMI) using the
Schur complement [10]. Using Eq. (12), the cost function is first
re-written to

wH
p P̃wp = fHΦp

(
ΦT

p (λI + G)Φp

)−1

ΦT
p f , (13)

= fHQf , (14)

where
Q = Φp

(
λI + ΦT

pGΦp

)−1

ΦT
p , (15)

which is reformulated using the matrix inversion lemma [11] to

Q = G−1−G−1(G−1 + λ−1 diag
([

1T2 pT
]))−1

G−1 . (16)

The cost function in Eq. (14) is convex in Q, but the definition
of Q in Eq. (16) is not a convex constraint in p. We therefore relax
Eq. (16) by bounding the right-hand side from above and applying
the Schur Complement [10] to obtain[

−G−1 − λ−1 diag
([

1T2 pT
])

G−1

G−1 Q−G−1

]
� 0 , (17)

which is convex in both p and Q [1]. The cost function in Eq. (14)
and the above LMI are a convex relaxation of the original cost func-
tion in Eq. (9a), with the additional minimization variable Q.

4.3. Power Constraint Relaxation

To relax the power constraint in Eq. (9b) to a convex form, the norm
is expanded, using the new minimization variable Q, that is∥∥∥(I− diag(p))UB̂Hwp

∥∥∥2
2
=

fHQΛHP̃−1B̃U(I− diag(p))UB̃HP̃−1ΛQf ,

(18)

which is a bilinear, and thus non-convex, expression in p and Q. We
relax it, by formulating Eq. (18) as an LMI after first introducing an
approximation to (I− diag(p)) to make it positive definite. After
applying this approximation and the Schur Complement, we obtain[

I + ( 1
ε
− 1) diag(p) UB̃HP̃−1ΛQf

fHQΛHP̃−1B̃U t1

]
� 0 , (19)

where ε� 1 is the discussed approximation.

4.4. Binary Selection Relaxation

Since the optimization problem in Eq. (9) is an Integer Program
(known to be non-convex and NP-hard to solve) we propose to relax
the binary variable p to a continuous variable p̂ ∈ [0, 1]l [9, 12, 13].

Combining all relaxations from Sections 4.1 to 4.4, we obtain

min
p̂∈[0,1]l, t1,Q∈Sr+2

++

fHQf + αmax
(
0, t1 − β−1Px

)
(20a)

s.t.

[
−G−1 − λ−1 diag

([
1T2 p̂T

])
G−1

G−1 Q−G−1

]
� 0 (20b)[

I + ( 1
ε
− 1) diag(p̂) UB̃HP̃−1ΛQf

fHQΛHP̃−1B̃U t1

]
� 0 (20c)

1T p̂ ≤ 2M − 3 , (20d)

as the complete convex optimization problem. After solving Eq. (20)
for p̂ we apply randomized rounding to obtain a binary p. The re-
sulting p we use to construct the constraint matrix Cp as described
by Eq. (8) to use with the binaural LCMV solution in Eq. (6).
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(b) Average weighted ITF errors of the interferers.

Fig. 1: Experimental results. Solid lines indicate the use of true RTFs in Λb, while dashed lines indicate the use of PRTFs.

5. EXPERIMENTS

The proposed optimization problem in Eq. (20) is solved using
CVX [14] and SeDuMi [15] in Matlab. The parameter ε is set
to 100−1 and the penalty weight α is set to 106, such that viola-
tion of the original threshold is strongly discouraged. The desired
binaurally unconstrained SIR is chosen to be β = 10dB.

Experiments are done using either the true RTFs of the interfer-
ers or PRTFs. When using PRTFs, we use 24 PRTFs placed uni-
formly around the user’s head in the horizontal plane at a distance of
3m. The RTFs are constructed using anechoic chamber head related
impulse responses, using 2 microphones on each ear [16]. The in-
tensity matrix U is determined using MVDR beamscanning [17, 1].

To evaluate, we use average SNR gain [4] and average weighted
interaural transfer function errors [18, 8]. The weights are based on
simultaneous masking [19], such that less audible interferers will be
weighted less. Using true RTFs, we compare the proposed method
with an exhaustive search (ES) implementation of the proposed
framework, the BMVDR [7], and the JBLCMV [4, 7]. In addition,
we evaluate the proposed method versus the JBLCMV using PRTFs.

5.1. Acoustic Scene

The simulated acoustic scene uses 3 to 8 interfering speech-shaped
or white noise sources in arbitrary locations in the horizontal plane.
They are all at 3m distance from the user and their impulse re-
sponses are determined using head related impulse responses from
[16]. The target is in front of the user at 80 cm. Finally, additive
white Gaussian noise, with an SNR of 50 dB compared to the target,
is added to all microphone recordings independently, to simulate mi-
crophone self noise.

5.2. Results

The results are shown in Fig. 1. Using true RTFs (solid lines), the
proposed method is close to the ES in terms of SNR gain and ITF
error. This shows how close the convex relaxations are to the orig-
inal problem formulation in Eq. (9). In addition, compared to the
JBLCMV, the proposed method leads to significantly increased SNR
gains, while still having lower spatial cue distortions compared to the

BMVDR. Further increasing the number of interferers, the proposed
method even obtains lower spatial cue distortions than the JBLCMV.
Using PRTFs (dashed lines), the proposed method still has some im-
proved SNR gain over the JBLCMV with PRTFs. More importantly,
we see in Fig. 1b that the JBLCMV with naive constraint selection
performs very poorly in terms of binaural cue preservation compared
to our proposed selection method, which even leads to a lower ITF
error than when using the true RTFs. This is because of the large
number of PRTFs that it can select from. However, when the num-
ber of active interferers is larger than five, the proposed method starts
to introduce spatial cue distortions as well. This is as expected, as
the proposed method can only select 2M − 3 = 5 interferers si-
multaneously. Additionally, there may not exist a PRTF that is co-
located with an actual interferer. Using auditory and perceptual mod-
els within the proposed framework, this could be further improved.
In [1], more detailed results are presented and discussed.

6. CONCLUSION

A new constraint selection method for binaural LCMV-based beam-
formers has been proposed. It has been shown to improve the per-
formance in terms of noise reduction and binaural cue preservation
compared to a naive selection method and improved binaural cue
preservation compared to the BMVDR beamformer. This allows
binaural beamforming methods like the JBLCMV to function with
more than 2M − 3 (virtual) interferers present. Furthermore, the
proposed method improves its noise reducing capabilities overall,
by unconstraining inaudible sources in relevant time-frequency bins.

Interesting areas of further research include combining interferer
selection with other types of beamformers such as the RJBLCMV
[5], which bounds binaural cue errors instead of exactly constraining
them. Additionally, further research in binaural cue preserving meth-
ods would benefit greatly from binaural cue error measures more
closely related the perception of such errors.
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