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Summary

At the heart of digital signal processing (DSP) are the sampling and quantization

processes, which convert analog signals into discrete samples and which are imple-

mented in the form of analog to digital converters (ADCs). In some recent applica-

tions, there is an increased demand for DSP applications to process signals having

a very wide bandwidth. For such signals, the minimum allowable sampling rate is

also very high and this has put a very high demand on the ADCs in terms of power

consumption. Recently, the emergence of compressive sampling (CS) has offered

a solution that allows us to reconstruct the original signal from samples collected

from a sampling device operating at sub-Nyquist rate. The application of CS usu-

ally involves applying an additional constraint such as a sparsity constraint on the

original signal. However, there are also applications where the signal to deal with

has a high bandwidth (and thus sub-Nyquist rate sampling is still important) but

where only the second-order statistics (instead of the original signal) are required

to be reconstructed. In the latter case, depending on the characteristics of the sig-

nals, it might be possible to reconstruct the second-order statistics of the received

analog signal from its sub-Nyquist rate samples without applying any additional

constraints on the original signals. This idea is the key starting point of this thesis.

We first focus on time-domain wide-sense stationary (WSS) signals and in-

troduce a method for reconstructing their power spectrum from their sub-Nyquist

rate samples without requiring the signal or the power spectrum to be sparse. Our

method is examined both in the time- and frequency-domain and the solution is

computed using a simple least-squares (LS) approach, which produces a solution

if the rank condition of the resulting system matrix is satisfied. To satisfy this rank

condition, two options of sampling design are proposed, one of which is the so-

called multi-coset sampling. It is show in this thesis that any of the so-called sparse
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ruler can produce a multi-coset sampling design that guarantees the full rank con-

dition of the system matrix, and thus the optimal compression is achieved by a

minimal sparse ruler.

While the approach in the previous paragraph is related to time-domain signals,

we could extend the discussion about the power spectrum reconstruction from sub-

Nyquist rate samples in the context of the spatial-domain signal, which is defined

as a sequence of outputs of the antennas in the antenna array at a particular time

instant. Given the compressed spatial domain signals, which are obtained from the

output of a uniform linear array (ULA) with some antennas turned off, of particu-

lar interest is to reconstruct the angular power spectrum, from which the direction

of arrival (DOA) of the sources can generally be located. In this thesis, a method

to estimate the angular power spectrum and the DOA of possibly fully correlated

sources based on second-order statistics of the compressed spatial-domain signals

is proposed by employing a so-called dynamic array which is built upon the so-

called underlying ULA. In this method, we present the spatial correlation matrices

of the output of the dynamic active antenna arrays at all time slots as a linear func-

tion of the spatial correlation matrix of the entire underlying uniform array and we

solve for this last correlation matrix using LS. The required theoretical condition

to ensure the full column rank condition of the system matrix is formulated and

designs are proposed to satisfy this condition.

Next, we consider both spatio-angular and time-frequency domains and pro-

pose a compressive periodogram reconstruction method as our next contribution.

We introduce the multibin model, where the entire band is divided into equal-size

bins such that the spectra at two frequencies or angles, whose distance is at least

equal to the bin size, are uncorrelated. This model results in a circulant structure

in the so-called coset correlation matrix, which enables us to introduce a strong

compression. We propose the sampling patterns based on a circular sparse ruler to

guarantee the full column rank condition of the system matrix and to allow the LS

reconstruction of the periodogram. We also provide a method for the case when

the bin size is reduced such that the spectra at two frequencies or angles, whose

distance is larger than the bin size, can still be correlated.

To combine frequency and DOA processing, we also introduce a compressive

two-dimensional (2D) frequency- and angular-domain power spectrum reconstruc-

tion for multiple uncorrelated time-domain WSS signals received from different

sources by a linear array of antennas. We perform spatial-domain compression by

deactivating some antennas in an underlying ULA and time-domain compression

by multi-coset sampling.
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Finally, we propose a compressive cyclic spectrum reconstruction approach for

wide-sense cyclostationary (WSCS) signals, where we consider sub-Nyquist rate

samples produced by non-uniform sampling. This method is proposed after first

observing that the block Toeplitz structure emerges in the WSCS signal correlation

matrix. This structure is exploited to solve the WSCS signal correlation matrix

by LS. The condition for the system matrix to have full column rank is provided

and some possible non-uniform sampling designs to satisfy this full column rank

condition are presented.

Based on all the works that have been done, we have found that focusing on

reconstructing the statistical measure of the received signals has significantly relax

the sampling requirements and the constraints on both the statistics and the signals

themselves. Hence, we would like to conclude that, for given tasks of applications

in hand, we should ask ourselves whether statistical measure reconstruction is suf-

ficient since the answer for this question will likely to determine how we should

collect the data from the observed phenomena. This underlines the importance of

awareness on what kind of information is necessary and sufficient for the tasks in

hand before conducting the sensing/sampling process.
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Chapter 1
Introduction

The main focus of this thesis is on the reconstruction of the second-order statistics

from digital samples produced by compressive sampling a.k.a. sub-Nyquist-rate

sampling. In this thesis, we use the term second-order statistics to refer to the auto-

and cross-corelation function of the signals. However, we also use the term second-

order statistics to refer to the power spectrum, which is the Fourier transform of the

auto-correlation function of wide-sense stationary (WSS) signals, and also to refer

to the cyclic spectrum of cyclostationary signals (see Chapter 7 for more details).

Note that it has been known that compressive sampling offers substantial assistance

in sampling rate reduction, which is important when we deal with signals having a

very large bandwidth. In this chapter, we present the motivation of this thesis and

provide an outline of our works.

1.1 Motivation

Digital signal processing has played a major role in the emergence of many appli-

cations that offer an improvement in the quality of human life. One crucial point in

digital signal processing is of course the sampling and quantization process, which

transforms real world analog signals into discrete samples through the use of an

analog to digital converter (ADC). Some applications might require the reconstruc-

tion of the original analog signal from the digital samples or in other words, they

require that a one-to-one mapping exists between the analog signal and its digital

samples. According to the classical Shannon-Nyquist-Whittaker-Kotelnikov sam-

pling theorem [2], [3], a band limited real signal x(t), which is a signal having

3
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X(f) = 0 for f > fmax and f < −fmax (Hertz) with X(f) the frequency-domain

representation of x(t) and fmax a positive number, can be fully reconstructed from

its samples x(nT ) if the sampling frequency fs = 1
T satisfies fs = 1

T ≥ 2fmax,

i.e., the sampling rate of a real analog signal should be at least twice the maximum

frequency. When the signal bandwidth is very large, the sampling rate required by

the Nyquist criterion (called Nyquist rate) that needs to be performed by the ADC

is also very large, leading to a high power consumption. Finding a solution that al-

lows us to disobey the Nyquist criterion and to sample the analog signal below the

Nyquist rate is thus desirable since this will alleviate the strict requirements on the

ADC. When the signal is sparse in a particular basis, one can consider the popular

sampling theory known as compressive sampling (CS) [4, 5] in which the signal is

linearly and randomly projected at sub-Nyquist rate leading to a limited number of

measurements. Given these sub-Nyquist-rate measurements, the sparsity constraint

provides a possibility to reconstruct the original analog signal with no or little infor-

mation loss and this can be done by using any of the available sparse reconstruction

methods (see for example, [6]).

What interests us is that there are applications where the sampling still needs to

be done at sub-Nyquist rate (due to the high bandwidth of the signal of interest) but

where the second-order statistics (instead of the original signal) are of interest. One

application is, for instance, spectrum sensing for a cognitive radio network, which

is a network where unlicensed radio systems opportunistically search for a cur-

rently unoccupied frequency band in the licensed spectrum and then borrow these

discovered “white spaces” to establish a communication link. This spectrum sens-

ing is continuously performed by these unlicensed systems since they have to mon-

itor when the actual owners of the borrowed bands (called licensed users) become

suddenly active, in which case the unlicensed radios have to vacate the spectrum.

In this application, sampling the signal at sub-Nyquist rate is of interest since the

spectral range that has to be sensed is generally very wide. However, note that the

unlicensed radio systems are never interested in the original signal of the licensed

users occupying the bands to be monitored. This implies that a power spectrum

plot describing which frequency bands are occupied together with the amount of

power in the occupied bands is more than enough and any efforts to reconstruct

the original signal in this application will be overkill. Note that the Nyquist-rate

criterion determining the minimum sampling rate is defined for signal reconstruc-

tion and not for reconstructing second-order statistics. This already indicates that

the minimum sampling rate for reconstructing second-order statistics (without any

additional constraints) might actually be lower than the Nyquist rate. In fact, this
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is correct for WSS signals as we show in Chapters 2 and 3 of this thesis. Power

spectrum reconstruction of WSS signals below the Nyquist rate is possible without

any additional constraints on the original signal or the power spectrum. This is

due to the fact that focusing on the second-order statistics allows us to gain more

degrees of freedom. In fact, it might even possibly lead to more system equations

than unknown parameters. Loosely speaking, in this thesis, the degrees of freedom

refers to the number of system equations subtracted by the number of unknowns.

While the aforementioned discussion is related to time-domain signals, this dis-

cussion can also be applied to any other domain. In this thesis, we also consider

angular power spectrum reconstruction from spatial-domain signals. What we de-

fine as a spatial-domain signal here is a collection of outputs of the antennas in

the antenna array at a given time instant. Angular power spectrum information is

important, for example, in direction of arrival (DOA) estimation of targets or in

radio astronomy. In the latter application, an angular power spectral map is often

constructed to describe the amount of power coming from radio sources in the sky

at different directions. In our thesis, we restrict our concentration on a uniform

linear array (ULA) of antennas receiving narrow-band far-field signals from multi-

ple sources. Here, the sequence formed by the output of the antennas is perceived

as digital samples of an analog spatial-domain signal. While applying the Fourier

transform on the time-domain signal leads to its frequency-domain spectrum, ap-

plying the Fourier transform to the spatial-domain signal at the output of the ULA

will lead to a spectrum in the angular domain but at a non-uniform grid of angles

based on an inverse sinusoidal function. Similar to the time-domain signal case,

where a high sampling rate is related to a high power consumption in the ADC,

having more samples in the spatial domain also implies more resources, such as

the number of active antennas and the related hardware receiver branches. As a

result, performing a compression on the spatial-domain signal is generally desir-

able as it implies less spatial samples which is equivalent to a reduced number of

receiver branches and/or antennas. Similar to the time-domain signal case, if the

correlation of the spatial-domain samples only depends on the spatial lag and if we

focus on reconstructing the angular power spectrum (which is the Fourier transform

of the spatial-domain correlation) instead of the angular spectrum itself, we show

later on in this thesis that the angular power spectrum can be recovered from the

compressed spatial-domain samples without putting any sparsity constraint on the

spatial-domain signal or on the angular power spectrum. In DOA estimation, when

the distance between the sources and the ULA is much larger than the aperture of

the ULA, the sources can be considered as point sources. When this is the case, it
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is more common to use the output of the ULA, a.k.a. the spatial-domain samples,

to perform a so-called line spectrum estimation and reconstruct a kind of a pseudo

angular spectrum having sharp peaks that can be used to indicate the DOA of the

sources. In some classical DOA estimation methods, the number of sources whose

DOA can be estimated is generally smaller than the number of antennas in the

ULA. However, DOA estimation methods that exploit second-order statistics of the

sources or the spatial-domain samples could generally allow us to again gain more

degrees of freedom and thus the number of sources whose DOA can be estimated

can be larger than the number of antennas. These increased degrees of freedom

can be obtained for example, by configuring the locations of the antennas based on

a specific array geometry instead of a ULA when the sources are uncorrelated or

by dynamically changing the array geometry configuration when the sources are

correlated, as we will show later on in this thesis. At this stage, it is sufficient to

say that what motivates us is how to explore the possibility to minimize the number

of resources (antennas and/or receiver branches) for a given objective in estimating

either the DOA and/or the complete angular power spectrum.

Apart from the above applications, there are some applications where the recon-

struction of the second-order statistics is vital and where sub-Nyquist-rate sampling

might be necessary, for example, in the case where the dimension of the covariance

matrices is very large. These applications include portfolio selection, risk manage-

ment, and asset pricing in the field of economics and finance (see [7]), machine

learning (see [8]), and pattern recognition (see [9]). These applications are topics

of future studies.

1.2 Outline and Contributions

Our thesis focuses on how to extract information out of second-order statistics from

the sub-Nyquist-rate samples of the considered signal. A more detailed explanation

about the outline and the contributions of our work is provided next.

Chapter 2:

In this chapter, we first provide a short overview of the classical compressive sam-

pling problem in the context of compressive spectrum or signal reconstruction as

well as parameter identification. We discuss the existing works and classify them

based on how the compression is performed and what information is going to be

reconstructed. By using the same classification, we then discuss some approaches
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for compressively reconstructing the second-order statistics. However, for more

details on the reconstruction approaches, we generally refer either to the following

chapters or to some references.

Chapter 3:

This chapter introduces a compressive wideband power spectrum estimator for

WSS signals sampled at sub-Nyquist rate, where any sparsity constraint on either

the signal or the power spectrum is not required. This estimator is established by

exploiting the Toeplitz structure in the WSS signal correlation matrix. We present

our periodic sub-Nyquist sampling procedure, then examine the power spectrum re-

construction problem in the time domain and frequency domain, and propose three

approaches labeled as the time-domain, alternative time-domain, and frequency-

domain reconstruction approach. Two candidates for sub-Nyquist sampling im-

plementation, namely complex Gaussian sampling and multi-coset sampling, are

evaluated, where the latter can be related to the so-called sparse ruler problem. Our

next contribution is the analysis of the statistical properties of the estimated power

spectrum, where we calculate the mean, the covariance, and the analytical normal-

ized mean squared error of the reconstructed power spectrum. Our power spectrum

estimator can be developed into a power spectrum sensing module and a suitable

detection threshold can be derived. This threshold can be computed by first refining

our computed mean and covariance to the case when the received signal contains

only circular complex zero-mean Gaussian i.i.d. noise.

This chapter has been published as

• D.D. Ariananda and G. Leus, “Compressive wideband power spectrum esti-

mation”, IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4775–

4789, September 2012

Part of this chapter and some early results related to this chapter have also

appeared in

• D.D. Ariananda and G. Leus, “Wideband power spectrum sensing using sub-

Nyquist sampling”, Proc. of the 12th IEEE International Workshop on Signal

Processing Advances in Wireless Communications (IEEE-SPAWC), pp. 101–

105, San Francisco, California, June 2011

• D.D. Ariananda and G. Leus, “Compressive sampling for power spectrum

estimation”, Proc. of WIC/IEEE SP Symposium on Information Theory and

Signal Processing in the Benelux, Brussel, Belgium, May 2011
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• D.D. Ariananda, G. Leus, and Z. Tian, “Multi-coset sampling for power spec-

trum blind sensing”, Proc. of 17th International Conference on Digital Sig-

nal Processing, Corfu, Greece, July 2011

• G. Leus and D.D. Ariananda, “Power spectrum blind sampling”, IEEE Signal

Processing Letters, vol. 18, no. 8, pp. 443–446, August 2011

Chapter 4:

While in Chapter 3, we focus on time-domain WSS signals and exploit the Toeplitz

structure in their auto-correlation matrix to compressively estimate the power spec-

trum, in this chapter, we focus on spatial-domain signals at the output of a linear

array receiving a signal from far field sources. Note that when the linear array

is uniform and the sources are uncorrelated, the correlation matrix of the spatial-

domain signal also has a Toeplitz structure, similar to the structure that is found in

the time-domain correlation matrix in Chapter 3. This Toeplitz structure can also

be exploited to estimate the angular power spectrum or even the DOA with some

antennas in the ULA turned off and thus the number of required active antennas

can be smaller than the number of sources (see our work in [10]). However, in this

chapter, we advance this further and propose a new DOA estimation method for the

case where the number of sources can be larger than the number of active receiving

antennas and where the sources can be correlated. As the sources are correlated,

no Toeplitz or other special structure emerges in the spatial correlation matrix and

to solve this problem using only second-order statistics, we introduce the so-called

dynamic (non-uniform) array of active antennas. This dynamic array is formed by

considering an underlying uniform array and perform a periodic scanning on top

of it, where one scanning period is split into several time slots and different sets

of antennas are turned off in different time slots. Note that, we can have fewer

active antennas than sources in each time slot. Mathematically, this is equivalent to

adopting different spatial compression matrices for different time slots. The spa-

tial correlation matrix of the underlying array and the spatial correlation matrices

of the active antenna arrays for all time slots can be related by an overdetermined

system of equations. The conditions for the system of equations to be full column-

rank, which allows for a least squares (LS) reconstruction of the spatial correlation

matrix of the underlying array, are also provided. We then introduce two greedy

algorithms for dynamic array design that satisfies the aforementioned full rank con-

dition of the overdetermined system. Next, we tailor the existing multiple signals

classification (MUSIC) algorithm and spatial smoothing procedure to our approach
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to estimate the DOAs of the possibly correlated sources from the reconstructed

spatial correlation matrix of the underlying array. We also provide other options,

where we express the reconstructed spatial correlation matrix of the underlying ar-

ray as a linear function of the correlation matrix of the incoming signals at a grid of

investigated angles. Depending on the grid resolution, this system of equations is

solved using either LS or sparsity-regularized LS (possibly assisted by additional

constraints).

This chapter has been published as

• D.D. Ariananda and G. Leus, “Direction of arrival estimation for more cor-

related sources than active sensors”, Elsevier Signal Processing, vol. 93, no.

12, pp. 3435–3448, December 2013

Chapter 5:

Unlike the previous two chapters, where we treat time-domain signals and spatial-

domain signals separately, we here focus on both domains and introduce an ap-

proach to reconstruct the angular-domain periodogram from spatial-domain sig-

nals received at different time indices and the frequency-domain periodogram from

time-domain signals received at different wireless sensors. Different from the pre-

vious two chapters, the entire angular or frequency band is divided into equal-size

bins and the bin size is configured such that, at two angles or frequencies separated

by a distance of at least equal to the bin size, we have uncorrelated spectra. We dis-

cover that these problems in the two different domains result in a similar circulant

structure in the so-called coset correlation matrix and thus a strong compression

is possible. We are able to find the conditions for the resulting system matrix to

have full column rank and relate the design of the spatial or temporal sampling

patterns that achieve this full rank condition to the so-called circular sparse ruler.

This achievable full rank condition of the system matrix allows for a simple LS

reconstruction method. We then provide some analysis on the statistical properties

of the compressively estimated periodogram, which includes a bias and variance

analysis. For angular periodogram reconstruction, the proposed procedures assume

that the received signals at different time instants have the same statistics and for

frequency periodogram reconstruction, it is assumed that the signals received at dif-

ferent sensors also have the same statistics. In order to handle more general cases,

we also propose a multi-cluster model (more details in Chapter 5). In a different

situation when the received spectra at two angles or frequencies, whose distance is

larger than the bin size, can still be correlated, the resulting coset correlation matrix
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is generally not circulant anymore. In this case, a specific solution, which is also

available in Chapter 5, is required.

This chapter is submitted as

• D.D. Ariananda, D. Romero and G. Leus, “Compressive periodogram recon-

struction using uniform binning”, submitted to IEEE Transactions on Signal

Processing, accepted with mandatory minor revision

Part of this chapter has also appeared in

• D.D. Ariananda, D. Romero and G. Leus, “Compressive angular and fre-

quency periodogram reconstruction for multiband signals”, Proc. of the 5th

IEEE International Workshop on Computational Advances in Multi-sensor

Adaptive Processing (CAMSAP), pp. 440–443, Saint Martin, French West-

Indies, December 2013

Chapter 6:

In this chapter, we focus on multiple uncorrelated sources transmitting WSS sig-

nals and attempt to estimate the two-dimensional (2D) power spectrum in both fre-

quency and DOA after performing sub-Nyquist sampling on the received signals in

both the time and spatial domain. Using this 2D power spectrum, we can locate the

operating frequency and the DOA of the sources despite sampling at sub-Nyquist

rate and although we have fewer active antennas than sources. For this purpose, we

integrate the frequency-domain power spectrum estimation approach of Chapter 3

and our work in [10] on compressive angular-domain power spectrum estimation

into a single module. Note that we here do not adopt the angular power spectrum es-

timation approach of Chapter 4 since Chapter 4 focuses on correlated sources. We

first consider a ULA as the underlying array where each antenna is connected to

a receiver performing time-domain sub-Nyquist-rate sampling implemented using

a multi-coset sampling device introduced in Chapter 3 leading to temporal com-

pression. The compression in the spatial domain is then implemented by turning

off some of the antennas in the underlying ULA. In our approach, both the spatial

and temporal correlation functions between the resulting sub-Nyquist-rate samples

at all receivers are computed. We are basically able to write the linear relation-

ship between these correlation values with the 2D power spectrum. We present the

conditions that ensure the full column rank of the system matrix, which allows for

a simple LS reconstruction without applying any sparsity constraint on the signal
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statistics. Once the 2D power spectrum is reconstructed, we can further estimate

the DOAs of the sources by locating the peaks of the angular power spectrum.

This chapter has been published as

• D.D. Ariananda and G. Leus, “Compressive joint angular-frequency power

spectrum estimations”, Proc. of the 21st European Signal Processing Con-

ference (EUSIPCO 2013), Marrakech, Morocco, September 2013

Chapter 7:

In this chapter, we focus on estimating the cyclic spectrum of wide-sense cyclo-

stationary (WSCS) signals from sub-Nyquist-rate samples collected using non-

uniform sampling. Note that, unlike the correlation matrix of WSS signals which

is the focus of Chapter 3, the correlation matrix of WSCS signals does not have

a Toeplitz structure. However, we here decide to adopt the trick of [11] that sets

the span of the random linear projection to an integer multiple of the cyclic period,

which allows us to exploit the resulting block Toeplitz structure of the WSCS signal

correlation matrix. Note that this chapter can also be related to Chapter 4, where

we apply different spatial compression matrices in different time slots. Here, by

setting the span of the random linear projection to an integer multiple of the cyclic

period, we generally apply different temporal compression matrices for different

cyclic periods in one span of the projection. This allows us to write the linear re-

lationship between the WSCS signal correlation matrix and the correlations of the

sub-Nyquist-rate samples as an overdetermined system. We discover the conditions

for the system matrix to have full column rank allowing for a LS reconstruction of

the WSCS signal correlation matrix from the correlations of the sub-Nyquist-rate

samples. We also present the full column rank conditions for the system matrix

when each of the sampling matrices is restricted to either an identity matrix or an

empty matrix and relate the sampling matrix design for this special case to a sparse

ruler. Next, we also evaluate the case when the support of the WSCS signal cor-

relation is limited and propose a greedy algorithm for sampling matrix design that

satisfies the full rank condition of the system matrix. For this limited support case,

we again look at the case where each sampling matrix is restricted to either an iden-

tity matrix or an empty matrix and for this case, we are able to relate the sampling

matrix design to a circular sparse ruler.

This chapter has been published as

• D.D. Ariananda and G. Leus, “Non-uniform sampling for compressive cyclic

spectrum reconstruction”, Proc. of 2014 IEEE International Conference on
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Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, pp. 41–

45, May 2014

Chapter 8:

In this chapter, we present the conclusions and provide possible future researches

related to our work.

Next to the chapters included in this thesis, we also made additional contri-

butions during the last four years. First, we have extended our power spectrum

estimation approach of Chapter 3 into a cooperative scenario, where we have mul-

tiple sensors sensing the same WSS user signals passing through different fading

channels on their way toward different sensors. In order to have a lower sampling

rate per sensor compared to the one in the single sensor case of Chapter 3, we

have exploited the cross-spectra between the compressive measurements at differ-

ent sensors. As in the single sensor case, this can be done without requiring the

power spectrum to be sparse. The extension into a cooperative scenario for the

time-domain approach of Chapter 3 is published as

• D.D. Ariananda and G. Leus, “Cooperative compressive wideband power

spectrum sensing”, Proc. of the 46th Asilomar Conference on Signal, Sys-

tems and Computers, Pacific Grove, California, pp. 303–307, November

2012

while the extension for the alternative time-domain approach of Chapter 3 is pub-

lished as

• D.D. Ariananda and G. Leus, “A study on cooperative compressive wideband

power spectrum sensing”, Proc. of WIC/IEEE Symposium on Information

Theory and Signal Processing in the Benelux, Boekelo, The Netherlands, pp.

102–109, May 2012

The aforementioned works however build upon the knowledge of the channel

state information (CSI). This fact has encouraged us to produce another cooperative

compressive wideband power spectrum sensing approach that does not rely on the

knowledge of the CSI while maintaining our goal to minimize the sampling rate

per sensor. In this approach, we avoid the reliance on the knowledge of the CSI by

not exploiting the cross-spectra between measurements at different sensors. As a

result, we need to find a different way to obtain a lower sampling rate per sensor
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than the one in the single sensor case of Chapter 3. In order to achieve this goal,

we organize multiple wireless sensors into several groups, where different groups of

sensors employ different compression schemes and where each group computes the

temporal correlation estimates only at certain lags, which are different from group

to group. The temporal correlation estimates at different lags are then collected

from different groups of sensors by a fusion centre, which uses them to estimate

the power spectrum. This work has been published as

• D.D. Ariananda, D. Romero, and G. Leus, “Cooperative compressive power

spectrum estimation”, Proc. of 2014 IEEE 8th Sensor Array and Multichan-

nel Signal Processing Workshop (SAM 2014), A Coruna, Spain, pp. 97–100,

June 2014

As we have mentioned in the summary of Chapter 4, the Toeplitz structure that

emerges in the time-domain correlation matrix of Chapter 3, also appears in the

correlation matrix of the spatial-domain signal at the output of the ULA receiving

far field signals from uncorrelated sources. We also have a work that exploits this

Toeplitz structure and that estimates the angular power spectrum or the DOA of

the sources with some antennas in the ULA deactivated based on the solution of

the sparse ruler problem introduced in Chapter 3. The resulting active antenna

configuration is similar to the minimum redundancy array (MRA) of [12] (though

not always exactly the same). This work has been published as

• S. Shakeri, D.D. Ariananda, and G. Leus, “Direction of arrival estimation

using sparse ruler array design”, Proc. of the 13th IEEE International Work-

shop on Signal Processing Advances in Wireless Communications (IEEE-

SPAWC), Cesme, Turkey, pp. 525–529, June 2012

Another contribution in the field of DOA estimation involves the combination of

the dynamic array of Chapter 4 with the so-called structured total least squares

(structured TLS) approach to estimate the DOA of correlated sources where the

number of sources can be larger than the number of sensors. There, we consider a

possible perturbation on the pre-defined grid of investigated angles of arrival (see

the above summary of Chapter 4). This work has been published as

• D.D. Ariananda and G. Leus, “Direction of arrival estimation of correlated

signals using a dynamic linear array”, Proc. of the 46th Asilomar Conference

on Signal, Systems and Computers, Pacific Grove, California, pp. 2028–

2035, November 2012
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Chapter 2
Compressive Power Spectrum

Estimation: An Overview

Compressive sampling or compressed sensing (CS) is often related to solving un-

derdetermined systems of linear equations. In this thesis report however, we at-

tempt to provide a different perspective and show that, depending on what kind of

information we are going to reconstruct, compressive sampling can also be con-

nected to solving determined systems of linear equations if we are able to increase

the so-called degrees of freedom. In fact, it might even be connected to solving

overdetermined systems. In this chapter, we will start by discussing the classical

compressive sampling problem in the context of compressive spectrum or signal

reconstruction as well as parameter identification [such as frequency or direction

of arrival (DOA) estimation]. The latter can usually be related to identifying the

non-zero support of the original vector or signal. We then show that, the degrees

of freedom can be increased if we relax our objective and decide to reconstruct the

power spectrum instead of the spectrum from compressive samples or if we use

second-order statistics for parameter identification.

2.1 Preliminaries

Let us first focus on Nyquist-rate sampling, which, in this report, can be associated

not only to time-domain samples produced by a time-domain Nyquist-rate sampler

[temporal sampling (TS) case] but also to spatial-domain samples at the output of

a uniform linear array (ULA) of antennas with half-wavelength spacing [spatial

15
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sampling (SS) case]. To set the stage, in the TS case, we consider one or multiple

wireless sensors sensing the same users signal. For both the TS and SS cases, let

us then consider an N × 1 complex vector

xt[k] = [xt[kN ], xt[kN + 1], . . . , xt[kN +N − 1]]T , (2.1)

which illustrates the (k + 1)-th block of N consecutive time-domain Nyquist-rate

samples at sensor index t for the TS case or the output of the (k + 1)-th block of

N consecutive antennas in the ULA at time index t for the SS case. Note that both

k and t here are integers given by k = 0, 1, . . . ,K − 1 and t = 0, 1, . . . , T − 1,

respectively. This also implies that t represents a discrete quantity. It is then clear

that, for the TS case, K gives the total number of blocks of N consecutive time-

domain samples and T is the total number of wireless sensors. Fig. 2.1 illustrates

the TS case with K = 3, T = 4, and N = 5. Meanwhile, for the SS case, K gives

the total number of blocks of N consecutive antennas in the ULA while T is the

total number of considered time indices at each antenna. Fig. 2.2 illustrates the SS

case again with K = 3, T = 4, and N = 5.

For the TS case, we might have one or multiple sensors collecting multiple

blocks of N samples (periodic temporal sampling) or we might consider one or

multiple sensors but only focus on one block of N samples in each sensor (single

period temporal sampling). Similarly, for the SS case, we might have single period

spatial sampling (when we consider only one block of N antennas and focus on

the collected samples at either only one or multiple time indices t), or periodic

spatial sampling (when we consider multiple blocks of N antennas and focus on

the collected samples at either only one or multiple time indices t).

In the TS case, sampling large-bandwidth signals at Nyquist rate requires a

high-rate analog-to-digital converter (ADC), which is power hungry. Recently, CS

has emerged as a popular solution to alleviate the ADC requirements. While the

details about CS theory can be found in [5, 13, 14], we here provide a brief ex-

planation. Mathematically, the CS concept can be described by applying a random

linear projection on the received Nyquist-rate samples xt[k] leading to an M × 1

measurement vector yt[k], which can be written as

yt[k] = Cxt[k] (2.2)

with C the so-called M ×N CS or measurement matrix and with M < N . Since

the problem is underdetermined, solving xt[k] from the known yt[k] and C gener-

ally does not result in a unique solution unless a specific constraint is introduced.
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Figure 2.1: Illustration for the TS case. Here, we have T = 4 wireless sensors,

which are assumed to sense the same user signal. Each sensor collects K = 3

blocks of N = 5 consecutive time-domain Nyquist-rate samples. Note that the

multiplexer here is only used to show how (2.1) is formed.

The popular constraint that is introduced in the CS framework is a sparsity con-

straint. The vector xt[k] is called an S-sparse vector (or a vector that has a sparsity

order of S) if at least N − S entries are exactly zero. Note however that we might

not deal with signals that are themselves sparse, but which have a sparse represen-

tation in a particular basis [15]. For example, xt[k] might not be sparse but it might

be that, in the discrete Fourier transform (DFT) representation of xt[k], only at most

S DFT coefficents have non-zero value. In this case, we can still regard xt[k] as an

S-sparse signal. Most of the time, we encounter signals that are only approximately

sparse instead of the ones that are truly sparse. These signals are often labeled as

compressible signals, which means that they can be well-approximated by sparse

signals [15]. For example, at least N − S entries of xt[k] (or its DFT) might have

a magnitude smaller than 10−γ with γ a positive number to indicate the accuracy

level. In this case, we can regard xt[k] as a compressible signal. Given above def-

inition, if xt[k] is a sparse signal or if it has a sparse representation in a particular

basis, it is possible to obtain a unique solution of xt[k] from yt[k] although M < N

as long as C satisfies a specific requirement called the restricted isometry property
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(RIP) [13] (see Appendix 2.B for a detailed definition of RIP). In this case, multi-

ple sparse reconstruction techniques such as orthogonal matching pursuit [6], basis

pursuit [16], and least absolute shrinkage and selection operator (LASSO) [17] are

available for the reconstruction of xt[k]. Note that, in practice, the measurements

yt[k] are directly obtained from the analog version of xt[k] through a so-called

analog-to-information converter [18] instead of from xt[k] itself.

Note that [13] suggests the use of i.i.d. random Gaussian or Bernoulli variables

as the entries of C. One implementation example for the former is available in [19]

while one for the latter is available in [20]. However, note that (2.2) can also be used

to model multi-coset sampling, a.k.a. periodic non-uniform sampling, discussed

in [21]. In this case, C is a selection matrix, which contains M selected rows from

the N ×N identity matrix IN and thus yt[k] is obtained by selecting M entries of

xt[k] and discarding the remaining N−M entries. More discussion on multi-coset

sampling will be available in the next section.

Compressive sampling is applicable for the SS case as well. In the next section,

we will focus on compressive spectrum reconstruction and parameter identification

problems for both TS and SS cases. We will also consider several compressive

sampling models for that particular problem.

2.2 Compressive Spectrum Reconstruction and Parame-

ter Identification

2.2.1 Single Period Temporal or Spatial Compression

Signal or Spectrum Reconstruction

Let us start by focusing on signal or spectrum reconstruction and considering the

case where we only have a single block of samples available, i.e., one value of

k (k = k′) and where we also assume only one such measurement is available,

i.e., one value of t (t = t′). We first concentrate on the TS case and consider

compressive time-domain signal reconstruction or frequency-domain spectrum re-

construction by assuming that the received time-domain signal xt′ [k
′] has a sparse

representation in the frequency domain (which is common for example, in spectrum

sensing for cognitive radio). Then, yt′ [k
′] can be written as

yt′ [k
′] = Cxt′ [k

′] = CF−1
N x̌t′ [k

′], (2.3)

where FN is the N × N DFT matrix and the N × 1 vector x̌t′ [k
′] = [Xt′ [k

′, 0],

Xt′ [k
′, 1

N ], . . . , Xt′ [k
′, N−1

N ]]T is the DFT of xt′ [k
′] with Xt′ [k

′, f ] the value of the
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frequency domain representation at digital frequency f . Here, x̌t′ [k
′] is assumed

sparse, i.e., its entries are non-zero only at a few positions. The model of (2.3)

can also be used for the SS case where x̌t′ [k
′] gives the angular spectrum for the

spatial signal xt′ [k
′]. In all these cases, standard CS can be used to recover x̌t′ [k

′]

(see for example the CS algorithms in [6, 22, 23] and in [17, 24, 25] for the noisy

measurements).

Observe that only a single measurement vector (SMV) is collected in (2.3),

which is yt′ [k
′]. In CS, it is also possible to exploit multiple measurement vectors

(MMVs), for example, when the signals received at different times and/or locations

share the same non-zero support, i.e., they have exploitable joint sparsity struc-

ture. In the SS case, when MMVs are collected across different time indices t, i.e.,

{yt[k
′]}T−1

t=0 , we can form an M × T matrix Y[k′] = [y0[k
′],y1[k

′], . . . ,yT−1[k
′]]

and write our CS model by taking (2.3) into account as

Y[k′] = CX[k′] = CF−1
N X̌[k′], (2.4)

with the N × T matrices X[k′] = [x0[k
′],x1[k

′], . . . ,xT−1[k
′]] and X̌[k′] =

[x̌0[k
′], x̌1[k

′], . . . , x̌T−1[k
′]]. Recall that we here still focus on only one block

of N consecutive antennas in our ULA model as we still have a single spatial pe-

riod in our spatial sampling. Observe that, in case the signal sensed at a particular

angle along different time indices t comes from the same user, the received angu-

lar domain components x̌t[k
′] might still be different across different time indices

t, for example, due to the existence of time-varying fading channels between the

sources and the ULA and/or because we have different realizations of the user sig-

nals along index t (even if the statistics of the user signals do not change along

t). However, {x̌t[k
′]}T−1

t=0 usually share the same non-zero support. In this case,

any joint sparse reconstruction method can be used to recover both the non-zero

supports of all columns of X̌[k′] or X̌[k′] itself (see for example the CS algorithm

of [1, 26, 27, 28]).

The model in (2.4) is also applicable for the TS case (only by adjusting the

definition of t and k′) when we have sensors t = 0, 1, . . . , T − 1, each of which

collects one measurement vector yt[k
′]. One particular example occurs when we

have a network of wireless sensors receiving user signals that pass through different

fading channels on their way towards the different sensors. Observe that, although

all sensors sense the same user signals, the received frequency domain components

x̌t[k
′] are not the same across different sensors t due to the different fading chan-

nels. Similar to the SS case however, they usually share the same non-zero support

allowing the joint reconstruction of the non-zero supports of all columns of X̌[k′]



20

or X̌[k′] itself. The distributed compressive spectrum sensing approach of [29] can

be related to the model in (2.4) although [29] applies different CS matrices C for

different sensors t.
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Figure 2.2: Illustration for the SS case. Here, we have a ULA of KN = 15

antennas, which can be split into K = 3 blocks of N = 5 consecutive antennas. At

the output of the ADC connected to each antenna, digital samples are collected at

T = 4 different time instants.
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Parameter Identification

We now focus on parameter identification from compressive samples. For example,

in the SS case, we might only need information about the angle of arrival of the

signals instead of the entire map of the angular spectrum. When the sources whose

DOAs are to be estimated can be classified as point sources, the parameter (in this

case DOA) estimation problem boils down to a line spectrum estimation problem.

By focusing on the DOA estimation of point sources using a ULA, let us rewrite

xt′ [k
′] in (2.3) as

xt′ [k
′] = AD[k′]st′ , (2.5)

where st′ = [st′,0, st′,1, . . . , st′,I−1]
T is the I × 1 vector with st′,i one snapshot

of the discrete source signal associated with the (i + 1)-th point source and where

AD[k′] is the array response matrix with the N×I matrix A = [a(ϕ0),a(ϕ1), . . . ,

a(ϕI−1)], the N × 1 vector a(ϕi) = [1, φ(ϕi), φ(ϕi)
2, . . . , φ(ϕi)

N−1]T , φ(ϕi) =

exp(j2πϕi), ϕi given by ϕi = 0.5 sinθi, θi the DOA of the (i+1)-th point source,

and the I × I diagonal matrix D[k′] having φ(ϕi)
k′N at its (i+1)-th diagonal ele-

ment. As we only have one block of spatial samples (which is the block k′), we can

include the phase terms of D[k′] into st′ to simplify the notation and rewrite (2.5)

as

xt′ [k
′] = Ast′ [k

′]. (2.6)

The spatial compression can then be performed on xt′ [k
′] as

yt′ [k
′] = Cxt′ [k

′] = CAst′ [k
′]. (2.7)

While any type of matrix suggested in [13] can be used for C in (2.7), it is common

to use a selection matrix for C, which is equivalent to removing or deactivating

some antennas in the ULA leading to a non-uniform linear array (NULA). How-

ever, it can be found in [30] that the use of a random matrix for C is also possible

and in practice, this can be implemented by using analog phase shifters. Though the

technique of [30] does not really reduce the number of active antennas, the num-

ber of receiver hardware is reduced leading to a reduced implementation budget

(see [30] for more detailed information).

One of the DOA estimation approaches proposed in [31] can be perceived as

following the above model although [31] technically does not mention any spatial

compression and uses all the outputs of the ULA. The idea of [31] can be ex-

plained as follows. Note that the DOAs {θi}I−1
i=0 are generally unknown, which

motivates [31] to introduce a grid of Q ≫ I investigated angles {θ̃q}Q−1
q=0 . In this
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case, we can introduce the N × Q matrix Ã where the (q + 1)-th column of Ã is

given by a(ϕ̃q). To accomodate this gridding, we can rewrite (2.7) as

yt′ [k
′] = Cxt′ [k

′] = CÃs̃t′ [k
′], (2.8)

where s̃t′ [k
′] = [s̃t′,0[k

′], s̃t′,1[k
′], . . . , s̃t′,Q−1[k

′]]T is the Q × 1 extended source

vector with s̃t′,q[k
′] the incoming signal at the investigated angle θ̃q. In [31], the

reason to have a very large Q is to avoid grid mismatch, i.e., the desire is to have

the actual DOAs {θi}I−1
i=0 to be on top or nearby some of the investigated angles

{θ̃q}Q−1
q=0 . As Q is very large, we generally have Q ≫ N and Ã is generally a wide

matrix. This is why the compression model in (2.8) can still be used to illustrate

the framework in [31] without changing the actual concept. As the number of

measurements is much less than Q, [31] applies a sparsity constraint on s̃t′ [k
′]

in order to be able to recover s̃t′ [k
′] from yt′ [k

′]. The location of the non-zero

elements of s̃t′ [k
′] can then be used to estimate the actual DOAs. More details

about this method can be found in [31]. When the number of grid points is still not

sufficient enough to avoid grid mismatch, another approach that can be attempted

is to introduce a kind of additive perturbation or error matrix on top of Ã in (2.8).

More details on this approach can be found for example in [32, 33]. In [34], the

compression model in (2.8) is further developed for DOA tracking instead of just

DOA estimation.

Note that the aforementioned discussion about DOA estimation can also be re-

peated in the context of the identification of sinusoids (a.k.a. frequency estimation),

i.e., when the received time-domain signal contains a sum of I sinusoids. In this

case, ϕi represents the frequency of the (i+ 1)-th sinusoid.

For this case of parameter identification from compressive samples, it is also

possible to exploit MMVs. For DOA estimation, one approach that exploits MMVs

is also provided in [31]. In this case, we take (2.8) into account and write Y[k′]

in (2.4) as

Y[k′] = CÃS̃[k′], (2.9)

with S̃[k′] = [s̃0[k
′], s̃1[k

′], . . . , s̃T−1[k
′]]. Here, the vectors {s̃t[k′]}T−1

t=0 are sparse

and they share the same non-zero support. The so-called ℓ1 singular value de-

composition (ℓ1-SVD) is introduced by [31] to locate the locations of the non-zero

support of all columns of S̃[k′] in (2.9) and to find the DOA estimates. Other

works that use the model in (2.9) can be found in [35] and [36]. The difference

between [31] and [35, 36] is that [35] and [36] use the so-called joint ℓ0 approxi-

mation (JLZA) and greedy block coordinate descent (GBCD), respectively, instead
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of the ℓ1-SVD to find the locations of the non-zero support of all columns of S̃[k′]

in (2.9). More details can be found in [31], [35] and [36]. For this MMV case,

it is again possible that the number of grid points is still not sufficient enough to

avoid grid mismatch and the use of sparse Bayesian inference is proposed in [37]

to mitigate this problem.

