
Radio Science

RESEARCH ARTICLE
10.1002/2013RS005365

Key Points:
• A half-space may increase the link

gain between small nodes
• Such a half-space may also bring no

mismatch of the node antennas
• The results indicate an opportunity

in the communication between
small nodes

Correspondence to:
D. Penkin,
D.Penkin@tudelft.nl

Citation:
Penkin, D., G. Janssen, and A. Yarovoy
(2014), Impact of a half-space inter-
face on the wireless link between tiny
sensor nodes, Radio Sci., 49, 798–811,
doi:10.1002/2013RS005365.

Received 24 DEC 2013

Accepted 27 AUG 2014

Accepted article online 2 SEP 2014

Published online 29 SEP 2014

Impact of a half-space interface on the wireless link between
tiny sensor nodes
Dmitriy Penkin1, Gerard Janssen2, and Alexander Yarovoy1

1Microwave Sensing, Signals and Systems Group, Delft University of Technology, Delft, Netherlands, 2Circuits and Systems
Group, Delft University of Technology, Delft, Netherlands

Abstract The power budget of a wireless link between two electrically small sensor nodes located close
to an interface between two media is studied. The model includes both the propagation channel losses and
input impedance of the radio frequency antennas. It is shown that a highly inductive half-space significantly
enhances the received power due to the contribution of the surface wave while not resulting in
considerable mismatch losses between the antennas and electronics. Hence, such a half-space improves
the link gain, which may compensate the limited energy available for transmission from electrically and
physically small nodes.

1. Introduction

Advances in wireless communications and microelectromechanical systems technologies enable the
development of networks with a large number of small and inexpensive sensor nodes. These networks nick-
named “Smart Dust” are foreseen to be a breakthrough technology which will enable a wide spectrum of
emerging applications in environmental surveillance, civil engineering, and the health-care sector [Ilyas
and Mahgoub, 2006; Bush, 2010]. Each individual sensor node integrates sensing, computing, and com-
munication units to detect an environmental phenomenon and deliver the collected data to neighboring
nodes (one-hop far away). By following a multihop communication paradigm, these data are forwarded
throughout the network toward an end user.

As shown in Akyildiz and Jornet [2010], the most reliable way to establish a node-to-node connection in
“Smart Dust” networks is based on electromagnetic (EM) waves. In practice, such wireless nodes will oper-
ate close to an interface between two media as it is important to tightly attach these sensors to it in order
to avoid asbestos-like pathogenic effects on human beings who might breathe in the sensors [Poland et al.,
2008]. The impact of such an interface on the power budget of the node-to-node link might be substan-
tial for the network realization: in particular, the existence of a strong link gain provoked by the interface is
observed in Zhang et al. [2007], where the authors established a connection between microchips due to the
surface wave contribution. The existence of a surface wave, excited by a vertical dipole over a lossy under-
lying half-space, and its properties were formulated and studied by Sommerfeld in his classic pioneering
paper [Sommerfeld, 1909]. Several subsequent and independent researchers [e.g., Wise, 1931; Norton, 1936]
have expanded his work. It was established that by increasing the communication distance, the surface
wave amplitude diminishes slower than those of traditional spherical waves due to its cylindrical wavefront.
The surface wave amplitude was, however, shown to decrease exponentially as the separation between the
receiver and the surface increases. Thus, actual wireless links between two macroscale devices located close
to an interface are typically modeled disregarding the surface wave impact because of such an electrically
large separation. Conversely, as miniaturized nodes are located very close to the interface, the contribution
of the surface wave to the received power cannot be neglected. To the best of our knowledge, the quantita-
tive impact of the half-space, which supports a surface wave, on the wireless link between electrically small
nodes is, however, not elucidated in the literature. In this paper, we develop the Green’s function-based
analytical model, capable of the quantitative evaluation of the interface impact on both the wireless prop-
agation link and the characteristics of a node antenna. Using this model, we demonstrate the significance
of the surface wave impact on the wireless propagation link in smart dust-like scenarios. Compared to the
previously known solutions [Li, 2009; King, 1969; Baños, 1966], the developed model is implicitly improved
by including in the link model the impact of electrically small transmitting and receiving antennas, current
distribution, and input impedance, which are influenced by the interface.
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To explore the impact of the surface wave on the link gain, we analyze first a two-layered half-space capa-
ble of supporting the surface wave. To rigorously determine this impact, we treat the problem using a
full-wave method. Since the full-wave solution depends on the geometry of a particular half-space, we also
propose a more general approach by employing the surface impedance Zs of the interface between upper
and lower half-spaces. This impedance essentially simplifies the solution of the EM boundary value prob-
lem as there is no need to take care of the fields within the half-space. Eventually, numerical experiments
are carried out to demonstrate that an underlying half-space, which supports a surface wave, concentrates
EM energy in certain directions and can improve the link gain between two nodes due to the surface wave
portion. Since this portion is very sensitive to the parameters of the underlying half-space, another point
of interest is to formulate the criteria which should be imposed on the surface impedance to maximize the
link gain.

Once the node antenna is placed very close to the interface, its input impedance will be affected by the
interface resulting in mismatch losses between the antenna and transmitter. Evidently, such mismatch influ-
ences the power budget of the wireless link between two nodes. Hence, another objective of this work is
to analyze such an input impedance as a function of the separation between the node antenna and the
interface. Although this problem has attracted considerable attention in the past, the focus has primar-
ily been either on further theoretical investigations of Sommerfeld’s solution or developing approximate
methods, which can satisfyingly model changes in the input impedance influenced by the half-space [King
et al., 1992; Wait, 1996; Popovic and Djurdjevic, 1995; Michalski, 1985; Johnson and Dudley, 1983; King and
Smith, 1981; Rudge, 1972; Vogler and Noble, 1964; Nicol and Ridd, 1987]. Moreover, these methods typically
addressed the input impedance of an antenna with a length of the order of a wavelength. Here the ana-
lytical model suitable to determine alterations in the input impedance of an electrically small antenna as a
function of its separation from the interface is developed. Conditions under which mismatch losses between
the antenna and transmitter have a negligible impact on the wireless power budget are found through
numerical experiments.

The remainder of this paper is organized as follows: the system model is described in section 2. In
section 3, the analytical model to obtain the received power over a two-layered half-space based on the
full-wave formalism is developed, the way to treat it in a numerical fashion is thoroughly discussed, and
numerical analysis is carried out. In section 4, the generalized model, which employs the impedance bound-
ary condition, is developed and simulated. The impact of the interface on the input impedance of an elec-
trically small antenna is modeled and numerically investigated in section 5. Finally, conclusions are drawn
in section 6.

2. System Model

The geometry of the problem is depicted in Figure 1. The simple half-space supporting a surface wave
includes an electrically thin dielectric layer coated on an ideal metal. The dielectric layer of thickness d is
lossy and characterized by a complex effective dielectric constant 𝜀. The interfaces are regarded to be per-
fectly flat due to a short communication distance R. To maximize the impact of the surface wave on the
wireless propagation link and thus its gain, the heights zt and zr are selected to be much smaller than the
operating wavelength 𝜆. Each sensor node is meanwhile equipped with an electrical dipole antenna to com-
municate and which is anchored to the half-space. Polarization of the dipole is supposed to be vertical as it
is subject to considerably less attenuation than for horizontally polarized signals. The dipole length is equal
to l, while its radius is a. Other sensor components are assumed to have no impact on the link budget. The
cylindrical coordinates and ei𝜔t time dependence are used throughout. Hence, the distance between two
nodes along the 𝜌 axis is defined as 𝜌, whereas the distances between the interface and the center of the
transmitting and receiving antenna are zt and zr , respectively. The nodes are situated in the free half-space
with parameters 𝜀0 = (36𝜋)−1 × 10−9 F/m and 𝜇0 = 4𝜋 × 10−7 H/m. The full-wave analysis involves a
detailed treatment of EM fields within the half-space to obtain the Green’s function, which is eventually
used to estimate the received power based on the Hertz potential formalism. Thus, following King and Smith
[1981], we assume that the current is triangularly distributed over the dipole. The analytical solution derived
is represented through the Sommerfeld-type integral equation, which can formally be solved by applying
the principle of stationary phase. However, this approach is limited to obtain the radiated field in the far
field region of the antenna only. As the receiving antenna might be located in the near-field region of the
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Figure 1. Problem geometry.

transmitting antenna due to severe constraints on the node energy source, the Sommerfeld-type solution
is treated numerically. The technique in which an integration contour is deformed to a steepest descent
path [Parhami et al., 1980] is used to estimate the received power for any communication distance between
two nodes.

For the impedance-based model, the interface is located along the plane z = 0 and incorporated in the
model through a surface impedance Zs. This parameter relates the electric E⃗ and magnetic fields H⃗ on its
surface according to the Leontovich boundary condition n̂ × E⃗ = Zs ⋅ n̂ × (n̂ × H⃗), where n̂ is the out-
ward unit vector normal to the surface [Senior and Volakis, 1995]. Such a condition was originally proved
to accurately treat any interface only when an incident plane wave comes from the zenith direction (inci-
dence angle 𝜃 = 0). However, the condition’s applicability can be expanded to incident plane waves
with any incidence angle once the half-space dielectric constant 𝜀 ≫ 1: only in this case a charge den-
sity on the interface induced by a transmitting antenna is insensitive to its space position [Godzinski, 1961;
Senior and Volakis, 1995]. According to Vaynshteyn [1969], the radius of the interface curvature Ri should
sufficiently exceed the communication distance R to employ the Leontovich boundary condition in a safe
manner. Therefore, to let EM fields at the receiving node, which are obtained using the impedance bound-
ary condition, approximate accurately the exact fields, the impedance-based model is developed under the
assumptions that 𝜀 ≫ 1 and Ri ≫ R. The received power is derived based on the Hertz potential formalism:
in particular, the Green’s function obtained by using Zs is utilized. The correctness of the impedance-based
model is verified by comparing its results for the given two-layered half-space to those calculated using the
full-wave approach.

To analyze the input impedance of the node antenna, the transmitting node is placed over the interface
plane z = 0 with a surface impedance Zs. The separation between the antenna and the interface is equal
to zt . Subsequently, both analytical and numerical treatments are similar to those developed and shown in
section 3.