Note that again, all the methods for the DOA estimation in the MMV case can

theoretically be used for the identification of sinusoids. In the context of single

period temporal compression, this implies that the multiple measurements are col-

lected over a domain other than the time domain. One example is when we have

multiple sensors sensing the same sinusoids and when measurements across the

different sensors are collected.

2.2.2 Periodic Temporal or Spatial Compression

Signal or Spectrum Reconstruction

MMVs can also be collected along the domain where the compression is done.

This leads to periodic temporal compression for the TS case and periodic spatial

compression for the SS case. Mathematically, the CS model for both cases can be

written as

Yt′ = CXt′ = CF−1
N X̌t′ , (2.10)

with the M ×K matrix Yt′ = [yt′ [0],yt′ [1], . . . ,yt′ [K − 1]], the N ×K matrix

Xt′ = [xt′ [0],xt′ [1], . . . ,xt′ [K−1]] and the N×K matrix X̌t′ = [x̌t′ [0], x̌t′ [1], . . .

, x̌t′ [K − 1]]. While (2.10) is easy to explain in the time domain, in the spatial do-

main, (2.10) implies that the same spatial compression is applied on each block of

N consecutive antennas of the ULA described in Section 2.1 and the output yt′ [k]

from all blocks k are then combined to form Yt′ in (2.10). The model in (2.10) is

useful if the joint sparsity structure again exists along the columns of X̌t′ in which

case we can again employ any joint sparse reconstruction approach to solve the un-

derdetermined system in (2.10). For temporal compression, this boils down to joint

frequency spectrum reconstruction over different sample blocks k while for spa-

tial compression, this leads to joint angular spectrum reconstruction over different

antenna blocks k.

We will now try to relate the compression model in (2.10) with multi-coset

sampling, which is also used in the compressive spectrum reconstruction approach

of [38]. Let us first define a KN × 1 vector

xt′ = vec(Xt′) = [xt′ [0], xt′ [1], . . . , xt′ [KN − 1]]T (2.11)
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with vec(.) an operation that stacks all columns of a matrix into a single vec-

tor. We can then label the collection of indices ñ in xt′ [ñ] that satisfy {ñ|ñ ∈
{0, 1, . . . ,KN−1}, ñ mod N = n} as the (n+1)-th coset, with n = 0, 1, . . . , N−
1 and ñ mod N the remainder of the integer division ñ/N . We can now see that

the (n + 1)-th row of Xt′ actually contains the samples collected at the (n + 1)-

th coset. Multi-coset sampling is perceived as a periodic sampling technique that

only collects samples at M out of N cosets available in the Nyquist-rate sampling.

Hence, it is clear that when C is a selection matrix, (2.10) illustrates multi-coset

sampling. The compressive spectrum reconstruction approach of [38] does not di-

rectly use (2.10). Instead, their approach can be perceived as performing a discrete-

time Fourier transform (DTFT) on every row of Xt′ for every digital frequency

ϕ ∈ [0, 1/N). The results of the DTFT operations are then stored into an N × 1

vector x̄t′(ϕ) where the (n+1)-th entry of x̄t′(ϕ) gives the DTFT of the (n+1)-th

row of Xt′ at digital frequency ϕ. Since the multi-coset sampling in [38] activates

only M < N cosets, the compression model of [38] can generally be written as

ȳt′(ϕ) = Cx̄t′(ϕ), ϕ ∈ [0, 1/N), (2.12)

with C a selection matrix. Let us now introduce the DTFT of xt′ [ñ] stored in xt′

in (2.11) at frequency ϕ as Xt′(ϕ). By introducing the N × 1 vector x̃t′(ϕ) =

[Xt′(ϕ), Xt′(ϕ+ 1
N ), . . . , Xt′(ϕ+ N−1

N )]T with ϕ ∈ [0, 1/N), [38] can generally

show the relationship between x̄t′(ϕ) and x̃t′(ϕ) as

x̄t′(ϕ) = F−1
N x̃t′(ϕ), ϕ ∈ [0, 1/N). (2.13)

The aim of [38] is to reconstruct x̃t′(ϕ) in (2.13) from ȳt′(ϕ) in (2.12). To obtain

a unique solution for x̃t′(ϕ) and for all ϕ ∈ [0, 1/N), [38] assumes that x̃t′(ϕ) is

sparse for each ϕ ∈ [0, 1/N). This is ensured in [38] by assuming that the received

signal has a multiband structure in the frequency domain, where the number of

bands is restricted and the size of each band is smaller than 1/N . More details

about the reconstruction method used to recover x̃t′(ϕ) from ȳt′(ϕ) for each ϕ ∈
[0, 1/N) can be found in [38].

Note that the model in (2.12)-(2.13) can also be used in the context of spatial

compression. This is true since the model in (2.12)-(2.13) is actually used by [39] in

the SS case for angular spectrum reconstruction, where a multi-coset array (or pe-

riodic NULA) is employed. The details about the angular spectrum reconstruction

approach used by [39] can be found in their paper. Also note that it is generally pos-

sible to combine the MMV model in the single period compression of Section 2.2.1

with the periodic compression of this section. For example, we might have multiple
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sensors, each of which collects MMVs in the time-domain. Similarly, we can also

activate M < N antennas in every block of N consecutive antennas in the ULA

leading to a periodic non-ULA, where every active antenna collects samples at mul-

tiple time indices. At this point, we will not go into the details about any of these

possible combinations. However, we might discuss some of these combinations if

necessary in the next section where we focus on the compressive reconstruction of

the power spectrum or the second-order statistics.

Parameter Identification

Note that, while the frequency or sinusoid identification discussed in Section 2.2.1

can exploit the MMVs by using the single period temporal compression of Sec-

tion 2.2.1 and by collecting measurements from multiple sensors, it is also possible

to use periodic temporal compression and to form the MMVs from measurements

collected at different time indices. The same is true for DOA estimation, i.e., we

can collect MMVs from periodic spatial compression at a single time index. In

this section, we do not provide any thorough discussion since the analysis for this

section can straightforwardly be done based on the discussions in Section 2.2.1 and

in the signal or spectrum reconstruction subsection in Section 2.2.2.

2.3 Exploitation of Second-Order Statistics

Observe that, in the signal/spectrum reconstruction or parameter (DOA or fre-

quency) estimation approaches discussed in Section 2.2, the original signal/spectrum

is required to have a sparse representation in a particular basis. Furthermore, if we

for example consider (2.3) and assume that x̌t′ [k
′] is sparse then the dimension of

the SMV yt′ [k
′], which is M , has to be larger than the number of non-zero entries in

x̌t′ [k
′] (which is known as the degree of sparsity) [40]. When we apply this require-

ment on the model of (2.9) and consider the DOA estimation approach of [31], we

can find that the number of actual sources whose DOAs are to be estimated (which

is I) must be less than M .

Given compressive samples, we can show that when we focus on reconstructing

the second-order statistics instead of the original signal/spectrum, the sparsity con-

straint can be removed from the signal/spectrum if the signal has a special structure

in its second-order statistics. For example, let us consider (2.3) and compute the

M ×M auto-correlation matrix of yt′ [k
′] as

Ryt′ [k
′] = E[yt′ [k

′]yH
t′ [k

′]] = CRxt′ [k
′]C

H , (2.14)
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with Rxt′ [k
′] the N × N auto-correlation matrix of xt′ [k

′]. In the situation where

xt′ [k
′] contains a sequence of stationary samples, Rxt′ [k

′] has a Toeplitz structure,

which implies that, assuming Rxt′ [k
′] is not known, the number of unknowns is ef-

fectively 2N−1 instead of N2. Note that, despite the Toeplitz structure of Rxt′ [k
′],

Ryt′ [k
′] generally does not have any special structure for a general matrix C so

the number of equations is generally M2. For this specific situation, stacking all

columns of Ryt′ [k
′] into a single vector leads to

vec(Ryt′ [k
′]) = (C∗ ⊗C)vec(Rxt′ [k

′]) = (C∗ ⊗C)Trxt′ [k
′], (2.15)

where the redundant information in Rxt′ [k
′] allows us to condense vec(Rxt′ [k

′])

into the (2N − 1) × 1 vector rxt′ [k
′], and where ⊗ denotes the Kronecker prod-

uct operation (please see Appendix 2.A for the definition of the Kronecker product

operation) and T is a special repetition matrix (see Section 3.3.2). Observe that

the dimension of vec(Ryt′ [k
′]) (which is M2) can be larger than 2N − 1 despite

M < N . If this is the case, we can reconstruct rxt′ [k
′] from vec(Ryt′ [k

′]) using

least-squares (LS) under the full column rank condition of (C∗ ⊗ C)T and with-

out a sparsity constraint on either rxt′ [k
′] or xt′ [k

′]. Fig. 2.3 illustrates the overall

concept about the reconstruction of the correlation of the stationary signals from

compressive samples. Note that the power spectrum estimate can be computed by

simply applying DFT on the reconstructed rxt′ [k
′]. Also recall that, in practice, the

compressive measurements yt′ [k
′] are directly obtained from the analog version of

xt′ [k
′] using the analog-to-information converter.

C

xt′ [k
′] yt′ [k

′]
Correlator

Ry
t′
[k′] Digital Signal

Processor

rx
t′
[k′],

power spectrum

Figure 2.3: Conceptual illustration of second-order statistics reconstruction from

compressive samples when the received signal is stationary.

Similarly, given compressive samples, we can also show for DOA estimation

that exploiting second-order statistics might help us to increase the degrees of free-

dom such that the dimension of each measurement vector M can be smaller than

the number of actual sources I if the sources have a special correlation structure.

For example, let us consider (2.8) and write the correlation matrix Ryt′ [k
′] as

Ryt′ [k
′] = CÃRs̃t′ [k

′]Ã
HCH , (2.16)

with Rs̃t′ [k
′] the Q×Q auto-correlation matrix of s̃t′ [k

′]. In the situation where the

signals from different sources are uncorrelated, Rs̃t′ [k
′] is a diagonal matrix. For
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this specific situation, cascading all columns of Ryt′ [k
′] into a single vector leads to

vec(Ryt′ [k
′]) = ((CÃ)∗⊗ (CÃ))vec(Rs̃t′ [k

′]) = ((CÃ)∗⊙ (CÃ))diag(Rs̃t′ [k
′]),

(2.17)

where ⊙ denotes the Khatri-Rao product operation (please see Appendix 2.A for

the definition of the Khatri-Rao product operation) and diag(.) gives the diago-

nal elements of a matrix. Observe that M2 can be larger than the dimension of

diag(Rs̃t′ [k
′]), which is Q, despite M < Q. If M2 > Q, we can reconstruct

diag(Rs̃t′ [k
′]) from vec(Ryt′ [k

′]) in (2.17) using LS under the full column rank

condition of (CÃ)∗⊙ (CÃ) and without a sparsity constraint on s̃t′ [k
′]. By recall-

ing that I < Q, the removal of the sparsity constraint from s̃t′ [k
′] and equivalently

diag(Rs̃t′ [k
′]) also implies that it is theoretically possible to have M < I since

diag(Rs̃t′ [k
′]) can be reconstructed even if all of its entries are non-zero. Note

however that having M2 > Q is quite unlikely as the number of grid points Q is

required to be very large in order to avoid grid mismatch. But even if M2 < Q, the

idea of exploiting uncorrelatedness between the sources to increase the degrees of

freedom is still useful as we will show later on, though it is performed by using a

model slightly different from (2.17).

So far we have provided some examples using the models in (2.15) and (2.17).

In practice, the expectation operation in the correlation matrix computation has

to be approximated and this implies that we need MMVs because with an SMV,

we can only roughly approximate Ryt′ [k
′], for instance, using the outer product of

yt′ [k
′] leading to a poor approximation. Hence, the exploitation of the second-order

statistics in the SMV case is not recommended. Next, we will look at the correla-

tion reconstruction or the exploitation of the second-order statistics for parameter

estimation in the context of MMVs. While many possible combinations between

the types of compression and the types of information to be reconstructed might

theoretically be possible, we will only discuss some of them that are related to our

works in the following chapters.

2.3.1 Periodic Temporal or Spatial Compression: Correlation Recon-

struction

Toeplitz Structure Exploitation

Let us start by considering (2.10) in the context of temporal compression and re-

calling (2.1). If the time-domain samples xt[ñ] collected in {xt′ [k]}K−1
k=0 in (2.10)

form a stationary sequence, the correlation matrix between xt′ [k] and xt′ [k
′] de-
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pends only on the block-lag κ = k − k′. Let us now focus on block-lag κ = 0 and

write the auto-correlation matrix of yt′ [k] collected in Yt′ in (2.10) as

Ryt′ [0] = E[yt′ [k]y
H
t′ [k]] = CE[xt′ [k]x

H
t′ [k]]C

H = CRxt′
[0]CH . (2.18)

The stationarity of xt[ñ] also implies that Rxt′
[0] has a Toeplitz structure, which

means that we can again follow (2.15) to write

vec(Ryt′ [0]) = (C∗ ⊗C)vec(Rxt′
[0]) = (C∗ ⊗C)Trxt′

[0], (2.19)

where the redundant information in Rxt′
[0] is again condensed into the (2N−1)×1

vector rxt′
[0], which can again be reconstructed from vec(Ryt′ [0]) using LS sub-

ject to the full column rank condition of (C∗ ⊗ C)T. Due to the stationarity of

xt[ñ], which is translated to the stationarity of xt′ [k] along k and by assuming the

ergodicity of xt[ñ], in practice, Ryt′ [0] can be estimated using R̂yt′ [0] =
1
KYt′Y

H
t′

and LS is then applied to vec(R̂yt′ [0]) instead of vec(Ryt′ [0]) in (2.19). This leads

to some errors since R̂yt′ [0] is actually given by R̂yt′ [0] = CR̂xt′
[0]CH with

R̂xt′
[0] = 1

KXt′X
H
t′ , which has a Toeplitz structure only for K → ∞. This

model is the basis for our alternative time-domain (ATD) approach discussed in

Chapter 3, where we generally suggest the use of a Gaussian sampling matrix or

multi-coset sampling matrix based on a minimal sparse ruler (see Definition 7.3.2)

for C in (2.19) to ensure the full column rank condition of (C∗ ⊗ C)T in (2.19).

This rank condition, however, can also be ensured by designing C based on either

coprime sampling [41] or nested sampling [42]. Another method using multi-coset

sampling proposed by [43] focuses on the frequency-domain representation and

considers the correlation matrix of x̌t′ [k], which is collected in X̌t′ in (2.10). For

a stationary signal, [43] claims that Rx̌t′
[0] = E[x̌t′ [k]x̌

H
t′ [k]] is a diagonal ma-

trix, which implies that they have less unknowns and allows them to reconstruct

diag(Rx̌t′
[0]) from vec(Ryt′ [0]) in (2.19) using LS though they do not propose any

specific C that ensures the full column rank condition of the resulting system ma-

trix. Apart from our ATD approach, we also propose a more general time-domain

(TD) approach in Chapter 3, where we basically also exploit the correlation ma-

trix Ryt′ [κ] at block lags |κ| > 0. In addition to the TD and ATD approaches,

Chapter 3 also discusses a related frequency-domain approach. In Chapter 3, the

reconstructed correlation of the received signal is used to compute an estimate of

its power spectrum.

Note that, if we consider (2.10) in the context of the SS case, the discussion

in the previous paragraph is also theoretically applicable for the SS case when the
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spatial-domain samples xt[ñ] collected in {xt′ [k]}K−1
k=0 in (2.10) also form a station-

ary sequence. In this case, a Toeplitz structure will emerge in the spatial correlation

matrix Rxt′
[0] in (2.18). Here, we can use the multi-coset array of [39] using the

minimal sparse ruler design suggested by the ATD approach in Chapter 3 to in-

troduce compression while maintaining the identifiability of the spatial correlation

matrix Rxt′
[0]. Note that, one case that leads to a Toeplitz structure in the spatial

correlation matrix Rxt′
[0] is when xt[ñ] is given by the output of the (ñ + 1)-th

antenna of a ULA receiving signals from uncorrelated point sources (see [41] for a

detailed explanation).

Multiband Signals and Multibin Model

In [44], the model of (2.12) is exploited and, similar to [38], [44] also assumes that

the received signal has a multiband structure in the frequency domain where the

size of each band (in digital frequency units) is smaller than 1/N . In addition, [44]

also assumes that every different band corresponds to a different user signal and

thus they are uncorrelated. Let us write the M × M correlation matrix of ȳt′(ϕ)

in (2.12) as

Rȳt′ (ϕ)
= CF−1

N Rx̃t′ (ϕ)
F−H
N CH , ϕ ∈ [0, 1/N), (2.20)

where Rx̃t′ (ϕ)
is the auto-correlation matrix of x̃t′(ϕ) in (2.13) with x̃t′(ϕ) not

necessarily sparse. As different bands are uncorrelated and their size is smaller

than 1/N , it can be found that Rx̃t′ (ϕ)
is a diagonal matrix for all ϕ ∈ [0, 1/N).

As a result, we can rewrite (2.20) as

vec(Rȳt′ (ϕ)
) = ((CF−1

N )∗ ⊗ (CF−1
N ))vec(Rx̃t′ (ϕ)

)

= ((CF−1
N )∗ ⊙ (CF−1

N ))diag(Rx̃t′ (ϕ)
), ϕ ∈ [0, 1/N), (2.21)

with (CF−1
N )∗ ⊙ (CF−1

N ) an M2 × N matrix. Again, we can have M2 > N

though M < N and we can reconstruct diag(Rx̃t′ (ϕ)
) from vec(Rȳt′ (ϕ)

) using LS

if (CF−1
N )∗ ⊙ (CF−1

N ) has full column rank.

Note that [44] uses multi-coset sampling and proposes a sampling pattern that

ensures the full column rank condition of (CF−1
N )∗ ⊙ (CF−1

N ) but they do not

look at a more general condition and they do not focus on the minimum possible

compression rate. In contrast, we have found that F−1
N Rx̃t′ (ϕ)

F−H
N in (2.20) is

actually a circulant matrix. This circulant structure is exploited in Chapter 5, where

we also adopt the model of (2.21) to examine the compressive reconstruction of

the frequency-domain periodogram from time-domain signals received at different
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wireless sensors. In Chapter 5, we will show that the full column rank condition

of (CF−1
N )∗ ⊙ (CF−1

N ) in (2.21) is ensured if the multi-coset sampling matrix

C is designed based on a circular sparse ruler. In addition, we will also discuss

in Chapter 5 that the multiband signal model discussed in [44] is actually only a

special case of a more general multibin model. In the multibin model, we simply

split the digital frequency band ϑ ∈ [0, 1) into N equal bins, each of them having

a size of 1/N . Then, we will show that the circulant structure in F−1
N Rx̃t′ (ϕ)

F−H
N

in (2.20) will also appear if the spectra at frequencies ϑ located at different bins are

uncorrelated though the received signal does not have a multiband structure. More

details on the frequency periodogram reconstruction using the multibin model can

be found in Chapter 5.

Also note that the aforementioned discussion is also applicable for spatial cor-

relation matrix reconstruction from periodic spatial compression. This is, for exam-

ple, also discussed in Chapter 5 when we examine the compressive reconstruction

of the angular-domain periodogram from spatial-domain signals received by a lin-

ear array of antennas at different time indices. Here, we first use the compression

model of (2.12) in the context of periodic spatial compression as is done by [39].

This is implemented by perceiving the entire ULA model as multiple blocks of

N consecutive antennas and activating only M < N antennas out of every one

block of these N consecutive antennas leading to a periodic NULA. We then also

follow the correlation model of (2.20) by adjusting (2.20) to the context of spatial

compression (t in Rȳt(ϕ) then represents the time index and ϕ is related to angle).

More details about the angular periodogram reconstruction from this scheme can

be found in Chapter 5.

Cyclic Spectrum Reconstruction

Let us again return to the model of (2.18) in the context of temporal sampling

and observe that Rxt′
[0] generally does not have an exploitable special structure if

xt[ñ] collected in {xt′ [k]}K−1
k=0 does not form a stationary sequence. This problem

is encountered in [45], which focuses on reconstructing the cyclic spectrum of a

cyclostationary signal and has to assume sparsity on the cyclic spectrum. Let us

now assume that xt[ñ] is a cyclostationary signal and consider xt′ in (2.11), which

can also be written as xt′ = [xT
t′ [0],x

T
t′ [1], . . . ,x

T
t′ [K − 1]]T . If we follow the

approach of [11], which sets the number of entries of xt′ [k], which is N , equal to

the period of the cyclostationarity, we can find that the auto-correlation matrix of
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xt′ is given by

Rxt′
=













Rxt′
[0] Rxt′

[−1] . . . Rxt′
[−K + 1]

Rxt′
[1] Rxt′

[0] . . . Rxt′
[−K + 2]

...
...

. . .
...

Rxt′
[K − 1] Rxt′

[K − 2] . . . Rxt′
[0]













, (2.22)

i.e., it has a block Toeplitz structure. This block Toeplitz structure can be exploited

for compression by introducing K compression matrices {Ck}K−1
k=0 instead of a

single compression matrix C and performing the compression as

yt′ [k̄K + k] = Ckxt′ [k̄K + k], k = 0, 1, . . . ,K − 1. (2.23)

where the size of Ck is Mk×N . Note that, if we collect only K measurement vec-

tors {yt′ [k]}K−1
k=0 , we only have k̄ = 0 in (2.23). In this case, the temporal sampling

is not temporally periodic anymore. Since, in practice, we have to approximate the

expectation operation in the correlation matrix computation, we should collect mul-

tiple blocks of K measurement vectors. This implies that we again have periodic

compression though the period of the temporal sampling is now K times the period

of the compression that employs only a single compression matrix C. The model

in (2.23) is used in both [11] and Chapter 7 for compressive cyclic spectrum recon-

struction with Chapter 7 focusing more on multi-coset sampling. The details about

the reconstruction of the correlation matrix Rxt′
in (2.22) from {yt′ [k̄K + k]}k,k̄

in (2.23) and that of the cyclic spectrum from the reconstructed Rxt′
can be found

in Chapter 7.

2.3.2 Single Period Temporal or Spatial Compression (Multiple Mea-

surement Vectors): Parameter Identification

Uncorrelated Sources

Let us first consider (2.4) and (2.9) in the context of spatial compression and

parameter identification, i.e., DOA estimation, but we focus on the true DOAs

{θi}I−1
i=0 instead of the grid of investigated angles {θ̃q}Q−1

q=0 . In other words, we

also consider (2.7) and write Y[k′] as Y[k′] = CAS[k′] instead of (2.9) with

S[k′] similarly defined as S̃[k′] in (2.9). We now assume that {st[k′]}T−1
t=0 col-

lected in S[k′] is stationary along time index t, which also implies that {yt[k
′]}T−1

t=0

and {xt[k
′]}T−1

t=0 collected in Y[k′] and X[k′] in (2.4), respectively, are also sta-

tionary along t. As a result, the auto-correlation matrices of yt[k
′] and st[k

′] are
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the same for t = 0, 1, . . . , T − 1, i.e., Ryt[k′] = E[yt[k
′]yH

t [k′]] = Ry[k′] and

Rst[k′] = E[st[k
′]sHt [k′]] = Rs[k′]. Based on (2.7) and (2.4), we can then write

Ry[k′] = CRx[k′]C
H = CARs[k′]A

HCH . (2.24)

Note that, in practice, the stationarity of yt[k
′] allows us to approximate Ry[k′] as

R̂y[k′] =
1
T Y[k′]YH [k′]. Let us now assume that the sources, whose DOAs are

to be estimated, are uncorrelated, which implies that Rs[k′] in (2.24) is a diagonal

matrix. We can then follow (2.17) and write

vec(Ry[k′]) = ((CA)∗ ⊙ (CA))diag(Rs[k′]). (2.25)

At this point, we can again consider a grid of angles {θ̃q}Q−1
q=0 as well as replace

A and Rs[k′] in (2.25) with Ã and Rs̃[k′], respectively. In this case, we have a

similar form to (2.17) and the discussion after (2.17) follows. However, it is also

possible to consider a subspace algorithm like multiple signals classification (MU-

SIC) [46]. For this purpose, let us recall that A is the array response matrix of the

considered single block of N antennas in our ULA model. Assuming that C is a

selection matrix, we can observe that Nv distinct rows of (CA)∗ ⊙ (CA) actually

provide the array response matrix of a virtual array (also called co-array) of Nv vir-

tual antennas. Note that the number of virtual antennas Nv depends on the value of

C and it is generally larger than the number of active antennas M . The upper bound

for Nv is Nv ≤ M(M − 1)/2. We can then perceive the entries of vec(Ry[k′])

in (2.25) corresponding to the Nv distinct rows of (CA)∗⊙ (CA) as the outputs of

the Nv virtual antennas. When this is the case, however, we also have to consider

diag(Rs[k′]) in (2.25) as the new source vector and this can be problematic when

we intend to apply MUSIC. The reason is the fact that diag(Rs[k′]) behaves like

I fully coherent sources since diag(Rs[k′]) contains constants instead of random

variables. More about some issues in the use of MUSIC for fully coherent sources

can be found in Section 4.1 and the references therein. One way to solve this issue

is provided by [47], which assumes that st[k
′] is quasi-stationary (instead of sta-

tionary) along time index t. In our model, this quasi-stationarity assumption can be

interpeted as having {st[k′]}τT−1
t=0 with st[k

′] only stationary within T consecutive

time indices. Using this quasi-stationarity assumption, diag(Rs[k′]) in (2.25) varies

with time and we can basically collect up to τ independent measurements. The spa-

tial compression done in [47] and the following mathematical manipulation lead to

a model that is equivalent to our model in (2.25) with C formed by the first M rows

of IN , which implies that they have a ULA of M active antennas. As a result, in the
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co-array domain, they have a virtual ULA of Nv = 2M − 1 virtual antennas and

by using MUSIC, they can estimate the DOA of up to I = 2M − 2 sources, which

is more than the number of physical active antennas M . To increase the degrees

of freedom beyond what is achieved by [47], the papers [41] and [42] propose to

select the M active antennas (which is equivalent to the design of C) according to

special geometries rather than using a ULA as is done by [47]. [42] proposes to use

a nested array of active antennas while the selection of active antennas based on the

coprime array is proposed in [41]. Another difference between the two approaches

and the work of [47] is that both [41] and [42] assume that st[k
′] is stationary (in-

stead of quasi-stationary) along time index t. After mathematical manipulations,

both approaches of [41] and [42] also boil down to (2.25), and thus there should

be a way to deal with the fact that diag(Rs[k′]) in (2.25) contains constants. The

solution advocated by [41] and [42] is to use spatial smoothing (see [48]) before

the use of MUSIC. One work by us in [10] also follows the work of [41] and [42]

but we use the minimum redundancy array introduced in [12] instead of the nested

or coprime array. Note that the approaches in [10], [41], and [42] can generally

detect more sources than the one detected by [47] for a given number of M active

antennas. More details can be found in the respective papers.

Note that all the above discussions can be repeated in the context of single

period temporal compression (MMV case) and the identification of the frequencies

of some sinusoids. In this case, the MMVs can be collected over the spatial domain,

for example, over multiple wireless sensors. However, it is also possible in the

identification of sinusoids to collect the MMVs over the time-domain, i.e., by using

the periodic temporal compression of Section 2.3.1 (see [41] for example) though

we do not provide any discussion on it here.

Correlated Sources

Let us now return to (2.24) and observe that Rs[k′] is generally not a diagonal matrix

if the sources, whose DOAs are to be estimated, are correlated. As a result, we will

not have the model of (2.25) and instead, we will only have

vec(Ry[k′]) = (C∗ ⊗C)vec(Rx[k′]) = ((CA)∗ ⊗ (CA))vec(Rs[k′]), (2.26)

which is generally an underdetermined system. However, we can gain more equa-

tions by introducing T compression matrices {Ct}T−1
t=0 instead of a single compres-

sion matrix C, as what we have done in Section 2.3.1 when we deal with cyclosta-
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tionary signals. We can then write the compression similar to (2.23) as

yt̄T+t[k
′] = Ctxt̄T+t[k

′], t = 0, 1, . . . , T − 1, t̄ = 0, 1, . . . , T̄ − 1. (2.27)

where the size of Ct is Mt×N . Observe that the compression in (2.27) leads to the

so-called dynamic linear array (DLA), which will be discussed in Chapter 4. Here,

in different time indices t within T consecutive time indices, we activate different

sets of M < N antennas in the considered single block of N antennas in our un-

derlying ULA model. Also note that (2.27) is only one possible implementation of

the DLA since we can alter the compression matrix every two or more time indices

instead of every time index t. Assuming that the number of introduced compres-

sion matrices remains T , this implies that the period of the spatial compression is

at least equal to T times the period of the spatial compression that employs only

a single compression matrix C. Here, the auto-correlation matrix of yt̄T+t[k
′] for

a given t is computed as Ryt[k′] = E[yt̄T+t[k
′]yH

t̄T+t[k
′]]. In Chapter 4, it will

be shown that we will first reconstruct the correlation matrix Rx[k′] in (2.26) from

{Ryt[k′]}T−1
t=0 before applying some DOA estimation methods on the reconstructed

Rx[k′]. More details including how to approximate the expectation operation in the

correlation matrix computation can be found in Chapter 4.

2.3.3 Joint Angular-Frequency Power Spectrum Estimation

In Chapter 6, we introduce an approach to compressively and jointly reconstruct

both the frequency-domain and angular-domain power spectrum of the time-domain

stationary signals. This is done by first considering only one block of N consec-

utive antennas in our ULA model and then activating only M < N out of the N

antennas leading to a spatial compression. The output of each antenna is then sent

to the connected digital receiver which performs periodic temporal compression.

More details about this work can be found in Chapter 6.

2.4 Prior Work on Power Spectrum Estimation from Sub-

Nyquist-Rate Samples

Research on estimating the power spectrum from sub-Nyquist-rate samples has

been going on since 1960 with the work by [49], which focused on random sam-

pling of stationary signals. This paper showed that aliasing in the power spectrum

estimate can generally be avoided if random sampling based on a Poisson distribu-

tion is used. This work has then been furthered by [50], which also evaluated Pois-
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son sampling and showed that the power spectrum estimate is mean-square con-

sistent for all positive values of the average sampling rate under weak smoothness

conditions on the power spectral density. This work was then completed by [51],

which derived the asymptotic bias and covariance of the estimates and discussed

the influence of the spectral windows and the sampling rate on the performance of

the estimates. It has been shown in [51] that the power spectrum estimate from

samples taken at Poisson sampling instants is consistent under mild smoothness

conditions of the power spectral density. In [52], it has been pointed out that the

definition of the alias-free estimation in [49] does not necessarily imply that a con-

sistent power spectrum estimate can be obtained from a finite number of samples.

A new definition of alias-free sampling has then been introduced in [52] and vari-

ous criteria for a sampling scheme to be alias-free have been developed. Note that

the aforementioned works generally focus on random sampling, specifically Pois-

son sampling, where the spacing between sampling instants follows the exponential

distribution. As pointed out by [53], two consecutive samples in Poisson sampling

can be infinitely close since the value of the spacing between sampling instants can

take any real value greater than 0. As a result, Poisson sampling can be practically

challenging.

In the more recent work by [54], a method of estimating the power spectrum

density of random ergodic signals is introduced. There are two main differences

between the work of [54] and the works in [49, 50, 51, 52]. First, unlike the above

works which rely on random sampling, a deterministic sampling scheme, i.e., a

periodic non-uniform sampling is introduced in [54]. Second, while the above

works and [54] all claim that they can reach an arbitrary low sampling rate, the

non-uniform periodic sampling introduced in [54] introduces a lower limit on the

allowed spacing between two consecutive sampling instants. These two differ-

ences theoretically show that the approach of [54] is more practical. However, [54]

does not really explicitly and exactly mention the achievable lowest sampling rate.

It appears that a lower sampling rate can be achieved by [54] if the period of the

non-uniform sampling is increased (which implies a larger duration of the sampling

time). When the duration of the sampling time and/or the period of the non-uniform

sampling is fixed, it is not clear if the sampling pattern of [54] is the most optimal

solution. Unlike [54], our periodic non-uniform sampling, a.k.a. multi-coset sam-

pling, discussed in this thesis is based on sampling patterns designed according to a

minimal (circular) sparse ruler. Under the constraint that the sampling instants are

on top of the Nyquist-rate grid, our sampling pattern based on a minimal (circular)

sparse ruler gives a more clear indication about the achievable minimum sampling
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rate for a fixed period of non-uniform sampling (and thus also for a fixed duration

of the sampling time).

Appendix

2.A Kronecker, Hadamard, and Khatri-Rao Products

Let us assume that the element of an M×N matrix C at the (m+1)-th row and the

(n+1)-th column, with m = 0, 1, . . . ,M −1 and n = 0, 1, . . . , N −1, is given by

[C]m+1,n+1. The Kronecker product between the matrix C and an M̀ × Ǹ matrix

G is then given by

C⊗G =













[C]1,1G [C]1,2G . . . [C]1,NG

[C]2,1G [C]2,2G . . . [C]2,NG
...

...
. . .

...

[C]M,1G [C]M,2G . . . [C]M,NG













(2.28)

having a size of MM̀ ×NǸ .

The Hadamard product between C and G only exists if C and G have the same

size, i.e., M = M̀ and N = Ǹ . If this Hadamard product exists, it is given by

C ◦G =













[C]1,1[G]1,1 [C]1,2[G]1,2 . . . [C]1,N [G]1,N
[C]2,1[G]2,1 [C]2,2[G]2,2 . . . [C]2,N [G]2,N

...
...

. . .
...

[C]M,1[G]M,1 [C]M,2[G]M,2 . . . [C]M,N [G]M,N













(2.29)

having a size of M ×N .

The Khatri-Rao product between C and G only exists if C and G have the

same number of columns, i.e., N = Ǹ . By assuming that this condition is satisfied

and by writing C = [c1, c2, . . . , cN ] and G = [g1,g2, . . . ,gN ], with cn+1 and

gn+1 the (n+ 1)-th column of C and G, respectively, it is given by

C⊙G = [c1 ⊗ g1, c2 ⊗ g2, . . . , cN ⊗ gN ] , (2.30)

which has a size of MM̀ ×N . Note that the Khatri-Rao product can be perceived

as a column-wise Kronecker product.
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2.B Restricted Isometry Property (RIP) of a Matrix

The RIP of a matrix, which is originally defined in [55], is provided in the following

definition.

Definition 2.B.1. Given an M×N matrix C, with M < N and with ℓ2-normalized

columns, we define the isometry constant δS ∈ (0, 1) as the smallest quantity such

that

(1− δS)||x||22 ≤ ||Cx||22 ≤ (1 + δS)||x||22 (2.31)

holds for all vectors x with maximum order of sparsity S (all vectors x having at

most S non-zero entries). Then C is said to satisfy RIP of order S with a constant

δS [13, 15, 56, 57].

The implication of Definition 2.B.1 is that if a matrix C obeys the RIP of order

S (if δS is not too close to one), then C approximately preserves the Euclidean

length of S-sparse vectors, which basically means that an S-sparse vectors cannot

be in the null space of C [13, 57]. In this case, it is also mentioned in [56] that

any submatrix of C having no more than S columns behaves like an orthonormal

matrix.
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Abstract

In several applications, such as wideband spectrum sensing for cognitive radio,

only the power spectrum (a.k.a. the power spectral density) is of interest and

there is no need to recover the original signal itself. In addition, high-rate analog-

to-digital converters (ADCs) are too power hungry for direct wideband spectrum

sensing. These two facts have motivated us to investigate compressive wideband

power spectrum sensing, which consists of a compressive sampling procedure and

a reconstruction method that is able to recover the unknown power spectrum of

a wide-sense stationary signal from the obtained sub-Nyquist rate samples. It is

different from spectrum blind sampling (SBS), which aims at reconstructing the

original signal instead of the power spectrum. In this paper, a solution is first

presented based on a periodic sampling procedure and a simple least-squares re-

construction method. We evaluate the reconstruction process both in the time and

frequency domain. Then, we examine two possible implementations for the com-

pressive sampling procedure, namely complex Gaussian sampling and multi-coset

sampling, although we mainly focus on the latter. A new type of multi-coset sam-

pling is introduced based on the so-called minimal sparse ruler problem. Next, we

analyze the statistical properties of the estimated power spectrum. The computation

of the mean and the covariance of the estimates allows us to calculate the analytical

normalized mean squared error (NMSE) of the estimated power spectrum. Further,

when the received signal is assumed to contain only circular complex zero-mean

Gaussian i.i.d. noise, the computed mean and covariance can be used to derive

a suitable detection threshold. Simulation results underline the promising perfor-

mance of our proposed approach. Note that all benefits of our method arise without

putting any sparsity constraints on the power spectrum.

3.1 Introduction

In recent years, wideband spectrum estimation and sensing has become a popular

topic in signal processing and telecommunications. A popular application is cogni-

tive radio where unlicensed users have to sense a broad frequency range in order to

locate the unoccupied licensed spectrum before establishing a communication link.

One possible approach is to divide the entire wideband spectrum into a large num-

ber of narrowband channels followed by a channel-by-channel sequential sensing.

However, this approach might introduce a significant amount of delay in the spec-

trum sensing process. In [58], a filter bank structure is introduced to perform multi-
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channel spectrum sensing in the wideband regime. Similarly, [59, 60] optimize

a bank of multiple narrowband detectors to improve the aggregate opportunistic

throughput of a cognitive radio system by introducing the so-called multiband joint

detection and multiband sensing-time-adaptive joint detection, respectively. Again,

these methods are not efficient due to the need for a large number of bandpass fil-

ters. Another approach is to directly scan the wideband spectrum using a high-rate

analog-to-digital converter (ADC), such as in [61], where wavelets are used to de-

tect the edges or boundaries of the occupied bands. However, such high-rate ADCs

consume a large amount of power [62].

To reduce the burden on the ADCs, many researches have been performed to

exploit specific features of the spectrum (such as sparsity in the spectrum or the

edge spectrum [63, 64, 20]). These specific properties allow for a reduction of the

sampling rate compared to the Nyquist rate while maintaining perfect signal recon-

struction when no noise is present. In [21], the so-called multi-coset sampling is

examined and proposed to reduce the sampling rate when the considered multiband

signals have a frequency support on a union of finite intervals. Given prior knowl-

edge of the frequency support of the received signals, [21] has derived the condition

for exact reconstruction as well as proposed an explicit reconstruction formula. Un-

fortunately, in many applications, such as cognitive radio, the frequency support is

not known in advance and the multi-coset sampling approach proposed in [21] is

not suitable. In order to solve this problem, [64, 38] proposed solutions for signal

reconstruction based on multi-coset sampling without any prior knowledge about

the frequency support of the original signal. Closely related ideas can also be found

in [20], which discusses sub-Nyquist rate sampling for sparse multiband analog

signals by means of a so-called modulated wideband converter, which consists of

multiple branches, each of which employs a different periodic mixing function fol-

lowed by low-pass filtering and low-rate uniform sampling. Since the objective

of the methods discussed in [64, 20, 38] is to sample a signal with unknown fre-

quency support at minimal rate and reconstruct the spectrum from the samples by

exploiting spectrum sparsity, these approaches fall in the class of spectrum blind

sampling (SBS). In these works, it has been found that the minimum average sam-

pling rate for most signals is given by the Landau lower bound (as studied in [21]),

which is equal to the Nyquist rate multiplied with the frequency occupancy ratio.

However, in the worst case scenario, the minimum average sampling rate increases

and is given by the minimum of twice the Landau lower bound and the Nyquist

rate. Note that all of the above approaches can be cast into a compressive sampling

framework where the signal reconstruction can be carried out by using your favorite
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sparse recovery method such as the least absolute shrinkage and selection operator

(LASSO) algorithm [17]. Also more classical methods can be adopted, such as

the minimum variance distortionless response (MVDR) method [65], or multiple

signal classification (MUSIC) [64].

All methods aforementioned concentrate on spectral estimation and aim at per-

fectly reconstructing the original signal. In fact, for spectrum sensing applications,

only the power spectrum (a.k.a. the power spectral density), or equivalently, the

auto-correlation function, needs to be recovered. Power spectrum estimation meth-

ods based on sub-Nyquist rate samples have been developed in [66, 67] by concen-

trating on the auto-correlation function instead of the original signal itself. In [66],

the spectrum sensing approach proposed by [63], which exploits the embedded

sparsity of the edge spectrum, is improved by taking advantage of the connection

between the auto-correlation function of the compressive measurements and that

of the Nyquist rate samples. Nevertheless, [66] assumes that the compressive mea-

surements are wide-sense stationary, which is not true for most compressive sam-

pling matrices. In [67], a compressive sampling framework is obtained by com-

puting the output energy of a limited number of wideband filters to reconstruct the

received energy in a large number of spectral bins. Unfortunately, [67] only exploits

the output energy of each filter leading to an under-determined system of equations,

while cross-correlations among the outputs of the different filters could also have

been exploited. In [43], a power spectrum estimation method based on multi-coset

sampling is proposed by exploiting the fact that a wide-sense stationary signal cor-

responds to a diagonal covariance matrix of the frequency domain representation

of the signal. This observation is used in [43] to build an over-determined sys-

tem of equations relating the frequency domain statistics of the compressive mea-

surements with those of the signal, which is solvable by adopting a non-negative

least-squares algorithm. Another method labeled as coprime sampling is provided

by [41]. This method aims at estimating the frequencies of sinusoids buried in

noise by exploiting two uniform sub-Nyquist samplers with sampling periods that

are coprime multiples of the Nyquist period.