3. Two-Layered Half-Space
3.1. Analytical Model
As the node antenna is an electrically small dipole, its current distribution is approximated to be
one-dimensional and triangularly distributed along the aperture [King and Smith, 1981]. The transmit-
ting dipole is excited by a transmitter with frequency f (wavelength 𝜆) and amplitude A. To evaluate the
pure interface impact on the node-to-node channel, the transmitter and receiver are considered to be per-
fectly matched to the antennas. Therefore, using the classical EM approaches [Jackson, 1962], a dominant
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(with respect to the vertical polarization) electric field Ez at the receiving point (𝜌, 𝜑, zr) is derived
as follows:

Ez(𝜌, zr) =
(

𝜕2

𝜕z2
+ k2

)
Πe

z(𝜌, 𝜑, zr) =
−15Ali

k

[(
𝜕2

𝜕z2
+ k2

)
G(𝜌, zr, 0, zt)

]
, (1)

where k = 2𝜋∕𝜆 is the free-space wave number and G(𝜌, zr, 0, zt) corresponds to the Green’s function for
the vertical Hertz’s dipole located above the given two-layered half-space. As the coordinate 𝜑 does not
influence the value Ez , the assumption 𝜑 = 𝜑0 = 0 is used without loss of generality and their notations
are discarded throughout the rest of the paper. Based on the full-wave analysis, the function G(𝜌, zr, 0, zt) is
formally derived in Appendix A and has the following form:

G(𝜌, zr , 0, zt) =

∞

∫
−∞

𝜘H(2)
0 (𝜘𝜌) ⋅ e−i𝛾1(zr+zt)

i𝛾1𝜀 + 𝛾2 tan(𝛾2d)
d𝜘, (2)

where 𝜘 is the complex transverse wave number (Figure 1), while 𝛾2
1 = k2 −𝜘2 and 𝛾2

2 = k2𝜀−𝜘2 are the lon-
gitudinal wave numbers in free space and the dielectric region, respectively. As the current at the receiving
antenna obeys the triangular distribution, the received power can thus be expressed mathematically using
standard EM theory as follows:

p =
l2|Ez(𝜌, zr)|2

32ℜ(Za)
= 225A2l4

32k2ℜ(Za)
×
|||||||
⎛⎜⎜⎝

∞

∫
−∞

𝜘3H(2)
0 (𝜘𝜌) ⋅ e−i𝛾1(zr+zt)

i𝛾1𝜀 + 𝛾2 tan(𝛾2d)
d𝜘

⎞⎟⎟⎠
|||||||

2

, (3)

where l is the length and Za the complex impedance of the antenna. Equation (3) contains the
Sommerfeld-type integral, which has no formal solution. Such an integral can be treated using the station-
ary phase method [King, 1969] to produce an approximate analytical solution. The solution’s applicability
is, however, limited to cases where the receiver is in the far-field region of the transmitting antenna. To
determine the received power at any communication distance, equation (3) is treated numerically. As it is
intractable to evaluate the integral straightforwardly because of its highly oscillatory nature, the steepest
descent path method [Parhami et al., 1980] is applied in section 3.2. This method deforms the integration
contour in order to simplify the procedure of obtaining the numerical integral solution.

3.2. Sommerfeld-Type Integral Treatment
To assure unique specification of the Sommerfeld-type integrand in equation (3) in the complex 𝜘 plane, it
is necessary to discuss in detail the properties of the square root 𝛾1 =

√
k2 − 𝜘2. For |𝜘i| < k the correspond-

ing wave mode propagates along the z axis, and its propagation constant 𝛾1i should be real and positive.
When |𝜘i| > k, to ensure that the radiated field in equation (3) remains limited with increasing the separa-
tion between a node and the interface as then |𝛾1i| ⋅ |zt + zr| → ∞, the imaginary part of 𝛾1i is required to be
negative. Eventually, we need to impose the following restrictions:

{
𝛾1 > 0, when |𝜘| < k;
Im(𝛾1) < 0, when |𝜘| > k.

(4)

To facilitate the solution process of the Sommerfeld-type integral, the complex variable 𝜉 is introduced
through the transformation 𝜘 = k ⋅ sin 𝜉, which changes equation (3) to equation (5).

p = 225A2l4

32k2ℜ(Za)
×

||||||||
⎛⎜⎜⎜⎝

𝜋+i∞

∫
−𝜋−i∞

k3 sin3(𝜉) cos(𝜉) ⋅ H(2)
0 (k𝜌 sin(𝜉)) ⋅ e−ik(zt+zr ) cos(𝜉)

i𝜀 cos(𝜉) +
√
𝜀 − sin2(𝜉) ⋅ tan

(
kd
√
𝜀 − sin2(𝜉)

)d𝜉

⎞⎟⎟⎟⎠
||||||||

2

. (5)
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p = 225A2l4

32k2ℜ(Za)
×

|||||||||||||||
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√
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.
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|||||||||||||||

2

. (6)

The complex 𝜘 plane is thus transformed into a single “2𝜋-width” section of the complex 𝜉 plane due to
the periodicity property sin(𝜉 + 2n𝜋) = sin 𝜉 for n = ±1,±2, ... ± N. Branch cuts, which are used on the
two-sheeted complex Riemann 𝜘 plane to set the regulation of passing from one Riemann sheet to another
to make the definition of the double-valued function 𝛾1(𝜘) unique, should be also mapped to the complex
𝜉 plane. In particular, the deformed integration contour C in the xi plane (Figure 2), which is introduced as
according to Felsen and Marcuvitz [1994], meets the criteria for 𝛾1 postulated in equation (4). The continuous
spectrum of eigenvalues 𝜉 ∈ C corresponds to the spectrum of free-space modes with 𝛾1 > 0. The set of
discrete points 𝜉 ∈ [𝜋∕2, 𝜋] describes surface wave modes [Shevchenko, 1971]. Note that although the poles
of leaky wave modes are also determined through the simulations for quite thick dielectric layers, the leaky
wave impact is seen to be negligible at the point receiver (the leaky wave contribution is quite restricted
once the heights zt and zr are small and decays exponentially along the 𝜌 axis [Felsen and Marcuvitz, 1994])
and thus are neglected in this paper. Each surface mode propagates in the subsurface region (i.e., 𝛾2

1 < 0 and
𝛾2

2 > 0), and its pole 𝜉p has to be the root of the dispersive equation, which is basically the denominator of
the integrand in equation (5). Hence, by obtaining the residues of these poles, the received power is decom-
posed as in equation (6). The first term in the brackets relates to the contribution of the geometric-optical
wave. To determine the amount of received power caused by the portion of the surface wave, the sum in
equation (6) should only be taken into account [Shevchenko, 1971].

3.3. Numerical Analysis
At first, by using equation (6) and following a geometric description of a numerical experiment conducted
in Li [2009], the geometric-optical and surface wave field at the point receiver is calculated. Due to the nice
agreement between the obtained results and those shown in Li’s publication (see Figure 3), the full-wave
model is endorsed. Moreover, although there is no straightforward mean to validate this model from a
formal perspective, an indirect analytical support can still be provided by means of Ling et al. [1998]: the dis-
persion equation in this paper is similar to that derived here and being the denominator of the integrand
in equation (5).

The analysis objective is to demonstrate that the impact of the simple two-layered half-space will substan-
tially improve the link budget of the node-to-node channel under certain conditions. In particular, carbon is
chosen as a reference dielectric material because it is low loss and widely used. Its dielectric properties have
been characterized in Hotta et al. [2011], and 𝜀 = 15 − 8i is particularly extracted at frequency f = 10 GHz.
Calculations are performed for three different thicknesses: d1 = 5 ⋅ 10−4 m, d2 = 10−3 m, and d3 = 10−2 m.
The heights zt and zr are fixed to be equal to 𝜆∕10.

The dispersive equation is solved in a numerical manner as it is transcendent and unable to be analytically
treated. In the course of its evaluation, the following is concluded: (1) a zero surface mode is always present
in the dielectric layer, (2) the higher are the frequency f , the thickness d, and the dielectric constant 𝜀, and
the larger is the total number of surface modes, and (3) a multimode regime in the dielectric film occurs
when d > 2 ⋅ 10−3 m. In particular, in Figure 4a a single root is estimated once the thickness is equal to d1

or d2. To demonstrate the significance of the interface impact, the power contribution of the surface wave
ps is calculated for these thicknesses and normalized to that of the direct wave pfs. Such a field strength is
assessed using the free-space Green’s function e−ikR∕R, where the communication distance R is chosen to be
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Figure 2. The integration contour C including the pole 𝜉p .

the same as for calculating ps. The
link gain caused by the dielectric with
thickness d1 is shown to be larger
than 10 dB when R > 7𝜆 (Figure 4b,
dashed line). Meanwhile, the dielec-
tric with thickness d2 supports the
surface wave, which increases the
channel gain by more than 10 dB,
once 2𝜆 < R < 15𝜆 (Figure 4b,
short dashed line). Hence, the inter-
face is shown through the numerical
experiment to significantly influence
the link gain of the node-to-node
channel both at long and short
communication ranges.

Now we will analyze the impact of
the half-space, which allows multiple surface modes. In particular, the dielectric with thickness d3 has four
surface modes as its dispersive equation includes four different roots (Figure 4a). However, all these sur-
face modes (including the zero one) convey a negligible amount of energy to the receiving node in free
space: i.e., when R = 𝜆, the ratio ps∕pfs = −51 dB and reduces with increasing the communication range
R. The same behavior is observed for the dielectric, which also supports the multiple surface modes but
has a different thickness. Therefore, in the multimode scenario the surface wave will only propagate within
the dielectric layer and produce negligible impact on the received signal in free space. In other words,
the energy coupled into a dielectric slab of electrically large thickness (i.e., described by multiple modes)
remains in the slab rather than propagating back to free space.

According to Shevchenko [1971], a half-space with a single-surface mode can be modeled in terms of its
surface impedance. As the impedance-based model is attractive from a fundamental perspective since there
is no need to take care of the fields within the underlying half-space, it is developed next.

4. Impedance Interface
4.1. Analytical Model
In this chapter we study the wireless link between two nodes over an interface in free space limited at z = 0
by the Leontovich boundary condition with surface impedance Zs. The boundary condition as shown in
Senior and Volakis [1995] can be used for modeling dielectric half-spaces with 𝜀 ≫ 1 and is applicable to
arbitrary incident angles. The received field is obtained by applying equation (1). The Green’s function for a
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vertical electric dipole situated over a flat interface with impedance Zs is derived from Wait and Schlak [1967]
and given by equation (7).