This paper concentrates on efficient power spectrum reconstruction and aims at

designing effective periodic sub-Nyquist sampling procedures for this, also labeled

as power spectrum blind sampling (PSBS) in [68]. Theoretically, this approach

is able to perfectly reconstruct the unknown power spectrum of a wide-sense sta-

tionary signal using least-squares by exploiting the cross-correlations between the

different outputs of the periodic sampling device. The least-squares algorithm re-

quires some rank conditions to be satisfied, which will guide the actual implemen-
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tation of the sampling device. In this paper, sampling techniques based on ran-

dom modulating waveforms can be adopted, as used in [20], but the main focus

will be on multi-coset approaches. A novel multi-coset sampling implementation

is designed based on the minimal sparse ruler problem. The theoretical statisti-

cal properties of the estimated power spectrum are also investigated leading to the

mean and the covariance of the estimated power spectrum, which is useful for for-

mulating the normalized mean squared error (NMSE) analytically. Moreover, the

detection threshold used to evaluate the presence or absence of a signal at a specific

frequency can also be derived by assuming the received signal is merely circular

complex zero-mean Gaussian i.i.d. noise. All the proposed schemes are compared

via both analysis and simulations. In general, the developed sampling procedures

can significantly decrease the sampling rate requirements by exploiting the spectral

correlation properties without putting any sparsity constraints on the power spec-

trum.

x(t)

p0(t)

p1(t)

pM−1(t)

y0[k]

y1[k]

yM−1[k]

1
NT

∫ (k+1)NT

kNT
dt

1
NT

∫ (k+1)NT

kNT
dt

1
NT

∫ (k+1)NT

kNT
dt

Figure 3.1: Illustration of the sample acquisition scheme, which modulates the re-

ceived analog signal with M different periodic waveforms followed by an integrate-

and-dump process.

3.2 System Model and Problem Statement

Let x(t) be a wide-sense stationary analog signal, which is assumed to be complex-

valued (e.g., the complex envelope of the observed real-valued signal) and bandlim-

ited with bandwidth 1/T (which also indicates the Nyquist rate). We then consider

a spectrum sensing application, where the task is to sense the power spectrum of

x(t). Fig. 3.1 depicts the employed sampling device, which can be regarded as

one possible implementation of an analog to information converter (AIC) in a com-

pressive sampling operation. However, note that this sampling device is capable
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of modeling any AIC implementation, such as those proposed in [18, 69]. The

considered sampling device has M branches, where the ith branch modulates the

signal x(t) with a possibly complex-valued periodic waveform pi(t) of period NT

followed by an integrate-and-dump device with period NT (thus with rate equal to

1/N times the Nyquist rate). The output of the ith branch at the kth sampling index

can thus be expressed as

yi[k] =
1

NT

∫ (k+1)NT

kNT
pi(t)x(t)dt =

1

T

∫ (k+1)NT

kNT
ci(t− kNT )x(t)dt (3.1)

where ci(t) yields a single period of 1
N pi(t) i.e., ci(t) =

1
N pi(t) for 0 ≤ t < NT

and ci(t) = 0 elsewhere. Assume now that ci(t) is a piecewise constant function

having constant values in every interval of length T , i.e., ci(t) = ci[−n] for nT ≤
t < (n+ 1)T , where n = 0, 1, . . . , N − 1. Then, (3.1) can be rewritten as

yi[k] =
N−1
∑

n=0

ci[−n]
1

T

∫ (kN+n+1)T

(kN+n)T
x(t)dt =

N−1
∑

n=0

ci[−n]x[kN + n]

=
0

∑

n=1−N

ci[n]x[kN − n] (3.2)

where x[n] can be viewed as the output of an integrate-and-dump process with

period T (thus with rate equal to the Nyquist rate) applied to x(t), which is not

explicitly computed due to its high complexity. Note that the average sampling rate

of this periodic sampler is given by the Nyquist rate multiplied by M/N and hence

we will use M < N to keep the complexity low. The presented sampling device is

actually similar to the modulated wideband converter introduced in [20], where the

values of ci[n] are randomly generated, e.g., adopting complex Gaussian sampling

or random binary (from the set {±1}) sampling. However, the sampler coefficients

ci[n] can also be set to implement efficient multi-coset sampling, which will be

discussed in more detail in Section 3.5.

Fig. 3.2 underlines the important fact that (3.2) can actually be perceived as

a digital filtering operation of x[n] by the filter ci[n] of length N followed by an

N -fold decimation, i.e., yi[k] = zi[kN ], where

zi[n] = ci[n] ⋆ x[n] =
0

∑

m=1−N

ci[m]x[n−m]

with ⋆ representing the convolution operator. This observation turns out to be useful

for the reconstruction process.



3.2. System Model and Problem Statement 47

x(t)

y0[k] = z0[kN ]

y1[k] = z1[kN ]

yM−1[k] = zM−1[kN ]

1
T

∫ (n+1)T
nT

dt
x[n]

c1[n]

cM−1[n]

c0[n] N

N

N

z0[n]

z1[n]

zM−1[n]

Figure 3.2: Digital interpretation of the sampling device of Fig. 3.1, consisting of

a high-rate integrate-and-dump process, followed by a bank of M branches, where

each branch consists of a digital filtering operation followed by a downsampling

operation.

The goal of this paper is to reconstruct the power spectrum of x(t) based on the

obtained samples {yi[k]}i,k. Since x[n] is obtained from x(t) by an integrate-and-

dump device operating at Nyquist-rate, the spectrum of x[n] is given by a periodic

extension of a slightly changed version of the spectrum of x(t) without aliasing. As

a result, the power spectrum of x[n] is uniquely determined by the power spectrum

of x(t) and vice versa, and thus we will concentrate on reconstructing the power

spectrum of x[n] in this paper.

It is well-known that the power spectrum or power spectral density (PSD) of

x[n] is given by

Px(ω) =
∞
∑

n=−∞

rx[n]e
−jnω, 0 ≤ ω < 2π

where rx[n] represents the auto-correlation function of x[n], defined as rx[n] =

E(x[m]x∗[m − n]). Therefore, estimating the power spectrum Px(ω) amounts

to estimating the auto-correlation function rx[n]. The major contribution of this

work is that we will take advantage of all the M2 different cross-spectra of yi[k]

with yj [k] for i, j = 0, 1, . . . ,M − 1, which will enable rate-compression without

introducing any sparsity constraints on x(t). Note that the cross-spectrum or cross

spectral density (CSD) of yi[k] with yj [k] is given by

Pyi,yj (ω) =
∞
∑

k=−∞

ryi,yj [k]e
−jkω, 0 ≤ ω < 2π

where ryi,yj [k] = E(yi[l]y
∗
j [l − k]) is the cross-correlation function of yi[k] with

yj [k]. These ensemble quantities {ryi,yj [k]}i,j can be estimated by their sample av-

erages, which in turn result in estimates of {Pyi,yj (ω)}i,j . In the following sections,
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we will first describe a time-domain approach to reconstruct rx[n] given ryi,yj [k]

for i, j = 0, 1, . . . ,M − 1. Next, a frequency-domain approach to estimate Px(ω)

given Pyi,yj (ω) for i, j = 0, 1, . . . ,M − 1 will be discussed.

3.3 Time-Domain Reconstruction Approach

3.3.1 Reconstruction Analysis

In this subsection, a method to reconstruct rx[n] given ryi,yj [k] for i, j = 0, 1, . . . ,

M − 1 is presented. Since yi[k] = zi[kN ], the cross-correlation function of

yi[k] with yj [k] can be expressed as the N -fold decimated version of the cross-

correlation function of zi[n] with zj [n], as follows:

ryi,yj [k] = E
(

yi[l]y
∗
j [l − k]

)

= E
(

zi[lN ]z∗j [(l − k)N ]
)

= rzi,zj [kN ]. (3.3)

It is obvious that rzi,zj [n] can be written as

rzi,zj [n] = rci,cj [n] ⋆ rx[n] =
N−1
∑

m=−N+1

rci,cj [m]rx[n−m] (3.4)

where rci,cj [n] is the “deterministic” cross-correlation function between ci[n] and

cj [n]:

rci,cj [n] = ci[n] ⋆ c
∗
j [−n] =

0
∑

m=1−N

ci[m]c∗j [m− n]. (3.5)

From (3.3) and (3.4), we obtain:

ryi,yj [k] = rzi,zj [kN ] =
N−1
∑

m=−N+1

rci,cj [m]rx[kN −m] =
1

∑

l=0

rTci,cj [l]rx[k − l]

(3.6)

which is based on the following definitions:

rci,cj [0] = [rci,cj [0], rci,cj [−1], . . . , rci,cj [−N + 1]]T (3.7)

rci,cj [1] = [rci,cj [N ], rci,cj [N − 1], . . . , rci,cj [1]]
T (3.8)

rx[k] = [rx[kN ], rx[kN + 1], . . . , rx[(k + 1)N − 1]]T . (3.9)

By cascading the M2 different cross-correlation functions ryi,yj [k], we obtain the

M2 × 1 vector ry[k] = [. . . , ryi,yj [k], . . . ]
T , for i, j = 0, 1, . . . ,M − 1, which can
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be derived from (3.6) as

ry[k] =
1

∑

l=0

Rc[l]rx[k − l] (3.10)

where Rc[0] and Rc[1] are the M2 ×N matrices given by Rc[0] = [. . . , rci,cj [0],

. . . ]T and Rc[1] = [. . . , rci,cj [1], . . . ]
T , respectively, for i, j = 0, 1, . . . ,M − 1.

Due to the bandlimitedness of x[n], ry[k] basically has unlimited support. How-

ever, in many practical situations, ry[k] only has significant values within a range

−L ≤ k ≤ L and negligible values outside this range, where L is a design parame-

ter that can be chosen as large as required. Hence, let us relax the bandlimitedness

condition and assume that the support of ry[k] is strictly limited to −L ≤ k ≤ L,

which is a rather standard approach when computing a cross-spectrum from a cross-

correlation function. Since from (3.10), it is clear that ry[k] depends on both rx[k]

and rx[k−1], one could think that under the above assumption the support of rx[k]

is limited to −L−1 ≤ k ≤ L, but that would mean that also ry[−L−1] is non-zero.

As a consequence, the support of rx[k] should also be limited to −L ≤ k ≤ L. All

these quantities can be collected into the following vectors:

ry = [rTy [0], r
T
y [1], . . . , r

T
y [L], r

T
y [−L], . . . , rTy [−1]]T (3.11)

rx = [rTx [0], r
T
x [1], . . . , r

T
x [L], r

T
x [−L], . . . , rTx [−1]]T (3.12)

where ry has size (2L+ 1)M2 × 1 and rx has size (2L+ 1)N × 1. Let us further

introduce two other important observations. First, based on the definition of rx[k]

in (3.9), the fact that the support of rx[k] is limited to −L ≤ k ≤ L, and the

complex conjugate symmetry in rx[n], it is clear that the support of rx[n] is limited

to −LN ≤ n ≤ LN and the last N − 1 entries of rx[L] are zero. Second, based on

the definition of rci,cj [1] in (3.8) and the fact that the support of rci,cj [n] is limited

to 1 − N ≤ n ≤ N − 1, it is clear that the first column of Rc[1] is zero. These

two observations allow us to write the linear convolution in (3.10) as a circular

convolution within −L ≤ k ≤ L, without any additional zero padding. Hence, we

can eventually write the relation between ry and rx as

ry = Rcrx (3.13)
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where Rc is the (2L+ 1)M2 × (2L+ 1)N matrix given by

Rc =

















Rc[0] Rc[1]

Rc[1] Rc[0]

Rc[1] Rc[0]
. . .

. . .

Rc[1] Rc[0]

















. (3.14)

Note that (3.13) is solvable using least-squares (LS) if Rc has full column rank,

which obviously requires M2 ≥ N .

The inverse problem of (3.13) can be further simplified by observing that Rc is

a block circulant matrix with blocks of size M2×N , which can easily be converted

into a block diagonal matrix Qc with blocks of size M2 ×N . This can be carried

out solely by using the (2L+1)-point (inverse) discrete Fourier transform ((I)DFT):

Rc = (F−1
2L+1 ⊗ IM2)Qc(F2L+1 ⊗ IN )

where ⊗ represents the Kronecker product operation, F2L+1 is the (2L + 1) ×
(2L + 1) DFT matrix, and Qc = diag{Qc(0), Qc(2π

1
2L+1), . . . ,Qc(2π

2L
2L+1)}

with Qc(ω) being the M2 × N matrix spectrum of the M2 × N matrix sequence

{Rc[k]}k=0,1:

Qc(ω) =
1

∑

k=0

Rc[k]e
−jkω. (3.15)

Consequently, by defining the (2L+ 1)N × 1 vector qx and the (2L+ 1)M2 × 1

vector qy as

qx = (F2L+1 ⊗ IN )rx (3.16)

qy = (F2L+1 ⊗ IM2)ry (3.17)

we can re-express (3.13) as

qy = Qcqx. (3.18)

From (3.11), (3.12), (3.16), and (3.17), we can also write qx and qy as

qx = [qT
x (0),q

T
x (2π

1
2L+1), . . . ,q

T
x (2π

2L
2L+1)]

T

qy = [qT
y (0),q

T
y (2π

1
2L+1), . . . ,q

T
y (2π

2L
2L+1)]

T

where qx(ω) and qy(ω) are respectively the N × 1 and M2 × 1 vector spectra of

the N × 1 and M2 × 1 vector sequences rx[k] and ry[k]:

qy(ω) =
L
∑

k=−L

ry[k]e
−jkω qx(ω) =

L
∑

k=−L

rx[k]e
−jkω. (3.19)
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Here, qy is obtained from the sample-averaged version of ry[k], while qx, and thus

rx[k], is to be estimated. By using (3.19), we are able to rewrite (3.18) as a set of

2L+ 1 matrix equations:

qy(2π
l

2L+1) = Qc(2π
l

2L+1)qx(2π
l

2L+1), l = 0, 1, . . . , 2L. (3.20)

If Qc(2π
l

2L+1) has full column rank for l = 0, 1, . . . , 2L, we can compute qx(2π
l

2L+1)

using LS from (3.20) for l = 0, 1, . . . , 2L. Note that the above simplification un-

intentionally transformed the time-domain approach in some kind of frequency-

domain approach. However, we can also directly start from the frequency domain,

as indicated in Section 3.4. Having estimated qx, we can reconstruct rx using (3.16)

and then compute the (2L+ 1)N × 1 power spectrum vector sx as

sx = F(2L+1)Nrx (3.21)

where sx = [Px(0), Px(2π
1

(2L+1)N ), . . . , Px(2π
(2L+1)N−1
(2L+1)N )]T and F(2L+1)N is

the (2L+ 1)N × (2L+ 1)N DFT matrix.

3.3.2 Alternative Time-Domain Approach

In this subsection, we present an alternative yet different version of the time-domain

reconstruction approach presented in Section 3.3.1. We start by rewriting (3.2) in

matrix-vector notation

y[k] = Cx[k] (3.22)

where the M × 1 measurement vectors y[k] and the N × 1 vector sequence x[k]

are, respectively, defined as:

y[k] = [y0[k], y1[k], . . . , yM−1[k]]
T (3.23)

x[k] = [x[kN ], x[kN + 1], . . . , x[kN +N − 1]]T (3.24)

while the M ×N compressive sampling matrix C is given by:

C = [c0, c1, c2, . . . , cM−1]
T

with ci = [ci[0], ci[−1], . . . , ci[1−N ]]T .

Next, we compute the M×M auto-correlation matrix of y[k] in (3.23), which is

given by Ry[0] = E
(

y[k]yH [k]
)

. If we also construct the N ×N auto-correlation

matrix of x[k] in (3.24) as Ra
x = E

(

x[k]xH [k]
)

, the relationship between Ra
x and

Ry[0] can be expressed as:

Ry[0] = CRa
xC

H (3.25)
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where the elements of Ra
x are given by [Ra

x]ij = rx[i − j] = r∗x[j − i] due to

the wide-sense stationary property of x[n]. While Ra
x has a Toeplitz structure,

this is not the case for Ry[0] because the elements of y[k] in (3.23) are generally

not wide-sense stationary due to the nature of the compressive sampling matrix C.

Therefore, it is theoretically possible to exploit all columns of Ry[0] to estimate one

of the columns of Ra
x by first stacking all columns of Ry[0] into the M2× 1 vector

vec(Ry[0]), which is nothing else than ry[0] in (3.11). Here, vec(.) is the operator

that stacks all columns of a matrix in a large column vector. Based on (3.25), it is

evident that ry[0] in (3.11) can be written as:

ry[0] = vec(Ry[0]) = (C∗ ⊗C)vec(Ra
x). (3.26)

Since all columns of Ra
x contain the same information, Ra

x can be condensed into

the (2N−1)×1 vector rax = [rx[0], rx[1], . . . , rx[N − 1], rx[1−N ], . . . , rx[−1]]T ,

and we can write

vec(Ra
x) = Trax (3.27)

where T is a special N2 × (2N − 1) repetition matrix with the i-th row of T given

by the ((i− 1 + (N − 2)
⌊

i−1
N

⌋

) mod (2N − 1) + 1)-th row of the identity matrix

I2N−1. By combining (3.26) and (3.27), we obtain:

ry[0] = (C∗ ⊗C)Trax = Ra
cr

a
x (3.28)

where the M2 × (2N − 1) matrix Ra
c = (C∗ ⊗C)T is actually given by:

Ra
c = [Ra

c [0],R
a
c [1]] (3.29)

with Ra
c [0] equal to Rc[0] and Ra

c [1] obtained by removing the first column of

Rc[1] (which actually has zero entries). If Ra
c has full column rank, it is possible

to reconstruct the auto-correlation vector rax from (3.28) using LS. Then, we can

compute the power spectrum vector sx as in (3.21) by replacing rx with a zero-

padded version of rax denoted as r̃ax, i.e., sx = F(2L+1)N r̃ax. Note that as the

time-domain approach only gives a valid power spectrum estimate when rx[n] has

negligible correlation values above lag LN , where L can be freely selected, the

alternative time-domain approach should only be preferred if rx[n] has negligible

correlation values above lag N − 1. Hence, for a fixed N , e.g., when the sampler

is fixed, this is a clear disadvantage of the alternative approach.

Comparing the alternative approach to (3.13), we further observe that it is a

different method that can not merely be obtained from the time-domain approach

by setting L = 0 in (3.11) and (3.12). If we set L = 0 in (3.11), the support of



3.4. Frequency-Domain Reconstruction Approach 53

ry[k] is limited to k = 0. However, as we explained in Section 3.3.1, the support of

rx[k] is then also limited to k = 0. Further, from the complex conjugate symmetry

in rx[n], we can then conclude that setting L = 0 is only possible when x[n] is

assumed to be a white sequence, i.e., rx[n] = rx[0]δ[n]. Hence, the minimum

possible value of L in (3.11) and (3.12) is L = 1.

3.4 Frequency-Domain Reconstruction Approach

In this section, we develop a frequency-domain reconstruction approach. The rea-

son for presenting this frequency-domain method is its tight connection to spectrum

blind sampling (SBS) presented in [64, 20, 38]. SBS also starts from a frequency-

domain viewpoint but focuses on spectrum reconstruction instead of power spec-

trum reconstruction.

Since yi[k] = zi[kN ], we can also write the cross-spectrum of yi[k] with yj [k]

as an N -fold aliased version of the cross-spectrum of zi[n] and zj [n]:

Pyi,yj (ω) =
1

N

N−1
∑

n=0

Pzi,zj (ω
1
N + 2π n

N ), 0 ≤ ω < 2π. (3.30)

It is well-known that Pzi,zj (ω) can be written as

Pzi,zj (ω) = Pci,cj (ω)Px(ω), 0 ≤ ω < 2π (3.31)

where Pci,cj (ω) is the “deterministic” cross-spectrum between ci[n] and cj [n]:

Pci,cj (ω) = Ci(ω)C
∗
j (ω), 0 ≤ ω < 2π.

From (3.30) and (3.31), we can thus write

Pyi,yj (ω) =
1

N

N−1
∑

n=0

Pci,cj (ω
1
N + 2π n

N )Px(ω
1
N + 2π n

N )

= pT
ci,cj (ω)px(ω), 0 ≤ ω < 2π

where we have that

pci,cj (ω) =
1

N
[Pci,cj (ω

1
N ), . . . , Pci,cj (ω

1
N + 2πN−1

N )]T

px(ω) = [Px(ω
1
N ), . . . , Px(ω

1
N + 2πN−1

N )]T . (3.32)

Note that reconstructing px(ω) for 0 ≤ ω < 2π is equivalent to reconstructing

Px(ω) for 0 ≤ ω < 2π.
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Stacking the M2 different cross-spectra Pyi,yj (ω) in the M2×1 vector py(ω) =

[. . . , Pyi,yj (ω), . . . ]
T , for i, j = 0, 1, . . . ,M − 1, we finally obtain

py(ω) = Pc(ω)px(ω), 0 ≤ ω < 2π (3.33)

where Pc(ω) is the M2 × N matrix given by Pc(ω) = [. . . ,pci,cj (ω), . . . ]
T , for

i, j = 0, 1, . . . ,M−1. Assuming that Pc(ω) has full column rank for 0 ≤ ω < 2π,

we can solve (3.33) for 0 ≤ ω < 2π using LS.

The above approach allows us to estimate the power spectrum at any specific

frequency, and as such does not require any limits on the support of ry[k] and thus

on the support of rx[n]. However, to compute py(ω) from ry[k] in practice, the

support of ry[k] has to be truncated. So we could again, as before, relax the ban-

dlimitness condition and assume that the support of ry[k] and thus rx[k] is limited

to −L ≤ k ≤ L. In that case, to reconstruct the overall power spectrum Px(ω),

it suffices to compute px(ω) for ω = 0, 2π 1
2L+1 , . . . , 2π

2L
2L+1 , which from (3.33)

is completely determined by py(ω) for ω = 0, 2π 1
2L+1 , . . . , 2π

2L
2L+1 . It can be

shown that such an approach would be exactly equivalent to the special form of the

time-domain approach presented in (3.20).

3.5 Minimal Sparse Ruler Sampling

To ensure the uniqueness of the LS solution of (3.13) and (3.20), many different

implementations of the considered sampling procedure can be investigated. Al-

though many types of random modulating waveforms can be studied [20], such as

complex Gaussian sampling or random binary (from the set {±1}) sampling, we

mainly focus on multi-coset sampling in this paper. More specifically, we propose

some new multi-coset implementations based on the so-called minimal sparse ruler

problem, which we will label as minimal sparse ruler sampling.

Observing (3.2), multi-coset sampling can be implemented by simply setting

for every branch i, one different entry of ci[n] to one and the others to zero, i.e.,

ci[n] = 1 if −n = ni and ci[n] = 0 if −n 6= ni, where ni 6= nj whenever i 6= j.

Concisely, ci[n] = δ[−n − ni], where ni 6= nj , ∀i 6= j. This is actually identical

to selecting M different rows from the identity matrix IN . However, note that this

row selection cannot be random, because we need to deterministically guarantee

the full column rank of Rc in (3.13) or equivalently of {Qc(2π
l

2L+1)}2Ll=0 in (3.20).

Observe that every row of Rc only contains a single one, which means that the full

rank conditions can be fulfilled by ensuring that Rc has at least a single one in each

of its columns. We can find from (3.5), (3.7) and (3.8) that when Rc[0] has a one in
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the column corresponding to lag −n, Rc[1] has a one in the column corresponding

to lag n. As a result, if the first
⌊

N
2

⌋

+ 1 columns of Rc[0] all have at least a single

one, then also the last
⌊

N
2

⌋

columns of Rc[1] all have at least a single one, where

⌊x⌋ represents the largest integer not greater than x. Hence, a sufficient condition

to guarantee that all columns of Rc have at least a single one can be achieved

by ensuring that the first
⌊

N
2

⌋

+ 1 columns of Rc[0] all have at least a single one.

Therefore, the problem we now like to solve is how to choose a proper combination

of rows of IN to generate the coefficients of ci[n] for i = 0, 1, . . . ,M−1, such that

Rc[0] has at least a single one in each of its first
⌊

N
2

⌋

+ 1 columns. Further, note

that the aim is to keep the number of selected rows minimal, in order to minimize

the number of branches M and thus to minimize the compression rate M/N .

Since ci[n] = δ[−n− ni], it is obvious from (3.5) that

rci,cj [n] = δ[n+ ni − nj ] (3.34)

which depends on the differences ni − nj . By introducing S as a set of M indices

selected from {0, 1, . . . , N − 1}, representing the row indices of IN selected by

the multi-coset sampler, and Ω as the set of related index-differences, given by

Ω = {|ni − nj | |∀ni, nj ∈ S}, the problem of constructing the sampler coefficients

{ci[n]}M−1
i=0 becomes:

min
S

|S| s.t.
{

0, 1, . . . ,
⌊

N
2

⌋}

⊂ Ω (3.35)

where |S| represents the cardinality of the set S. While the solution of (3.35) can

be found by exhaustive or greedy search procedures, one possible way to find a

suboptimal solution of (3.35) is by reformulating the problem as a so-called min-

imal length-
⌊

N
2

⌋

sparse ruler problem, which has been well-studied. This is done

by introducing S′ as a set of M indices selected from {0, 1, . . . ,
⌊

N
2

⌋

} and Ω′ as

the set of related index-differences, given by Ω′ = {|ni − nj | |∀ni, nj ∈ S′}, and

by solving:

min
S′

∣

∣S′
∣

∣ s.t. Ω′ =
{

0, 1, . . . ,
⌊

N
2

⌋}

. (3.36)

A sparse ruler with length
⌊

N
2

⌋

can be regarded as a ruler having k <
⌊

N
2

⌋

+ 1

distance marks 0 = n0 < n1 < . . . < nk−1 =
⌊

N
2

⌋

, but is still able to mea-

sure all integer distances from 0 up to
⌊

N
2

⌋

. The length-
⌊

N
2

⌋

sparse ruler having

k distance marks is called minimal if there is no length-
⌊

N
2

⌋

sparse ruler having

k − 1 marks. The minimal sparse ruler problem has for instance been investi-

gated in [70]. Many exact and approximate solutions for the sparse ruler problem

have been pre-computed and tabulated. By making the connection between the
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sparse ruler problem and our multi-coset design problem, the sampler coefficients

{ci[n]}M−1
i=0 can be constructed using any known sparse ruler, which guarantees the

full rank property of Rc and thus the uniqueness of the simple LS solution to power

spectrum reconstruction.

For the alternative time-domain approach, the aim is to ensure the uniqueness

of the LS solution of (3.28), which can be achieved if Ra
c in (3.28) has full column

rank. In the case of multi-coset sampling, the full rank condition of Ra
c can be

achieved if each column of Ra
c has at least a single one because we know that

every row of Ra
c will only contain a single one by considering (3.5), (3.7), (3.8),

and (3.29). Following the same analysis as in the previous paragraphs, the problem

of constructing {ci[n]}M−1
i=0 while ensuring that Ra

c has at least a single one in each

of its columns boils down to solving a minimal length-(N−1) sparse ruler problem.

For the same N , this obviously leads to a worse compression rate M/N than for

the time-domain approach. However, while the minimal length-
⌊

N
2

⌋

sparse ruler

only provides a suboptimal solution for the time-domain approach, the minimal

length-(N − 1) sparse ruler offers the minimum possible compression rate M/N

for the alternative time-domain approach. This can easily be verified.

Table 3.1 shows some examples of minimal sparse ruler samplers for the time-

domain (TD) and alternative time-domain (ATD) approaches.

Table 3.1: Examples of minimal sparse rulers (TD = time domain approach, ATD

= alternative time domain approach)

N length- M for M/N length- M for M/N
⌊

N
2

⌋

length-
⌊

N
2

⌋

for TD (N − 1) length-(N − 1) for ATD

2 1 2 1 1 2 1

11 5 4 0.3636 10 6 0.5455

18 9 5 0.2778 17 7 0.3889

39 19 8 0.2051 38 11 0.2821

78 39 11 0.1410 77 15 0.1923

84 42 11 0.1310 83 16 0.1905

128 64 14 0.1094 127 20 0.1563

3.6 Estimation and Detection Performance

In this section, we evaluate the estimation and detection performance of the pro-

posed power spectrum estimators. We first derive the mean and the covariance of
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the estimated power spectrum in (3.21). Based on the derived mean and covariance,

we then formulate the analytical normalized mean squared error (NMSE) of the es-

timate. To evaluate the detection performance, we assume the received sequence

x[n] only contains circular complex zero-mean Gaussian i.i.d. noise. Based on this

assumption, we simplify the earlier derived mean and covariance of the estimator

and we show that asymptotically, for a sufficient number of measurements, the es-

timated power spectrum is Gaussian as well. Based on these results, we can finally

formulate the decision threshold for a constant false alarm rate.

3.6.1 Estimation Performance

Given K measurement vectors y[k], the unbiased estimate for ryi,yj [k] in (3.6) can

be written as:

r̂yi,yj [k] =
1

K − |k|

K−1+min(0,k)
∑

l=max(0,k)

yi[l]y
∗
j [l − k] (3.37)

where max (a, b) and min (a, b) gives the largest and smallest value of a and b,

respectively.

Obviously, E
(

r̂yi,yj [k]
)

= ryi,yj [k] since r̂yi,yj [k] is an unbiased estimate.

Following Section 3.3.1, we can now compute the covariance matrix of the estimate

r̂y for ry in (3.11), which is given by the (2L + 1)M2 × (2L + 1)M2 matrix

Cr̂y = E
(

r̂y r̂
H
y

)

− E (r̂y)E
(

r̂Hy
)

. The elements of Cr̂y are given by:

Cov(r̂yi,yj [k], r̂yw,yv [q]) = E
(

r̂yi,yj [k]r̂
∗
yw,yv [q]

)

− E
(

r̂yi,yj [k]
)

E
(

r̂∗yw,yv [q]
)

= E
(

r̂yi,yj [k]r̂
∗
yw,yv [q]

)

− ryi,yj [k]r
∗
yw,yv [q] (3.38)

where 0 ≤ i, j, w, v ≤ M − 1, −L ≤ k, q ≤ L, and E
(

r̂yi,yj [k]r̂
∗
yw,yv [q]

)

can be

expressed as:

E
(

r̂yi,yj [k]r̂
∗
yw,yv [q]

)

= E









1

K − |k|

K−1+min(0,k)
∑

l=max(0,k)

yi[l]y
∗
j [l − k]





×





1

K − |q|

K−1+min(0,q)
∑

p=max(0,q)

y∗w[p]yv[p− q]









=
1

(K − |k|)(K − |q|)

K−1+min(0,k)
∑

l=max(0,k)

K−1+min(0,q)
∑

p=max(0,q)
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E
(

yi[l]y
∗
j [l − k]y∗w[p]yv[p− q]

)

. (3.39)

Observe that the computation of Cr̂y is not trivial since it involves the computa-

tion of fourth order moments. Knowledge about the distribution of the received

sequence x[n] is thus required. For example, if x[n] is Gaussian distributed, then

the sequences yi[k] are also jointly Gaussian and the fourth order moments in (3.39)

can be simplified as the sum of products of second order moments [71].

Based on the statistical properties of r̂y, we can now compute the expected

value and the covariance of the recovered power spectrum. Denote the estimated

power spectrum for sx in (3.21) by ŝx. From (3.13) and (3.21), assuming that Rc

has full column rank, the relationship between ŝx and r̂y is given by:

ŝx = F(2L+1)NR†
cr̂y (3.40)

where R
†
c = (RH

c Rc)
−1RH

c . The expected value of ŝx is thus given by:

E (ŝx) = F(2L+1)NR†
cE (r̂y) = F(2L+1)NR†

cry. (3.41)

Correspondingly, we denote the (2L+ 1)N × (2L+ 1)N covariance matrix of ŝx

by Cŝx , which can be written as:

Cŝx = F(2L+1)NR†
cCr̂y(R

†
c)

HFH
(2L+1)N (3.42)

where the elements of Cr̂y are given by (3.38). Note that the variance of the ele-

ments of ŝx can be found on the diagonal of Cŝx .

It is well known that the NMSE of the estimated power spectrum ŝx is then

given by:

NMSE =
E
(

‖ŝx − sx‖22
)

‖sx‖22
=

tr (Cŝx) + ‖E (ŝx)− sx‖22
‖sx‖22

, (3.43)

where tr(·) is the trace operator. Since ŝx is a linear function of r̂y (see (3.40)) and

r̂y is an unbiased estimate of ry (see (3.37)), ŝx is an unbiased estimate of sx as

long as the support of the auto-correlation of the received signal rx[n] is limited to

−LN ≤ n ≤ LN , which is the assumption we adopt in (3.12). When this is the

case, the NMSE of ŝx is equal to tr (Cŝx) / ‖sx‖22.

Note that in (3.37), we have used an unbiased estimate r̂yi,yj [k] of the cross-

correlation ryi,yj [k] instead of a biased one. The reason for this can be explained

as follows. Using an unbiased estimate instead of a biased one, the realness of

the resulting power spectrum estimate ŝx is not jeopardized, but the positiveness
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of ŝx can be affected. However, even when using a biased estimate, i.e., using a

normalization factor 1/K instead of 1/(K − |k|) in (3.37), the positiveness of ŝx

can generally not be guaranteed, in contrast to the Nyquist-rate sampling case. This

is due to the fact that the pseudo-inverse of Rc is used in (3.40), which does not

introduce an additional bias when transforming r̂y into ŝx. That is the main reason

why we started from an unbiased estimate from the beginning. We will come back

to this issue in Section 3.7.

3.6.2 Constant False Alarm Rate (CFAR) Detection Performance

For the detection performance evaluation, let us assume that the received sequence

x[n] in Fig. 3.2 only contains circular complex zero-mean Gaussian i.i.d. noise

with variance σ2, i.e., E (x[n]x∗[m]) = σ2δ[n−m] and E (x[n]x[m]) = 0 for all

m and n. When this is the case, E
(

r̂yi,yj [k]
)

can be simplified to

E
(

r̂yi,yj [k]
)

= ryi,yj [k] = rci,cj [0]σ
2δ[k]. (3.44)

The elements of Cr̂y in (3.42) can then also be simplified according to Appendix 3.A

and they are given by:

Cov(r̂yi,yj [k], r̂yw,yv [q]) =
σ4rci,cw [0]r

∗
cj ,cv [0]δ[q − k]

(K − |k|) . (3.45)

The expected value of ŝx is then given by (3.41) and the covariance matrix of

ŝx by (3.42) where the elements of E (r̂y) are given by (3.44) and those of Cr̂y

by (3.45).

Asymptotically, when the number of measurement vectors K is sufficiently

large compared to L in (3.11), i.e. L ≪ K, it can be shown that the Gaussian

approximation is applicable for the distribution of each element of ŝx, when x[n]

only contains circular complex zero-mean Gaussian i.i.d. noise. This evaluation on

the asymptotic statistical distribution of ŝx is provided in Appendix 3.B.

Combining (3.42), (3.45), and the analysis in Appendix 3.B, we are now ready

to evaluate the detection problem at frequencies ω = 0, 2π 1
(2L+1)N , . . . , 2π (2L+1)N−1

(2L+1)N

under the asymptotic Gaussian behavior of P̂x(ω). Note that it is always possible to

increase the number of grid points in the frequency domain by simply padding zeros

to r̂x, and thus it is always possible to evaluate the detection problem at frequencies

other than the above specified frequencies. The detection problem is modeled as a

selection between hypothesis H1,ω, which represents the occupancy of frequency

ω, and hypothesis H0,ω, which represents the absence of a signal at frequency ω.
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Here, we want to maximime the detection probability given the false alarm prob-

ability and thus we adopt the Neyman-Pearson theorem [72]. The decision rule is

given by:

P̂x(ω)
H1,ω

≷
H0,ω

γω,

where γω is the decision threshold for frequency ω. Let us denote the mean and

variance of the noise power at frequency ω as µn,ω and σ2
n,ω, respectively. Note

that the value of µn,ω and σ2
n,ω for ω = 0, 2π 1

(2L+1)N , . . . , 2π (2L+1)N−1
(2L+1)N can be

found as the elements of E (ŝx) in (3.41) and those of the diagonal of Cŝx in (3.42)

where the elements of E (r̂y) in (3.41) and Cr̂y in (3.42) are respectively given

by (3.44) and (3.45). Due to the asymptotic Gaussian behavior of P̂x(ω), the false

alarm probability at frequency ω, pfa,ω, given the threshold value γω, is given by:

pfa,ω = Q

(

γω − µn,ω

σn,ω

)

,

where Q(.) is the tail probability of the standard Gaussian distribution:

Q(x) =

∫ ∞

x

1√
2π

exp

(

−1

2
u2

)

du.

As a result, for a given false alarm probability pfa,ω, the decision threshold at

frequency ω can be computed as:

γω = Q−1 (pfa,ω)σn,ω + µn,ω. (3.46)

3.6.3 Alternative Time-Domain Approach Case

In this subsection, we again evaluate the estimation and detection performance of

the proposed power spectrum estimators but now for the alternative time-domain

approach of Section 3.3.2. Note that this approach is not a special case of the

time-domain approach and requires a separate analysis. We start the analysis on

the estimation performance by considering r̂y[0] as an unbiased estimate of ry[0]

in (3.26). Note that the elements of r̂y[0] are simply given by (3.37) with k = 0

and it is evident that E (r̂y[0]) = ry[0]. Next, we derive the covariance matrix

of r̂y[0], which is given by the M2 × M2 matrix Cr̂y [0] = E
(

r̂y[0]r̂y[0]
H
)

−
E (r̂y[0])E

(

r̂y[0]
H
)

whose elements are simply given by (3.38) with k = q = 0.

Based on the statistical properties of r̂y[0], we can compute the expected value

and the covariance of r̂ax, which is the estimate of rax in (3.28). Assuming that Ra
c
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in (3.28) has full column rank, the expected value of r̂ax can be written as:

E (r̂ax) = Ra
c
†E (r̂y[0]) = Ra

c
†ry[0]. (3.47)

Correspondingly, we denote the (2N − 1)× (2N − 1) covariance matrix of r̂ax by

Cr̂ax , which can be expressed as

Cr̂ax = Ra
c
†Cr̂y [0](R

a
c
†)H (3.48)

where Ra
c
† = (Ra

c
HRa

c )
−1Ra

c
H . Let us denote the zero padded version of r̂ax

by ˆ̃rax and replace E (r̂ax) and Cr̂ax by the (2L + 1)N × 1 vector E(ˆ̃rax) and the

(2L + 1)N × (2L + 1)N matrix Cˆ̃rax
. The mean and the covariance matrix of ŝx

are then given by:

E (ŝx) = F(2L+1)NE(ˆ̃rax) (3.49)

and

Cŝx = F(2L+1)NCˆ̃rax
FH
(2L+1)N , (3.50)

respectively. Similar to the time-domain approach case, the NMSE of ŝx depends

on its variance and bias. Since ŝx is a linear function of r̂y[0], which is an unbiased

estimate of ry[0], ŝx is also an unbiased estimate of sx as long as the support of the

auto-correlation of the received signal rx[n] is limited to −N + 1 ≤ n ≤ N − 1.

When this is the case, the NMSE of ŝx is again equal to tr (Cŝx) / ‖sx‖22.

For the detection performance evaluation, we again assume that the received

sequence x[n] in Fig. 3.2 only contains circular complex zero-mean Gaussian i.i.d.

noise. When this is the case, the elements of E (r̂y[0]) in (3.47) are given by (3.44)

with k = 0, and the elements of Cr̂y [0] in (3.48) are given by (3.45) with k =

q = 0. Similar to the time-domain approach case, the Gaussian approximation is

also applicable for the distribution of each element of ŝx under the alternative time-

domain approach when x[n] only contains circular complex zero-mean Gaussian

i.i.d. noise and as long as K is sufficiently large. This is shown in Appendix 3.C.

The derivation of the detection threshold given a fixed false alarm probability for

this alternative time-domain approach case follows Section 3.6.2.

3.7 Additional Constraints

So far, we have assumed that the power spectrum sx can be estimated without any

additional constraints relying on the assumption that there are enough equations

available. As we explained in Section 3.6.1, this estimated spectrum is real but not
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necessarily positive. Hence, we could think about adding a positivity constraint to

our reconstruction problem. To do so, let us first combine (3.16), (3.18), and (3.21)

to produce

qy = Φsx (3.51)

where Φ = Qc(F2L+1 ⊗ IN )F−1
(2L+1)N is of size (2L+ 1)M2 × (2L+ 1)N . The

power spectrum estimate is then given by the solution of the following positivity-

constrained least-squares problem:

min
sx

‖q̂y −Φsx‖22 s.t. sx ≥ 0 (3.52)

where 0 is the (2L+ 1)N × 1 vector containing only zeros and ≥ is a component-

wise inequality. Similarly, if we know that the power spectrum is sparse, we

could think about adding a sparsity constraint to our reconstruction problem. The

power spectrum estimate is then given by the solution of the following sparsity-

constrained least-squares problem:

min
sx

‖q̂y −Φsx‖22 + λ ‖sx‖1 (3.53)

where the weight λ ≥ 0 balances the sparsity-bias tradeoff. And naturally, it is also

possible to combine the positivity constraint with the sparsity constraint.

While this positivity and/or sparsity constraint might lead to more accurate

power spectrum estimates, they also allow to solve the under-determined case, i.e.,

when M2 < N , and as such allow to further reduce the sampling rate require-

ments. However, we decided not to include these constraints from the beginning,

because of two reasons. First of all, the constrained least-squares problems are

harder to solve than the unconstrained one, and thus lead to a higher computational

complexity. And second, the unconstrained solution allows for an analytical per-

formance evaluation (as carried out in Section 3.6), while this is not trivial for the

constrained solutions, since we lose the linear relationship between the estimated

power spectrum ŝx and the cross-correlation vector r̂y.

Finally, note that a positive solution can always be obtained from the uncon-

strained solution, by simply setting the negative entries to zero. In that case, the

NMSE derived in Section 3.6.1 can be viewed as an upper bound on the true NMSE

while the optimal detection threshold (as well as the related detection and false

alarm rate) at a specific frequency derived in Section 3.6.2 will not change at all.
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3.8 Simulation Results

In this section, we present some simulation results describing the effectiveness of

our proposed methods. In the first part, we examine the estimation performance of

both the time-domain and alternative time-domain reconstruction approaches while

the detection performance of both approaches is presented in the second part. We

consider minimal sparse ruler sampling and complex Gaussian sampling, where

the latter is merely considered to show that the proposed techniques also work for

other samplers than multi-coset samplers. In this section, minimal sparse ruler sam-

pling refers to the multi-coset sampling technique for which we define the sampler

coefficients ci[n] by selecting the rows of an N × N identity matrix according to

Section 3.5, and for which we acquire larger compression rates by randomly adding

extra rows of the identity matrix to the already selected rows.

3.8.1 Estimation Performance

First of all, we evaluate the performance of our time-domain approach presented in

Section 3.3.1. We consider a complex baseband signal x[n] spanning the frequency

bands [−0.9π,−0.65π], [0.1π, 0.35π], and [0.55π, 0.8π]. To generate this signal,

we pass circular complex zero-mean Gaussian i.i.d. noise with variance σ2 through

a digital filter h[n] of length LN + 1. As a result, the support of the true auto-

correlation sequence rx[n] is limited to −LN ≤ n ≤ LN , as required by our

theory, and it is given by

rx[n] = h[n] ⋆ h∗[−n] ⋆ σ2δ[n] (3.54)

In this subsection, we take L = 2 and N = 84, and we vary the compression rate

M/N . The motivation to fix N at N = 84 is computational complexity since a

higher N will generally result in a higher complexity.

We now examine the proposed minimal sparse ruler sampling discussed in Sec-

tion 3.5 and complex Gaussian sampling. Both estimates are computed using LS.

In the first method, the coefficients of ci[n] for i = 0, 1, . . . ,M − 1 are generated

according to the length-42 minimal sparse ruler having M = 11 distance marks.

This is equivalent to selecting the corresponding M = 11 rows from the first 43

rows of the identity matrix I84 leading to M = 11 branches in our sampling de-

vice. As a result, we have matrices Rc[0] and Rc[1] of size 121× 84 in (3.10). We

then implement the larger M/N cases by randomly adding additional rows of I84

to the already selected 11 rows. In the complex Gaussian sampling case, we sim-

ply vary the compression rate M/N from 11/84 to 0.5. The coefficients of ci[n]
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for i = 0, 1, . . . ,M − 1 are randomly generated according to a circular complex

Gaussian distribution with zero mean and variance 1/M . Note that we keep these

coefficients fixed over the different simulation runs. In Fig. 3.3, the NMSE between

the estimated power spectrum ŝx and the true one sx is calculated for both the min-

imal sparse ruler sampling and complex Gaussian sampling. While no noise is

considered in Fig. 3.3(a), random circular complex zero-mean Gaussian i.i.d. noise

is introduced in Fig. 3.3(b), in such a way that the signal-to-noise ratio (SNR) in

the active bands is given by 10 dB. Both the simulated and analytical NMSE are

calculated for a varying number of measurement vectors (MVs) K (which is anal-

ogous to KN Nyquist rate samples) as an attempt to represent different sensing

times. We also provide the simulated and analytical NMSE between the estimated

power spectrum produced by Nyquist rate sampling and the true one for different

sensing times as a benchmark. Here, the Nyquist rate estimate is obtained from

the proposed multi-coset approach in Section 3.5 by setting M = N . From the

figures, it is obvious that the quality of the estimation improves with M/N and it

slowly converges towards that of the Nyquist rate. We can also see how the NMSE

improves as the sensing time increases, which is to be expected. Observe that the

proposed minimal sparse ruler sampling generally performs better than complex

Gaussian sampling. If we compare the structure of Rc in (3.14) for complex Gaus-

sian sampling with the one for minimal sparse ruler sampling, we can easily see

that, for the minimal sparse ruler case, the columns of Rc are not only independent

but also orthogonal. As a result, the condition number of Rc for minimal sparse

ruler sampling is smaller than the one for complex Gaussian sampling. This is-

sue might explain why the performance of minimal sparse ruler sampling is better

than that of complex Gaussian sampling. Note also how the simulated NMSE is on

top of the analytical NMSE for the minimal sparse ruler, complex Gaussian, and

Nyquist rate sampling.

Next, we consider the performance of the alternative time-domain approach in

Section 3.3.2 for both minimal sparse ruler and complex Gaussian sampling. The

signal model that is used here has the same characteristics as the one used in the

time-domain approach except for the fact that the filter used to generate the sig-

nal now has length N . Hence, the support of the true auto-correlation sequence

rx[n] is now limited to −N + 1 ≤ n ≤ N − 1, as required by our theory. We

again select N = 84. For the minimal sparse ruler sampling case, we first generate

the coefficients ci[n] for i = 0, 1, . . . ,M − 1 according to the length-83 minimal

sparse ruler leading to M = 16 branches in our sampling device. This will re-

sult in a matrix Ra
c of size 256 × 167 in (3.28). We again implement the larger
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M/N cases by randomly adding additional rows of I84 to the already selected 16

rows. For complex Gaussian sampling, we simply vary the compression rate M/N

from 16/84 to 0.5. Note however that complex Gaussian sampling is theoretically

able to offer a smaller compression rate than the minimal sparse ruler counterpart

while maintaining the full column rank property of Ra
c in (3.28) although it might

not result in an acceptable performance. Similar to the time-domain reconstruc-

tion approach, we randomly generate the coefficients ci[n] according to a circular

complex Gaussian distribution with zero mean and variance 1/M and keep these

coefficients fixed over the different simulation runs. Both the simulated and an-

alytical NMSE between the estimated power spectrum and the true one for the

alternative time-domain approach are depicted in Fig. 3.4. The Nyquist rate based

estimates in Fig. 3.4 are obtained from the multi-coset implementation of the alter-

native time-domain approach in Section 3.3.2 with M = N . In general, we find

similar trends as the ones observed for the time-domain reconstruction approach

(Fig. 3.3) with respect to the impact of the compression rate and sensing time, as

well as the relative performance between the minimal sparse ruler and complex

Gaussian sampling.

3.8.2 Detection Performance

In this subsection, we consider a complex baseband signal spanning a frequency

band between 0.15π and 0.25π. Again, this signal is generated by passing circu-

lar complex zero-mean Gaussian i.i.d. noise through a digital filter h[n] of length

LN + 1 where L and N are set to L = 2 and N = 84, respectively. On top

of this spectrum, we add circular complex zero-mean Gaussian i.i.d. noise such

that a specific SNR is obtained in the active band. In order to simplify the anal-

ysis in the simulation study, the same filter h[n] is used for both the time-domain

and alternative time-domain approaches. This certainly results in a bias for the es-

timate ŝx under the alternative time-domain approach. The detection probability

should be evaluated in the occupied band. Note however that the active band is

not perfectly rectangular and there are two transition bands around the edges of the

occupied band. Therefore, we decide to leave small guard bands around the two

edges of the active band and evaluate the detection performance at the points in

the band from 0.154π to 0.243π. Meanwhile, the false alarm probability is based

on a band that is significantly far from the occupied band, namely from −0.92π to

−0.68π. The SNR in the active band is varied from -2 dB to -5 dB while the com-

pression rate is varied between M/N = 0.26 and M/N = 0.5. The false alarm
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probability is set by determining the detection threshold at each frequency, which

is computed according to (3.46). For simulation purposes, we try to vary the false

alarm probability between pfa = 0.005 and pfa = 0.1, which is smaller than the

value suggested by the IEEE 802.22 standard [73].

We first consider the detection performance of the time-domain approach for

both the minimal sparse ruler and complex Gaussian sampling implementation, as

shown in Figs. 3.5 and 3.6, respectively. Here, we calculate the false alarm and de-

tection occurences at each frequency point separately based on the estimated power

at that point. For a given band, we then combine the amount of false alarm and de-

tection occurences at all frequency points within that band to calculate false alarm

and detection probability. The sampler coefficients for the minimal sparse ruler

and complex Gaussian sampling are generated in the same way as in Section 3.8.1.

Two different numbers of measurement vectors K are simulated, i.e., K = 1786

and K = 5952. As it is obvious from the figures, minimal sparse ruler sampling

generally has a better performance than complex Gaussian sampling. This some-

how confirms the relative estimation performance between both approaches in the

previous subsection. Both methods, however, have a good performance for all sim-

ulated M/N when K = 5952 and SNR=-2dB. For SNR=-5dB, the performance of

minimal sparse ruler sampling still reaches an acceptable level as long as K = 5952

and M/N ≥ 0.4.

Next, we evaluate the performance of the alternative time-domain approach for

the two sampling techniques, depicted in Figs. 3.7 and 3.8. Again, the sampler coef-

ficients for the minimal sparse ruler and complex Gaussian sampling are generated

in the same way as in Section 3.8.1. We observe that the alternative time-domain

approach suffers from a performance degradation compared to its time-domain ap-

proach counterpart and a poorer performance is found for the complex Gaussian

sampling case. For K = 5952 and SNR=-2dB, however, the performance of the

minimal sparse ruler sampling is still acceptable.

3.9 Conclusions

In this paper, we have developed a new approach for power spectrum estimation of

wide-sense stationary signals based on samples produced by a sub-Nyquist sam-

pling device. No sparsity constraints are required for this method. In general, the

solution can be derived by solving simple LS problems, which are solvable as long

as the rank condition of the corresponding system equations are satisfied. We have

focused on multi-coset sampling where we cast the design of the sampling device as



3.A. Derivation of Cov(r̂yi,yj [k], r̂yw,yv [q]) for CFAR Detection Performance

Evaluation (Time-Domain Approach) 67

a minimal sparse ruler problem. We have shown that any sparse ruler can produce

a multi-coset sampling design that ensures the full rank condition of the formulated

sampling problem, and thereby guarantees the uniqueness of the power spectrum

estimate as the solution to a set of simple LS problems. Moreover, when minimal

sparse rulers are employed, the resulting samplers approach the minimum sampling

rate resulting in a strong compression. Finally, we have derived the mean and the

variance of the estimated power spectrum. Based on these results, we are able to de-

rive the analytical MSE of our power spectrum estimates. Moreover, by assuming

that the received signal only contains circular complex zero-mean Gaussian i.i.d.

noise, we are able to derive the detection threshold which is advantageous when we

intend to adopt the Neyman-Pearson theorem for evaluating the detection perfor-

mance. The simulation study shows that the performance of our proposed approach

is quite acceptable in terms of both estimation and detection, therefore making it

a promising candidate for power spectrum estimation and sensing of wide band

signals. Cognitive radio is for instance one possible interesting application.

Appendix

3.A Derivation of Cov(r̂yi,yj [k], r̂yw,yv [q]) for CFAR Detec-

tion Performance Evaluation (Time-Domain Approach)

We start by considering Cov(r̂yi,yj [k], r̂yw,yv [q]) in (3.38) and E
(

r̂yi,yj [k]r̂
∗
yw,yv [q]

)

in (3.39), which are valid for a general received signal x[n]. When the received

signal x[n] has a Gaussian distribution, yi[k] also has a Gaussian distribution.

We can then adopt the following result for Gaussian random variables, which is

proven in [74, 71]: If x1, x2, x3, and x4 are jointly complex or real Gaussian ran-

dom variables then E (x1x2x3x4) = E (x1x2)E (x3x4) + E (x1x3)E (x2x4) +

E (x1x4)E (x2x3)− 2E (x1)E (x2)E (x3)E (x4). This allows us to rewrite

E
(

r̂yi,yj [k]r̂
∗
yw,yv [q]

)

in (3.39) as:

E
(

r̂yi,yj [k]r̂
∗
yw,yv [q]

)

=
1

(K − |k|)(K − |q|)

K−1+min(0,k)
∑

l=max(0,k)

K−1+min(0,q)
∑

p=max(0,q)
{

E
(

yi[l]y
∗
j [l − k]

)

E (y∗w[p]yv[p− q]) + E (yi[l]y
∗
w[p])E

(

y∗j [l − k]yv[p− q]
)

+E (yi[l]yv[p− q])E
(

y∗j [l − k]y∗w[p]
)

−2E (yi[l])E (y∗w[p])E
(

y∗j [l − k]
)

E (yv[p− q])
}
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=
1

(K − |k|)(K − |q|)

K−1+min(0,k)
∑

l=max(0,k)

K−1+min(0,q)
∑

p=max(0,q)

{

ryi,yj [k]r
∗
yw,yv [q]

+ryi,yw [l − p]r∗yj ,yv [l + q − k − p] + E (yi[l]yv[p− q])E
(

y∗j [l − k]y∗w[p]
)

−2E (yi[l])E (y∗w[p])E
(

y∗j [l − k]
)

E (yv[p− q])
}

. (3.55)

For CFAR detection performance evaluation, we assume that the received sig-

nal x[n] only contains circular complex zero-mean Gaussian i.i.d. noise. When this

is the case, the third and last terms in (3.55) are zero since E (yi[l]) =
∑0

n=1−N

ci[n]E (x[lN − n]) = 0, and

E (yi[l]yv[p− q]) =
0

∑

n=1−N

0
∑

m=1−N

ci[n]cv[m]E (x[lN − n]x[pN − qN −m]) = 0.

As a result, (3.55) can be rewritten as:

E
(

r̂yi,yj [k]r̂
∗
yw,yv [q]

)

= ryi,yj [k]r
∗
yw,yv [q] +

1

(K − |k|)(K − |q|)

K−1+min(0,k)
∑

l=max(0,k)

K−1+min(0,q)
∑

p=max(0,q)

{

ryi,yw [l − p]r∗yj ,yv [l + q − k − p]
}

. (3.56)

By inserting (3.56) into (3.38), Cov(r̂yi,yj [k], r̂yw,yv [q]) can be expressed as:

Cov(r̂yi,yj [k], r̂yw,yv [q]) =
1

(K − |k|)(K − |q|)

K−1+min(0,k)
∑

l=max(0,k)

K−1+min(0,q)
∑

p=max(0,q)
{

ryi,yw [l − p]r∗yj ,yv [l + q − k − p]
}

. (3.57)

If we then consider (3.44), we can observe in (3.57) that only the terms with l = p

and k = q have a non-zero value. Hence, we have:

Cov(r̂yi,yj [k], r̂yw,yv [q]) =
ryi,yw [0]r

∗
yj ,yv [0]δ[q − k]

(K − |k|) =
σ4rci,cw [0]r

∗
cj ,cv [0]δ[q − k]

(K − |k|)
(3.58)

which is the result provided in (3.45).
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3.B Evaluation of the Statistical Distribution of ŝx for Cir-

cular Complex Zero-mean Gaussian i.i.d. Noise x[n]

(Time-Domain Approach)

In order to evaluate the statistical distribution of ŝx for circular complex zero-mean

Gaussian i.i.d. noise x[n], we first rewrite (3.37) as:

r̂yi,yj [k] =
1

K − |k|

K−1+min(0,k)
∑

l=max(0,k)

yi[l]y
∗
j [l − k]

=
1

K − |k|

K−1+min(0,k)
∑

l=max(0,k)

{

0
∑

n=1−N

ci[n]x[lN − n]

}

×

{

0
∑

m=1−N

c∗j [m]x∗[lN − kN −m]

}

=
1

K − |k|

0
∑

n=1−N

0
∑

m=1−N

ci[n]c
∗
j [m]

K−1+min(0,k)
∑

l=max(0,k)

x[lN − n]x∗[lN − kN −m]. (3.59)

For now, we only concentrate on the most inner summation in (3.59). Without loss

of generality, we only consider k ≥ 0 in the following analysis to simplify the

writing. Note that the results of the analysis also hold for k < 0. We have three

possible cases for z =
∑K−1

l=k x[lN − n]x∗[lN − kN −m]

1) n 6= m: In this case, z is the sum of the product of two i.i.d. Gaussian distri-

butions. Note also that the terms in the summation have identical distributions and

they are also independent to one another. Hence, we can exploit the central limit

theorem to assume that in this case, z has a Gaussian distribution for sufficiently

large K − k.

2) k = 0 and n = m: In this case, z will have a chi-square distribution with

K− k degrees of freedom. The chi-square distribution will converge to a Gaussian

distribution for a sufficiently large value of K − k.

3) k 6= 0 and n = m: Similar to the first case, z is now again the sum of the

product of two i.i.d. Gaussian distributions. Even though the terms in the summa-

tion are identically distributed, they are generally dependent. As an example, the
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summation for k = 2 and K = 20 can be written as:

19
∑

l=2

x[lN − n]x∗[(l − 2)N − n] = x[2N − n]x∗[−n] + x[3N − n]x∗[N − n]

+ x[4N − n]x∗[2N − n] + · · ·+ x[19N − n]x∗[17N − n]. (3.60)

Note that the same sample x[2N − n] has a contribution in the first and third terms

in (3.60). In general, for all possible values of k, every single term has a statistical

dependency on at most two other terms in the summation. In order to simplify the

analysis, let us split z into two separate summations, that is:

K−1
∑

l=k

x[lN − n]x∗[lN − kN − n] =











⌊K−k
2k ⌋
∑

s=1

k−1
∑

l=0

x[((2s− 1)k + l)N − n]x∗[((2s− 2)k + l)N − n]

+

min((2⌊K−k
2k ⌋+2)k−1,K−1)
∑

l=(2⌊K−k
2k ⌋+1)k

x[lN − n]x∗[lN − kN − n]











+











⌊K−k
2k ⌋
∑

s=1

k−1
∑

l=0

x[(2sk + l)N − n]x∗[((2s− 1)k + l)N − n]

+

K−1
∑

l=(2⌊K−k
2k ⌋+2)k

x[lN − n]x∗[lN − kN − n]











. (3.61)

Note that we basically put every k consecutive terms in z together into one group

where every term is a product of two i.i.d. Gaussian random variables. The first pair

of brackets in (3.61) contains the odd groups whereas the second pair of brackets

contains the even groups. Observe that the summation in each pair of brackets

is the sum of independent and identically distributed terms. For instance, if we

consider (3.61) for k = 2 and K = 20, we obtain:

19
∑

l=2

x[lN − n]x∗[(l − 2)N − n] = {x[2N − n]x∗[−n] + x[3N − n]x∗[N − n]

+ · · ·+ x[18N − n]x∗[16N − n] + x[19N − n]x∗[17N − n]}
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+ {x[4N − n]x∗[2N − n] + x[5N − n]x∗[3N − n] + . . .

+x[16N − n]x∗[14N − n] + x[17N − n]x∗[15N − n]} . (3.62)

Note that, within each pair of brackets in (3.62), there is no sample that contributes

to more than one term in the summation. This characteristic can also be found if

we apply different values of k and K to (3.61). As a result, we can also exploit the

central limit theorem as long as
⌊

K−k
2k

⌋

k is sufficiently large. When this is the case,

we have the summation of two terms, each of which has a Gaussian distribution. As

a result, z can again be approximated by a Gaussian distribution for large
⌊

K−k
2k

⌋

k.

By covering all cases, we can conclude that the Gaussian approximation is

applicable for the distribution of
{

r̂yi,yj [k]
}M−1

i,j=0
as long as

⌊

K−k
2k

⌋

k is sufficiently

large. From (3.11), we know that
{

r̂yi,yj [k]
}M−1

i,j=0
has a support limited to −L ≤

k ≤ L. As a result, the Gaussian assumption for
{

r̂yi,yj [k]
}M−1

i,j=0
is valid if L ≪ K.

By taking (3.11) and (3.40) into account, we can find that the distribution of each

element of ŝx for the case of circular complex zero-mean Gaussian i.i.d. noise x[n],

is asymptotically Gaussian for a large K.

3.C Evaluation of the Statistical Distribution of ŝx for Cir-

cular Complex Zero-mean Gaussian i.i.d. Noise x[n]

(Alternative Time-domain Approach)

We investigate the statistical distribution of ŝx under the alternative time-domain

approach by first considering the statistics of r̂y[0] in (3.47). Recall that the ele-

ments of r̂y[0] are r̂yi,yj [0], which are given by (3.59) with k = 0:

r̂yi,yj [0] =
1

K

0
∑

n=1−N

0
∑

m=1−N

ci[n]c
∗
j [m]

K−1
∑

l=0

x[lN − n]x∗[lN −m]. (3.63)

We only pay attention to the most inner summation in (3.63). When x[n] only

contains circular complex zero-mean Gaussian i.i.d. noise, we can observe that

z =
∑K−1

l=0 x[lN − n]x∗[lN − m] is the sum of i.i.d. random variables for both

m = n and m 6= n. As a result, for sufficiently large K, we are again able to

exploit the central limit theorem to assume that z has a Gaussian distribution. By

combining (3.47) - (3.50) and (3.63), we can conclude that for the case of circular

complex zero-mean Gaussian i.i.d. noise x[n], each element of ŝx is asymptotically

Gaussian distributed for a large K under the alternative time-domain approach.
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Figure 3.3: The normalized MSE between the estimated power spectrum (minimal

sparse ruler and complex Gaussian sampling) and the true one for various numbers

of MVs (K); (a) noise-free; (b) noisy (SNR=10 dB in active bands).



3.C. Evaluation of the Statistical Distribution of ŝx for Circular Complex
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Figure 3.4: The normalized MSE between the estimated power spectrum (minimal

sparse ruler and complex Gaussian sampling) based on the alternative time-domain

approach and the true one for various numbers of MVs (K); (a) noise-free; (b)

noisy (SNR=10 dB in active bands).
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Figure 3.5: The detection performance of the proposed time-domain approach

(minimal sparse ruler sampling) for various numbers of MVs (K) and M/N ; (a)

SNR = -2dB in active band; (b) SNR = -5dB in active band.
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Figure 3.6: The detection performance of the proposed time-domain approach

(complex Gaussian sampling) for various numbers of MVs (K) and M/N ; (a)

SNR = -2dB in active band; (b) SNR = -5dB in active band.
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Figure 3.7: The detection performance of the proposed alternative time-domain

approach (minimal sparse ruler sampling) for various numbers of MVs (K) and

M/N ; (a) SNR = -2dB in active band; (b) SNR = -5dB in active band.
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Zero-mean Gaussian i.i.d. Noise x[n] (Alternative Time-domain Approach) 77

0 0.02 0.04 0.06 0.08 0.1 0.12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Probability

D
e

te
c

ti
o

n
 P

ro
b

a
b

il
it

y

 

 

M/N=0.5

M/N=0.4

M/N=0.31

M/N=0.26
 

 

K=1786

K=5952

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Probability

D
e

te
c

ti
o

n
 P

ro
b

a
b

il
it

y

 

 

M/N=0.5

M/N=0.4

M/N=0.31

M/N=0.26
 

 

K=1786

K=5952

(b)

Figure 3.8: The detection performance of the proposed alternative time-domain ap-

proach (complex Gaussian sampling) for various numbers of MVs (K) and M/N ;

(a) SNR = -2dB in active band; (b) SNR = -5dB in active band.
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Abstract

In this paper, a new direction of arrival (DOA) estimation method for more cor-

related sources than active receiving antennas is proposed. The trick to solve this

problem using only second-order statistics is to consider a periodic scanning of

an underlying uniform array, where a single scanning period contains several time

slots and in different time slots different sets of antennas are activated leading to a

dynamic non-uniform array with possibly less active antennas than sources in each

time slot. We collect the spatial correlation matrices of the active antenna arrays

for all time slots and are able to present them as a linear function of the spatial

correlation matrix of the underlying array. We provide a necessary and sufficient

condition for this system of equations to be full column-rank, which allows for a

least squares (LS) reconstruction of the spatial correlation matrix of the underlying

array. Some practical greedy algorithms are presented to design dynamic arrays

satisfying this condition. In a second step, we use the resulting spatial correla-

tion matrix of the underlying array to estimate the DOAs of the possibly correlated

sources by spatial smoothing and MUSIC. Alternatively, we can express this matrix

as a linear function of the correlation matrix of the sources (incoming signals) at a

grid of investigated angles, and solve this system of equations using either LS or

sparsity-regularized LS (possibly assisted by additional constraints), depending on

the grid resolution compared to the number of antennas of the underlying array.

4.1 Context

In this section, we present the underlying model that will be used in the next sec-

tions and discuss related work on direction of arrival (DOA) estimation. Here,

we restrict our attention to deterministic methods as well as stochastic methods

exploiting up to second-order statistics. The presented approaches are further clas-

sified into methods that can handle correlated sources as well as methods that can

handle more sources than sensors.

To set the stage, let us consider a uniform array of N antennas receiving K

narrowband signals produced by possibly correlated sources. For simplicity, we

assume in this paper that this uniform array of N antennas is one-dimensional,

i.e., we adopt a uniform linear array (ULA), but our exposition can be extended to
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higher dimensional arrays. The output of the ULA can be written as

x(t) =
K
∑

k=1

a(θk)sk(t) + n(t) = As(t) + n(t) (4.1)

where t is the time index, x(t) is the N × 1 output vector containing the re-

ceived signals at the N antennas, n(t) is the N × 1 noise vector containing the

noises at the N antennas, s(t) = [s1(t), s2(t), . . . , sK(t)]T is the K × 1 source

vector with sk(t) the incoming signal from the k-th source with angle θk, and

A = [a(θ1),a(θ2), . . . ,a(θK)] is the N × K array response matrix with a(θk)

the array response vector for the k-th source. If we consider the first element

of the ULA as a reference point, we can express the array response vector as

a(θk) = [1, φ(θk)
d, φ(θk)

2d, . . . , φ(θk)
(N−1)d]T , where d is the distance in wave-

lengths between two antennas and φ(θk) = exp(j2πsinθk). We always consider

that −π/2 ≤ θk < π/2 and that {θk}Kk=1 contains different values. We generally

assume that the impact of the wireless channel has been taken into account in s(t),

that n(t) and s(t) are uncorrelated, and that the noises at the different antennas are

mutually uncorrelated with variance σ2
n, i.e., E[n(t)nH(t)] = σ2

nIN , with IN the

N ×N identity matrix. However, the incoming signals can possibly be correlated

with correlation matrix E[s(t)sH(t)] = Rs. As a result, the spatial correlation

matrix E[x(t)xH(t)] = Rx can be written as

Rx = ARsA
H + σ2

nIN . (4.2)

To model the more general case of a non-uniform linear array (NULA), we can

select M (≤ N ) antennas from the above ULA of N antennas, which is referred to

as the underlying array in the following. Defining y(t) as the M × 1 output vector

representing the received signals at the M selected active antennas, we obtain

y(t) = Cx(t) =

K
∑

k=1

b(θk)sk(t) +m(t) = Bs(t) +m(t), (4.3)

where C is an M ×N selection matrix containing M rows from IN , and where we

further introduced b(θk) = Ca(θk) and B = CA as the downsampled array re-

sponse vector and matrix, respectively, which are both related to the set of M active

antennas. Note that m(t) is the M × 1 noise vector obtained as m(t) = Cn(t),

which has correlation matrix E[m(t)mH(t)] = σ2
nIM . The spatial correlation

matrix of the active antennas can then be written as

Ry = E[y(t)yH(t)] = CRxC
H = BRsB

H + σ2
nIM . (4.4)
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To retain the same aperture as the underlying ULA, we assume that C always se-

lects the first and last antenna of the underlying ULA. We also assume that both the

NULA and the underlying ULA introduce no spatial aliasing, which can be guar-

anteed by taking d ≤ 1/2 and by designing C such that the indices of the selected

antennas are coprime [75], which is true for most existing NULA designs.

Based on the above model for a NULA, we will now discuss a number of state-

of-the-art DOA estimation methods that can either handle correlated sources or

more sources than sensors. Note that modeling an NULA by selecting a subset of

antennas from a ULA turns out to be useful to explain some of the following DOA

estimation methods. Moreover, the dynamic array concept we will propose in this

paper will also build upon such a model, as will be explained in Section 4.2.

4.1.1 Handling Correlated Sources

Depending on the characteristics of the sources s(t) and the number of sources,

K, relative to the total number of active antennas in the array, M , it is possible

to perform DOA estimation based on Ry in (4.4) using existing approaches. It is

clear that the signal correlation matrix Rs in (4.4) is diagonal when the incoming

signals are uncorrelated, is nondiagonal and full rank when the signals are partially

correlated, and is nondiagonal and rank deficient when the signals are fully corre-

lated (coherent) [48]. When Rs has full rank and M > K, MUSIC in [46] (or

root-MUSIC in [76]) can be applied. For uncorrelated or mildly correlated incom-

ing signals, MUSIC performs very well but for highly or fully correlated signals,

Rs in (4.4) is close to or exactly singular and the MUSIC performance deteriorates.

As discussed in [77], for an array that contains a sufficient number of translational

equivalent subarrays (this is for instance the case for a ULA, i.e., when we do not

perform antenna selection and C = IN ), the highly or fully correlated sources

in s(t) can be handled by applying the spatial smoothing preprocessing scheme

in [48, 78] to Ry in (4.4). This scheme leads to a spatially smoothed correlation

matrix Ry that can be expressed in terms of a full rank matrix Rs, which is a mod-

ified version of Rs in (4.4). Hence, MUSIC (or root-MUSIC) can now be applied

to Ry. Interestingly, instead of using spatial smoothing and MUSIC to estimate

the DOA of coherent incoming signals, [77] introduces a new method that relies

on the evaluation of the distance between the investigated steering vectors and the

subspace spanned by the columns of the product of the noise correlation matrix

and the signal eigenvectors. This distance evaluation is based on the predefined

distance metric called normalized distance functional.
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For another class of approaches, a fine grid of investigated angles is defined in

the angular domain and then the output of the array is expressed in terms of a linear

combination of the steering vectors of these investigated angles. For the model

in (4.3), this is equivalent to writing y(t) as

y(t) =

Q
∑

q=1

b(θ̃q)sθ̃q(t) +m(t) = B̃s̃(t) +m(t), (4.5)

where s̃(t) = [sθ̃1(t), sθ̃2(t), . . . , sθ̃Q(t)]
T is the Q × 1 extended source vector

with sθ̃q(t) the incoming signal from the q-th investigated angle θ̃q, and B̃ =

[b(θ̃1),b(θ̃2), . . . ,b(θ̃Q)] is the M × Q extended subsampled array response ma-

trix with b(θ̃q) the subsampled array response vector for the q-th investigated angle

θ̃q. As before, we always consider that −π/2 ≤ θ̃q < π/2 and that {θ̃q}Qq=1 con-

tains different values. It is important to note that {θ̃q}Qq=1 is known and might

approximately contain the set of actual angles of arrival {θk}Kk=1 contained in B

in (4.3), which is not known by the receiver. Based on (4.5) and defining the ex-

tended source correlation matrix as E[s̃(t)s̃(t)H ] = Rs̃, we can also express Ry

in (4.4) as

Ry = B̃Rs̃B̃
H + σ2

nIM . (4.6)

The DOA estimation approach proposed in [31] exploits the model described

by (4.5) with Q ≫ M . In this case, B̃ has more columns than rows and as a result,

the columns of B̃ play the role of an overcomplete basis for y(t). To overcome

this problem, [31] assumes that the coefficient vector with respect to this overcom-

plete basis is generally sparse. Further, [31] exploits multiple measurement vectors

(MMV) by collecting data from multiple time indices, based on the assumption that

the DOAs do not change within the duration of the sample acquisition. Hence, their

data model is given by Y = B̃S̃+M, where Y, M, and S̃ respectively stack y(t),

m(t) and s̃(t) over different time indices in a row-wise fashion. Next, the so-called

ℓ1 singular value decomposition (ℓ1-SVD) algorithm consisting of a dimensionality

reduction of the MMV model as well as a mixed ℓ2,1-norm minimization is used

to exploit the group sparsity of the columns of S̃ in the MMV model. A closely

related method can be found in [35], with the difference that a mixed ℓ2,0-norm

approximation is used instead of a mixed ℓ2,1-norm to exploit the group sparsity of

the columns of S̃, leading to the so-called joint ℓ0 approximation (JLZA) algorithm.

Other grid-based methods directly exploit (4.6) again with Q ≫ M , such as

the work of [79]. There, the columns of B̃ play the role of overcomplete basis

for each column of Ry and as before sparsity is assumed in the coefficient vector
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corresponding to this basis. Since all columns of Ry have the same sparse struc-

ture with respect to this overcomplete basis, group sparsity is again exploited to

estimate the DOA of the incoming signals leading to the so-called ℓ1 sparse repre-

sentation of array covariance vectors (ℓ1-SRACV) algorithm. As the ℓ1-SVD and

JLZA algorithms, the ℓ1-SRACV algorithm is robust to the correlation of the in-

coming signals. The model in (4.6) is also exploited in [80, 81], where a spatial

correlation matching approach is considered. The resulting so-called sparse itera-

tive covariance-based estimation (SPICE) method is derived assuming uncorrelated

sources and sparsity of the sources in the angular domain, i.e., the extended source

correlation matrix Rs̃ in (4.6) is diagonal with only a few non-zero diagonal el-

ements. Although SPICE has been derived based on uncorrelated sources, it has

been shown to be robust against correlation.

4.1.2 Handling More Sources than Sensors

Most of the aforementioned methods can handle correlated sources, but they gen-

erally require more active antennas than sources (M ≥ K). This is understandable

for those methods involving the use of MUSIC, and it has also been shown to hold

for the grid-based methods exploiting sparsity, which actually require M ≥ 2K.

For uncorrelated sources, on the other hand, some approaches have been proposed

for DOA estimation when there are more sources than physical receiving antennas.

One example in [82, 83] exploits the Caratheodory theorem and constructs the so-

called augmented correlation matrix from the spatial correlation matrix. However,

they rely on the exact knowledge of the spatial correlation matrix, which is unavail-

able in practice and has to be estimated from sample averaging. When this is the

case, the augmented correlation matrix might not be positive semi-definite, i.e., it

might not be a valid correlation matrix, thereby leading to a performance degrada-

tion. In [84], a complex algorithm has been introduced to convert the augmented

correlation matrix into a valid positive semi-definite correlation matrix.

More popular techniques for uncorrelated sources exploit the fact that the source

correlation matrix Rs is diagonal and rewrite (4.4) as

vec (Ry) = (B∗ ⊙B)diag (Rs) + σ2
nvec (IM ) (4.7)

where ⊙ denotes the Khatri-Rao product operation and vec(.) is the operator that

cascades all columns of a matrix in a large column vector. Observe that the Nv

distinct rows of B∗ ⊙ B provide the array response matrix of a virtual array (also

known as co-array) of Nv virtual antennas receiving K virtual sources at the an-

gles {θk}Kk=1 (note that generally Nv > M and the upper bound is given by
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Nv ≤ M(M − 1)+ 1). The problem now is that only a single measurement vector

is available and thus the behavior of the model (4.7) is similar to an array receiving

constant and hence fully coherent source signals, which is problematic for DOA es-

timation. A first method to solve this issue relies on the assumption that diag (Rs),

and thus vec (Ry), is time-varying, which basically means that quasi-stationary

sources are assumed and thus enough linearly independent measurement vectors

can be obtained [47]. But it is clear that this method will fail in case of stationary

sources, which was the starting point of this paper. A second technique again relies

on gridding and exploits the model (4.6), which for uncorrelated sources can be

written as

vec (Ry) = (B̃∗ ⊙ B̃)diag (Rs̃) + σ2
nvec (IM ) . (4.8)

If we select the angular resolution such that Q = Nv, we can solve (4.8) using or-

dinary least squares (LS) [10]. This is particularly interesting if we want to obtain

an analytical performance analysis of the solution. However, when Nv is too small,

this leads to a bad angular resolution and it will be difficult to estimate the DOA

of off-grid sources. The other option is to take a fine grid of investigated angles,

for which Q > Nv. In that case, we have to rely on the sparsity (possibly assisted

by the positivity) of diag (Rs̃) to solve the underdetermined problem (4.8), as was

recently advocated in [85]. A final technique is based on constructing special array

geometries of M antennas, through the design of the selection matrix C in (4.3),

such that the overall virtual array of Nv antennas subsumes a ULA of Nu anten-

nas, referred to as the virtual ULA, where generally M < Nu ≤ Nv. Examples

of such array designs are the two-level nested array [42], the coprime array [41],

and the minimal sparse ruler array [10]. Under this virtual ULA, the DOAs can

again be estimated using gridding and adopting the earlier mentioned LS [10] or

sparsity-constrained LS (possibly assisted by a positivity constraint) [85]. Different

from a general virtual array, B̃∗⊙ B̃ now has a Vandermonde structure, which sim-

plifies the implementation and analysis of these methods. Alternatively, it is now

also possible to apply spatial smoothing and MUSIC based on the single available

measurement vector from the virtual ULA.

4.1.3 Handling More Correlated Sources than Sensors

All the above methods either focus on correlated sources, but then the upper bound

of the number of sources is lower than the number of antennas, or they focus on de-

tecting more uncorrelated sources than sensors. To the best of our knowledge, there

are no deterministic or stochastic methods using up to second-order statistics that
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can handle more correlated sources than sensors. Only higher-order statistics have

been exploited up to now to solve this problem (see e.g. [86]). In this paper, we

will fill this gap, and introduce a new approach to tackle more correlated sources

than active sensors. The paradigm shift introduced to reach this goal is to period-

ically change the selection of the M active antennas from the underlying ULA of

N antennas. This will be explained in detail in the following sections.

4.2 Dynamic Array through Periodic Scanning

In this section, we introduce a novel dynamic array for DOA estimation of possibly

correlated or even fully coherent signals when the number of sources is more than

the number of active antennas at any given time. The underlying ULA consisting of

N antennas discussed in Section 4.1 is used as an array of available antennas from

which we activate only M antennas within a specific time slot, where the set of M

activated antennas can differ from time slot to time slot. In this way, even though

the number of required physical antennas is equal to N , the number of active an-

tennas per time slot, and thus the number of hardware receiver branches, is reduced

from N to M . This scheme reduces the power consumption without compromis-

ing the ability to locate the DOAs of the sources. In other words, the number of

sources we will be able to detect is the same as if we had all N antennas from the

underlying ULA available all the time. Note that instead of antenna switching, we

can equivalently employ M < N adjustable antennas to construct a dynamic array

allowing us to alter the position of each antenna in every time slot.

1st scanning period

1st time slot

x(2) x(3) x(4) x(5)

y
1
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3rd time slot

Figure 4.1: Description of the periodic scanning process where a single scanning

period consists of L time slots. Here the number of time slots per scanning period

is L = 3 and the number of samples per slot per antenna is given by S = 2.

Let us now discuss the conceived dynamic array in some more detail. We ba-
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sically focus on some kind of periodic scanning with P scanning periods, where a

single scanning period consists of L time slots, and where a single time slot con-

sists of S samples (see Fig. 4.1). The set of M activated antennas within a single

scanning period is different from time slot to time slot whereas the set of active

antennas in the l-th time slot of different scanning periods is the same. Defining

x(t) as the output vector of the underlying ULA of N antennas, as in Section 4.1,

and assuming for simplicity that the sample period is 1, we introduce yl(τ) as the

M × 1 vector representing the output of the M active antennas of the linear array

in the l-th time slot (l = 0, 1, . . . , L− 1), which is given by

yl(τ) = Clx(pLS + lS + s)

where ⌊τ/S⌋ = p (p = 0, 1, . . . , P − 1) indicates the scanning period index,

s = τ − pS (s = 0, 1, . . . , S − 1) indicates the sample index within the l-th time

slot of the p-th scanning period, and where the M ×N matrix Cl is constructed by

selecting M out of N rows from the identity matrix IN . Note that the indices of the

M selected rows represent the indices of the M active antennas in the l-th time slot

selected from the N available antennas in the underlying ULA. We are then able to

compute the M ×M spatial correlation matrix of yl(τ) as

Ryl = E
[

yl(τ)yl(τ)
H
]

= ClRxC
T
l (4.9)

where the second equality is due to the fact that Cl is a real matrix. Note that the

expectation operation in (4.9) can be estimated by taking an average over PS time

samples. Next, let us stack all columns of Ryl into the M2 × 1 vector vec(Ryl).

Based on (4.9), we can then express vec(Ryl) as

ryl = vec(Ryl) = (Cl ⊗Cl)vec(Rx) (4.10)

where ⊗ denotes the Kronecker product operation. Finally, we can combine ryl
in (4.10) for all time slots l = 0, 1, . . . , L − 1 into a single vector ry, which is

given by ry = [rTy0 , r
T
y1 , . . . , r

T
yL−1

]T . The relationship between ry and Rx is then

provided by

ry = Ψvec(Rx) (4.11)

where the M2L×N2 matrix Ψ is given by

Ψ = [(C0 ⊗C0)
T , (C1 ⊗C1)

T , . . . , (CL−1 ⊗CL−1)
T ]T . (4.12)

This equation forms the basis of this paper and it allows for the reconstruction of

vec(Rx) from ry, which will be discussed in the next section.
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4.3 Reconstruction of Spatial Correlation Matrix Rx

One option to solve (4.11) is using ordinary LS. If Ψ has full column rank, we then

obtain

vec(R̂x) = (ΨTΨ)−1ΨT ry. (4.13)

Alternatively, we could add a positive semi-definite (p.s.d.) constraint on Rx in

the aforementioned ordinary LS problem, leading to the following constrained LS

reconstruction problem

R̂x = argmin
Rx

‖ry −Ψvec(Rx)‖22 s.t. Rx � 0N×N , (4.14)

where 0m×n denotes an m × n matrix containing only zeros. This could possibly

alleviate the requirement of a full column rank Ψ, but comes at the expense of a

large computational complexity. Either way, it is still of great interest to design

{Cl}L−1
l=0 such that Ψ has full column rank, which clearly requires M2L ≥ N2.

Observe that, since M < N , we can only have M2L ≥ N2 if at least two time

slots per scanning period are adopted, i.e., L ≥ 2. In other words, a dynamic array

through periodic scanning is indispensable for generating a full column rank Ψ.

In the remainder of this section, we will first propose a necessary and sufficient

condition for the periodic subsampling procedure to have a full column rank Ψ

in (4.12). Next, we will develop some practical greedy approaches to design a

periodic scanning scheme that satisfies this condition. Finally, we will discuss some

trade-offs related to the design of the dynamic array.

4.3.1 Establishing Perfect Reconstruction

In order to simplify our analysis, let us start by introducing the following lemma.

Lemma 4.3.1. Cl⊗Cl will have a one in the [(i− 1)N + j]-th and [(j − 1)N + i]-

th columns if and only if Cl contains the i-th and j-th rows of the identity matrix

IN .

The proof of this lemma can be found in Appendix 4.A. Lemma 4.3.1 directly

implies the following corollary.

Corollary 4.3.1.1. If Cl is constructed by selecting M different rows of IN , the

rows of Cl ⊗ Cl have a single one at exactly M2 different positions. Out of the

M2 rows of Cl ⊗Cl, M rows are produced by the self-Kronecker product of every

row of Cl. On the other hand, every pair of two different rows of Cl contributes to
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two different rows of Cl ⊗ Cl, each of which has a single one at a different posi-

tion. Since we have
(

M
2

)

possible combinations of two different rows, all Kronecker

products between any two different rows of Cl lead to M(M − 1) rows of Cl⊗Cl,

all of which have a single one at a different position.