G(𝜌, zr, 0, zt) =
e−ik

√
𝜌2+(zr−zt)2√

𝜌2 + (zr − zt)2
+

∞

∫
−∞

𝜘H(2)
0 (𝜘𝜌)√𝜘2 − k2

⋅

√
k2 − 𝜘2 − kZs√
k2 − 𝜘2 + kZs

⋅ e−i
√

k2−𝜘2(zr+zt)d𝜘. (7)

p = 225A2l4

32k2ℜ(Za)
×
||||||
([

𝜕2

𝜕z2
+ k2

]
e−ik

√
𝜌2+(zt−zr )2√

𝜌2 + (zt − zr)2
+ ∫

C

k3 sin3(𝜉) ⋅ H(2)
0 (k𝜌 sin(𝜉))

⋅
cos(𝜉) − Zs

cos(𝜉) + Zs

⋅ e−ik cos(𝜉)(zt+zr )d𝜉 + 4𝜋i ⋅ k3 ⋅ (1 − Z
2

s ) ⋅ H(2)
0

(
k𝜌
√

1 − Z
2

s

)
⋅Zs ⋅ eik(zt+zr )Zs

)||||||
2

. (8)

The normalized surface impedance Zs = Zs∕120𝜋. The first term in equation (7) corresponds to the
free-space Green’s function, while the second one represents the interface impact on the field at receiv-
ing point (𝜌, zr). As G(𝜌, zr , 0, zt) contains the Sommerfeld-type integrand, the solution process is similar to
that in section 3.2. Thus, the Green’s function is revised using the transformation 𝜘 = k ⋅ sin 𝜉. Since the
restrictions on 𝛾1 are the same as in equation (4), the integration contour C is applied. Also, the residue of
the unique pole 𝜉p = arccos(−Zs) needs to be taken into account as it belongs to the proper Riemann sheet.
Using equation (3), the power at the receiving node is eventually derived as in equation (8). Note that the
power contribution of the direct, the reflected, and the surface wave can, respectively, be calculated by
considering only the first, the second, and the third term in the round brackets of this equation.

To validate the impedance-based model, the given two-layered half-space is used and the obtained results
are compared to those of the full-wave approach. The normalized surface impedance Zs of the given
half-space is derived by taking care of the boundary condition for EM fields on both surfaces of the dielectric
layer and adopting the impedance boundary criterion at its upper interface and given by Li [2009]:

Zs = i (1∕𝜀)1∕2 tan
(

k
√
𝜀d

)
. (9)

Once the dielectric thickness is equal to d1 and d2, the normalized impedances of the two-layered half-space

are Z
1

s = 0.0035 + 0.1107i and Z
2

s = 0.0436 + 0.2635i, respectively. For each thickness, the single root
of the dispersive equation is seen in Figure 4a to be fairly approximated by 𝜉p = arccos(−Zs), where Zs

is estimated using equation (9). In this way, the power contribution of the surface wave calculated by the
impedance-based model for zt = zr = 𝜆∕10 is shown to be dominant and in good agreement with
those obtained by the full-wave approach (Figure 4b). Such a nice match justifies the applicability
of the impedance-based model to determine the interface impact on the power budget of the node-
to-node channel.
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Figure 5. The total field power and its surface wave contribution as a function of the distance between the transmitting and receiving antennas. The obtained
powers are normalized to the received power pfs , which is related to a free-space wireless channel and calculated under the same conditions. (a and b) Plotted
when zt = zr = 𝜆∕10. (c and d) Depicted for zt = zr = 𝜆∕100.

4.2. Numerical Analysis
The impact of the interface is investigated by comparing the total received power p with a reference value
pfs, which corresponds to the power delivered through the free-space propagation channel. The power pfs is
estimated by taking only into account the first term in the brackets of equation (8) as it represents the por-
tion of the direct wave. To better understand the significance of the surface wave, the power contribution of
this wave is assessed by solely considering the last term in the brackets of equation (8) in comparison with
pfs. The results, which are obtained for different values of Zs as a function of the separation zt, zr , are shown
in Figure 5. Note that the total power p is calculated under the assumption that the surface wave construc-
tively interferes with the geometric-optical counterpart as a phase shift between these waves is negligibly
small due to a short communication range. In particular, the surface velocity has been demonstrated in
Appendix C to be large enough to make this assumption. Also, the value of Zs is considered to be limited as
it is inversely proportional to the square root of the effective dielectric constant 𝜀. Since 𝜀 > 10 to satisfy the
impedance boundary condition criterion [King, 1969], the surface impedance is bounded as |||Zs

||| < 0.3.