Let us now define Γl as the set of M indices selected from {1, 2, . . . , N} repre-

senting the rows of IN that we use to construct Cl. Then, the set of the M2 indices

of the columns of Cl ⊗Cl that contain a one is provided by

Ωl = {(i− 1)N + j|i, j ∈ Γl} . (4.15)

Since every row of Cl ⊗Cl has only a single one, it is clear from (4.12) that every

row of Ψ also has only a single one. As a result, Ψ will have full column rank if and

only if each of its columns has at least a single one, which from (4.12) and (4.15)

is equivalent to
L−1
⋃

l=0

Ωl =
{

1, 2, . . . , N2
}

. (4.16)

This result leads to the following theorem.

Theorem 4.3.1. Ψ in (4.12) has full column rank if and only if every possible

combination of two antennas in the underlying ULA is active in at least one of the

L possible time slots within a single scanning period.

Proof. Note that the condition in Theorem 4.3.1 is equivalent to using every pos-

sible pair of two different rows of IN in at least one of the L possible matrices

{Cl}L−1
l=0 . Based on Lemma 4.3.1 and Corollary 4.3.1.1, this will guarantee that

the [(i− 1)N + j]-th and the [(j − 1)N + i]-th columns of Ψ have at least a single

one for all i, j ∈ {1, . . . , N}. This proves the sufficiency part of the theorem. In

order to prove the necessity part, let us assume that Ψ in (4.12) has full column rank

and that the a-th and b-th antennas in the underlying ULA are never simultaneously

active in the same time slot. This equivalently means that none of the matrices

{Cl}L−1
l=0 contains both the a-th and b-th rows of the identity matrix IN . Accord-

ing to Lemma 4.3.1 and using (4.12), it is then obvious that the [(a − 1)N + b]-th

and the [(b − 1)N + a]-th columns of Ψ only contain zeros and thus Ψ does not

have full column rank, which contradicts the initial assumption. This concludes the

proof.

Note that Theorem 4.3.1 automatically requires M ≥ 2. Further note that since

each row of Ψ only contains a single one and zeros elsewhere, the reconstruction

of vec(Rx) using ordinary LS as in (4.13) is computationally easy to perform.
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4.3.2 Greedy Dynamic Array Design

As we will discuss in Section 4.3.3, subject to the full column rank condition of Ψ,

it is generally not possible to minimize both the number of active antennas per time

slot M and the number of time slots per scanning period L simultaneously. In this

section, we discuss a greedy dynamic array design that aims to either minimize M

given L or minimize L given M subject to (4.16).

Based on Theorem 4.3.1, we first try to minimize L given M subject to (4.16)

by defining Λ as Λ = {(i, j)|i, j ∈ {1, 2, . . . , N} , i < j} and Λl as the set of all

possible combinations of two row indices of IN that are used to construct Cl, that

is

Λl = {(i, j)|i, j ∈ Γl, i < j} .

Our task to minimize L given M subject to (4.16) can now be expressed as

min
L,{Γl}

L−1
l=0

L subject to

L−1
⋃

l=0

Λl = Λ and |Γl| = M, ∀l (4.17)

where |Γl| denotes the cardinality of the set Γl. The minimization problem in (4.17)

is generally a non-trivial combinatorial problem. However, it is possible to find a

lower bound for L. Note that |Λ| = N(N − 1)/2 and |Λl| = M(M − 1)/2. It is

then clear that L is lower bounded by

L ≥
⌈ |Λ|
|Λl|

⌉

=

⌈

N(N − 1)

M(M − 1)

⌉

(4.18)

where ⌈x⌉ denotes the smallest integer not smaller than x. While the minimization

problem in (4.17) is generally hard to solve, we propose a greedy algorithm to find a

sub-optimal solution for L and {Γl}L−1
l=0 given M subject to (4.16). This algorithm,

called Algorithm 4.1, is described in Table 4.1 and its explanation is provided in

Appendix 4.B.

Similarly, given a certain value of L, the minimization of M subject to (4.16)

can be stated as

min
M,{Γl}

L−1
l=0

M subject to

L−1
⋃

l=0

Λl = Λ and |Γl| = M, ∀l.

In this case, the lower bound for M is given by

M2 −M

2
≥

⌈ |Λ|
L

⌉

=

⌈

N(N − 1)

2L

⌉

. (4.19)
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We also propose a greedy algorithm to find a sub-optimal solution for M and

{Γl}L−1
l=0 given L subject to (4.16). This algorithm, called Algorithm 4.2, is de-

scribed in Table 4.2 and its explanation is provided in Appendix 4.C.

4.3.3 Trade-offs for Dynamic Array Design

While we want to achieve (4.16) to ensure the full column rank condition of Ψ, we

also want to keep the computational complexity low, the number of active antennas

and hardware receiver branches M small, and the number of antenna reconfigura-

tions L within a scanning period minimal. However, it turns out that simultaneously

minimizing everything is not possible. Let us consider the following trade-offs.

Corollary 4.3.1.1 implies that, for each value of l ∈ {0, 1, . . . , L−1}, only M2

out of N2 columns of Cl⊗Cl have at least a single non-zero element. Minimizing

M will decrease the number of non-zero columns of Cl ⊗Cl. As a result, in order

to ensure that all columns of Ψ in (4.12) have at least a single non-zero element, we

need a larger L. This means that there is a trade-off between M and L for a given

amount of time within a scanning period. Fig. 4.2 illustrates the trade-off between

M and L for N = 28 where we vary M from 3 to 28. The value of L is computed

by using the lower bound formula given by (4.18) to simplify the illustration. As

a final remark on the trade-off between M and L, it is also important to observe

from (4.11) that the size of Ψ to be inverted depends quadratically on M and only

linearly on L.

Secondly, consider the relation between L, M , the number of scanning periods

P , and the total number of received samples per time slot per antenna S. Recall that

the larger PS the better the quality of the estimate of Ryl in (4.9). If we have a fixed

total sensing time (which implies a given PSL), a larger PS implies a smaller L,

which in turn, also implies a larger number of antennas M that need to be activated

in each time slot. Hence, for a given total sensing time PSL, we have a trade-off

between M and the quality of the estimate of Ryl in (4.9). This trade-off can also be

illustrated by Fig. 4.2. For example, by fixing PSL to PSL ≈ α, we can compute

for every value of PS the corresponding value of L as L = round(α/(PS)) and

relate this to a value of M from Fig. 4.2.

Alternatively, we might also require a certain quality for the estimate of Ryl

in (4.9) and fix PS. In this case, the trade-off now is between M and the total

sensing time PSL. Again, we can use Fig. 4.2 to illustrate this trade-off. For

example, by fixing PS to PS ≈ β, we can compute for every value of PSL the

corresponding value of L as L = round(PSL/β) and relate this to a value of M
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Figure 4.2: Illustration of the trade-off between the number of active antennas M

and a lower bound on the number of time slots per scanning period L. Here, we

have N = 28.

from Fig. 4.2.

4.4 Source Correlation Reconstruction and DOA Estima-

tion

After the reconstruction of Rx, any covariance-based method capable of handling

correlated sources from Subsection 4.1.1 assuming no subsampling, i.e., C = IN ,

can basically be used for DOA estimation. Examples are the spatial smoothing and

MUSIC (or root-MUSIC) approach of [48, 78], the ℓ1-SRACV method of [79], or

possibly SPICE [80, 81]. In addition, we here also introduce some new covariance-

based approaches which again rely on gridding the angular domain.

4.4.1 Least Squares Approach

The first possible approach is based on defining a grid of investigated angles in the

angular domain and using a model similar to (4.6) but now with no subsampling,

i.e., C = IN . Using this model and taking (4.2) into account, we can write

vec (Rx) = (Ã∗ ⊗ Ã)vec (Rs̃) + σ2
nvec (IN ) . (4.20)

where Ã = [a(θ̃1),a(θ̃2), . . . ,a(θ̃Q)] is the N ×Q extended array response matrix

for the underlying ULA with a(θ̃q) the array response vector for the q-th investi-
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gated angle θ̃q. From (4.20), we can reconstruct vec (Rs̃) from vec(Rx) using LS,

under the assumption that Ã in (4.20) has full column rank, which is only possible

if N ≥ Q. Assuming that Ã has full column rank, solving (4.20) using LS leads to

vec(R̂s̃) =
(

(Ã∗ ⊗ Ã)H(Ã∗ ⊗ Ã)
)−1

(Ã∗ ⊗ Ã)Hvec (Rx) . (4.21)

Because of the Vandermonde structure of Ã, it will always have full column rank

if we take N ≥ Q. However, in order to obtain a well-conditioned Ã, we can take

N = Q, use a half wavelength spacing (d = 0.5) for the underlying ULA in (4.1),

and adopt an inverse sinusoidal angular grid where the investigated angles θ̃q are

defined as

θ̃q = sin−1

(

2

Q

(

q − 1−
⌈

Q− 1

2

⌉))

, q = 1, 2, . . . , Q. (4.22)

We can then easily derive that Ã is a permuted version of the inverse discrete

Fourier transform (IDFT) matrix, which is a unitary matrix that does not introduce

any noise enhancement when inverting the matrix. Furthermore, this also means

that applying the inverse of Ã∗ ⊗ Ã to a vector can easily be computed using

fast Fourier transform (FFT) operations, leading to a complexity of order N2logN .

The diagonal of the computed estimate of the correlation matrix R̂s̃ indicates the

received power at the investigated angles {θ̃q}Qq=1. Therefore, diag(R̂s̃) can be per-

ceived as the angular power spectrum estimate. The estimates of the actual DOAs

can be found by locating the peaks of this angular power spectrum estimate. The

off-diagonal components of R̂s̃, on the other hand, reveal the correlations between

the signals at the different investigated angles.

4.4.2 Sparsity-Regularized Least Squares Approach

As the number of investigated angles Q reduces, the probability that the DOA of a

particular point source k is not located on or nearby a grid point increases. Since

the LS approach requires N ≥ Q, when N is small, Q will be small and the angular

resolution of the LS estimate is poor and it will be challenging to estimate the DOA

of off-grid point sources. One way to mitigate this problem is to take a finer grid of

investigated angles by allowing Q > N . When this is the case, the resulting Ã∗⊗Ã

in (4.20) is a wide matrix and its columns play the role of an overcomplete basis

for vec (Rx) in (4.20). In order to solve the resulting underdetermined problem,

a popular idea is to assume that vec (Rs̃) is generally sparse and formulate the
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estimate of Rs̃ as a solution of the sparsity-regularized LS problem:

R̂s̃ = argmin
Rs̃

∥

∥

∥vec (Rx)− (Ã∗ ⊗ Ã)vec (Rs̃)
∥

∥

∥

2

2
+ λ ‖vec (Rs̃)‖1 (4.23)

where the weight λ ≥ 0 balances the sparsity-bias tradeoff. This can be regarded

as an extension of the method proposed in [85], which is designed to handle only

uncorrelated sources.

In the noiseless case, it is interesting to discuss conditions on Ã∗⊗Ã that guar-

antee perfect reconstruction of vec (Rs̃) in (4.23). If the number of pairs of corre-

lated sources is given by K ′, then it is clear that vec(Rs̃) is a K̃-sparse vector, i.e., it

has at most K̃ non-zero elements where K̃ = K+2K ′. The worst case occurs when

K̃ = K2, i.e., each source is highly correlated to the other K − 1 sources. When

we try to recover vec (Rs̃) from vec (Rx) using ℓ0-norm minimization, it is well

known that the Kruskal rank of Ã∗⊗ Ã should satisfy krank(Ã∗⊗ Ã) ≥ 2K̃ [87].

Since we now have a wide matrix Ã, krank(Ã∗ ⊗ Ã) = krank(Ã) [88]. Based

on this fact and by exploiting the Vandermonde structure of Ã, it is clear that the

necessary and sufficient condition that needs to be satified is given by N ≥ 2K̃.

For vec (Rs̃) reconstruction using ℓ1-norm minimization, the coherence property

of Ã∗⊗ Ã is of particular interest. Given the definition of coherence of Ã as γ
Ã
=

maxi 6=j
|a(θ̃i)

Ha(θ̃j)|

‖a(θ̃i)‖‖a(θ̃j)‖ [89], it is straightforward to show that γ
Ã∗⊗Ã

= γ
Ã

[88].

As a result, in a noiseless scenario, a loose sufficient condition for a unique recon-

struction of vec (Rs̃) using ℓ1-norm minimization is given by K̃ ≤ 1
2(1+

1
γ
Ã

) [89].

4.4.3 Spatial Smoothing and MUSIC

Since we use a ULA of N antennas as our underlying array, it is also possible

to apply the spatial smoothing procedure of [48] or [78] to the spatial correlation

matrix estimate R̂x obtained from (4.13) or (4.14). Here, we opt to employ the

forward-backward spatial smoothing (FBSS) introduced in [78], which is theoreti-

cally able to detect more correlated sources than that can be detected by the forward

technique in [48]. Specifically, we divide the underlying ULA into Ns overlapping

subarrays, each of which has Na physical antennas, and compute the Na × Na

spatially smoothed correlation matrix ˆ̄Rx as

[ ˆ̄Rx]i,j =
1

2Ns

Ns−1
∑

i′=0

(

[R̂x]i+i′,j+i′ + [R̂∗
x]N+1−i−i′,N+1−j−i′

)

(4.24)

where [R̂x]i,j represents the element of R̂x at the i-th row and the j-th column.

We can then apply the MUSIC algorithm of [46] to the resulting ˆ̄Rx in order to
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produce high resolution DOA estimates. It is important to note that a larger Ns

implies a smaller Na and vice versa, and that the maximum number of sources

that can be detected by MUSIC after the FBSS preprocessing scheme is given by

min(2Ns, Na − 1) [78]. It is easy to show that for our underlying ULA, the optimal

settings for Ns and Na, which lead to the largest possible number of sources that

can be detected, is given by Ns =
⌈

N
3

⌉

with Na = N + 1−
⌈

N
3

⌉

.

4.5 Discussion

We first would like to underline some important issues with respect to the LS for-

mulation for DOA estimation discussed in Section 4.4.1. Recall that in the LS for-

mulation, the limited grid resolution in the angular domain might seriously affect

the estimation of the DOA of point sources, especially when it is not located nearby

the grid. When this is the case, we might expect MUSIC with spatial smoothing

discussed in Section 4.4.3 to perform better than the LS approach. However, it is

important to note that the LS approach also has its own merits. In fact, the gridding

performed in the LS method aims at estimating the general angular power spec-

trum represented by the diagonal of the estimated signal correlation matrix Rs̃,

without any sparsity considerations (i.e., by allowing Q ≤ N ). In that sense, our

LS approach can actually be interpreted as a conventional periodogram approach

used for spectral estimation. Let us for instance consider the case where we have

a source that is occupying a whole angular band (e.g., there are no point sources).

We then have a conventional spectral estimation problem instead of a line spectrum

estimation problem and there is a good chance for the LS approach to outperform

MUSIC, which means that the considered LS angular power spectrum reconstruc-

tion method is reasonable in some cases. More details can be found in Section 4.6.

Some extensions of MUSIC have been proposed in [90, 91] to estimate the DOA

of spatially distributed sources but these approaches are not really designed to esti-

mate an arbitrary smooth angular power spectrum.

Both the LS and the sparsity-regularized LS provide information about how

the sources are correlated to each other. This information is available in the off-

diagonal components of Rs̃ and cannot be produced using the MUSIC approach.

With the ability to use LS, sparsity-regularized LS, and MUSIC with spatial smooth-

ing, our dynamic linear array approach has two features that complement each

other. The gridding approach assisted with LS is very useful for a smooth an-

gular power spectrum estimation while MUSIC with spatial smoothing is a more

appropriate tool for the DOA estimation of point sources. In addition, subject to
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the sparsity of the angular power spectrum, the sparsity-regularized LS approach is

able to produce an estimate of a smooth angular power spectrum as well as accurate

DOA estimates for point sources as long as the grid is sufficiently fine.

The fact that diag(R̂s̃) provides the estimate of the received power at the inves-

tigated angles {θ̃q}Qq=1 can also be used as a motivation to add a positivity constraint

on diag(Rs̃) in the ordinary LS problem discussed in Section 4.4.1. This leads to

the following constrained LS problem:

R̂s̃ = argmin
Rs̃

∥

∥

∥
vec (Rx)− (Ã∗ ⊗ Ã)vec (Rs̃)

∥

∥

∥

2

2
s.t. diag(Rs̃) ≥ 0Q (4.25)

with 0n denoting an n × 1 vector containing only zeros. Furthermore, if a higher

computational complexity is acceptable, we can even apply a p.s.d. constraint on

Rs̃, which means that the constrained LS problem in (4.25) now becomes

R̂s̃ = argmin
Rs̃

∥

∥

∥vec (Rx)− (Ã∗ ⊗ Ã)vec (Rs̃)
∥

∥

∥

2

2
s.t. Rs̃ � 0Q×Q. (4.26)

Similarly, we can also add a positivity or p.s.d. constraint on diag(Rs̃) in (4.23) for

the sparsity-regularized LS approach discussed in Section 4.4.2.

Another interesting observation is that the LS and sparsity-regularized LS ap-

proaches can also be adapted to their one-step counterparts. Instead of first solv-

ing (4.11) to reconstruct Rx from ry and then (4.20) to reconstruct Rs̃ from Rx, it

is actually possible to reconstruct Rs̃ directly from ry in (4.11). This is performed

by combining (4.11) and (4.20) and solving the resulting problem using a single LS

or sparsity-regularized LS operation. More specifically, we can write

ry = Ψ(Ã∗⊗ Ã)vec (Rs̃)+σ2
nΨvec (IN ) = Gvec (Rs̃)+σ2

nΨvec (IN ) (4.27)

where the M2L×Q2 matrix G is given by

G = [((C0Ã)∗ ⊗ (C0Ã))T ,((C1Ã)∗ ⊗ (C1Ã))T , . . . ,

((CL−1Ã)∗ ⊗ (CL−1Ã))T ]T . (4.28)

From this equation, we can directly adopt a one-step LS or sparsity-regularized LS

to reconstruct vec (Rs̃) from ry. We expect that the corresponding reconstruction

conditions, i.e., full column rank condition on G for LS and krank(G) ≥ 2K̃ or

K̃ ≤ 1
2(1 + 1

γG
) conditions for sparsity-regularized LS, will be less strict than in

the two-step approaches. However, since it is not directly clear what properties are

required to obtain these conditions for the one-step approaches, we generally advo-

cate to first solve (4.11) and then reconstruct Rs̃ from (4.20) using LS or sparsity-

regularized LS.
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4.6 Numerical Study

In this section, we evaluate the proposed approaches using numerical experiments.

In general, we run the proposed dynamic array through periodic scanning dis-

cussed in Section 4.2 and then reconstruct the spatial correlation matrix Rx from

ry in (4.11) using ordinary LS except for the last experiment where we use (4.14)

to reconstruct Rx. Next, given the estimate of Rx, we evaluate the main source

correlation matrix reconstruction and DOA estimation approaches elaborated in

Section 4.4. For all experiments, we also apply the positivity constraint on the di-

agonal elements of Rs̃ when we adopt the sparsity-regularized LS since adding this

convex constraint does not incur a large computational cost. In general, we con-

sider correlated sources as well as a spatially and temporally white noise, and we

assume that the signals coming from different sources have equal power with the

signal to noise ratio (SNR) defined with respect to the power of each signal at each

antenna.

Under an SNR of 0 dB, we first conduct three experiments and examine the re-

sulting LS, sparsity-regularized LS, and MUSIC angular power spectrum plots. In

the first experiment, we consider a ULA of N = 40 antennas with half wavelength

spacing as our underlying array and set the number of time slots per scanning pe-

riod to L = 28. We intend to select the activated antennas in each time slot such

that the number of active antennas per time slot M is minimal. Observe that, ac-

cording to (4.19), the lower bound for M in this setting is given by M ≥ 8. In this

simulation study however, we run Algorithm 4.2 given in Table 4.2 for N = 40

and L = 28 in order to obtain a suboptimal solution for M and the indices of the

antennas that are activated in each time slot, which is given by {Γl}27l=0. This results

in M = 10 (which is larger than the lower bound) and produces the indices of the

corresponding 10 active antennas in each of the 28 time slots. Note that the antenna

array setup suggested by {Γl}27l=0 produced by Algorithm 4.2 leads to a full column

rank 2800 × 1600 matrix Ψ in (4.12). The total number of time samples per time

slot is S = 1 and the total number of scanning periods is P = 57 leading to a total

number of time samples of PSL = 1596. For the LS approach, we set the num-

ber of grid points to Q = N = 40 and the investigated angles {θ̃q}40q=1 according

to (4.22) in order to produce a well-conditioned matrix Ã∗⊗Ã in (4.20). The num-

ber of grid points for the sparsity-regularized LS approach is equal to Q = 70 and

they are also set according to (4.22). For the sparsity-regularized LS, the weight

λ in (4.23) is set to λ = 2.88. For the MUSIC approach, the FBSS preprocess-

ing scheme is conducted by setting the number of subarrays to Ns = 14 and the
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number of antennas per subarray to Na = 27. We generate K = 12 sources with

9 degrees of separation, that is {θk}12k=1 =
{

−540,−450, . . . , 450
}

. Note that the

number of sources is more than the number of active antennas per time slot M . In

order to investigate the performance of the proposed approach for the case when

there is some correlation between the sources, the signal that arrives at angle θk
is set to be exactly the same as the one arriving at direction θk+6 leading to six

pairs of fully correlated sources. The diagonal of R̂s̃ recovered using ordinary LS

and sparsity-regularized LS gives the angular power spectrum estimates at the in-

vestigated angles θ̃q and is illustrated in Fig. 4.3. In this figure, the locations of

the actual DOAs are indicated by vertical lines for simplicity. We then use the

twelve highest peaks in the resulting angular power spectrum estimate to indicate

the DOA estimates. We can see how the twelve correlated sources can generally

be detected using ordinary LS since they are located nearby the LS grid points.

Meanwhile, the sparsity-regularized LS produces a minor grid mismatch effect but

has less power in the unoccupied angular band. The resulting MUSIC estimate is

also illustrated in Fig. 4.3 and it generally outperforms both the LS estimate and

sparsity-regularized LS estimate. It should be noted, however, that both the LS

and the sparsity-regularized LS also provide information about the magnitude of

the correlation between the signals at the different investigated angles θ̃q, which is

provided in Fig. 4.4. As it is clear from the figure, both the power of the twelve

sources and the magnitude of the cross-correlation between the sources are clearly

identified by both the LS and the sparsity-regularized LS approaches.

In the second experiment, we consider a ULA of N = 25 antennas with half

wavelength spacing as our underlying array. We activate M = 5 active antennas in

each time slot and run Algorithm 4.1 given in Table 4.1, which produces L = 36

and the indices of the corresponding 5 active antennas in each of the 36 time slots.

The grid points setting for the sparsity-regularized LS is the same as in the first

experiment while for the LS approach, we have Q = N = 25 where {θ̃q}25q=1 is

set based on (4.22). Here, the weight λ in (4.23) for the sparsity-regularized LS

is set to λ = 3.88. For the MUSIC approach, the FBSS preprocessing scheme is

conducted by setting the number of subarrays to Ns = 9 and the number of anten-

nas per subarray to Na = 17. We maintain S = 1 but have P = 44, which leads

to a total number of time samples of PSL = 1584. We now generate three pairs

of fully correlated sources leading to K = 6 sources having DOAs with 10 de-

grees of separation, that is {θk}6k=1 =
{

−2.970, 7.030, . . . , 47.030
}

. Note that we

again have more sources than active antennas per time slot M . Fig. 4.5 illustrates

the angular power spectrum estimates. Again, the location of the actual DOAs is
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indicated by vertical lines. Observe that for this realization, the accuracy of the

DOA estimates produced by the sparsity-regularized LS is quite comparable to that

of the MUSIC estimates though the sparsity-regularized LS approach introduces

a significant amount of power in the unoccupied angular band. The ordinary LS

DOA estimates, on the other hand, introduce a significant amount of grid mismatch

due to a coarse grid of investigated angles. Fig. 4.6 describes the magnitude of

the correlation between the signals at the different investigated angles θ̃q estimated

using the ordinary LS (bottom part) and the sparsity-regularized LS (top part) ap-

proaches. As it is clear from the figure, both the power of the six sources and the

magnitude of the cross-correlation between the sources are better identified by the

sparsity-regularized LS than by the ordinary LS approach.

All simulation settings for the third experiment are similar to those for the first

experiment, but we now consider a continuous source from 30 to 40 degrees, which

is simulated by generating 250 pairs of fully correlated sources with 0.02 degrees

of separation. The parameter λ for the sparsity-regularized LS is set to λ = 0.012.

The result is illustrated in Fig. 4.7. The MUSIC algorithm clearly fails for this

continuous source scenario while the sparsity-regularized LS and LS approaches

better reconstruct the continuous angular range where lower sidelobes and a better

resolution are found for the sparsity-regularized LS.

The dynamic array, the FBSS, and the angular grid setting of the second ex-

periment is now used in the fourth experiment to compute the root mean square

error (RMSE) between the actual DOAs and the DOA estimates. The DOAs of

three pairs of fully coherent sources are randomly generated between −60 and 60

degrees but with a fixed 10 degrees of separation. With S = 1 and SNR = 0dB, we

first vary P from P = 4 to P = 100. Based on the resulting spectrum, we locate

the six highest peaks. For every source, we compute the RMSE between the true

DOA and the peak that is closest to this DOA, selected from the earlier determined

six highest peaks. Fig. 4.8 illustrates the computed RMSE for the three approaches

for a varying P . Observe how the performance of the ordinary LS approach is quite

poor due to its limited grid resolution. The performance of the sparsity-regularized

LS approach is much better than the ordinary LS approach but it tends to flatten at

a particular level which is determined by the resolution of the 70 grid points used

by this approach. Meanwhile, the MUSIC approach performs better than the two

aforementioned approaches and its RMSE continues to decrease as P increases. A

similar situation is also found in Fig. 4.9, where we fix the total number of scanning

periods to P = 7 and vary the SNR. In this scenario, however, the performance of

the sparsity-regularized LS has not yet hit the saturation point defined by the res-
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olution of its 70 grid points. In fact, its RMSE continues to decrease as the SNR

varies from −10 dB to 0 dB.

A much better performance in terms of RMSE for LS is found when we increase

N and Q to N = Q = 40 as shown in Fig. 4.10. In this fifth experiment, we only

focus on the LS and MUSIC approaches. Here, we have M = 7 and run Algorithm

4.1 to produce L = 48. We vary P from P = 1 to P = 40 and the SNR from −10

dB to 0 dB. The FBSS setting for MUSIC is the same as in the first experiment

and there are four pairs of fully correlated sources (which again implies K > M )

whose DOAs are generated in the same way as in the fourth experiment. Note

how the performance of the ordinary LS approach is mainly dictated by the grid

resolution.

In the last experiment, we investigate the impact of applying the p.s.d. con-

straint on the reconstructed Rx (see (4.14)) and focus on the performance of the

MUSIC approach by considering different settings of the dynamic array. In gen-

eral, we set the number of active antennas per time slot to M = 3 and examine

three different dynamic array settings, i.e., N = 17, N = 14, and N = 11. Given

M = 3, we execute Algorithm 4.1 in Table 4.1 for N = 17, N = 14, and N = 11,

leading to L = 47, L = 33, and L = 19, respectively. For the FBSS process,

it is important to note that for different values of N , we also have different op-

timal values of Ns and Na. Here, we compute Ns and Na as Ns =
⌈

N
3

⌉

and

Na = N + 1−
⌈

N
3

⌉

, respectively (as suggested in Section 4.4.3). With S = 1, we

vary P between P = 4 and P = 40. On top of that, we also evaluate two different

SNR values, i.e., SNR = 0dB and SNR = −5dB. We generate two pairs of fully

correlated sources (K = 4) and compute the RMSE between the actual and the

estimated DOAs by following the same procedure introduced in the fourth experi-

ment. Fig. 4.11 illustrates the computed RMSE for this experiment. As expected,

the performance of the MUSIC approach for all dynamic array settings gets worse

for lower SNR. We can see that applying the p.s.d. constraint on the reconstructed

Rx indeed improves the performance, especially for N = 14. It is interesting to ob-

serve that, for a given SNR, a larger performance degradation is experienced when

we reduce N = 14 and L = 33 to N = 11 and L = 19, respectively, than when

we reduce it from N = 17 and L = 47 to N = 14 and L = 33, respectively. In

fact, when N = 11, we only have Ns = 4 subarrays of Na = 8 antennas. Accord-

ing to the theoretical analysis in [78], this setting should still be able to estimate

min(2Ns, Na − 1) = 7 correlated sources. However, in practice, we observe that

there are a few occasions where there is only a small difference between the value

of the fourth largest eigenvalue and that of the noise eigenvalues of the resulting
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spatially smoothed matrix ˆ̄Rx in (4.24). As a result, the MUSIC approach might

not be able to separate the fourth signal eigenvector from the noise subspace. Ob-

serve that, for N = 11, applying the p.s.d. constraint on the reconstructed Rx only

offers a small improvement.

4.7 Conclusions

In this paper, we have developed a new method to estimate the DOA of possibly

fully correlated sources based on second-order statistics by adopting a so-called dy-

namic array, which is formed by performing a periodic scanning of an underlying

ULA having N available antennas. Here, different sets of M antennas are activated

in different time slots. We first collect the spatial correlation matrices of the output

of the antenna arrays for all time slots and present them as a linear function of the

spatial correlation matrix Rx. We then present the theoretical condition that needs

to be satisfied to ensure the full column rank condition of the system matrix, which

later allows us to reconstruct Rx using LS. Note that, apart from our dynamic ar-

ray approach which allows for Rx reconstruction using LS, it is also possible to

use low-rank matrix completion to reconstruct Rx under a finite number of mea-

surements. This, for instance, is discussed in [92]. However, this topic is beyond

the scope of our paper and we consider this as a possible topic for future research.

Based on the estimated Rx, we propose three different options. The first option

is to define an angular grid of investigated angles where the number of grid points

Q is less than or equal to the number of physical antennas N in the underlying

array. This allows us to reconstruct the correlation matrix of the incident signals

at the investigated angles using LS subject to the full column rank condition of the

system matrix. Since the LS signal correlation matrix reconstruction is vulnerable

to a grid mismatch effect due to the limited grid resolution, we propose a sparsity-

regularized LS approach as the second option and increase the grid resolution by

allowing Q ≫ N . However, this option theoretically works well only when the

actual angular power spectrum is sparse. The last option is to apply FBSS on the

reconstructed Rx and use the MUSIC algorithm based on the spatially smoothed

correlation matrix. This option might produce high resolution DOA estimates but

does not provide information about how the sources are correlated to each other.

In general, our dynamic array approach can estimate the DOAs of the impinging

signals even when the number of correlated sources is larger than the number of

active antennas per time slot. The simulation study has indicated that our method

performs satisfactory even when some sources are fully coherent.
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Figure 4.3: Normalized spectrum (dB) of the MUSIC, LS, and sparsity-regularized

LS approaches versus DOA (degree) for the first experiment. We have K = 12

sources, N = 40, L = 28, M = 10, P = 57 and SNR=0 dB. For the LS and

sparsity-regularized LS approaches, we have Q = 40 and Q = 70, respectively
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Figure 4.4: The magnitude of the elements of the estimated correlation matrix R̂s̃

computed using the sparsity-regularized LS (top) and the LS (bottom) approaches

for the first experiment. Here K = 12, SNR = 0 dB, N = 40, M = 10, P = 57,

and L = 28. For the LS and sparsity-regularized LS approaches, we have Q = 40

and Q = 70, respectively.
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Figure 4.5: Normalized spectrum (dB) of the MUSIC, LS, and sparsity-regularized

LS approaches versus DOA (degree) for the second experiment. We have K = 6

sources, N = 25, L = 36, M = 5, P = 44, and SNR = 0 dB. For the LS and

sparsity-regularized LS approaches, we have Q = 25 and Q = 70, respectively.

Appendix

4.A Proof of Lemma 4.3.1

Let us assume that eTi and eTj are the i-th and the j-th rows of IN , respectively. It

is easy to check that for any i, j ∈ {1, 2, . . . , N}, the Kronecker product eTi ⊗ eTj
results in a 1 × N2 vector having a single one at the [(i− 1)N + j]-th position.

Correspondingly, eTj ⊗ eTi produces a 1 × N2 vector having a single one at the

[(j − 1)N + i]-th position. As a result, if Cl has eTi and eTj as two of its rows,

Cl ⊗ Cl will definitely have a one in the [(i− 1)N + j]-th and [(j − 1)N + i]-

th columns. This proves the sufficiency part of the lemma. In order to prove the

necessity part, let us assume that Cl⊗Cl has a one in the [(i− 1)N + j]-th column

but either the i-th row of IN , the j-th row of IN , or both of them are missing from

Cl. Further assume that the row of Cl ⊗Cl having a one in the [(i− 1)N + j]-th

column is produced by the Kronecker product operation between two rows of Cl

taken from the a-th and the b-th rows of IN , i.e., eTa ⊗ eTb . Now, eTa ⊗ eTb results in

a 1×N2 vector having a single one at the [(a− 1)N + b]-th position. Therefore, it
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is obvious that a = i and b = j. In other words, the i-th and the j-th rows of IN are

not missing from Cl, which is a contradiction. A similar proof applies for the row

of Cl ⊗Cl that has a single one in the [(j − 1)N + i]-th column. This concludes

the proof of this lemma.
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Figure 4.6: The magnitude of the elements of the estimated correlation matrix R̂s̃

computed using the sparsity-regularized LS (top) and LS (bottom) approaches for

the second experiment. Here K = 6, SNR = 0 dB, N = 25, M = 5, P = 44, and

L = 36. For the LS and sparsity-regularized LS approaches, we have Q = 25 and

Q = 70, respectively.

4.B Explanation for Algorithm 4.1 (see Table 4.1)

We use the indicator matrix Z(f) in Table 4.1 to indicate whether a certain combi-

nation of two antennas has been activated in at least one of the first f time slots.

Specifically, [Z(f)]i,j = 0 implies that a combination of the i-th and the j-th an-

tennas has never been simultaneously activated in the first f time slots whereas

[Z(f)]i,j = 1 indicates that the combination of the i-th and the j-th antennas has

been simultaneously activated at least once in the first f time slots. Consequently,

it is also obvious that Z(f) is a symmetric matrix. Based on Theorem 4.3.1, our

objective is to guarantee that every possible combination of two antennas in the un-

derlying ULA is active in at least one of the L possible time slots within a scanning



4.B. Explanation for Algorithm 4.1 (see Table 4.1) 105

−60 −40 −20 0 20 40 60
−30

−25

−20

−15

−10

−5

0

Direction−of−Arrival [Degree]

N
o

rm
a
li
z
e
d

 S
p

e
c
tr

u
m

 [
d

B
]

 

 

Sparsity Regularized LS (λ=0.012)

Least Squares

MUSIC

Figure 4.7: Normalized spectrum (dB) of the MUSIC, LS, and sparsity-regularized

LS approaches versus DOA (degree) for the third experiment. Here we have K =

500 sources with DOAs between 30 and 40 degrees, SNR = 0 dB, N = 40, M =

10, and L = 28. For the LS and sparsity-regularized LS approaches, we have

Q = 40 and Q = 70, respectively.
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Figure 4.8: The performance of LS, sparsity-regularized LS and MUSIC DOA

estimates for different scanning periods P . Here we have SNR = 0dB, N = 25,

M = 5, L = 36, and K = 6 correlated sources whose DOAs are randomly

generated with 10 degrees of separation. For the LS and sparsity-regularized LS

approaches, we have Q = 25 and Q = 70, respectively.
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Figure 4.9: The performance of the LS, sparsity-regularized LS and MUSIC DOA

estimates for different SNRs. Here we have P = 7, N = 25, M = 5, L = 36, and

K = 6 correlated sources whose DOAs are randomly generated with 10 degrees of

separation. For the LS and sparsity-regularized LS approaches, we have Q = 25

and Q = 70, respectively.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of scanning periods

R
M

S
E

 (
ra

d
ia

n
)

 

 
LS, SNR=0dB

MUSIC, SNR=0dB

LS, SNR=−3dB

MUSIC, SNR=−3dB

LS, SNR=−7dB

MUSIC, SNR=−7dB

LS, SNR=−10dB

MUSIC, SNR=−10dB
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K = 8 correlated sources whose DOAs are randomly generated with 10 degrees of

separation.
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period. In other words, we are only interested in the off-diagonal components of

Z(f) and thus, we initialize Z(f) with Z(0) = IN .

In general, Algorithm 4.1 consists of L main iterations indicated by a while

loop in Table 4.1. The reason to use a while loop to implement the main iterations

is due to the fact that L is unknown. The objective of the while loop is to choose

M antennas for each time slot. One main iteration corresponds to the selection of

M antennas for one time slot. The first task in the main iteration (see step 5 in

Table 4.1) is to randomly select a combination of two antennas that has not been

used in the previous time slot.

The task of the inner for loop in Table 4.1, which consists of M − 2 iterations,

is to choose the remaining M − 2 antennas for the considered time slot. For each

antenna selection, our aim is to maximize the number of conversion of zeros in Z(f)

to ones. This is done because we want to ensure that each antenna selection results

in a maximum number of new combinations of two active antennas that have not

been simultaneously used in the previous time slots.

Note that the main iterations will stop once every possible pair of two antennas

has been selected for at least one time slot.

4.C Explanation for Algorithm 4.2 (see Table 4.2)

For Algorithm 4.2 in Table 4.2, we use a similar notation to the one used for Algo-

rithm 4.1. However, in this algorithm, all time slots are considered simultaneously

and thus we now use Z(f) to indicate whether a certain combination of two anten-

nas has been used as two of the first f + 1 active antennas in any time slot. The

task of the first for loop in Algorithm 4.2 is to select the first two antennas for each

time slot. One iteration corresponds to the selection of the first two antennas for

one time slot. Once we have selected the first two active antennas for each time

slot, we proceed to the while loop indicated by steps 8-16 in Table 4.2. Here, one

iteration of the while loop corresponds to the selection of one additional antennas

for all time slots. The reason to use while loop here is due to the fact that M is

not known. The inner for loop inside the while loop performs the selection of one

additional antenna for one time slot in each iteration. As in Algorithm 4.1, each

antenna selection aims to maximize the number of conversion of zeros in Z(f) to

ones.
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Figure 4.11: The impact of the p.s.d. constraint on the reconstructed Rx. Here,

we focus on the MUSIC DOA estimates for different settings of the dynamic ar-

ray (different N and L) as well as different SNRs and scanning periods P using

M = 3 active antennas. Here we have K = 4 correlated sources whose DOAs are

randomly generated with 10 degrees of separation.
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Table 4.1: Algorithm 4.1: A greedy algorithm to find a sub-optimal solution for L

and {Γl}L−1
l=0 given M subject to (4.16).

Algorithm 4.1

1: Introduce Z(f) as an N×N indicator matrix at the f -th iteration and denote

its element at the i-th row and the j-th column by
[

Z(f)
]

i,j
.

2: Initialize f = 0 and Z(0) = IN .

3: While Z(f) has at least one zero entry do

4: Set f = f + 1 and Z(f) = Z(f−1).

5: Randomly select i, j ∈ {1, 2, . . . , N} for which
[

Z(f)
]

i,j
= 0 and

set Γf−1 = {i, j}. Then also set both
[

Z(f)
]

i,j
and

[

Z(f)
]

j,i
to 1.

6: for κ = 1 to M − 2 do

7: Define a set Ξ = {1, 2, . . . , N} \Γf−1.

8: Search in Ξ for the element g that satisfies:

g = argming′∈Ξ
∑

i′∈Γf−1

[

Z(f)
]

i′,g′
.

9: For all i′ ∈ Γf−1 set
[

Z(f)
]

i′,g
and

[

Z(f)
]

g,i′
to 1.

10: Update Γf−1 to Γf−1 = Γf−1
⋃ {g}.

11: end for

12: end while

13: The value of L is given by L = f and the output of this algorithm is

{Γl}L−1
l=0 .
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Table 4.2: Algorithm 4.2: A greedy algorithm to find a sub-optimal solution for M

and {Γl}L−1
l=0 given L subject to (4.16)

Algorithm 4.2

1: Introduce Z(f) as an N×N indicator matrix at the f -th iteration and denote

its element at the i-th row and the j-th column by
[

Z(f)
]

i,j
.

2: Initialize f = 0 and Z(0) = IN .

3: Set f = f + 1 and Z(f) = Z(f−1).

4: for l = 0 to L− 1 do

5: Randomly select i, j ∈ {1, 2, . . . , N} for which
[

Z(f)
]

i,j
= 0 and

set Γl = {i, j}.

6: Set both
[

Z(f)
]

i,j
and

[

Z(f)
]

j,i
to 1.

7: end for

8: While Z(f) has at least one zero entry do

9: Set f = f + 1 and then set Z(f) = Z(f−1).

10: for κ = 0 to L− 1 do

11: Define a set Ξ = {1, 2, . . . , N} \Γκ.

12: Search in Ξ for the element g that satisfies:

g = argming′∈Ξ
∑

i′∈Γκ

[

Z(f)
]

i′,g′
.

13: For all i′ ∈ Γκ set
[

Z(f)
]

i′,g
and

[

Z(f)
]

g,i′
to 1.

14: Update Γκ to Γκ = Γκ
⋃ {g}.

15: end for

16: end while

17: The value of M is given by M = f + 1 and the output of this algorithm is

{Γl}L−1
l=0 .
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Abstract

In this paper, two problems that show great similarities are examined. The first

problem is the reconstruction of the angular-domain periodogram from spatial-

domain signals received at different time indices. The second one is the recon-

struction of the frequency-domain periodogram from time-domain signals received

at different wireless sensors. We split the entire angular or frequency band into

uniform bins. The bin size is set such that the received spectra at two frequencies

or angles, whose distance is equal to or larger than the size of a bin, are uncor-

related. These problems in the two different domains lead to a similar circulant

structure in the so-called coset correlation matrix. This circulant structure allows

for a strong compression and a simple least-squares reconstruction method. The

latter is possible under the full column rank condition of the system matrix, which

can be achieved by designing the spatial or temporal sampling patterns based on a

circular sparse ruler. We analyze the statistical performance of the compressively

reconstructed periodogram including bias and variance. We further consider the

case when the bins are so small that the received spectra at two frequencies or

angles, with a spacing between them larger than the size of the bin, can still be cor-

related. In this case, the resulting coset correlation matrix is generally not circulant

and thus a special approach is required.