As can be seen in Figure 5, the interface impact depends significantly on its surface impedance. In particu-
lar, the larger is the positive imaginary part of Zs, and the better are the directive properties of the interface
(i.e., no surface wave propagates above the half-space with a zero imaginary part). The losses of the under-
lying half-space are incorporated in the real part of Zs, and thus, the constructive impact from the interface
is more significant when this real part tends to be zero. Eventually, once the half-space is described by a rel-
atively high inductive impedance and the nodes are placed very close to it, the received power p can be
increased up to an order of magnitude compared to the “free-space” scenario due to the dominant contri-
bution of the surface wave (Figures 5a and 5c). For example, once Zs = 0.3i and zt = zr = 𝜆∕100, the link gain
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Figure 6. The field strength magnitude at the receiver E influenced by the half-space with the impedance Zs normalized to that Eis affected by the perfectly
conducting half-space Zs = 0 is demonstrated as a function of the receiver-interface separation zr when (a) zt = 𝜆∕10, 𝜌 = 10𝜆 and (b) zt = 𝜆∕10, 𝜌 = 100𝜆.

equals to 20 dB at R = 10𝜆 and its value increases with enlarging R. The existence of such a strong power
gain may be explained by two facts: first, the surface wave field decays slower than the geometric-optical
counterpart (∼1∕

√
R instead of ∼1∕R); second, a highly inductive half-space redistributes the EM fields by

pulling them to the surface. The former is the well-known property of the surface wave coming from its
cylindrical nature [Vaynshteyn, 1969]; meanwhile, the latter argument needs to be further investigated to
prove its reliability. In particular, the EM field strength at the receiving node influenced by the half-space
with the inductive impedance Zs is compared to that affected by the perfectly conducting half-space
(Zs = 0) in Figure 6. Since a perfectly conducting half-space produces a maximum geometric-optical por-
tion as R ≫ 𝜆 and zt ≪ 𝜆, such a comparison indicates how the geometric-optical field partly turns into
a surface field as well as dissipated losses. In particular, its transformation into surface wave energy is seen
from the trend that the field density increases for zr ≪ 𝜆, whereas its magnitude decreases for larger zr (the
half-space “attracts” the EM field to its surface). Meanwhile, for lossless half-spaces the magnitude of the EM
field at zr ≪ 𝜆 weakly decreases with increasing communication distance R due to the slow decay of the
surface wave (solid and short dashed lines in Figure 6). Once the half-space is lossy, despite of such a surface
wave effect, the magnitude of the EM field at zr ≪ 𝜆 may even reduce with increasing R as the EM energy is
partly dissipated (dashed and dotted curves in Figure 6).

5. Antenna Impedance
5.1. Analytical Model
The nearby interface influences the input impedance of the node antenna through changing its current
distribution [Rudge, 1972]. For the modeling, the vertically polarized dipole is placed over the plane interface
at height zt . The antenna length is equal to l ≪ 𝜆, and its radius a ≪ l. The half-space is characterized by the
normalized surface impedance Zs.

The dipole impedance is analytically derived in Appendix B. This impedance can be decomposed as
Za = Zfs +ΔZ, where Zfs is the input impedance of the antenna in free space and ΔZ is the change due to the
presence of the half-space. The free-space antenna impedance Zfs has been determined in King and Smith
[1981]. Being the measure of the interface impact, the value ΔZ includes the Sommerfeld-type integrand
and is revised using the transformation 𝜘 = k ⋅ sin(𝜉) and given by equation (10). This equation is treated in
a similar fashion as before, and the final form of ΔZ is derived as in equation (11).

ΔZ = 15l2k2

2

𝜋+i∞

∫
−𝜋−i∞

sin3(𝜉) ⋅ H(2)
0 (k𝜌 sin(𝜉)) ⋅

cos(𝜉) − Zs

cos(𝜉) + Zs

⋅ e−2ikzt cos(𝜉)d𝜘. (10)
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ΔZ = 15l2k2

2

⎡⎢⎢⎢⎣∫C sin3(𝜉) ⋅ H(2)
0 (k𝜌 sin(𝜉)) ⋅

cos(𝜉) − Zs

cos(𝜉) + Zs

⋅ e−2ikzt cos(𝜉)d𝜘

+ 4𝜋i ⋅
(

1 − Z
2

s

)
⋅ H(2)

0

(
k𝜌
√

1 − Z
2

s

)
⋅ Zs ⋅ e2ikzt Zs

⎤⎥⎥⎥⎦ . (11)

5.2. Numerical Analysis
To address ΔZ as a function of the normalized surface impedance Zs, the parameters of the radiating dipole
are fixed to be l = 0.01𝜆 and a = 0.01l, where 𝜆 = 3 ⋅ 10−2 m. The impedance of such a dipole in free space
is estimated to be Zfs = 0.019 − 11596i Ohm. Meanwhile, the complex value ΔZ is shown as a function of
the separation zt in Figure 7 for several interfaces characterized by Zs = 0, Zs = 0.1i, and Zs = 0.25i, respec-
tively. It can be seen that the obtained results match those calculated using the electromagnetic solver FEKO
[1994]. The latter could be assessed in the following way. First, the dipole antenna in free space is modeled
in FEKO [1994] as a one-dimensional wire element with the feed point at the middle and its impedance Zfs

is straightforwardly determined via simulations. Second, the antenna impedance Za is directly estimated by
FEKO [1994] considering the same dipole antenna over a planar two-layered substrate. Both thickness and
dielectric permittivity of layers are selected to provide the interface along the plane z = 0 with the required
impedance Zs according to equation (9) (excluding the interface characterized by Zs = 0, which stands for
the half-space made of a perfectly conducting metal). Finally, for each set of input parameters the complex
value ΔZ is assessed by subtracting Zfs from Za.