5.1 Introduction

The similarity between spectral analysis problems in the spatial-angular domain

and in the time-frequency domain has attracted signal processing researchers since

the 1970s. Direction of arrival (DOA) estimation and frequency identification of

sinusoids are examples of such similar problems examined during that period [93].

The renewed interest in spectral analysis problems, especially due to the emergence

of compressive sampling, has spurred reinvestigations on this similarity because,

when time-domain or spatial-domain compression is introduced, this similarity can

be exploited to tackle different problems using the same algorithmic approach.

This paper focuses on both the reconstruction of the angular-domain periodogram

from far-field signals received by an antenna array at different time indices (prob-

lem P1) and that of the frequency-domain periodogram from the time-domain sig-

nals received by different wireless sensors (problem P2). It further underlines the

similarity between P1 and P2. Unless otherwise stated, the entire angular or fre-

quency band is divided into uniform bins, where the size of the bins is configured
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such that the received spectra at two frequencies or angles, whose distance is equal

to or larger than the size of a bin, are uncorrelated. In this case, the so-called coset

correlation matrix will have a circulant structure, which allows the use of a periodic

non-uniform linear array (non-ULA) in P1 and a multi-coset sampler in P2 in order

to produce a strong compression.

Our work in P1 is motivated in part by [39], which attempts to reconstruct the

angular spectrum from spatial-domain samples received by a non-ULA. Compa-

rable works to [39] for P2 are [21] and [38], which focus on the analog signal

reconstruction from its sub-Nyquist rate samples. However, the aim of [21, 38, 39]

to reconstruct the original spectrum or signal leads to an underdetermined problem,

which has a unique solution only if we add constraints on the spectrum such as a

sparsity constraint. A less ambitious goal in the context of P2 is to reconstruct the

power spectrum instead of the actual signal from sub-Nyquist rate samples. For

wide-sense stationary (WSS) signals, this has been shown to be possible in [43]

and [94] without applying a sparsity constraint on the power spectrum. Meanwhile,

the work of [44] assumes the existence of a multiband signal where different bands

are uncorrelated. In this case, the diagonal structure of the correlation matrix of the

entries at different bands can be exploited. Note though that [44] does not focus on

the strongest compression rate and uses frequency smoothing to approximate the

correlation matrix computation as it relies on a single realization of the received

signal. Comparable works to [94] in P1 are [10, 41, 42], which aim to estimate

the DOA of uncorrelated point sources with fewer antennas than sources. This is

possible because for uncorrelated point sources, the spatial correlation matrix of

the received signals also has a Toeplitz structure. Hence, for a given ULA, we can

deactivate some antennas but still manage to estimate the spatial correlation at all

lags. For example, [42] and [41] suggest to place the active antennas based on a

nested or coprime array, respectively, which results in a longer virtual array called

the difference co-array (which is uniform in this case). As the difference co-array

generally has more antennas and a larger aperture than the actual array, the de-

grees of freedom are increased allowing [42] and [41] to estimate the DOA of more

uncorrelated sources than sensors. In a more optimal way, a uniform difference

co-array can also be obtained by the minimum redundancy array (MRA) of [12],

but the nested and coprime arrays present many advantages due to their algebraic

construction. MRAs have been used in [10] to estimate the DOA of more uncorre-

lated sources than sensors, or more generally, to estimate the angular-domain power

spectrum.

Unlike [39], our work for P1 focuses on the angular periodogram reconstruction
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(similar to [10]). This allows us to have an overdetermined problem that is solvable

even without a sparsity constraint on the angular domain. This is beneficial for

applications that require only information about the angular periodogram and not

the actual angular spectrum. Our work is also different from [10, 41, 42] as we

do not exploit the Toeplitz structure of the spatial correlation matrix. As for P2,

we focus on frequency periodogram reconstruction (unlike [21, 38]) but we do not

exploit the Toeplitz structure of the time-domain correlation matrix (unlike [94]).

On the other hand, the problem handled by [44] can be considered as a special case

of P2 but, unlike [44], we aim for the strongest compression rate which is achieved

by exploiting the circulant structure of the coset correlation matrix and solving the

minimal circular sparse ruler problem. Moreover, unlike [44], we also exploit the

signals received by different sensors to estimate the correlation matrix.

Also related to P2, a cooperative compressive wideband spectrum sensing scheme

for cognitive radio (CR) networks is proposed in [29]. While [29] can reduce

the required sampling rate per CR, its focus on reconstructing the spectrum or

the spectrum support requires a sparsity constraint on the original spectrum. Un-

like [29], [95] focuses on compressively estimating the power spectrum instead of

the spectrum by extending [94] for a cooperative scenario. However, while the

required sampling rate per sensor can be lowered without applying a sparsity con-

straint on the power spectrum, the exploitation of the cross-spectra between signals

at different sensors in [95] requires the knowledge of the channel state information

(CSI). Our approach for P2 does not require a sparsity constraint on the original

periodogram (unlike [29]) and it does not require CSI since we are not interested in

the cross-spectra between samples at different sensors (unlike [95]). In [96], each

wireless sensor applies a threshold on the measured average signal power after ap-

plying a random wideband filter. The threshold output is then communicated as

a few bits to a fusion centre, which uses them to recover the power spectrum by

generalizing the problem in the form of inequalities. The achievable compression

rate with such a system is not clear though, in contrast to what we will present in

this paper.

In more advanced problems, such as cyclic spectrum reconstruction from sub-

Nyquist rate samples of cyclostationary signals in [45, 97, 11] or angular power

spectrum reconstruction from signals produced by correlated sources in [98], find-

ing a special structure in the resulting correlation matrix that can be exploited to

perform compression is challenging. A similar challenge is faced in Section 5.7,

where we consider the case when we reduce the bin size such that the received

spectra at two frequencies or angles with a spacing larger than the bin size can still
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be correlated. As the resulting coset correlation matrix in this case is generally not

circulant, we further develop the concepts originally introduced in [11] and [98] to

solve our problem.

We now would like to summarize the advantages of our approach and highlight

our contribution.

• We propose a compressive periodogram reconstruction approach, which does

not rely on any sparsity constraint on the original signal or the periodogram.

Moreover, it is based on a simple least-squares (LS) algorithm leading to a

low complexity.

• In our approach, we also focus on the strongest possible compression that

maintains the identifiability of the periodogram, which is shown to be related

to a minimal circular sparse ruler.

• Our approach does not require any knowledge of the CSI.

• The statistical performance analysis of the compressively reconstructed peri-

odogram is also provided.

• Our approach can also be modified to handle cases where the spectra in dif-

ferent bins are correlated.

This paper is organized as follows. The system model description (including the

definition of the so-called coset correlation matrix) and the problem statement are

provided in Section 5.2. Section 5.3 discusses the spatial (for P1) or temporal (for

P2) compression as well as periodogram reconstruction using LS. Here, the con-

dition for the system matrix to have full column rank and its connection to the

minimal circular sparse ruler problem are provided. Section 5.4 shows how to

approximate the expectation operation in the correlation matrix computation and

summarizes the procedure to compressively estimate the periodogram. In Sec-

tion 5.5, we provide an analysis on the statistical performance of the compressively

reconstructed periodogram including a bias and variance analysis. Sections 5.2-5.5

assume that the received signals at different time instants (for P1) or at different

sensors (for P2) have the same statistics. To handle more general cases, we propose

a multi-cluster model in Section 5.6, which considers clusters of time indices in

P1 or clusters of sensors in P2 and assumes that the signal statistics are only con-

stant within a cluster. Another case is discussed in Section 5.7, where the received

spectra at two frequencies or angles located at different predefined bins can still be
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correlated. Some numerical studies are elaborated in Section 5.8 and Section 5.9

provides conclusions.

Notation: Upper (lower) boldface letters are used to denote matrices (column

vectors). Given an N × N matrix X, diag(X) is an N × 1 vector containing the

main diagonal entries of X. Given an N×1 vector x, diag(x) is an N×N diagonal

matrix whose diagonal entries are given by the entries of x.

5.2 System Model

5.2.1 Model Description and Problem Statement

We aim at estimating the following spectral representation of the power of a process

x[ñ]:

Px(ϑ) = lim
Ñ→∞

E







1

Ñ

∣

∣

∣

∣

∣

∣

Ñ−1
∑

ñ=0

x[ñ]e−jϑñ

∣

∣

∣

∣

∣

∣

2




= lim
Ñ→∞

E

{

1

Ñ

∣

∣

∣
X(Ñ)(ϑ)

∣

∣

∣

2
}

. (5.1)

Here, x[ñ] represents either the spatial-domain process at the output of a ULA for

P1 or the time-domain process sensed by a wireless sensor for P2. In addition,

X(Ñ)(ϑ) represents either the value of the angular spectrum at angle sin−1(2ϑ) for

P1 or that of the frequency spectrum at frequency ϑ for P2, with ϑ ∈ [−0.5, 0.5).

Note from [93] that, for a WSS process x[ñ], Px(ϑ) represents the power spectrum.

To estimate Px(ϑ) in (5.1), consider the Ñ×1 complex-valued observation vectors

xt = [xt[0], xt[1], . . . , xt[Ñ − 1]]T , t = 1, 2 . . . , τ , where xt[ñ] represents the

output of the (ñ+1)-th antenna in the ULA of Ñ half-wavelength spaced antennas

at time index t for P1 or the (ñ+1)-th sample out of Ñ successive samples produced

by the Nyquist-rate sampler at the t-th sensor for P2. To acquire an accurate Fourier

interpretation, we assume a relatively large Ñ , which is affordable for P2 and also

realistic for P1, if we consider millimeter wave imaging applications where the

antenna spacing is very small and thus the required aperture has to be covered by a

large number of antennas [39]. Denote the discrete-time Fourier transform (DTFT)

of xt[ñ] by Xt(ϑ). As Xt(ϑ) at ϑ ∈ [−0.5, 0) is a replica of Xt(ϑ) at ϑ ∈ [0.5, 1),

we can focus on Xt(ϑ) in ϑ ∈ [0, 1).

Next, we divide the Ñ uniform grid points (that is, the antennas of the ULA for

P1 or the indices of the Nyquist-rate samples for P2) into L non-overlapping blocks
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of N uniform grid points. We collect all the (n + 1)-th grid points from each of

the L blocks and label this collection of grid points, i.e., {ñ ∈ {0, 1, . . . , Ñ −
1}|ñ mod N = n}, as the (n + 1)-th coset, with ñ mod N the remainder of the

integer division ñ/N . In this paper, the coset index of the (n + 1)-th coset is

n. This procedure allows us to view the above uniform sampling as a multi-coset

sampling [21] with N cosets. Consequently, the ULA of Ñ antennas in P1 can

be regarded as N interleaved uniform linear subarrays (ULSs) [39] (which are the

cosets) of L (Nλ/2)-spaced antennas with λ the wavelength, whereas the Ñ time-

domain samples in P2 can be considered as the output of a time-domain multi-coset

sampler with L samples per coset. If we activate only the (n + 1)-th coset, the

spatial- or time-domain samples at index ñ are given by

x̄t,n[ñ] = xt[ñ]
L−1
∑

l=0

δ[ñ− (lN + n)], n = 0, 1, . . . , N − 1, (5.2)

which can be collected into the Ñ×1 vector x̄t,n = [x̄t,n[0], x̄t,n[1], . . . , x̄t,n[Ñ − 1]]T .

Observe that xt =
∑N−1

n=0 x̄t,n. To show the relationship between the DTFT of

x̄t,n[ñ] and that of xt[ñ], we split ϑ ∈ [0, 1) into N equal-width bins and express

the spectrum at the (i+ 1)-th bin (i = 0, 1, . . . , N − 1) as Xt,i(ϑ) = Xt

(

ϑ+ i
N

)

with ϑ now limited to ϑ ∈ [0, 1/N). As either the spatial or temporal sampling rate

becomes 1/N times the Nyquist-rate when only the (n+1)-th coset is activated, the

DTFT of x̄t,n[ñ], denoted by X̄t,n(ϑ), is the sum of N aliased versions of Xt(ϑ) at

N different bins. This is shown for n = 0, 1, . . . , N − 1 as [38]

X̄t,n(ϑ) =
1

N

N−1
∑

i=0

Xt,i(ϑ)e
j2πni

N , ϑ ∈ [0, 1/N). (5.3)

Collecting X̄t,n(ϑ), for n = 0, 1, . . . , N − 1, into the N × 1 vector x̄t(ϑ) =

[X̄t,0(ϑ), X̄t,1(ϑ), . . . , X̄t,N−1(ϑ)]
T and introducing the N × 1 vector xt(ϑ) =

[Xt,0(ϑ), Xt,1(ϑ), . . . , Xt,N−1(ϑ)]
T allow us to write

x̄t(ϑ) = Bxt(ϑ), ϑ ∈ [0, 1/N), (5.4)

with the element of the N × N matrix B at the (n + 1)-th row and the (i + 1)-th

column given by [B]n+1,i+1 =
1
N e

j2πni

N .

We now assume the presence of K active users, consider the model in Fig. 5.1,

and introduce the following definition (see also Fig. 5.1).

Definition 5.2.1. We define the complex-valued zero-mean random processes U
(k)
t (ϑ)

and H
(k)
t (ϑ) as
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Figure 5.1: The system model for problems P1 and P2.

• For P1, U
(k)
t (ϑ) is the source signal related to the k-th user received at time

index t, which can depend on the DOA sin−1(2ϑ) due to scattering. For P2, it

is the source signal related to the k-th user received at sensor t, which can vary

with frequency ϑ due to power loading,

• H
(k)
t (ϑ) is the related channel response for the k-th user at time index t and

DOA sin−1(2ϑ) (for P1) or at sensor t and frequency ϑ (for P2).

Note from Fig. 5.1 that, theoretically, U
(k)
t (ϑ) is the only component observed

by the ULA in P1 or by the sensors in P2 if no fading channel exists. Define

Nt(ϑ) as the zero-mean additive white (both in ϑ and t) noise at DOA sin−1(2ϑ)

and time index t (for P1) or at frequency ϑ and sensor t (for P2). By introducing

Nt,i(ϑ) = Nt

(

ϑ+ i
N

)

and similarly also H
(k)
t,i (ϑ) as well as U

(k)
t,i (ϑ), we can then

use Definition 5.2.1 to write Xt,i(ϑ) in (5.3) as

Xt,i(ϑ) =
K
∑

k=1

H
(k)
t,i (ϑ)U

(k)
t,i (ϑ) +Nt,i(ϑ), ϑ ∈ [0, 1/N). (5.5)

Next, let us consider the following assumption.

Assumption 5.2.1. Xt,i(ϑ) in (5.5) is an ergodic stochastic process along t.

This ergodicity assumption requires that the statistics of xt(ϑ) in (5.4) do not

change with t (a more general case is discussed in Section 5.6). Hence, we can
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define the N × N correlation matrix of xt(ϑ) as Rx(ϑ) = E[xt(ϑ)x
H
t (ϑ)], for

all t and ϑ ∈ [0, 1/N). The assumption that the statistics of xt(ϑ) do not vary

with t is motivated for P1 when the signal received by the array is stationary in

the time-domain. For P2, it implies that the statistics of the signal xt received by

different sensors t are the same. Observe from (5.5) that the element of Rx(ϑ) at

the (i+ 1)-th row and the (i′ + 1)-th column is given by

E[Xt,i(ϑ)X
∗
t,i′(ϑ)] = E[|Nt,i(ϑ)|2]δ[i− i′]+

K
∑

k=1

K
∑

k′=1

E[U
(k)
t,i (ϑ)U

(k′)∗
t,i′ (ϑ)]E[H

(k)
t,i (ϑ)H

(k′)∗
t,i′ (ϑ)], (5.6)

where we assume that the source signal U
(k)
t (ϑ), the noise Nt(ϑ), and the chan-

nel response H
(k)
t (ϑ) are mutually uncorrelated. We now consider the following

remark.

Remark 5.2.1. The diagonal of Rx(ϑ), which is given by {E[|Xt,i(ϑ)|2]}N−1
i=0 and

which is independent of t, can be related to Px(ϑ) in (5.1). In practice, this expected

value has to be estimated and Assumption 5.2.1 allows us to estimate E[|Xt,i(ϑ)|2]
using 1

τ

∑τ
t=1 |Xt,i(ϑ)|2. We can then consider 1

Ñτ

∑τ
t=1 |Xt,i(ϑ)|2 as a reason-

able estimate for Px(ϑ+ i
N ) in (5.1), for ϑ ∈ [0, 1/N). Here, 1

Ñτ

∑τ
t=1 |Xt(ϑ)|2,

for ϑ ∈ [0, 1), can be considered as the averaged periodogram (AP) of xt[ñ] over

different time indices t in P1 or different sensors t in P2.

Note that, even for the noiseless case, we can expect Xt,i(ϑ) in (5.5) to vary with t

if either one (or both) of the following situations occurs.

• For P1, U
(k)
t (ϑ) varies with the time index t if the information that is being

transmitted changes with time. For P2, it varies with the sensor index t where

the signal is received if the sensors are not synchronized.

• For P1, H
(k)
t (ϑ) varies with the time index t if Doppler fading effects exist. For

P2, it varies with the sensor index t where the signal is received, due to path

loss, shadowing, and small-scale spatial fading effects.

We then consider the following remark.

Remark 5.2.2. Recall that the size of the predefined bins in ϑ ∈ [0, 1) is a design

parameter given by 1
N , i.e., the inverse of the number of cosets. Using (5.6), it is

easy to find that Rx(ϑ) is a diagonal matrix if either E[U
(k)
t (ϑ)U

(k′)∗
t (ϑ′)] = 0

and/or E[H
(k)
t (ϑ)H

(k′)∗
t (ϑ′)] = 0 for |ϑ′−ϑ| ≥ 1

N , with ϑ, ϑ′ ∈ [0, 1), and for all

t, k, k′.
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One example for both P1 and P2 is when we have K non-overlapping active bands

corresponding to K different users leading to a multiband structure in the ϑ-domain

with either the K different users transmitting mutually uncorrelated source signals

and/or the signals from the K different users passing through mutually uncorrelated

wireless channels on their way to the receiver. If we denote the support of the k-th

active band by Bk and its bandwidth by Λ(Bk) = sup{Bk}−inf{Bk}, the condition

in Remark 5.2.2 is then satisfied by setting N such that 1
N ≥ maxk Λ(Bk). Note

that such a choice is possible, especially for P2, as the channelization parameter for

a communication network is usually known.

We focus on the case where Rx(ϑ) is a diagonal matrix and define the so-called

N ×N coset correlation matrix as

Rx̄(ϑ) = E[x̄t(ϑ)x̄
H
t (ϑ)] = BRx(ϑ)B

H , ϑ ∈ [0, 1/N). (5.7)

Observe that Rx̄(ϑ) is a circulant matrix when Rx(ϑ) is a diagonal matrix since

B is an inverse discrete Fourier transform (IDFT) matrix, as can be concluded

from (5.4). Based on the aforementioned system model, we finally formulate our

problem statement as follows:

Problem Statement: As an estimate of the spectral representation of the power

Px(ϑ) in (5.1) (which is also the power spectrum when x[ñ] in (5.1) is a WSS

process), we aim to compressively reconstruct the AP of xt[ñ] in (5.2) over the

index t, where we assume that xt[ñ] is ergodic along the index t and that its coset

correlation matrix Rx̄(ϑ) has a circulant structure. We discuss the compression

and the reconstruction in Section 5.3 and the estimation of the correlation matrix

in Section 5.4.

5.2.2 Interpretation of AP in Remark 5.2.1

How the AP in Remark 5.2.1 is interpreted with respect to U
(k)
t (ϑ) and H

(k)
t (ϑ)

depends on which of the functions varies in t. For example, consider problem P2

and assume that only one user k can occupy a given frequency ϑ at a given time

and that only H
(k)
t (ϑ) varies in t, i.e., U

(k)
t (ϑ) = U (k)(ϑ). For this example, we

have from (5.5)

1

Ñτ

τ
∑

t=1

|Xt(ϑ)|2 =
|U (k)(ϑ)|2

Ñ

τ
∑

t=1

|H(k)
t (ϑ)|2
τ

+
τ

∑

t=1

|Nt(ϑ)|2
Ñτ

+
τ

∑

t=1

2Re(H
(k)
t (ϑ)U (k)(ϑ)N∗

t (ϑ))

Ñτ
, (5.8)
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where Re(x) gives the real component of x, the first term is the classical peri-

odogram of the user signals
|U(k)(ϑ)|2

Ñ
scaled by the averaged fading magnitude

experienced at different channels 1
τ

∑τ
t=1 |H

(k)
t (ϑ)|2, the second term is the AP of

the noises at different sensors t, and the last term converges to zero as τ becomes

larger due to the uncorrelatedness between the noise Nt(ϑ) and the channel re-

sponse H
(k)
t (ϑ). The assumption that the statistics of Xt(ϑ) do not vary with t (as

required by Assumption 5.2.1) implies that the statistics of the fading experienced

by different sensors t are the same (e.g., they experience small-scale fading on top

of the same path loss and shadowing).

As another example, consider problem P1 and assume that only one user k can

occupy a given DOA sin−1(2ϑ) at a given time and that only U
(k)
t (ϑ) varies in t,

i.e., H
(k)
t (ϑ) = H(k)(ϑ). For this example, we have from (5.5)

1

Ñτ

τ
∑

t=1

|Xt(ϑ)|2 = |H(k)(ϑ)|2
τ

∑

t=1

|U (k)
t (ϑ)|2
Ñτ

+
τ

∑

t=1

|Nt(ϑ)|2
Ñτ

+
τ

∑

t=1

2Re(U
(k)
t (ϑ)H(k)(ϑ)N∗

t (ϑ))

Ñτ
, (5.9)

where the first term is the angular-domain AP of the user signals 1
Ñτ

∑τ
t=1 |U

(k)
t (ϑ)|2

scaled by the magnitude of the time-invariant channel angular response |H(k)(ϑ)|2,

the second term is the angular-domain AP of the noise, and the last term again con-

verges to zero as τ becomes larger due to the uncorrelatedness between Nt(ϑ) and

U
(k)
t (ϑ).

5.3 Compression and Reconstruction

5.3.1 Spatial or Temporal Compression

As Rx̄(ϑ) in (5.7) is a circulant matrix, it is possible to condense its entries into

an N × 1 vector rx̄(ϑ) = [rx̄(ϑ, 0), rx̄(ϑ, 1), . . . , rx̄(ϑ,N − 1)]T with rx̄(ϑ, (n−
n′) mod N) = E

[

X̄t,n(ϑ), X̄
∗
t,n′(ϑ)

]

. We can then relate rx̄(ϑ) to Rx̄(ϑ) as

vec(Rx̄(ϑ)) = Trx̄(ϑ), ϑ ∈ [0, 1/N), (5.10)

where T is an N2 × N repetition matrix whose (q + 1)-th row is given by the
((

q −
⌊ q
N

⌋)

mod N + 1
)

-th row of the N × N identity matrix IN and vec(.)

is the operator that stacks all columns of a matrix into one column vector. The
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possibility to condense the N2 entries of Rx̄(ϑ) into the N entries of rx̄(ϑ) fa-

cilitates compression by performing a spatial- or time-domain non-uniform pe-

riodic sampling (similar to [38]), in which only M < N cosets are activated.

Here, we use the set M = {n0, n1, . . . , nM−1}, with 0 ≤ n0 < n1 < · · · <

nM−1 ≤ N − 1, to indicate the indices of the M active cosets. All values of

x̄t,n[ñ] in (5.2) are then collected and their corresponding DTFT X̄t,n(ϑ) in (5.3)

is computed for all n ∈ M. Stacking
{

X̄t,n(ϑ)
}

n∈M
into the M × 1 vector

ȳt(ϑ) = [X̄t,n0(ϑ), X̄t,n1(ϑ), . . . , X̄t,nM−1(ϑ)]
T allows us to relate ȳt(ϑ) to x̄t(ϑ)

in (5.4) as

ȳt(ϑ) = Cx̄t(ϑ), ϑ ∈ [0, 1/N), (5.11)

where C is an M × N selection matrix whose rows are selected from the rows

of IN based on M. Since C is real, the M × M correlation matrix of ȳt(ϑ), for

ϑ ∈ [0, 1/N), can be written as

Rȳ(ϑ) = E[ȳt(ϑ)ȳ
H
t (ϑ)] = CRx̄(ϑ)C

T . (5.12)

We then take (5.10) into account, cascade all columns of Rȳ(ϑ) into a column

vector vec(Rȳ(ϑ)), and write

vec(Rȳ(ϑ)) = Rcrx̄(ϑ), ϑ ∈ [0, 1/N), (5.13)

where Rc = (C ⊗ C)T is a real M2 × N matrix and ⊗ denotes the Kronecker

product operation.

5.3.2 Reconstruction

If Rc in (5.13) is a tall matrix (M2 ≥ N ), which is possible despite M < N , and if

it has full column rank, rx̄(ϑ) in (5.13) can be reconstructed from vec(Rȳ(ϑ)) us-

ing LS for all ϑ ∈ [0, 1/N). In addition, as long as the identifiability of rx̄(ϑ)

in (5.13) is preserved, we can also consider estimators other than LS (such as

in [99]). To formulate a necessary and sufficient condition for the identifiability

of rx̄(ϑ) in (5.13) from vec(Rȳ(ϑ)), let us review the concept of a circular sparse

ruler defined in [100].

Definition 5.3.1. A circular sparse ruler of length N−1 is a set K ⊂ {0, 1, . . . , N−
1} for which Ω(K) = {(κ − κ′) mod N |∀κ, κ′ ∈ K} = {0, 1, . . . , N − 1}. We

call it minimal if there is no other circular sparse ruler of length N − 1 with fewer

elements.
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Detailed information about circular sparse rulers can be found in [100]. We can

then use this concept to formulate the following theorem whose proof is available

in [101].

Theorem 5.3.1. rx̄(ϑ) in (5.13) is identifiable from vec(Rȳ(ϑ)), i.e., Rc has full

column rank, if and only if M is a circular sparse ruler, i.e., Ω(M) = {0, 1, . . . , N−
1}. When this is satisfied, Rc contains all rows of IN .

Our goal is to obtain the strongest possible compression rate M/N preserving the

identifiability. This is achieved by minimizing the cardinality of the set M, |M| =
M , under the condition that Ω(M) = {0, 1, . . . , N − 1}. This leads to a length-

(N − 1) minimal circular sparse ruler problem, which can be written as

min
M

|M| s.t. Ω(M) = {0, 1, . . . , N − 1} . (5.14)

Solving (5.14) minimizes the compression rate M/N while maintaining the iden-

tifiability of rx̄(ϑ) in (5.13).

Recall that, for P1, M indicates the indices of the M < N active ULSs in

our ULA, which will be referred to as the underlying array. Therefore, we have

a periodic non-ULA of active antennas and M governs the location of the active

antennas in each spatial period. When M is a solution of the minimal length-

(N−1) circular sparse ruler problem in (5.14), we can label the resulting non-ULA

of active antennas as a periodic circular MRA and each of its spatial periods as a

circular MRA. Similarly for P2, we can label the non-uniform sampling in each

temporal period as minimal circular sparse ruler sampling and the entire periodic

non-uniform sampling as periodic minimal circular sparse ruler sampling if the

indices of the M < N active cosets are given by the solution of (5.14).

Once rx̄(ϑ) is reconstructed from vec(Rȳ(ϑ)) in (5.13) using LS for ϑ ∈
[0, 1/N), we can use (5.10) to compute Rx̄(ϑ) from rx̄(ϑ) and (5.7) to compute

Rx(ϑ) from Rx̄(ϑ) as Rx(ϑ) = N2BHRx̄(ϑ)B. As we have diag(Rx(ϑ)) =

[E[|Xt,0(ϑ)|2], E[|Xt,1(ϑ)|2], . . . , E[|Xt,N−1(ϑ)|2]]T with ϑ ∈ [0, 1/N), recon-

structing diag(Rx(ϑ)) for all ϑ ∈ [0, 1/N) gives E[|Xt(ϑ)|2] for all ϑ ∈ [0, 1).

5.4 Correlation Matrix Estimation

In practice, the expectation in (5.12) must be approximated. Here, we propose to

approximate the expectation in (5.12) with the sample average over different time
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indices t for P1 or sensors indices t for P2, i.e.,

R̂ȳ(ϑ) =
1

τ

τ
∑

t=1

ȳt(ϑ)ȳ
H
t (ϑ), ϑ ∈ [0, 1/N), (5.15)

where we recall that τ is either the total number of time indices or sensors from

which the observations are collected. Observe that the M ×M matrix R̂ȳ(ϑ) is an

unbiased estimate of Rȳ(ϑ) in (5.13). It is also a consistent estimate if Assump-

tion 5.2.1 holds. We can then apply LS reconstruction on R̂ȳ(ϑ) in (5.15) instead

of Rȳ(ϑ) in (5.13). As a result, the procedure to compressively reconstruct the AP

of xt[ñ] in (5.2) over the index t can be listed as

1. For t = 1, 2, . . . , τ , collect all values of x̄t,n[ñ] in (5.2) and compute their

corresponding DTFT X̄t,n(ϑ) in (5.3) for all n ∈ M. We use them to form

ȳt(ϑ) in (5.11).

2. Compute R̂ȳ(ϑ), for ϑ ∈ [0, 1/N), using (5.15).

3. Based on (5.13) and for ϑ ∈ [0, 1/N), we apply LS reconstruction on R̂ȳ(ϑ)

leading to

r̂x̄,LS(ϑ) = (RT
c Rc)

−1RT
c vec(R̂ȳ(ϑ)). (5.16)

4. Based on (5.10) and (5.7), for ϑ ∈ [0, 1/N), we compute vec(R̂x̄,LS(ϑ)) =

Tr̂x̄,LS(ϑ) and

R̂x,LS(ϑ) = N2BHR̂x̄,LS(ϑ)B. (5.17)

5. Note that the (i+1)-th diagonal element of R̂x,LS(ϑ), i.e., [diag(R̂x,LS(ϑ))]i+1

is the LS estimate of the (i + 1)-th diagonal element of Rx(ϑ), which ac-

cording to Remark 5.2.1 is given by E[|Xt,i(ϑ)|2]. Based on the definition

of AP in Remark 5.2.1 and considering (5.15), we can then formulate the

compressive AP (CAP) of xt[ñ] in (5.2) over the index t as

P̂x,LS(ϑ+
i

N
) =

1

Ñ
[diag(R̂x,LS(ϑ))]i+1, (5.18)

for ϑ ∈ [0, 1/N) and i = 0, 1, . . . , N − 1.

Note that, when reconstructing the CAP P̂x,LS(ϑ) in (5.18), we introduce addi-

tional errors with respect to the AP 1
Ñτ

∑τ
t=1 |Xt(ϑ)|2 in Remark 5.2.1 (including

the ones in (5.8) and (5.9)). This error emerges during the compression and the

LS operation in (5.16). This issue will be discussed up to some extent in the next

section.
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5.5 Performance Analysis

5.5.1 Bias Analysis

The bias analysis of the CAP P̂x,LS(ϑ) in (5.18) with respect to Px(ϑ) in (5.1) is

given by the following theorem whose proof is available in Appendix 5.A.

Theorem 5.5.1. For ϑ ∈ [0, 1), the CAP P̂x,LS(ϑ) in (5.18) is an asymptotically

(with respect to Ñ ) unbiased estimate of Px(ϑ) in (5.1).

5.5.2 Variance Analysis

We start by recalling that the (m + 1)-th element of ȳt(ϑ) in (5.11) is given by

X̄t,nm(ϑ). By using (5.3), we can write the element of R̂ȳ(ϑ) in (5.15) at the

(m+ 1)-th row and the (m′ + 1)-th column, for m,m′ = 0, 1, . . . ,M − 1, as

[R̂ȳ(ϑ)]m+1,m′+1 =
1

N2τ

τ
∑

t=1

N−1
∑

i=0

N−1
∑

i′=0

Xt,i(ϑ)X
∗
t,i′(ϑ)e

j2π(nmi−n
m′ i

′)

N . (5.19)

We continue to evaluate the covariance between the elements of R̂ȳ(ϑ) in (5.19),

which is not trivial for a general signal xt[ñ] in (5.2), as it involves the compu-

tation of fourth order moments. To get a useful insight, let us consider the case

when the distribution of xt[ñ] in (5.2) (and thus also Xt,i(ϑ) in (5.19)) is jointly

Gaussian. In this case, the fourth order moment computation is simplified by using

the results in [71]: If x1, x2, x3, and x4 are jointly (real or complex) Gaussian

random variables, we have E[x1x2x3x4] = E[x1x2]E[x3x4]+E[x1x3]E[x2x4]+

E[x1x4]E[x2x3] − 2E[x1]E[x2]E[x3]E[x4]. Using this result, the covariance be-

tween the elements of R̂ȳ(ϑ) in (5.19), when xt[ñ] in (5.2) is jointly Gaussian, can

be shown to be

Cov[[R̂ȳ(ϑ)]m+1,m′+1, [R̂ȳ(ϑ)]a+1,a′+1] =
1

N4τ2

τ
∑

t=1

τ
∑

t′=1

N−1
∑

i=0

N−1
∑

i′=0

N−1
∑

b=0

N−1
∑

b′=0

e
j2π(nmi−n

m′ i
′
−nab+n

a′
b′)

N

{

E[Xt,i(ϑ)X
∗
t′,b(ϑ)]E[X∗

t,i′(ϑ)Xt′,b′(ϑ)]+

E[Xt,i(ϑ)Xt′,b′(ϑ)]E[X∗
t,i′(ϑ)X

∗
t′,b(ϑ)]

}

, (5.20)

for ϑ ∈ [0, 1/N) and m,m′, a, a′ = 0, 1, . . . ,M − 1, where we also assume that

xt[ñ] in (5.2) has zero mean (see Definition 5.2.1).
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Under the above assumptions, we introduce the M2 × M2 covariance ma-

trix ΣR̂ȳ
(ϑ) = E[vec(R̂ȳ(ϑ))vec(R̂ȳ(ϑ))

H ] − E[vec(R̂ȳ(ϑ))]E[vec(R̂ȳ(ϑ))
H ],

whose entry at the (Mm′+m+1)-th row and the (Ma′+a+1)-th column is given

by Cov[[R̂ȳ(ϑ)]m+1,m′+1, [R̂ȳ(ϑ)]a+1,a′+1] in (5.20). By recalling that Rc and T

are real matrices, we can then compute the N × N covariance matrix of r̂x̄,LS(ϑ)

in (5.16) as

Σr̂x̄,LS
(ϑ) = (RT

c Rc)
−1RT

c ΣR̂ȳ
(ϑ)Rc(R

T
c Rc)

−1, (5.21)

and use (5.17) to introduce ΣR̂x,LS
(ϑ) as the N2 ×N2 covariance matrix of

vec(R̂x,LS(ϑ)), which can be written as

ΣR̂x,LS
(ϑ) = N4(BT ⊗BH)TΣr̂x̄,LS

(ϑ)TT (B∗ ⊗B), (5.22)

for ϑ ∈ [0, 1/N). Recall from (5.18) that the CAP P̂x,LS(ϑ+
i
N ), for ϑ ∈ [0, 1/N)

and i = 0, 1, . . . , N − 1, is given by 1
Ñ
[R̂x,LS(ϑ)]i+1,i+1. It is then trivial to show

that the variance of P̂x,LS(ϑ+ i
N ) is given by

Var[P̂x,LS(ϑ+
i

N
)] =

1

Ñ2
[ΣR̂x,LS

(ϑ)]Ni+i+1,Ni+i+1, (5.23)

for ϑ ∈ [0, 1/N) and i = 0, 1, . . . , N − 1.

To get even more insight into this result, we consider a specific case in the next

proposition whose proof is provided in Appendix 5.B.

Proposition 5.5.1. When xt[ñ] in (5.2) contains only circular complex zero-mean

Gaussian i.i.d. noise with variance σ2, the covariance between the elements of

R̂ȳ(ϑ) in (5.19), for ϑ ∈ [0, 1/N), is given by

Cov[[R̂ȳ(ϑ)]m+1,m′+1, [R̂ȳ(ϑ)]a+1,a′+1] =
L2σ4

τ
δ[m− a]δ[m′ − a′], (5.24)

for m,m′, a, a′ = 0, 1, . . . ,M − 1.

It is clear from (5.24) that ΣR̂ȳ
(ϑ) in (5.21) is then a diagonal matrix and we

can find from (5.21)-(5.23) that Var[P̂x,LS(ϑ)] ∝ σ4 or Var[P̂x,LS(ϑ)] ∝ P 2
x (ϑ).

This observation can be related to a similar result found for the conventional peri-

odogram estimate of white Gaussian noise sampled at Nyquist rate in [102].
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5.5.3 Effect of the Compression Rate on the Variance

In this section, we focus on the impact of the compression rate M/N on the vari-

ance analysis by first defining an N × 1 vector w = [w[0], w[1], . . . , w[N − 1]]T

containing binary entries, with w[n] = 1 if n ∈ M (i.e., the coset with index n

is one of the M activated cosets) and w[n] = 0 if n /∈ M. In other words, the

entries of w indicate which M out of the N cosets are activated. Let us then focus

on (5.16) and consider the following remark.

Remark 5.5.1. The same argument that leads to Theorem 5.3.1 (see Lemma 1

in [101]) shows that the rows of Rc are given by the ((g − f) mod N + 1)-th rows

of IN , for all f, g ∈ M. As a result, RT
c Rc is an N ×N diagonal matrix. Denote

the value of the κ-th diagonal element of RT
c Rc as γκ. We can then show that γκ

is given by

γκ =

N−1
∑

n=0

w[(n+ κ− 1) mod N ]w[n], κ = 1, 2, . . . , N. (5.25)

The proof of (5.25) is available in Appendix 5.C. Using (5.25), we can also show

that γκ gives the number of times the κ-th row of IN appears in Rc, i.e., the number

of pairs (g, f) that lead to (g− f) mod N +1 = κ. As we have |M| = M , we can

find that
∑N

κ=1 γκ = M2 and γ1 = M .

Using Remark 5.5.1, we then formulate the following theorem whose proof is avail-

able in Appendix 5.D.

Theorem 5.5.2. When xt[ñ] in (5.2) contains only circular complex zero-mean

Gaussian i.i.d. noise with variance σ2, the variance of the CAP P̂x,LS(ϑ + i
N )

in (5.23), for ϑ ∈ [0, 1/N) and i = 0, 1, . . . , N − 1, is given by

Var[P̂x,LS(ϑ+
i

N
)] =

σ4

Mτ
+

σ4

τ

N−1
∑

n=1

1

γn+1
. (5.26)

Note how (5.26) relates M and N to Var[P̂x,LS(ϑ)] for circular complex zero-

mean Gaussian i.i.d. noise and ϑ ∈ [0, 1). Recalling from Remark 5.5.1 that
∑N−1

n=1 γn+1 = M2 − M , we can find that, for a given N , a stronger compres-

sion rate (smaller M/N ) tends to lead to a larger Var[P̂x,LS(ϑ)]. Based on (5.25)

and (5.26), it is of interest to find the binary values of {w[n]}N−1
n=0 (or equivalently

the cosets nm ∈ M) that minimize Var[P̂x,LS(ϑ)] for a given M . This will gener-

ally lead to a non-convex optimization problem, which is difficult to solve, although
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it is clear that the solution will force the values of {γn+1}N−1
n=1 to be as equal as pos-

sible. Alternatively, we can also put a constraint on Var[P̂x,LS(ϑ + i
N )] in (5.26)

and find the binary values {w[n]}N−1
n=0 that minimize the compression rate M/N .

This however, will again lead to a non-convex optimization problem that is dif-

ficult to solve. Note that, although finding w that minimizes M/N for a given

Var[P̂x,LS(ϑ)] in (5.26) or the one that minimizes Var[P̂x,LS(ϑ)] for a given M/N

is not trivial, the solution will always have to satisfy the identifiability condition in

Theorem 5.3.1. This is because we can show that if the identifiability condition is

not satisfied, some γn in (5.26) will be zero and thus Var[P̂x,LS(ϑ)] in (5.26) will

have an infinite value.

The analysis of the effect of M/N on Var[P̂x,LS(ϑ)] for a general Gaussian

signal xt[ñ], however, is difficult since it is clear from (5.20) that Var[P̂x,LS(ϑ)] for

this case depends on the unknown statistics of xt[ñ]. This is also true for a more

general signal.

5.5.4 Asymptotic Performance Analysis

We now discuss the asymptotic behaviour of the performance of the CAP P̂x,LS(ϑ).

We start by noting that Assumption 5.2.1 ensures that R̂ȳ(ϑ) in (5.15) is a consis-

tent estimate of Rȳ(ϑ) in (5.13) i.e., R̂ȳ(ϑ) converges to Rȳ(ϑ) as τ approaches

∞. As it is clear from (5.16) and (5.17) that R̂x,LS(ϑ) is linearly related to

R̂ȳ(ϑ), it is easy to show that R̂x,LS(ϑ) converges to Rx(ϑ) in (5.7) as τ ap-

proaches ∞. This implies that the CAP P̂x,LS(ϑ + i
N ) in (5.18) also converges to

1
Ñ
[diag(Rx(ϑ))]i+1 =

1
Ñ
E[|Xt(ϑ+

i
N )|2], for ϑ ∈ [0, 1/N) and i = 0, 1, . . . , N−

1, as τ approaches ∞. Since xt[ñ] in (5.2) is an observation of the true process x[ñ]

in (5.1), P̂x,LS(ϑ) will converge to Px(ϑ) in (5.1) if both τ and Ñ (or L for a fixed

N ) approach ∞.

5.5.5 Complexity Analysis

Let us now compare the complexity of our CAP approach with an existing state-

of-the-art approach to tackle similar problems. We compare our CAP approach

with a method that reconstructs Xt(ϑ) (instead of the periodogram), for ϑ ∈ [0, 1)

and all t = 1, 2, . . . , τ , from compressive measurements. The reconstruction of

{Xt(ϑ)}τt=1, for ϑ ∈ [0, 1), is performed by reconstructing {xt(ϑ)}τt=1 in (5.4)

from {ȳt(ϑ)}τt=1 in (5.11), for ϑ ∈ [0, 1/N), using the Regularized M-FOCUSS

(RM-FOCUSS) approach of [1]. We then use the reconstructed {xt(ϑ)}τt=1, for

ϑ ∈ [0, 1/N), either to compute the periodogram or to compute the energy at ϑ ∈
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[0, 1) and to detect the existence of active user signals. Note that RM-FOCUSS is

designed to treat {ȳt(ϑ)}τt=1, for each ϑ, as multiple measurement vectors (MMVs)

and exploit the assumed joint sparsity structure in {xt(ϑ)}τt=1.

Table 5.1 summarizes the computational complexity of CAP and RM-FOCUSS

(see [1] for more details). Note that Table 5.1 only describes the computational

complexity of RM-FOCUSS for a single iteration. The number of RM-FOCUSS

iterations depends on the convergence criterion parameter (labeled as δ in [1]).

Hence, we can argue that our CAP approach is simpler than RM-FOCUSS. More-

over, in RM-FOCUSS, we also need to determine a proper regularization param-

eter (labeled as λ in [1]), which is generally not a trivial task. Note that we also

compare the detection performance of the two methods in the sixth experiment of

Section 5.8.1. Note that the reconstruction of xt(ϑ) from ȳt(ϑ) is also considered

in [38] but it only considers the single-sensor case.

5.6 Multi-cluster Scenario

Recall that the ergodicity assumption on xt(ϑ) in Assumption 5.2.1 requires the

statistics of xt(ϑ) to be the same along index t. Let us now consider the case where

we have D clusters of τ time indices in P1 or of τ sensors in P2 such that xt(ϑ) is

ergodic and its statistics do not change only along index t within a cluster. We can

then consider Assumption 5.2.1 and the resulting case considered in Sections 5.2-

5.5 as a special case of this multi-cluster scenario with D = 1. We introduce

the correlation matrix of xt(ϑ) and ȳt(ϑ) for all indices t belonging to cluster d

as Rx,d(ϑ) and Rȳ,d(ϑ), respectively, with d = 0, 1, . . . , D − 1. We can then

repeat all the steps of Sections 5.2-5.5 for each cluster. More precisely, we can

follow (5.15) and define the estimate of Rȳ,d(ϑ) as R̂ȳ,d(ϑ), which is computed by

averaging the outer-product of ȳt(ϑ) over indices t belonging to cluster d. Then,

we apply (5.16)-(5.18) on R̂ȳ,d(ϑ) to obtain R̂x,LS,d(ϑ) and the CAP for cluster d,

i.e., P̂x,LS,d(ϑ). Also note that the bias and variance analysis in Section 5.5 is also

valid for each cluster in this section.

We might then be interested in the averaged statistics over the clusters, i.e.,
∑D−1

d=0
Rx,d(ϑ)

D . Since
∑D−1

d=0
R̂ȳ,d(ϑ)

D is a consistent estimate of
∑D−1

d=0
Rȳ,d(ϑ)

D ,

we can then consider the resulting
∑D−1

d=0
R̂x,LS,d(ϑ)

D as a valid LS estimate of
∑D−1

d=0
Rx,d(ϑ)

D . Defining the theoretical spectral representation of the power at

cluster d as Px,d(ϑ), we can then apply Theorem 5.5.1 for each cluster to conclude

that 1
D

∑D−1
d=0 P̂x,LS,d(ϑ) is an asymptotically (with respect to Ñ ) unbiased esti-
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mate of 1
D

∑D−1
d=0 Px,d(ϑ). This multi-cluster scenario is of interest for P2 when

we have clusters of wireless sensors sensing user signals where the signal from

each user experiences the same fading statistics (the same path loss and shadow-

ing) on its way towards the sensors belonging to the same cluster. However, the

fading statistics experienced by the signal between the user location and different

clusters are not the same. For P1, the multi-cluster scenario implies that the array

sensing time can be grouped into multiple clusters of time indices where the signal

statistics do not vary along the time within the cluster but they vary across different

clusters.

5.7 Correlated Bins

When the bin size is reduced by increasing N in (5.3), the received spectra at two

frequencies or angles, which are separated by more than the size of the bin, might

still be correlated. In this case, Rx(ϑ) and Rx̄(ϑ) in (5.7) are respectively not a

diagonal and circulant matrix anymore, and the temporal and spatial compression

of Section 5.3.1 cannot be performed without violating the identifiability of rx̄(ϑ)

in (5.13). This section proposes a solution when this situation occurs under As-

sumption 5.2.1 and the single-cluster scenario (it does not apply to the multi-cluser

scenario of Section 5.6). Let us organize τ indices t into several groups and write

t as t = pZ + z + 1 with p = 0, 1, . . . , P − 1 and z = 0, 1, . . . , Z − 1, where Z

and P represent the total number of groups and the number of indices belonging to

a group, respectively. Writing ȳt(ϑ) and x̄t(ϑ) at t = pZ + z + 1 as ȳp,z(ϑ) and

x̄p,z(ϑ), we can introduce for each z a compression similar to (5.11) as

ȳp,z(ϑ) = Czx̄p,z(ϑ), ϑ ∈ [0, 1/N), (5.27)

where Cz is the M ×N selection matrix for the z-th group of indices whose rows

are also selected from the rows of IN . Next, we compute the correlation matrix of

ȳp,z(ϑ) in (5.27), i.e., Rȳz(ϑ) = E[ȳp,z(ϑ)ȳ
H
p,z(ϑ)], for z = 0, 1, . . . , Z − 1, as

Rȳz(ϑ) = CzE[x̄p,z(ϑ)x̄
H
p,z(ϑ)]C

T
z = CzRx̄(ϑ)C

T
z , (5.28)

with Rx̄(ϑ) = E[x̄p,z(ϑ)x̄
H
p,z(ϑ)], for all p, z, as Assumption 5.2.1 requires that

the statistics of x̄t(ϑ) do not vary with t.

Let us interpret the above model for problems P1 and P2. For P1, (5.27) implies

that we split the array scanning time τ into P scanning periods, each of which con-

sists of Z time slots. It is clear from (5.27) that, in different time slots per scanning
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Figure 5.2: The DLA model used in problem P1 when the bins are correlated with

M = 3, N = 5, P = 2, and Z = 4. Solid lines and dashed-dotted lines indicate

active and inactive antennas, respectively.

period, different sets of M ULSs out of N available ULSs in the underlying ULA

are activated leading to a dynamic linear array (DLA). This DLA model has actu-

ally been introduced in [98] though it is originally designed to estimate the DOA

of more sources than active antennas, where the sources can be highly correlated.

Here, the indices of the selected rows of IN used to form Cz correspond to the

indices of the active ULSs at time slot z, the set of M active ULSs in a given time

slot z is the same across different scanning periods, and the number of received

time samples per antenna in a time slot is one. Fig. 5.2 shows an example of this

DLA model. For P2, (5.27) implies that τ sensors are organized into Z groups of

P sensors, where the same sampling pattern is adopted by all sensors within the

same group and where different groups employ different sampling patterns. The

indices of the active cosets used by group z then correspond to the indices of the

selected rows of IN used to construct Cz . Fig. 5.3 shows an example of the model

for problem P2.

Since it turns out that the mathematical model in [98] is applicable for both P1

and P2, we can then follow [98], rewrite (5.28) for z = 0, 1, . . . , Z − 1 as

rȳz(ϑ) = vec(Rȳz(ϑ)) = (Cz ⊗Cz)vec(Rx̄(ϑ)),

combine rȳz(ϑ) for all z into rȳ(ϑ) = [rTȳ0(ϑ), r
T
ȳ1(ϑ), . . . , r

T
ȳZ−1

(ϑ)]T , and write

rȳ(ϑ) as

rȳ(ϑ) = Ψvec(Rx̄(ϑ)), (5.29)
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Figure 5.3: The model for problem P2 when the bins are correlated with M = 3,

N = 5, P = 2, and Z = 4. For simplicity, we illustrate the multi-coset sampling

as a Nyquist-rate sampling followed by a multiplexer and a switch that performs

sample selection based on Cz . Sensors in the same group have the same colour.

For example, sensors in group z = 0 collect the samples at the cosets with coset

indices 0,1, and 2.

with Ψ an M2Z ×N2 matrix given by

Ψ = [(C0 ⊗C0)
T , . . . , (CZ−1 ⊗CZ−1)

T ]T . (5.30)

We can solve for vec(Rx̄(ϑ)) from rȳ(ϑ) in (5.29) using LS if Ψ in (5.30) has full

column rank. It has been shown in [98] that Ψ has full column rank if and only if

each possible pair of two different rows of IN is simultaneously used in at least one

of the matrices {Cz}Z−1
z=0 . In P1, this implies that each possible combination of two

ULSs in the underlying ULA should be active in at least one time slot per scanning

period. In P2, this implies that each possible pair of two cosets (out of N possible

cosets) should be simultaneously used by at least one group of sensors. Observe

how the DLA model in Fig. 5.2 and the model in Fig. 5.3 satisfy this requirement.

Once vec(Rx̄(ϑ)) is reconstructed, we follow the procedure in Section 5.3.2 to

reconstruct Rx(ϑ) = E[xp,z(ϑ)x
H
p,z(ϑ)] from Rx̄(ϑ).

In practice, to approximate the expectation operation in computing Rȳz(ϑ)

in (5.28), we propose to take an average over ȳp,z(ϑ) at different scanning periods

p for P1 or at P sensors in group z for P2, i.e., R̂ȳz(ϑ) =
1
P

∑P−1
p=0 ȳp,z(ϑ)ȳ

H
p,z(ϑ).

Introducing r̂ȳz(ϑ) = vec(R̂ȳz(ϑ)), the LS reconstruction is then applied to r̂ȳ(ϑ) =

[r̂Tȳ0(ϑ), r̂
T
ȳ1(ϑ), . . . , r̂

T
ȳZ−1

(ϑ)]T .
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5.8 Numerical Study

5.8.1 Uncorrelated Bins

In this section, we simulate the estimation and detection performance of the CAP

approach for the uncorrelated bins case discussed in Sections 5.2-5.6. To keep the

study general, in this section, we generally simulate the multi-cluster scenario of

Section 5.6. In our first experiment, we consider problem P2 and have Ñ = 3060,

L = 170, and N = 18. Each sensor collects M = 5 samples out of every N = 18

possible samples based on a periodic length-17 minimal circular sparse ruler with

M = {0, 1, 4, 7, 9}. This is identical to forming a 5 × 18 matrix C in (5.11) by

selecting the rows of I18 based on M. The resulting Rc in (5.13) has full col-

umn rank and we have a compression rate of M/N = 0.28. We consider K = 6

user signals whose frequency bands are given in Table 5.2 together with the power

at each band normalized by frequency. We generate these signals by passing six

circular complex zero-mean Gaussian i.i.d. noise signals through different digital

filters having 200 taps where the location of the unit-gain passband of the filter for

each signal corresponds to the six different active bands. We set the variances of

these noise signals based on the desired user signal powers in Table 5.2. We as-

sume D = 2 clusters of τ = 100 unsynchronized sensors, which means that, at

a given point in time, different sensors observe different parts of the user signals.

To simplify the experiment, the correlation between the different parts of the user

signals observed by different sensors is assumed to be negligible such that they can

be viewed as independent realizations of the user signals. The spatially and tempo-

rally white noise has a variance of σ2 = 7 dBm. The signal of each user received

by different sensors is assumed to pass through different and uncorrelated fading

channels H
(k)
t (ϑ). Note however that the signal from a user received by sensors

within the same cluster is assumed to suffer from the same path loss and shadow-

ing. The amount of path loss experienced between each user and each cluster listed

in Table 5.2 includes the shadowing to simplify the simulation. We simulate small-

scale Rayleigh fading on top of the path loss by generating the channel frequency

response based on a zero-mean complex Gaussian distribution with variance given

by the path loss in Table 5.2. We assume flat fading in each band.

Fig. 5.4 shows the CAP of the faded user signals received at the sensors. As a

benchmark, we provide the Nyquist-rate based AP (NAP), which is obtained when

all sensors collect all the Ñ samples. With respect to the NAP, the degradation in

the quality of the CAP is acceptable despite a strong compression, although more

leakage is introduced in the unoccupied band. Next, we perform 1000 Monte Carlo
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runs and vary the number of sensors per cluster τ , the noise variance at each sensor

σ2, and M/N (see Fig. 5.5). In Fig. 5.5, the compression rate of M/N = 0.44

is implemented by activating three extra cosets, i.e., {2, 12, 14} (which we picked

randomly). Fig. 5.5 shows the normalized mean square error (NMSE) of the CAP

with respect to the NAP and indicates that increasing M/N by a factor of less

than two significantly improves the estimation quality. Having more sensors τ also

improves the estimation quality. Also observe that the compression introduces a

larger NMSE for a larger noise power.
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Figure 5.4: The CAP and the NAP of the faded user signals for the first experiment

(unsynchronized sensors) as a function of frequency in a linear scale (top) and

logarithmic scale (bottom).
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(unsynchronized sensors).
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We can also re-interpret the first experiment for problem P1. In P1, the first

experiment implies that M = 5 ULSs (whose indices are indicated by M) out of

N = 18 ULSs are activated leading to a periodic circular MRA. Table 5.2 then

gives the angular bands of the K = 6 user signals and the power for each band

normalized by the angle. For P1, the first experiment also implies that each user

transmits temporally independent signals and that the signals from different users

k pass through statistically different and uncorrelated time-varying fading channels

H
(k)
t (ϑ) on their way towards the receiving array. For each user k, the fading statis-

tics remain constant within each cluster of time indices but the fading realization is

temporally independent.

The second experiment uses the same setting as used in the first experiment (in-

cluding Table 5.2). The only difference is that the sensors are now assumed to be

synchronized. Fig. 5.6 depicts the CAP and the NAP of the faded user signals re-

ceived at the sensors. Unlike in the unsynchronized sensors case (see Fig. 5.4), we

now observe a significant variation in both the CAP and the NAP. This is because,

when the sensors are synchronized, they observe the same part of the user signals.

This means that, while the fading realization components in the received signals at

different sensors are independent, the user signal components in the received sig-

nals at different sensors are fully correlated. Fig. 5.7 shows the NMSE of the CAP

with respect to the NAP for the synchronized sensors case. In general, some trends

found in the unsynchronized sensors case also appear here. Notice that the NMSE

for the synchronized sensors case is smaller than the one for the unsynchronized

sensors case since the quality of the NAP in the synchronized sensors case is also

significantly worse than the one in the unsynchronized sensors case. Note that we

can also re-interpret this second experiment for problem P1. This re-interpretation

however, will make more sense, if we reverse the roles of H
(k)
t (ϑ) and U

(k)
t (ϑ).

When this is the case, for P1, the second experiment implies that each user trans-

mits temporally independent signals and that the signals from different users k pass

through statistically different and uncorrelated time-invariant fading channels on

their way towards the receiving array. Here, the statistics of the user signal are

constant only within a cluster of time indices.

In the third experiment, we investigate the impact of varying the bin size (which

is equivalent to varying N ) and L for a given Ñ on the performance of the CAP

approach. Let us consider the settings in the first experiment (i.e., we consider Ta-

ble 5.2) except for the following. We now examine three different values of N ,

i.e., N = 10, N = 14, and N = 18 for a given Ñ = 3150. For each value of

N , we vary the compression rate M/N and examine the two sets of coset patterns
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available in Table 5.3. We start from the minimal M/N offered by the minimal

circular sparse ruler. Larger compression rates are implemented by selecting addi-

tional coset indices where the order of the selection is provided by the third column

of Table 5.3. We fix the number of τ to τ = 76 and perform 1000 Monte Carlo

simulation runs for different noise variances (see Fig. 5.8). Fig. 5.8 illustrates the

NMSE of the CAP with respect to the NAP for the two sets of coset patterns. Ob-

serve that varying N and L for a given Ñ does not really result in a clear trend

in the estimation performance. While the performance of the CAP for N = 10

is worse than the one for the larger value of N , the performance of the CAP for

N = 14 is better than the one for N = 18 for some values of M/N . Note that the

NMSE also depends on the coset pattern that we select to implement a particular

compression. At this point, we would like to mention that, as long as the bin size

constraint in Remark 5.2.2 is satisfied, having a larger N is generally more advanta-

geous as we will generally have a lower value of minimum M/N . This is because

it can be found that, as N increases, the number of marks in the corresponding

length-(N − 1) minimal circular sparse ruler (which is the minimum M ) tends to

be constant or to increase very slowly. As a result, the minimum compression rate

M/N also generally (even though not monotonically) decreases with N .

In the next three experiments, we use the CAP to detect the existence of ac-

tive user signals that suffer from fading channels and evaluate the detection per-

formance. We start with the fourth experiment, where we again consider prob-

lem P2, Ñ = 3060, L = 170, N = 18, and M/N = 0.28 (again by adopting

M = {0, 1, 4, 7, 9}). We now consider D = 3 clusters of τ unsynchronized sen-

sors and K = 3 user signals (see their settings in Table 5.4), which are generated

using the same procedure used in the first experiment. The amount of path loss

(which includes shadowing) experienced between each user and each cluster is

listed in Table 5.4. We then simulate a small-scale Rayleigh fading channel on top

of it. We perform 5000 Monte Carlo runs and vary τ and σ2 (see Fig. 5.9). We

vary the detection threshold manually and out of the Ñ = 3060 frequency points at

which the CAP is reconstructed, we evaluate the resulting detection events at 363

frequency points in the active bands and the false alarm events at 363 frequency

points in the bands that are far from the active bands, i.e., [−0.77π,−0.53π]. Here,

we average the estimated power over every eleven subsequent frequency points ϑ

and apply the threshold to these average values. The resulting receiver operating

characteristic (ROC) is depicted in Fig. 5.9. Observe the acceptable detection per-

formance of the CAP for the examined τ and σ2 though the performance is slightly

poor for τ = 17 and σ2 = 14 dBm. This detection performance demonstrates that
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the proposed CAP can be used in a spectrum sensing application such as in a CR

network.

The fifth experiment repeats the fourth experiment but for synchronized sen-

sors. The ROC in Fig. 5.10 shows that the detection performance for the synchro-

nized sensors case is worse than the one for the unsynchronized sensors case in

Fig. 5.9 due to the significant variation in the CAP as shown in Fig. 5.6.

In the sixth experiment, we consider problem P2 and compare the detection

performance of the spectrum sensing approach based on CAP with that of the one

based on the RM-FOCUSS discussed in Section 5.5.5. To simulate the existence

of a joint sparsity structure in {xt(ϑ)}τt=1, we again use the settings in Table 5.4.

However, we now only assume one cluster of τ = 50 sensors where the amount

of path loss experienced between each user and each sensor is set to −13 dB. The

ROC for 5000 Monte Carlo runs and different M/N as well as σ2 is illustrated in

Fig. 5.11. Here, the compression rate of M/N = 9/18 is implemented by acti-

vating four extra cosets, i.e., 16, 8, 12, 13 (which we decide randomly), on top of

the length-17 minimal circular sparse ruler. The M-FOCUSS convergence criterion

parameter and the M-FOCUSS diversity measure parameter (labeled as p in [1]) are

set to 0.001 and 0.8, respectively. Note that the latter setting follows the suggestion

of [1]. To determine the M-FOCUSS regularization parameter, we first perform

some experiments and examine ten different values of regularization parameters

between 10−4 and 10. We then select the regularization parameter that leads to the

smallest NMSE between the resulting compressive estimate of {|Xt(ϑ)|2}τt=1, for

all the considered ϑ ∈ [0, 1), and the Nyquist-rate version. We finally decide to

set the regularization parameter to 10 for the case of M/N = 5/18, to 0.01668

for the case of M/N = 9/18 and σ2 = 14 dBm, and to 0.21544 for the case of

M/N = 9/18 and σ2 = 11 dBm (see Fig. 5.11). Observe from Fig. 5.11 that

the spectrum sensing approach based on CAP has a better detection performance

than the one based on signal/spectrum reconstruction using RM-FOCUSS. Recall

that the approach of [1] requires the sparsity constraint on the vectors to be recon-

structed (which are {xt(ϑ)}τt=1). This implies that, if we have additional active

users on top of the scenario used in the sixth experiment, the actual {xt(ϑ)}τt=1

will have a smaller sparsity level. In this case, if we use the same compression rate

M/N as the one used in the sixth experiment, the performance of RM-FOCUSS

will be even worse.
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5.8.2 Correlated Bins

In this section, we conduct the seventh experiment to evaluate the estimation perfor-

mance of the CAP approach for the correlated bins case discussed in Section 5.7.

Here, we consider problem P2, Ñ = 3080, L = 77, N = 40, and M = 14

(M/N = 0.35). Recall from Section 5.7 that the mathematical model for the

correlated bins case is similar to the one in [98]. Hence, to design the sampling

matrices for all sensors, which are assumed to be synchronized, that ensure the

full column rank of Ψ in (5.30), we use the algorithm of [98], which is originally

designed to solve the antenna selection problem for estimating the DOA of highly

correlated sources. This algorithm, which only offers a suboptimal solution for Z,

suggests Z = 12 groups of P = 25 sensors where each group has a unique set of

M = 14 active cosets. We consider K = 2 user signals whose setting is given in

Table 5.5. To simulate the full correlation between all the frequency components

within the band of the k-th user, we assume that the k-th user transmits exactly the

same symbol at all these frequency components at each time instant. On its way

toward the different sensors, the signal of the k-th user is assumed to pass through

different and uncorrelated Rayleigh fading channels H
(k)
t (ϑ) but it suffers from the

same path loss and shadowing, whose value is listed in Table 5.5. Again, we as-

sume flat fading in each user band and have σ2 = 7 dBm. Fig. 5.12 shows the CAP

of the faded user signals using the correlated bins (CB) assumption. As a bench-

mark, we also provide the NAP and the CAP based on the uncorrelated bins (UB)

assumption discussed in Sections 5.2-5.5, which is obtained by activating the same

set of M = 14 cosets, i.e., M = {0, 1, 2, 3, 4, 9, 10, 15, 16, 18, 20, 30, 33, 37}, in

all sensors (leading to a full column rank matrix Rc in (5.13)). Observe that the

quality of the CAP based on the UB assumption is extremely poor. On the other

hand, with respect to the NAP, the degradation in the quality of the CAP based on

the CB assumption is acceptable despite a significant variation in the unoccupied

band. Next, we perform 1000 Monte Carlo runs and vary the number of sensors

per group P , σ2, and M/N (see Fig. 5.13). In Fig. 5.13, the compression rate of

M/N = 0.45 is implemented by randomly activating four additional cosets on top

of the already selected 14 cosets and the resulting sampling pattern is kept fixed

throughout the entire Monte Carlo runs. Fig. 5.13 shows the NMSE of the CAP

based on the CB assumption with respect to the NAP, which indicates that either

increasing M/N or having more sensors per group P can significantly improve the

estimation quality. Again, a larger NMSE is introduced for a larger noise power.

The interpretation of this seventh experiment for P1 is similar to the problem
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discussed in [98]. For P1, this experiment is equivalent to having a ULA consisting

of N = 40 ULSs, where the array scanning time is split into P = 25 scanning

periods, each of which consists of Z = 12 time slots. In different time slots per

scanning period, we activate different sets of M = 14 (out of N = 40) ULSs

leading to a DLA. The interpretation will again make more sense if we reverse the

roles of H
(k)
t (ϑ) and U

(k)
t (ϑ). When this is the case, for P1, the experiment implies

that all users transmit temporally independent signals and that the signals from

different users k pass through statistically different and uncorrelated time-invariant

fading channels on their way towards the receiving array. As the signal received

from the k-th user at different angles within its angular band is fully correlated, this

can be related to a situation where the same symbol of the k-th user hits different

scatterers (which play the role of the channel) before reaching the observing array.

From the point of view of the array, the scattered versions of the symbol will be

received from different angles within a particular angular band.

5.8.3 Circular Complex Gaussian Noise

The last experiment examines the performance of the CAP based on the UB as-

sumption when the received signal xt[ñ] only contains circular complex zero-mean

Gaussian spatially and temporally i.i.d. noise. Here, we have Ñ = 3060, L = 170,

N = 18, and σ2 = 7 dBm. We perform 1000 Monte Carlo runs and vary τ (see

Fig. 5.14). We compute the NMSE of the CAP with respect to the true power

spectrum (since xt[ñ] in this case is clearly a WSS signal) and compare this NMSE

obtained from the simulation with the analytical NMSE. Since it can be shown that,

for circular complex Gaussian i.i.d. noise xt[ñ], P̂x,LS(ϑ) is an unbiased estimate

of Px(ϑ) even for finite Ñ , the analytical NMSE only depends on the variance of

P̂x,LS(ϑ) and it can be shown to be equal to 1
τ (

1
M +

∑N−1
n=1

1
γn+1

) by using (5.26).

We start with M/N = 0.28 by using the cosets indexed by the length-17 minimal

circular sparse ruler, i.e., M = {0, 1, 4, 7, 9}, and then vary M/N . First, the cases

of M/N > 0.28 are implemented by activating additional cosets based on Pattern 1

in Table 5.6. Then, we also test Pattern 2 and Pattern 3 as additional coset patterns

to implement the case of M/N = 0.5. Observe in Fig. 5.14 how the analytical

NMSE is on top of the simulated NMSE for all the evaluated M/N values. Also

observe that, for M/N = 0.5, the three different coset patterns have led to different

values of the NMSE depending on the resulting value of {γn+1}N−1
n=1 in (5.26).
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5.9 Conclusion and Future Work

This paper proposed a compressive periodogram reconstruction approach and con-

sidered both time-frequency and spatio-angular domains. In our model, the entire

band is split into uniform bins such that the received spectra at two frequencies or

angles, whose distance is equal to or larger than the size of a bin, are uncorrelated.

In both considered domains, this model leads to a circulant coset correlation matrix,

which allows us to perform a strong compression yet to present our reconstruction

problem as an overdetermined system. When the coset patterns are designed based

on a circular sparse ruler, the system matrix has full column rank and we can recon-

struct the periodogram using LS. In a practical situation, our estimate of the coset

correlation matrix is only asymptotically circulant. Hence, we also presented an

asymptotic bias and variance analysis for the CAP. We further included a thorough

variance analysis on the case when the received signal only contains circular com-

plex zero-mean white Gaussian noise, which provides some useful insights in the

performance of our approach. The variance analysis for a more general signal (i.e.,

a general Gaussian signal) has also been presented but it is not easy to interpret

due to its dependence on the unknown statistics of the user signals. We also pro-

posed a solution for the case when the bin size is decreased such that the received

spectra at two frequencies or angles, with a spacing between them larger than the

size of the bin, can still be correlated. Finally, the simulation study showed that

the estimation performance of the evaluated approach is acceptable and that our

CAP performs well when detecting the existence of the user signals suffering from

fading channels.

As a future work, we are interested in the case when both problems P1 and P2

emerge simultaneously. In that case, we would consider a compressive linear array

of antennas and a compressive digital recever unit per antenna leading to a two-

dimensional (2D) digital signal. Our interest would then be to investigate if it is

possible to perform compression in both the time and spatial domain and to jointly

reconstruct the angular and frequency periodogram from the 2D compressive sam-

ples. To study that, we could follow an approach similar to [103], which assumes

stationarity in both the time and spatial domain and exploits the existing Toeplitz

structure in the correlation matrix.
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Appendix

5.A Proof of Theorem 5.5.1

Recall that R̂ȳ(ϑ) in (5.15) is an unbiased estimate of Rȳ(ϑ) in (5.12), i.e., E[R̂ȳ(ϑ)]

= Rȳ(ϑ). Applying the expectation operator on (5.16) and (5.17), it is then clear

that r̂x̄,LS(ϑ) in (5.16) and R̂x,LS(ϑ) in (5.17) are unbiased estimates of rx̄(ϑ)

in (5.13) and Rx(ϑ) in (5.7), respectively, since rx̄(ϑ) in (5.13) can perfectly be

reconstructed from Rȳ(ϑ) using LS. Recall from Remark 5.2.1 that the (i + 1)-th

diagonal element of Rx(ϑ) is equal to E[|Xt,i(ϑ)|2]. From (5.18), it is then obvious

that the CAP P̂x,LS(ϑ + i
N ) is an unbiased estimate of 1

Ñ
E[|Xt,i(ϑ)|2]. However,

by taking (5.1) into account, we can observe that

lim
Ñ→∞

1

Ñ
E[|Xt,i(ϑ)|2] = Px(ϑ+

i

N
), ϑ ∈ [0, 1/N), (5.31)

for i = 0, 1, . . . , N − 1, since xt[ñ] is a finite-length observation of the actual ran-

dom process x[ñ]. Hence, by applying limÑ→∞E[P̂x,LS(ϑ+
i
N )] and using (5.31),

it is clear that P̂x,LS(ϑ+ i
N ) is an asymptotically (with respect to Ñ ) unbiased es-

timate of Px(ϑ+ i
N ) in (5.1), for ϑ ∈ [0, 1/N) and i = 0, 1, . . . , N − 1. �

5.B Proof of Proposition 5.5.1

Note that for the specific case assumed in this proposition, we can rewrite (5.20) as

Cov[[R̂ȳ(ϑ)]m+1,m′+1, [R̂ȳ(ϑ)]a+1,a′+1]

=
1

N4τ2

τ
∑

t=1

N−1
∑

i=0

N−1
∑

i′=0

N−1
∑

b=0

N−1
∑

b′=0

e
j2π(nmi−n

m′ i
′
−nab+n

a′
b′)

N ×

E[Xt,i(ϑ)X
∗
t,b(ϑ)]E[X∗

t,i′(ϑ)Xt,b′(ϑ)], (5.32)

where we also take the circularity of xt[ñ] into account. By using Ñ = LN , we

can find that E[Xt,i(ϑ)X
∗
t,b(ϑ)] = σ2

∑Ñ−1
ñ=0 ej2πñ(

b−i
N

) = Ñσ2δ[b − i], as it is

clear from (5.32) that b, i ∈ {0, 1, . . . , N − 1}. Hence, we can simplify (5.32) as

Cov[[R̂ȳ(ϑ)]m+1,m′+1, [R̂ȳ(ϑ)]a+1,a′+1] =
τ

∑

t=1

N−1
∑

i=0

N−1
∑

i′=0

N−1
∑

b=0

N−1
∑

b′=0

e
j2π(nmi−n

m′ i
′
−nab+n

a′
b′)

N
L2σ4

N2τ2
δ[b− i]δ[i′ − b′]
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=
L2σ4

N2τ

N−1
∑

i=0

e
j2πi(nm−na)

N

N−1
∑

i′=0

e
j2πi′(n

a′
−n

m′ )

N

=
L2σ4

τ
δ[m− a]δ[m′ − a′], ϑ ∈ [0, 1/N),

where the last equality is due to nm ∈ {0, 1, . . . , N − 1}, for all m, and the fact

that nm = na implies m = a. �

5.C Proof of (5.25)

First, by recalling that Rc = (C⊗C)T, we can write

γκ = [RT
c Rc]κ,κ = [TT ((CTC)⊗ (CTC))T]κ,κ

= [TT (diag(w)⊗ diag(w))T]κ,κ

=
N−1
∑

n=0

N−1
∑

n′=0

[TT ]κ,Nn+n′+1[diag(w)⊗ diag(w)]Nn+n′+1,Nn+n′+1[T]Nn+n′+1,κ.

(5.33)

Let us then recall that the (q+1)-th row of T is given by the
((

q −
⌊ q
N

⌋)

mod N + 1
)

-

th row of IN . We can then find that the (ι + 1)-th row of TT contains ones at the

{Nn + (n + ι) mod N + 1}N−1
n=0 -th entries and zeros elsewhere. We can thus

rewrite (5.33)

γκ =
N−1
∑

n=0

[w ⊗w]Nn+((n+κ−1) mod N)+1 =
N−1
∑

n=0

[wwT ]((n+κ−1) mod N)+1,n+1

=
N−1
∑

n=0

w[(n+ κ− 1) mod N ]w[n], (5.34)

where we use wwT = vec−1(w ⊗ w) in the second equation with vec−1(.) the

inverse of the vec(.) operation.

5.D Proof of Theorem 5.5.2

To simplify the discussion, we introduce the N2 × 1 vector

ρ̂x̄(ϑ) = (C⊗C)T vec(R̂ȳ(ϑ)). (5.35)



5.D. Proof of Theorem 5.5.2 143

From the definition of C in Section 5.3.1, it is clear that the (Nf + g + 1)-th row

of (C ⊗ C)T contains a single one at a certain entry and zeros elsewhere only if

f, g ∈ M, otherwise it contains zeros at all entries. Hence, we can write

[ρ̂x̄(ϑ)]Nf+g+1 = 0, if f /∈ M or g /∈ M. (5.36)

When f, g ∈ M, the (Nf + g+1)-th entry of ρ̂x̄(ϑ) is given by one of the entries

of vec(R̂ȳ(ϑ)). Recall from Appendix 5.C that the (ι + 1)-th row of TT contains

ones at the {Nn + (n + ι) mod N + 1}N−1
n=0 -th entries and zeros elsewhere. As a

result, we can use (5.16), (5.35), and Remark 5.5.1 to write the (ι + 1)-th entry of

r̂x̄,LS(ϑ) in (5.16) as

[r̂x̄,LS(ϑ)]ι+1 =
1

γι+1
[TT ρ̂x̄(ϑ)]ι+1 =

1

γι+1

N−1
∑

n=0

[vec−1(ρ̂x̄(ϑ))](n+ι) mod N+1,n+1,

(5.37)

with ι = 0, 1, . . . , N − 1 and vec−1(ρ̂x̄(ϑ)) an N ×N matrix.

At this stage, let us introduce the following definition.

Definition 5.D.1. Define the collection of [vec−1(ρ̂x̄(ϑ))]g′+1,f ′+1 for f ′, g′ ∈
{0, 1, . . . , N − 1} and all ((g′ − f ′) mod N + 1) = κ as the κ-th modular di-

agonal of vec−1(ρ̂x̄(ϑ)). Note that the first modular diagonal of vec−1(ρ̂x̄(ϑ)) is

its main diagonal.

We use Definition 5.D.1 to formulate the following lemma.

Lemma 5.D.1. The κ-th modular diagonal of vec−1(ρ̂x̄(ϑ)) in (5.37) contain only

γκ entries of vec(R̂ȳ(ϑ)) in (5.35). The remaining N − γκ entries of the κ-th

modular diagonal of vec−1(ρ̂x̄(ϑ)) are equal to zeros. The summation in (5.37)

then involves N − γι+1 zeros and only γι+1 out of M2 entries of vec(R̂ȳ(ϑ)).

Proof. Recall that, when f, g ∈ M, the (Nf + g + 1)-th entry of ρ̂x̄(ϑ) in (5.37)

is given by one of the entries of vec(R̂ȳ(ϑ)). Since Remark 5.5.1 indicates that the

number of pairs g, f ∈ M that lead to (g − f) mod N + 1 = κ is equal to γκ,

it is clear from Definition 5.D.1 that the κ-th modular diagonal of vec−1(ρ̂x̄(ϑ))

only contains γκ entries of vec(R̂ȳ(ϑ)). Equation (5.36) then confirms that the

remaining N − γκ entries of the κ-th modular diagonal of vec−1(ρ̂x̄(ϑ)) are equal

to zero. Next, observe that the summation in (5.37) is the sum of all terms in

the (ι + 1)-th modular diagonal of vec−1(ρ̂x̄(ϑ)). This can be found by applying

Definition 5.D.1 on the column and row indices of vec−1(ρ̂x̄(ϑ)) in (5.37), i.e.,

((n+ ι) mod N − n) mod N + 1 = (n+ ι− n) mod N + 1 = ι+ 1,
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which exploits the property that (κ mod N + κ′) mod N = (κ+ κ′) mod N . This

concludes the proof.

Let us now define Σρ̂x̄(ϑ) as the N2×N2 covariance matrix of ρ̂x̄(ϑ) in (5.35),

which can be written as Σρ̂x̄(ϑ) = (C⊗C)TΣR̂ȳ
(ϑ)(C⊗C). First, recall (5.36)

and that when f, g ∈ M, the (Nf+g+1)-th entry of ρ̂x̄(ϑ) in (5.37) is given by one

of the entries of vec(R̂ȳ(ϑ)). By also recalling that, for circular complex Gaussian

i.i.d. noise xt[ñ], ΣR̂ȳ
(ϑ) is a diagonal matrix whose elements are given by (5.24),

we can find that Σρ̂x̄(ϑ) is also a diagonal matrix with its diagonal elements given

by

[diag(Σρ̂x̄(ϑ))]Nf+g+1 =

{

L2σ4

τ , if f, g ∈ M.

0, if f /∈ M or g /∈ M.
(5.38)

By taking (5.37), (5.38), and the diagonal structure of Σρ̂x̄(ϑ) into account, we can

then write the entry of Σr̂x̄,LS
(ϑ) in (5.21) at the (ι+ 1)-th row and the (ι′ + 1)-th

column as

Cov[[r̂x̄,LS(ϑ)]ι+1, [r̂x̄,LS(ϑ)]ι′+1] =
1

γι+1γι′+1
×

N−1
∑

n=0

N−1
∑

n′=0

{

[TT ]ι+1,Nn+n′+1[Σρ̂x̄(ϑ)]Nn+n′+1,Nn+n′+1[T]Nn+n′+1,ι′+1

}

=
δ[ι− ι′]

γ2ι+1

N−1
∑

n=0

[Σρ̂x̄(ϑ)]Nn+((n+ι) mod N)+1,Nn+((n+ι) mod N)+1, (5.39)

for ι, ι′ = 0, 1, . . . , N − 1, which implies that Σr̂x̄,LS
(ϑ) is also a diagonal ma-

trix for circular complex Gaussian i.i.d. noise xt[ñ]. Recall from the proof of

Lemma 5.D.1 that the summation in (5.37) is the sum of all terms in the (ι + 1)-

th modular diagonal of vec−1(ρ̂x̄(ϑ)). We can then observe that the summation

in (5.39) is the sum of the variance of each term in the (ι+ 1)-th modular diagonal

of vec−1(ρ̂x̄(ϑ)). Using Lemma 5.D.1 and (5.38), we can rewrite (5.39) as

Cov[[r̂x̄,LS(ϑ)]ι+1, [r̂x̄,LS(ϑ)]ι′+1] =
L2σ4

γι+1τ
δ[ι− ι′], (5.40)

for ι, ι′ = 0, 1, . . . , N − 1. By considering (5.22) and noticing that

[BT ⊗BH ]Ni+i′+1,Nn+n′+1 =
1
N2 e

−j 2π
N

(n′i′−ni), let us rewrite Var[P̂x,LS(ϑ+
i
N )]

in (5.23), for ϑ ∈ [0, 1/N) and i = 0, 1, . . . , N − 1, as

Var[P̂x,LS(ϑ+
i

N
)] =

N4

Ñ2

N−1
∑

n=0

N−1
∑

n′=0

N−1
∑

ν=0

N−1
∑

ν′=0

{

[BT ⊗BH ]Ni+i+1,Nn+n′+1
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×[TΣr̂x̄,LS
(ϑ)TT ]Nn+n′+1,Nν+ν′+1[B

∗ ⊗B]Nν+ν′+1,Ni+i+1

}

=
1

L2N2

N−1
∑

n=0

N−1
∑

n′=0

N−1
∑

ν=0

N−1
∑

ν′=0

{

e−j 2π
N

i(n′−n+ν−ν′)

×[TΣr̂x̄,LS
(ϑ)TT ]Nn+n′+1,Nν+ν′+1

}

. (5.41)

We now recall that the (q+1)-th row of T is given by the
((

q −
⌊ q
N

⌋)

mod N + 1
)

-

th row of IN , exploit the diagonal structure of Σr̂x̄,LS
(ϑ) for circular complex Gaus-

sian i.i.d. noise xt[ñ], and use (5.40) to write

[TΣr̂x̄,LS
(ϑ)TT ]Nn+n′+1,Nν+ν′+1

=
L2σ4

τ

N−1
∑

ι=0

1

γι+1
[T]Nn+n′+1,ι+1[T

T ]ι+1,Nν+ν′+1

=
L2σ4

τ

δ[(n′ − n) mod N − (ν ′ − ν) mod N ]

γ(n′−n) mod N+1
, (5.42)

for n, n′, ν, ν ′ = 0, 1, . . . , N − 1. By inserting (5.42) into (5.41), the variance of

P̂x,LS(ϑ+
i
N ), for circular complex Gaussian i.i.d. noise xt[ñ] and i = 0, 1, . . . , N−

1, is given by

Var[P̂x,LS(ϑ+
i

N
)] =

1

L2N2

N−1
∑

n=0

N−1
∑

n′=0

L2σ4N

τγ(n′−n) mod N+1

=
σ4

τ

N−1
∑

n=0

1

γn+1
=

σ4

Mτ
+

σ4

τ

N−1
∑

n=1

1

γn+1
, ϑ ∈ [0, 1/N),

where we use the last part of Remark 5.5.1 in the last equality. �
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Table 5.1: Computational complexity of the CAP approach and the RM-FOCUSS

of [1] for a given frequency point ϑ ∈ [0, 1/N).
CAP approach

Computation steps Computational complexity

Computation of R̂ȳ(ϑ) in (5.15) O(M2τ)

Computation of RT
c Rc in (5.16) O(N2M2)

Inversion of RT
c Rc in (5.16) O(N3)

Multiplication between (RT
c Rc)

−1 O(N2M2)+

and RT
c vec(R̂ȳ(ϑ)) in (5.16) O(NM2)

Computation of (5.17) (recall that O(N log N)

B in (5.17) is an IDFT matrix)

Total O(N3) +O(N2M2) +O(M2τ)

RM-FOCUSS of [1] (per iteration)

Computation steps Computational complexity

Computation of ℓ2-norm of O(Nτ)

each row of an N × τ matrix

Multiplication between an M ×N O(N2M)

matrix and an N ×N matrix

Multiplication between an M ×N O(NM2)

matrix and an N ×M matrix

Inversion of an M ×M matrix O(M3)

Multiplication between an N ×M O(NM2)

matrix and an M ×M matrix

Multiplication between an N ×M O(NMτ)

matrix and an M × τ matrix

Multiplication between an N ×N O(N2τ)

matrix and an N × τ matrix

Total O(N2M) +O(M3)+

O(N2τ) +O(NM2) +O(NMτ)
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Table 5.2: The frequency band and the power of the users signal and the experi-

enced path loss in the first, second, and third experiments.