As a transmitter can typically adapt the real part of its impedance to avoid a mismatch with the antenna,
the attention is primarily paid to the imaginary part of Za. It can be concluded from Figure 7 that the rate of
increase of the imaginary part ℑ(ΔZ) grows with lowering the value Zs. This finding is explained by the fact
that with decreasing Zs the interface tends to behave as a perfect conductor, which is known to strongly
affect only the imaginary part of a vertically polarized antenna. Meanwhile, the starting point of increasing
ℑ(ΔZ) is independent from the properties of an underlying half-space. While modeling the transmitting
antenna of a different length and radius, it appears that such a starting point is mainly related to the ratio
zt∕l. From a physical perspective, it can be explained that the separation between the antenna and inter-
face zt has to be increased in order to not induce a perturbation of currents on the aperture of a larger
antenna. Our results suggest that the value ℑ(ΔZ) can be considered insignificant once zt∕l ⩾ 1 for any
kind of half-space and antenna radius a ⩽ 0.1l. Hence, once the separation zt exceeds the dipole length l,
the interface will cause a negligible mismatch between the antenna and transmitter as it does not affect the
imaginary part of Za. Moreover, the real part ℜ(ΔZ), which is directly associated with the amount of energy
radiated from the antenna, can even be enhanced by means of the nearby interface (Figure 7).

6. Conclusion

To analyze the impact of a media interface on the wireless link between two nodes of a smart dust-like
network, we have developed analytical models to describe the impact of this interface both on the
propagation path and the node antennas and performed numerical analysis. We assumed that each
node is equipped with an electrically small vertically polarized linear dipole. The transmitting and
receiving nodes are placed over the half-space at heights zt and zr , respectively, much smaller than the
operating wavelength.

First, the influence of the surface wave existing in a two-layered half-space on the node-to-node channel
has been modeled using the full-wave analysis. Through numerical experiments, it has been shown that
particular realizations of this half-space have a constructive and significant influence on the power bud-
get of such a wireless link: once the communication distance R>2𝜆 and zt =zr =𝜆∕10, the link gain has
been shown to increase by more than 10 dB due to the contribution of the surface wave. It has been
shown that a two-layered medium can fairly be treated using the surface impedance concept. Hence, the
impedance-based model has been developed to describe the impact of a generic interface on a wire-
less link. Such a model is attractive from a fundamental perspective as there is no need to take care of
the fields within the half-space. The model has been verified by comparison with available full-wave sim-
ulation results in particular cases. The subsequent numerical analysis demonstrates that a half-space
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Figure 7. The value of ΔR for different types of half-space: (a and b) Zs = 0, (c and d) Zs = 0.1i, (e and f) Zs = 0.25i. The results obtained are shown in solid line,
while those simulated in FEKO [1994] are depicted by markers.

with a highly inductive impedance substantially improves the power budget of the node-to-node link:
i.e., the link gain increase is more than 20 dB when R>10𝜆 and zt =zr =𝜆∕100. The existence of such a
large gain is explained by two facts: (1) the surface wave field decays slower than the geometric-optical
counterpart (∼1∕

√
R instead of ∼1∕R) and (2) a highly inductive half-space redistributes the EM fields

by pulling them to the surface. From the node design point of view, this finding suggests developing
antennas which will mainly transfer transmitting power in a surface wave rather than in space
(volumetric) wave.

Second, the influence of the nearby half-space on the antenna impedance has analytically been studied
since it might cause a mismatch between the node antenna and transmitter. Numerical simulations have
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shown that the half-space negligibly affects the antenna input impedance once the separation zt between
antenna and interface exceeds the dipole length l.

Our analysis shows that the half-space characterized by a highly inductive impedance significantly and con-
structively affects the wireless path gain between miniaturized nodes without bringing extra mismatch
of the node antennas (the criteria zt > l, zr > l must be fulfilled). This finding is essential from a practi-
cal perspective as it offers an opportunity to communicate between miniaturized electronic devices: i.e.,
thanks to the strong link gain provoked by such an interface, the wireless link between nodes with electri-
cally smaller antenna is realizable, and thus, a more functional wireless sensor network can be implemented.
Unlike the perfectly conducting half-space which merely supports the geometric-optical wave (it is formed
as an interference of direct and reflected waves, and thus, its magnitude is subject to substantial alterations
with varying source-receiver distance), the interface with a highly inductive surface impedance is moreover
capable of maintaining the wireless link over a wide and continuous range of communication distances due
to the significant contribution of the surface wave.

Appendix A: Green’s Function of a Vertical Dipole Located Over a Two-Layered
Half-Space

Here the Green’s function of a vertically polarized elemental dipole located over the given two-layered
half-space is derived. As shown in Figure 1, the dipole is placed in the point (0, 0, zt). The general representa-
tion of the Green’s function G(𝜌, zr, 0, zt) for a vertical elemental antenna located over an interface is known
to be written as [Felsen and Marcuvitz, 1994]

G(𝜌, zr, 0, zt) =
1

4𝜋

∞

∫
−∞

𝜘H(2)
0 (𝜘𝜌)g(zr, zt)d𝜘, (A1)

where 𝜘 is the complex transverse wave number, H(2)
0 stands for the Hankel function of the second kind, and

zero order and the function g(zr, zt) is the one-dimensional modal Green’s function. The function g(zr, zt)
depends generally on the nature of z stratification. For the given half-space, g(zr, zt) is derived by adopting
the rigorous boundary conditions (e.g., the tangential components of the electric field are continuous across
the interface) on both surfaces of the dielectric layer and by using the wave equations for free space and
the dielectric medium. This results in a system of four linear equations with four unknown parameters. By
solving it, the representation of g(zr, zt) is expressed as follows:

g(zr, zt) =
4𝜋 ⋅ e−i𝛾1(zr+zt)

i𝛾1𝜀 + 𝛾2 tan(𝛾2d)
, (A2)

where 𝛾2
1 = k2 − 𝜘2 and 𝛾2

2 = k2𝜀 − 𝜘2 are the longitudinal wave numbers in free space and the dielectric
region, respectively. In this way, the final form of the Green’s function G(𝜌, zr, 0, zt) is given by

G(𝜌, zr, 0, zt) =

∞

∫
−∞

𝜘H(2)
0 (𝜘𝜌) ⋅ e−i𝛾1(zr+zt)

i𝛾1𝜀 + 𝛾2 tan(𝛾2d)
d𝜘. (A3)

Appendix B: Input Impedance of a Vertical Dipole Placed Over an Impedance
Half-Space

Here the input impedance of a vertical dipole located over the impedance interface at height zt is derived.
The dipole length is equal to l ≪ 𝜆, while a ≪ l stands for its radius. The interface is characterized by the
normalized surface impedance Zs.
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The antenna is modeled to be fed
through a delta voltage generator
located at its center. Hence, the dipole
is excited with the following signal:

Ez(a, z) = −V0 ⋅ 𝛿(z − zt), (B1)

where V0 is the amplitude [V]. By tak-
ing into account that V0 = Za ⋅ j(zr)
and using equations (1), (7), and stan-
dard mathematical methods, the above
expression can be written as equation
(B2). The first term in the square brack-
ets corresponds to the free-space
Green’s function, while the second term
includes the interface impact. There-
fore, the antenna impedance Za can be
decomposed as Za = Zfs +ΔZ, where Zfs

is the impedance of the dipole in free
space and ΔZ is the portion due to the presence of the half-space. Through simple algebra, the value of ΔZ
is determined as in equation (B3).

Za = 30i
k

⋅

zt+l∕2

∫
zt−l∕2

(
1 −

||z − zt
||

l∕2

)
⋅
[
𝜕2

𝜕z2
+ k2

] zt+l∕2

∫
zt−l∕2

(
1 −

||z′ − zt
||

l∕2

)[
e−ik

√
𝜌2+(z−z′)2√

𝜌2 + (z − z′)2

+

∞

∫
−∞

𝜘H(2)
0 (𝜘𝜌)

i
√

k2 − 𝜘2
⋅

√
k2 − 𝜘2 − kZs√
k2 − 𝜘2 + kZs

⋅ e−i
√

k2−𝜘2(z+z′)d𝜘
⎤⎥⎥⎦ dz′ dz. (B2)

ΔZ = 15l2

2k

∞

∫
−∞

𝜘3H(2)
0 (𝜘𝜌)√

k2 − 𝜘2
⋅

√
k2 − 𝜘2 − kZs√
k2 − 𝜘2 + kZs

⋅ e−2izt

√
k2−𝜘2

d𝜘. (B3)

Appendix C: Velocity of a Surface Wave in a Two-Layered Half-Space

According to Vaynshteyn [1969], the group velocity of the surface wave 𝜈c is given by

𝜈c = 𝜈 ⋅ℜ(𝜘p), (C1)

where 𝜈 is the wave propagation velocity in the dielectric, whereas 𝜘p is the transverse wave number of the
surface wave. The wave propagation velocity is known to be expressed as

𝜈 = c√
ℜ(𝜀)

, (C2)

where c is the speed of light and 𝜀 is the dielectric constant of the upper half-space layer. The transverse

wave number can be derived through the surface impedance as 𝜘p =
√

1 − Zs

2
. Hence, using equations

(C1) and (C2), the ratio Δ𝜈c = 𝜈c∕c can be given as

Δ𝜈c =
ℜ

(√
1 − Zs

2
)

√
ℜ(𝜀)

. (C3)

For the given two-layered half-space, the ratio Δ𝜈c = 𝜈c∕c is plotted in Figure C1 as a function of the
thickness d at the wavelength 𝜆 = 0.03 m. Note that the dielectric constant 𝜀 is selected both actual and
hypothetical to better understand its influence on the group velocity 𝜈c. The numerical results indicate
that 𝜈c ≪ c only when ℜ(𝜀) ⩾ 100. However, the most constructive impact on the power budget of the
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node-to-node channel is expected once the half-space has a high inductive impedance and is thus charac-
terized by a low value of ℜ(𝜀). Hence, due to 𝜈c ∼ c and the small communication distance, the assumption
that there is no phase shift between the surface and the geometric-optical waves is valid.
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