User band Power/freq. Path loss at Path loss at

(rad/sample) (per rad/sample) cluster 1 cluster 2

[−0.69π,−0.61π] 38 dBm −17 dB −19 dB

[−0.49π,−0.41π] 40 dBm −20 dB −18 dB

[0.11π, 0.19π] 34 dBm −12 dB −10 dB

[0.31π, 0.39π] 34 dBm −16 dB −18 dB

[0.41π, 0.49π] 32 dBm −14 dB −12 dB

[0.71π, 0.79π] 35 dBm −18 dB −20 dB

Table 5.3: The two sets of coset patterns used in the third experiment (comparison

of different bin size).

First set of coset patterns

N Minimal circular The order of the additional coset indices

sparse ruler indices for implementing a larger compression rate

18 0, 1, 4, 7, 9 17, 2, 13, 12, 15, 6

14 0, 1, 2, 4, 7 10, 6, 12, 5

10 0, 1, 3, 5 8, 4

Second set of coset patterns

N Minimal circular The order of the additional coset indices

sparse ruler indices for implementing a larger compression rate

18 0, 1, 4, 7, 9 5, 2, 6, 17, 15, 14

14 0, 1, 2, 4, 7 12, 10, 13, 11

10 0, 1, 3, 5 4, 6

Table 5.4: The frequency band and the power of the user signals and the experi-

enced path loss in the fourth and the fifth experiments.

User band Power/freq. Path loss (in dB) at cluster

(rad/sample) (per rad/sample) 1 2 3

[0.41π, 0.49π] 25 dBm −12 −13 −14

[0.31π, 0.39π] 25 dBm −14.5 −13 −11.5

[0.21π, 0.29π] 25 dBm −13.5 −13 −12.5
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Figure 5.6: The CAP and the NAP of the faded user signals for the second exper-

iment (synchronized sensors) as a function of frequency in a linear scale (top) and

logarithmic scale (bottom).
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Figure 5.8: The NMSE between the CAP and the NAP for the third experiment

(comparison of different bin size); (a) using the first set of coset patterns (see Ta-

ble 5.3); (b) using the second set of coset patterns.

Table 5.5: The frequency bands occupied by the users, their power, and the experi-

enced path loss in the seventh experiment.

User band (rad/sample) Power/freq. (per rad/sample) Path loss

[−0.88π,−0.2π] 22 dBm −6 dB

[0.15π, 0.92π] 25 dBm −7 dB
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Figure 5.9: The resulting ROC when the CAP is used to detect the existence of the

active user signals suffering from fading channels in the fourth experiment (unsyn-

chronized sensors).
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Figure 5.10: The resulting ROC when the CAP is used to detect the existence

of the active user signals suffering from fading channels in the fifth experiment
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Figure 5.11: The resulting ROC of the detector when the CAP is used compared

with the one when the compressive signal reconstruction using RM-FOCUSS of [1]

is used (the sixth experiment).
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Figure 5.12: The CAP and the NAP of the faded user signals for the seventh ex-

periment in Section 5.8.2 as a function of frequency in a linear scale (top) and

logarithmic scale (bottom).
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Figure 5.13: The NMSE between the CAP based on the correlated bins assumption

and the NAP for the seventh experiment in Section 5.8.2.
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Figure 5.14: The simulated and analytical NMSE between the CAP and the true

power spectrum when xt[ñ] only contains circular complex Gaussian i.i.d. noise.

Unless mentioned otherwise, the cases of M/N > 0.28 are implemented by acti-

vating extra cosets based on Pattern 1.

Table 5.6: Three coset patterns to be added on top of the already selected mini-

mal circular sparse ruler based coset indices for implementing M/N > 0.28 in

Section 5.8.3.
Coset pattern The order of the additional coset indices

Pattern 1 17, 11, 2, 6

Pattern 2 3, 5, 6, 8

Pattern 3 2, 3, 5, 6
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Abstract

We introduce a new compressive power spectrum estimation approach in both fre-

quency and direction of arrival (DOA). Wide-sense stationary signals produced by

multiple uncorrelated sources are compressed in both the time and spatial domain

where the latter compression is implemented by activating only some of the anten-

nas in the underlying uniform linear array (ULA). We sample the received signal at

every active antenna at sub-Nyquist rate, compute both the temporal and spatial cor-

relation functions between the sub-Nyquist rate samples, and apply least squares to

reconstruct the full-blown two-dimensional power spectrum matrix where the rows

and columns correspond to the frequencies and the angles, respectively. This is

possible under the full column rank condition of the system matrices and without

applying any sparsity constraint on the signal statistics. Further, we can estimate

the DOAs of the sources by locating the peaks of the angular power spectrum. We

can theoretically estimate the frequency bands and the DOAs of more uncorrelated

sources than active sensors using sub-Nyquist sampling.

6.1 Introduction

Compressive sampling and multi-coset sampling have drawn a lot of interest from

the signal processing community due to the possibility to reconstruct a signal sam-

pled at sub-Nyquist rate with no or little information loss under the constraint that

the signal is sparse in a particular basis [5, 38]. All these works on sub-Nyquist

sampling are important especially when it is needed to relax the requirements on

the analog-to-digital converters (ADCs). For a wide-sense stationary (WSS) sig-

nal, it has also been shown that perfect reconstruction of its second-order statistics

from sub-Nyquist rate samples is theoretically possible even without sparsity con-

straint [94]. This invention is important for some applications, such as wideband

spectrum sensing for cognitive radio, where only perfect reconstruction of the tem-

poral auto-correlation function is required instead of the signal itself. The principle

of reconstructing the temporal auto-correlation function of a signal from the time-

domain compressive measurements has in a dual form also been proposed in the

spatial domain. Given a linear antenna array, [42] and [41] show that if the loca-

tions of the antennas are arranged according to a nested or coprime array, the spatial

correlation values between the outputs of the antennas in the array can be used to

generate the spatial correlation values between the outputs of the antennas in the

virtual array or difference co-array (which is uniform in this case) which gener-
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ally has more antennas and a larger aperture than the actual array. This enhances

the degrees of freedom and allows [42] and [41] to estimate the direction of arrival

(DOA) of more uncorrelated sources than sensors. The minimum redundancy array

(MRA) of [12] can also be used to produce this feature but in a more optimal way.

This has been exploited by [10] to perform compressive angular power spectrum

reconstruction. The advantage offered by the nested and coprime arrays over the

MRA however, is the possibility to derive a closed-form expression for the array

geometry and the achievable number of correlation values in the resulting uniform

difference co-array. In the aforementioned concept, the spatial compression is per-

formed in the sense that we select a subset of antennas from a uniform linear array

(ULA).

In this paper, we jointly reconstruct both the frequency-domain and angular-

domain power spectrum using compressive samples. We use a ULA as the un-

derlying array and activate only some of its antennas leading to a spatial-domain

compression. The received signal at each active antenna is then sampled at sub-

Nyquist-rate using multi-coset sampling. Next, we compute all the correlation

values between the resulting sub-Nyquist rate samples at all active antennas both

in the time domain and the spatial domain and use them to reconstruct the two-

dimensional (2D) power spectrum matrix where each row gives the power spec-

trum in the frequency domain for a given angle and where each column contains

the power spectrum in the angular domain for a given frequency. Further, we can

estimate the DOA of the sources active at each frequency by locating the peaks in

the angular power spectrum. This 2D power spectrum reconstruction can be done

for more uncorrelated sources than active sensors without any sparsity constraint

on the true power spectrum.

6.2 Preliminaries

First, consider a ULA having Ns antennas receiving signals from K uncorrelated

WSS sources. We assume that the distance between the sources and the ULA is

large enough compared to the length of the ULA and thus the wave incident on the

ULA is assumed to be planar and the sources can be assumed as point sources. We

also assume that the inverse of the bandwidth of the aggregated incoming signals is

larger than the propagation delay across the ULA, which allows us to represent the

delay between the antennas as a phase shift. Based on these assumptions, we can
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write the ULA output as

x(t) =

Q
∑

q=1

a(θq)sq(t) + n(t) = As(t) + n(t) (6.1)

where x(t) is the Ns × 1 output vector containing the received signal at the Ns

antennas of the ULA, n(t) is the Ns × 1 additive white Gaussian noise vector,

s(t) = [s1(t), s2(t), . . . , sQ(t)]
T is the Q×1 extended source vector with sq(t) the

incoming signal from the investigated angle θq, and A = [a(θ1),a(θ2), . . . ,a(θQ)]

is the Ns×Q extended array manifold matrix with a(θq) the Ns×1 array response

vector containing the phase shifts experienced by sq(t) at each element of the ULA.

Note that {θq}Qq=1 is known and might only approximately contain the actual DOAs

of the K sources. We generally assume that n(t) and s(t) are uncorrelated, that

the impact of the wireless channel has been taken into account in s(t), and that the

noises at different antennas are uncorrelated with variance σ2
n, i.e., E[n(t)nH(t)] =

σ2
nINs , with INs the Ns ×Ns identity matrix. We consider the first element of the

ULA as a reference point and express the array response vector a(θq) as a(θq) =

[1, a(θq)
d, a(θq)

2d, . . . , a(θq)
(Ns−1)d]T , where a(θq) = exp (j2πsin(θq)) and d is

the distance between two consecutive antennas in wavelengths, which is set to d ≤
0.5 in order to prevent spatial aliasing.

In order to simplify the further analysis, we introduce x[m] = x(mT ), n[m] =

n(mT ), and s[m] = s(mT ) as a digital representation of x(t), n(t), and s(t), re-

spectively, where 1/T is the Nyquist sampling rate at every ADC associated with

each antenna. We then collect the output vectors x[m] at Nt consecutive sam-

ple indices into the Ns × Nt matrix X[n], for n = 0, 1, . . . , Nn−1, as X[n] =

[x[nNt],x[nNt + 1], . . . ,x[(n+ 1)Nt − 1]] and write X[n] as

X[n] = AS[n] +N[n] (6.2)

where N[n] is similarly defined as X[n] and the Q × Nt matrix S[n] is given by

S[n] = [s[nNt], s[nNt + 1], . . . , s[(n + 1)Nt − 1]]. Let us also write the Q × 1

vector s[nNt + i] as s[nNt + i] = [s1[nNt + i], s2[nNt + i], . . . , sQ[nNt + i]]T

with sq[m] = sq(mT ) a digital representation of sq(t).

6.3 Time-Domain and Spatial-Domain Compression

In this section, we introduce the compression operations on the output matrix X[n]

both in the spatial domain and time domain. The spatial-domain compression is
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implemented by activating only Ms out of Ns available antennas in the ULA lead-

ing to a possibly non-ULA of less active antennas than sources. Further, in the

receiver branches associated with the Ms active antennas, time-domain compres-

sion is performed by sampling the received analog signal at sub-Nyquist-rate using

the multi-coset sampling principle discussed in [38], which can be implemented us-

ing the practical sampling device proposed in [94]. Here, the multi-coset sampling

process is represented by selecting only Mt out of Nt time samples.

We first introduce the Ms × Ns spatial-domain selection matrix Cs, which is

formed by selecting Ms rows of INs . Here, the indices of the selected rows of INs

used to construct Cs correspond to the indices of the Ms active antennas selected

from the Ns available antennas in the ULA. Based on (6.2), the Ns × Nt matrix

X[n] is then compressed in the spatial-domain by Cs leading to the Ms×Nt matrix

Y[n] = CsX[n]
∆
= BS[n] +M[n] (6.3)

where Y[n] = [y[nNt],y[nNt + 1], . . . ,y[(n + 1)Nt − 1]] with y[nNt + l] =

[y1[nNt + l], y2[nNt + l], . . . , yMs [nNt + l]]T , B = [b(θ1),b(θ2), . . . ,b(θQ)] is

the Ms×Q array response matrix with b(θq) = Csa(θq) the Ms×1 array response

vector associated with the Ms activated antennas, the Ms×Nt matrix M[n] is given

by M[n] = [m[nNt],m[nNt + 1], . . . ,m[(n+ 1)Nt − 1]], and m[m] is the Ms×
1 discrete noise vector given by m[m] = Csn[m]. Observe that m[m] generally

has correlation matrix E
[

m[m]mH [m′]
]

= σ2
nIMsδ[m −m′]. The next step is to

introduce the Mt × Nt time-domain selection matrix Ct formed by selecting Mt

rows of the Nt ×Nt identity matrix INt , and further compress Y[n] in (6.3) in the

time domain, leading to the Ms ×Mt matrix

Z[n] = Y[n]CT
t . (6.4)

6.4 Power Spectrum Reconstruction

Denote the j-th row of Z[n] and Y[n] in (6.4) as zTj [n] and yT
j [n], respectively, and

write the Mt×1 vector zj [n] in terms of its elements as zj [n] = [zj,1[n], zj,2[n], . . . ,

zj,Mt [n]]
T and the Nt×1 vector yj [n] as yj [n] = [yj [nNt], yj [nNt+1], . . . , yj [(n+

1)Nt − 1]]T . This allows us to rewrite the time-domain compression in (6.4) in

terms of the row vectors of Z[n] and Y[n], i.e.,

zj [n] = Ctyj [n], j = 1, 2, . . . ,Ms. (6.5)
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Using (6.5), our next step is to calculate the correlation matrix between zi[n] and

zj [n] for all i, j = 1, 2, . . . ,Ms as

Rzi,zj = E
[

Ctyi[n]yj [n]
HCH

t

]

= CtRyi,yjC
H
t . (6.6)

In practice, the expectation operator in (6.6) can be estimated by taking an average

over Nn available matrices Z[n]. After cascading all columns of Rzi,zj into the

M2
t × 1 vector vec(Rzi,zj ) and by taking into account the fact that Ct is a real

matrix, we can express vec(Rzi,zj ) based on (6.6) as

vec(Rzi,zj ) = (Ct ⊗Ct)vec(Ryi,yj ) (6.7)

where vec(.) is the operator that cascades all columns of a matrix into a single

column vector and ⊗ represents the Kronecker product operation. Up to this stage,

let us recall that {sq(t)}Qq=1 in (6.1) are WSS processes since we have K WSS

sources. Based on this fact, as well as (6.3), it is obvious that the elements of

yj [n] in (6.5) also form a WSS sequence. This means that the Nt × Nt matrix

Ryi,yj in (6.7) has a Toeplitz structure allowing us to condense Ryi,yj into the

(2Nt − 1) × 1 vector ryi,yj = [ryi,yj [0], ryi,yj [1], . . . , ryi,yj [Nt − 1], ryi,yj [1 −
Nt], . . . , ryi,yj [−1]]T and write

vec(Ryi,yj ) = Tryi,yj (6.8)

where T is a special N2
t × (2Nt − 1) repetition matrix whose i-th row is given by

the ((i − 1 + (Nt − 2)
⌊

i−1
Nt

⌋

) mod (2Nt − 1) + 1)-th row of the identity matrix

I2Nt−1. By combining (6.7) and (6.8), we obtain

vec(Rzi,zj ) = (Ct ⊗Ct)Tryi,yj = Rctryi,yj (6.9)

where Rct = (Ct⊗Ct)T is an M2
t × (2Nt−1) matrix. Observe that it is possible

to reconstruct ryi,yj from vec(Rzi,zj ) in (6.9), for all i, j = 1, 2, . . . ,Ms, using

least squares (LS) if M2
t ≥ 2Nt − 1 and Rct has full column rank.

The next step is to figure out the relationship between {ryi,yj}Ms

i,j=1 in (6.9) and

the extended source matrix S[n] in (6.3). By taking into account the fact that every

row of Y[n] and S[n] is a WSS sequence and the assumption that the extended

source vector s[m] and the noise vector m[m] are uncorrelated, it is straightforward

to find that the correlation matrix between y[nNt + l] and y[nNt + l′] is given by

Ry[l − l′] = BRs[l − l′]BH + σ2
nIMsδ[l − l′] (6.10)
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for l, l′ = 0, 1, . . . , Nt− 1. Since the point sources are assumed to be uncorrelated,

the elements of s[m] are also uncorrelated and thus the Q×Q matrix Rs[l − l′] is

a diagonal matrix. By exploiting this fact and stacking all columns of the Ms×Ms

matrix Ry[l − l′] in (6.10) into the M2
s × 1 vector vec(Ry[l − l′]), we obtain

vec(Ry[l − l′]) = (B∗ ⊙B)diag(Rs[l − l′])

+ σ2
nvec(IMs)δ[l − l′], l, l′ = 0, 1, . . . , Nt − 1, (6.11)

where ⊙ represents the Khatri-Rao product operation. Let us now investigate the

relationship between the elements of {ryi,yj}Ms

i,j=1 in (6.9) and vec(Ry[l − l′])

in (6.11). We can find that {vec(Ry[l− l′])}Nt−1
l,l′=0 is actually related to {ryi,yj}Ms

i,j=1

as vec(Ry[l− l′]) = [ry1,y1 [l− l′], ry2,y1 [l− l′], . . . , ryMs ,yMs
[l− l′]]T . Hence, we

can use the elements of the reconstructed {ryi,yj}Ms

i,j=1 in (6.9) to form {vec(Ry[l−
l′])}Nt−1

l,l′=0 in (6.11) and then use them to reconstruct {diag(Rs[l−l′])}Nt−1
l,l′=0 in (6.11),

which can be performed using LS if M2
s ≥ Q and B∗ ⊙B has full column rank.

If we combine the Q×1 vectors {diag(Rs[l− l′])}Nt−1
l,l′=0 as R̄s = [diag(Rs[0]),

diag(Rs[1]), . . . , diag(Rs[Nt− 1]), diag(Rs[1−Nt]), . . . , diag(Rs[−1])], we can

observe that the q-th row of R̄s actually corresponds to the temporal auto-correlation

of the incoming signal from the investigated angle θq, which can be written as rTsq =

[rsq [0], rsq [1], . . . , rsq [Nt − 1], rsq [1 − Nt], . . . , rsq [−1]]. By defining F2Nt−1 as

the (2Nt−1)×(2Nt−1) discrete Fourier transform (DFT) matrix, we can compute

the power spectrum of sq[m] as psq = F2Nt−1rsq , where psq is the (2Nt − 1)× 1

power spectrum vector of the incoming signal from the investigated angle θq. By

combining {psq}Qq=1 into the Q × (2Nt − 1) matrix P̄s = [ps1 ,ps2 , . . . ,psQ ]
T ,

we can write

P̄s = R̄sF2Nt−1. (6.12)

Note that P̄s in (6.12) can be perceived as a 2D power spectrum matrix where every

row of P̄s gives the power spectrum in the frequency-domain for a given investi-

gated angle and every column of P̄s provides the power spectrum information in

the angular domain for a given frequency.

6.5 Construction of the Compression Matrices

Recall that the 2D power spectrum matrix P̄s can be reconstructed from vec(Rzi,zj )

in (6.9), which contains the cross-correlations between the rows of the measure-

ment matrix Z[n] in (6.4), by solving (6.9) and (6.11) using LS and then applying

the DFT on the rows of the resulting matrix R̄s. We now discuss the choice of
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the selection matrix Ct and the extended array response matrix B that ensure the

uniqueness of the LS solution of (6.9) and (6.11), respectively.

We first investigate the choice of Ct that results in a full column rank matrix

Rct . Since the rows of Ct and T in (6.9) are formed by selecting the rows of the

identity matrix, it is clear that every row of both Ct ⊗ Ct and T only contains a

single one and zeros elsewhere. This fact guarantees that each row of Rct has only

a single one and thus, in order to ensure the full column rank condition of Rct ,

we need to ensure that each column of it has at least a single one. This problem

actually has been encountered and solved in [94] where the solution is to construct

Ct by selecting the rows of INt based on the so-called minimal length-(Nt − 1)

sparse ruler problem. In practice, this results in a multi-coset sampling procedure

called the minimal sparse ruler sampling [94].

Next, we examine the choice of B, which boils down to the selection of the

activated antennas in the ULA and the investigated angles {θq}Qq=1. Let us write

B∗ ⊙B in terms of {b(θq)}Qq=1 as

B∗ ⊙B = [b∗(θ1)⊗ b(θ1), . . . ,b
∗(θQ)⊗ b(θQ)] (6.13)

and b(θq) in terms of a(θq) as

b(θq) =
[

a(θq)
d1 , a(θq)

d2 , . . . , a(θq)
dMs

]T
(6.14)

where di is the distance in wavelengths between the i-th active antenna and the ref-

erence antenna of the ULA defined in Section 6.2. It is clear from (6.13) and (6.14)

that the q-th column of B∗ ⊙ B contains the elements exp (j(di − dj)2πsin(θq)),

for i, j = 1, 2, . . . ,Ms. While our task to find general design conditions to guar-

antee the full column rank of B∗ ⊙B is not trivial, the following theorem suggests

one possible way to achieve a full column rank B∗ ⊙B.

Theorem 6.5.1. The matrix B∗ ⊙ B has full column rank if: 1) There exist Q

distinct values of θq satisfying −π
2 < {θq}Qq=1 ≤ π

2 , and 2) There exists an integer

Nv ≥ Q such that {di − dj}Ms

i,j=1 contains an arithmetic sequence of Nv terms

having a difference of d ≤ 0.5 between each two consecutive terms.

The proof of Theorem 6.5.1 can be found in Appendix 6.A. The second condition

indicates that there exist Nv distinct rows from B∗⊙B that form the array response

matrix of a virtual ULA with Nv antennas, which can only be achieved for Nv ≤
2Ns − 1. This second condition also implies that we have more antennas in this

virtual ULA than investigated angles. Some possible ways to satisfy Theorem 6.5.1
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is to select the Ms active antennas from the Ns antennas in the ULA based on the

MRA discussed in [12] (which also obeys the minimal sparse ruler problem [10]),

the two-level nested array [42], or the coprime array [41]. For the MRA and the

two-level nested array, Theorem 6.5.1 can be satisfied even for Nv = 2Ns−1. Note

that although the Q different values of θq can be chosen in an arbitrary fashion,

they should not be too close to each other, since otherwise the resulting B∗ ⊙ B

might be ill-conditioned. Theorem 6.5.1 also implies that the maximum number of

detectable sources is upper bounded by K ≤ 2Ns − 1 since we cannot detect more

than Q sources. Apart from satisfying Theorem 6.5.1, another way to achieve a full

column rank B∗ ⊙B is suggested by Theorem 6.5.2.

Theorem 6.5.2. The matrix B∗ ⊙B has full column rank if:

1) {(di − dj)mod Q
2 }

Ms

i,j=1 has at least Q different values and 2) the grid of inves-

tigated angles {θq}Qq=1 is designed based on the inverse sinusoidal angular grid

where

θq = sin−1

(

2

Q

(

q − 1−
⌈

Q− 1

2

⌉))

. (6.15)

The proof for this theorem can be found in Appendix 6.B. Note that the first

condition from Theorem 6.5.2 is less strict than the second condition from The-

orem 6.5.1. A good option is to use a configuration satisfying Theorem 6.5.1 with

Nv = 2Ns − 1 and d = 0.5, and to use (6.15) with Q = 2Ns − 1. This will not

only ensure that the resulting M2
s × (2Ns−1) matrix B∗⊙B has full column rank

but also that there exists a (2Ns − 1) × (2Ns − 1) submatrix from B∗ ⊙ B that

forms a row-permuted version of the (2Ns − 1)× (2Ns − 1) inverse DFT matrix,

meaning that B∗ ⊙B is well-conditioned.

6.6 Numerical Study

In this section, we examine the proposed approach with some numerical study. We

consider a ULA having Ns = 36 antennas as the underlying array and construct

an MRA of active antennas by selecting the antenna indices based on the minimal

length-35 sparse ruler problem discussed in [94, 10]. This leads to Ms = 10 acti-

vated antennas with {dj}10j=1 = {0, d, 4d, 10d, 16d, 22d, 28d, 30d, 33d, 35d} where

d is set to d = 0.5. The set of investigated angles {θq}Qq=1 is set according to (6.15)

with Q = 2Ns − 1 = 71. In the receiver branch corresponding to each active an-

tenna, the time-domain compression rate of Mt/Nt = 0.4048 is obtained by setting

Nt = 84 and Mt = 34. We construct the 34× 84 selection matrix Ct by first solv-

ing the minimal length-83 sparse ruler problem which gives the indices of the 16
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rows of INt that have to be selected. The selection of these 16 rows will ensure that

the resulting matrix Rct in (6.9) has at least a single one in each column. The ad-

ditional 18 rows of Ct are then randomly selected from the remaining rows of INt

that have not been selected. We simulate the case when we have more sources than

active antennas by generating K = 12 uncorrelated sources having DOAs with 9

degrees of separation, i.e., the set of DOAs is given by {−540,−450, . . . , 450}.

The sources produce complex baseband signals whose frequency bands are given

in Table 6.1 and which are generated by passing circular complex zero-mean Gaus-

sian i.i.d. noise with variance σ2 = 5 into a digital filter of length Nt = 84 with

the unit-gain passband of the filter for each source set according to Table 6.1. This

will ensure that the true auto-correlation sequence for each source is limited to

−Nt + 1 ≤ m ≤ Nt − 1. We assume a spatially and temporally white noise with

variance σ2
n = 5 and set the number of measurement matrices Z[n] to Nn = 5951.

Table 6.1: The frequency band occupied by the sources

Source Actual DOA Occupied frequency band

1 −540 [−0.275π,−0.2π]

2 −450 [−0.8π,−0.725π]

3 −360 [−0.35π,−0.275π]

4 −270 [0.35π, 0.425π]

5 −180 [0.875π, 0.95π]

6 −90 [0.05π, 0.125π]

7 00 [−0.95π,−0.875π]

8 90 [−0.65π,−0.575π]

9 180 [−0.425π,−0.35π]

10 270 [0.575π, 0.65π]

11 360 [0.125π, 0.2π]

12 450 [0.5π, 0.575π]

Fig. 6.1 illustrates the estimate of the power spectrum as a function of the fre-

quency and the investigated angles. It is clear that the 12 uncorrelated sources can

generally be detected. We can find the DOA estimates by locating the peak of this

spectrum though the actual DOAs might not fall on top of the defined investigated

angles. For a given DOA estimate, we can locate the active frequency band of the

corresponding source together with the value of the power spectrum estimate. The

top view of Fig. 6.1, which is provided by Fig. 6.2, gives a much clearer picture of



6.A. Proof of Theorem 6.5.1 163

the quality of the estimate. We can easily compare this figure with the data provided

in Table 6.1. Observe that the estimate of the DOA, the power spectrum, as well as

the active frequency band of the sources is quite satisfactory except for the sources

with DOAs −90 and 90. For these two sources, it is apparent from Fig. 6.2 that

the impact of the grid mismatch effect is quite significant and their power spectrum

estimates seem to have been distributed among the two nearest grid points. Note

that this 2D power spectrum estimate can be produced without applying any spar-

sity contraint on the true power spectrum, but can of course be improved if such a

constraint is used.

Appendix

6.A Proof of Theorem 6.5.1

The second requirement of Theorem 6.5.1 implies that there exists a Q × Q ma-

trix B́ = [b́(θ1), b́(θ2), . . . , b́(θQ)], which is a submatrix of B∗ ⊙ B in (6.13),

that forms the array response matrix of a virtual ULA of Q antennas with b́(θq)

given by b́(θq) = [a(θq)
d̄, a(θq)

d̄+d, . . . , a(θq)
d̄+(Q−1)d]T , where d̄ gives the dis-

tance between the first antenna in the virtual ULA and the reference antenna in the

underlying ULA in Section 6.2. Hence, it is clear that B́ is a column-wise Vander-

monde matrix. From the well-known properties of a column-wise Vandermonde

matrix, B́ has full column rank due to the first requirement of Theorem 6.5.1 and

since d ≤ 0.5. It is then trivial to show that B∗ ⊙B also has full column rank.

6.B Proof of Theorem 6.5.2

Based on (6.13) and (6.14) and the fact that the inverse sinusoidal angular grid

in (6.15) is used, we can write B∗ ⊙ B in terms of its row vectors, i.e., B∗ ⊙
B = [β(d1 − d1),β(d2 − d1), . . . ,β(dMs − dMs)]

T , with β(di − dj) given by

β(di − dj) = [e
j 4π

Q
(di−dj)(−⌈Q−1

2 ⌉), . . . , ej
4π
Q

(di−dj)(−1)
, 1, e

j 4π
Q

(di−dj), . . .

, e
j 4π

Q
(di−dj)(Q−1−⌈Q−1

2 ⌉)]T . Observe that B∗ ⊙ B is a row-wise Vandermonde

matrix since the elements of β(di − dj) are ordered according to geometric pro-

gression. In order to ensure that B∗ ⊙B has full column rank, we need Q distinct

values of 4π
Q (di − dj) modulo 2π which is guaranteed by the first requirement of

Theorem 6.5.2.
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Figure 6.1: The power spectrum estimate (in watt/radian/sample) as a function of

frequency (radian/sample) and angle (degree).
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Figure 6.2: The top view of Fig. 6.1.
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Abstract

We introduce a new cyclic spectrum estimation method for wide-sense cyclosta-

tionary (WSCS) signals sampled at sub-Nyquist rate using non-uniform sampling.

We exploit the block Toeplitz structure of the WSCS signal correlation matrix and

write the linear relationship between this matrix and the correlations of the sub-

Nyquist rate samples as an overdetermined system. We find the condition under

which the system matrix has full column rank allowing for least-squares recon-

struction of the WSCS signal correlation matrix from the correlations of the com-

pressive measurements. We also evaluate the case when the support of the WSCS

signal correlation is limited and look at a special case where each selection matrix

is restricted to either an identity matrix or an empty matrix. In the latter case, we

can connect the full column rank condition of the system matrix with a circular

sparse ruler.

7.1 Introduction and Related Works

Many researches have been done in the field of compressive sampling a.k.a. sub-

Nyquist rate sampling due to the desire to relax the requirements on the analog-to-

digital converters while maintaining the possibility for signal reconstruction with

no or little information loss. This is possible under the constraint that the signal

is sparse in a certain basis [5, 38]. Some applications, such as wideband spectrum

sensing for cognitive radio networks, however, require perfect reconstruction of

only the power spectrum or cyclic spectrum, instead of the signal itself. Perfect

power spectrum reconstruction from sub-Nyquist rate samples has been shown to

be possible for a wide-sense stationary (WSS) signal [94, 43] and for a multiband

signal with uncorrelated spectra at different bands [44]. This can be performed

even without applying a sparsity constraint on the actual power spectrum.

Since a stationary process can be perceived as a special case of a cyclostation-

ary process, which is a process whose statistical characteristics vary periodically

with time, the reconstruction of the power spectrum of a WSS signal can be treated

as a special case of the reconstruction of the cyclic spectrum of a wide-sense cyclo-

stationary (WSCS) signal. However, while compressively reconstructing the power

spectrum of a WSS signal without applying a sparsity constraint on the power spec-

trum is possible due to the Toeplitz structure in the temporal correlation matrix, it

is challenging to find a special structure in the WSCS signal correlation matrix that

can be exploited to perform compression. This complicates the cyclic spectrum
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reconstruction from sub-Nyquist rate samples of a WSCS signal and forces [45]

to assume a sparse two-dimensional cyclic spectrum. A similar problem is found

in [97], which focuses on only a real multiband signal and arrives at the assump-

tion that the correlation matrix of the entries at different bands has nonzero values

only at the diagonal and anti-diagonal elements. A different approach in [11] views

the compressive measurements as random linear projections of the original signal

and sets the span of the random linear projections equal to an integer multiple of

the cyclic period. This allows [11] to exploit the block Toeplitz structure in the

correlation matrix and to perform compression yet to present their reconstruction

problem as an overdetermined system. The work of [11] does not focus on multi-

coset or non-uniform sampling and thus, it does not attempt to find the condition

of the system matrix that allows for a least-squares (LS) solution for the overdeter-

mined system. In this paper, we also set the span of the random linear projections

equal to an integer multiple of the cyclic period but we focus only on non-uniform

sampling. We express the correlations of the sub-Nyquist rate samples as a linear

function of the correlation matrix of the corresponding Nyquist-rate samples. We

find the condition for the system matrix to have full rank, which enables the LS

reconstruction of the correlation matrix of the WSCS signal from the correlations

of the compressive measurements. The cyclic spectrum can then be estimated from

the reconstructed correlation matrix of the WSCS signal.

7.2 System Model and Compression

Let us consider a discrete WSCS signal x[t], where the autocorrelation sequence

rx[t, τ ] = E{x[t]x∗[t− τ ]} is periodic in t with a period of T . The cyclic autocor-

relation sequence and the cyclic power spectrum of x[t] are then respectively given

by

r̃x[f, τ ] =
1

T

T−1
∑

t=0

rx[t, τ ]e
−j2πf(t−τ/2)/T , (7.1a)

sx[f, φ) =
∞
∑

τ=−∞

r̃x[f, τ ]e
−j2πφτ , (7.1b)

with φ ∈ [0, 1) the frequency and f ∈ {0, 1, . . . , T − 1} the cyclic frequency. Note

that when x[t] is produced by Nyquist-rate sampling at a rate of fs Hz, f and φ

correspond to an actual cyclic frequency of f fs
T Hz and an actual frequency of φfs

Hz, respectively. We cascade T consecutive samples x[t] in x[n] = [x[nT ], x[nT+
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1], . . . , x[nT + T − 1]]T , which is a sequence of stationary vectors with T × T

correlation matrix sequence Rx[k] = E
{

x[n]xH [n− k]
}

= [rx[t, kT + t− τ ]]t,τ .

Note that a one-to-one mapping exists between rx[t, τ ] and Rx[k]. Next, we stack

N consecutive T × 1 stationary vectors x[n] into an NT × 1 vector x̃[ñ] as x̃[ñ] =

[xT [ñN ],xT [ñN +1], . . . ,xT [ñN +N − 1]]T . The NT ×NT correlation matrix

of x̃[ñ] at lag 0 is then given by Rx̃[0] = E[x̃[ñ]x̃H [ñ]], whose relationship to

Rx[k] is given by

Rx̃[0] =













Rx[0] Rx[−1] . . . Rx[−N + 1]

Rx[1] Rx[0] . . . Rx[−N + 2]
...

...
. . .

...

Rx[N − 1] Rx[N − 2] . . . Rx[0]













(7.2)

which has a block Toeplitz structure. This allows us to perform a temporal compres-

sion by introducing an M̃ × 1 vector ỹ[ñ] = [yT [ñN ],yT [ñN +1], . . . ,yT [ñN +

N − 1]]T , where y[ñN + n] is an Mn × 1 vector given by

y[ñN + n] = Cnx[ñN + n], n = 0, 1, . . . , N − 1, (7.3)

with M̃ =
∑N−1

n=0 Mn and Cn the Mn × T multi-coset sampling a.k.a. selection

matrix whose rows are obtained by selecting the Mn rows of the T × T identity

matrix IT . We can then write ỹ[ñ] as

ỹ[ñ] = C̃x̃[ñ], (7.4)

where C̃ is an M̃ × NT block diagonal matrix given by C̃ = diag{C0,C1, . . . ,

CN−1}. As we will show in Section 7.3, for a certain value of n, it is possible that

none of the rows of IT is selected to form Cn (i.e., Mn = 0). In this case, for that

particular n, y[ñN + n] = Cn = [ ], where [ ] is an empty matrix, as none of the

entries of x[ñN + n] is selected. Note from (7.4) that we take M̃ random linear

projections with a total span of NT (N times the period of the autocorrelation

sequence rx[t, τ ]) and attain compression by having M̃ < NT .

Observe that y[ñN+n] in (7.3) is generally not a sequence of stationary vectors

since Cn is generally different for different values of n. However, we can obtain

a sequence of stationary vectors by collecting y[ñN + n] at different values of ñ

for a given n. We define the Mn × Mn′ correlation matrix Ryn,n′
= E[y[ñN +

n]yH [ñN + n′]], which can be written, by introducing k = n− n′, as

Ryn,n−k
= CnRx[k]C

H
n−k. (7.5)
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In practice, the computation of Ryn,n−k
in (7.5) must be approximated by taking an

average over y[ñN+n] at different indices ñ. We aim to reconstruct Rx̃[0] in (7.2),

which is equivalent to reconstructing Rx[k] from {Ryn,n−k
}N−1+min(0,k)
n=max(0,k) in (7.5)

for k = 0,±1, . . . ,±(N − 1). Let us now take the realness of Cn into account,

stack the columns of Ryn,n−k
in (7.5) into an (MnMn−k)×1 vector vec(Ryn,n−k

),

and rewrite (7.5) as

vec(Ryn,n−k
) = (Cn−k ⊗Cn)vec(Rx[k]), (7.6)

where vec(.) is the operator that stacks all columns of a matrix into a column vector

and ⊗ denotes the Kronecker product operation. In the event where we have either

Cn−k = [ ] (Mn−k = 0) or Cn = [ ] (Mn = 0) in (7.6) for a particular n,

the corresponding vec(Ryn,n−k
) and Cn−k ⊗ Cn are given by vec(Ryn,n−k

) =

Cn−k ⊗ Cn = [ ]. Stacking vec(Ryn,n−k
) in (7.6) in ascending order of n, for

all n = max(0, k), . . . , N − 1 + min(0, k), into a γk × 1 vector ry,k with γk =
∑N−1+min(0,k)

n=max(0,k) MnMn−k, we can then express ry,k as

ry,k =













Cmax(−k,0) ⊗Cmax(0,k)

Cmax(−k,0)+1 ⊗Cmax(0,k)+1
...

CN−1+min(−k,0) ⊗CN−1+min(0,k)













vec(Rx[k])

= Ψkvec(Rx[k]), k = 1−N, . . . , N − 2, N − 1. (7.7)

7.3 Perfect Reconstruction

Observe that we can reconstruct vec(Rx[k]) in (7.7) from ry,k using LS as long

as the γk × T 2 matrix Ψk has full column rank. Hence, Rx̃[0] in (7.2) can be

reconstructed from {ry,k}N−1
k=1−N using LS as long as {Ψk}N−1

k=1−N all have full

column rank. In order to simplify the discussion, we consider the following remark.

Remark 7.3.1. The full column rank condition of Ψk can be achieved only if we

have γk ≥ T 2. In addition, observe in (7.7) that each row of Ψk has only a single

one in one entry and zeros elsewhere since the rows of Cn in (7.6) are selected

from the rows of IT . Hence, Ψk will have full column rank if and only if each of its

columns has at least a single one.

Let us now introduce the following definition.
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Definition 7.3.1. Define Cn as the set containing the indices of the rows of IT used

in Cn. The set Cn′,n is then defined as Cn′,n = {(i, j)|∀i ∈ Cn′ , j ∈ Cn}. Note that

we generally have Cn′,n 6= Cn,n′ .

We can then present the following lemma.

Lemma 7.3.1. One row of Cn′ ⊗Cn will have a one in the [(i− 1)T + j]-th entry

and zeros elsewhere, if and only if (i, j) ∈ Cn′,n, i.e., Cn′ contains the i-th row of

IT and Cn contains the j-th row of IT .

Proof. The proof directly follows from the property of the Kronecker product op-

eration.

Based on Lemma 7.3.1, the full column rank condition of Ψk in (7.7) is provided

by the following theorem.

Theorem 7.3.1. Ψk in (7.7) has full column rank if and only if

Γk ≡
N−1+min(0,k)

⋃

n=max(0,k)

Cn−k,n = {(1, 1), (1, 2), . . . , (1, T ),

(2, 1), (2, 2), . . . , (T, T )}. (7.8)

Proof. Recall from Lemma 7.3.1 that if we have (i, j) ∈ Cn−k,n, Cn−k ⊗ Cn

will have a one in the [(i− 1)T + j]-th column. We can then observe that satis-

fying (7.8) is equivalent to ensuring that the [(i− 1)T + j]-th column of at least

one of the matrices {Cn−k ⊗ Cn}N−1+min(0,k)
n=max(0,k) contains a one in one entry and

zeros elsewhere for all i, j = 1, 2, . . . , T . By taking the structure of Ψk in (7.7)

into account, satisfying (7.8) also guarantees that every column of Ψk has at least

a single one, which proves the sufficiency part of the theorem due to Remark 7.3.1.

To prove the necessity part, assume that Ψk in (7.7) has full column rank but there

is an (a, b) with a, b ∈ {1, 2, . . . , T} such that (a, b) /∈ Γk. Based on (7.8) and

Lemma 7.3.1, this means that none of the matrices {Cn−k ⊗Cn}N−1+min(0,k)
n=max(0,k) has

a one in the [(a− 1)T + b]-th column. If we take the structure of Ψk in (7.7) into

account, this implies that the [(a− 1)T + b]-th column of Ψk only contain zeros.

Using Remark 7.3.1, this indicates that the full column rank condition of Ψk is

violated, which contradicts our initial assumption.

Consider the case of k = N − 1 (we have ΨN−1 = C0 ⊗ CN−1 in (7.7)) and

k = −N + 1 (we have Ψ1−N = CN−1 ⊗ C0 in (7.7)). Observe that the size

of both ΨN−1 and Ψ1−N is M0MN−1 × T 2. For this specific case, we have the

following theorem.
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Theorem 7.3.2. ΨN−1 and/or Ψ1−N will have full column rank if and only if

C0 = CN−1 = IT .

Proof. The sufficiency part of this theorem is already clear as having C0 = CN−1 =

IT leads to ΨN−1 = Ψ1−N = IT 2 . The necessity part is shown for the full

column rank condition of ΨN−1 by considering Theorem 7.3.1, which requires

C0,N−1 = {(1, 1), (1, 2), . . . , (1, T ), (2, 1), (2, 2), . . . , (T, T )}. This is identical to

requiring C0 = CN−1 = {1, 2, . . . , T} due to Definition 7.3.1. The proof is con-

cluded for ΨN−1. The proof for Ψ1−N follows the same steps.

Since Theorem 7.3.2 requires us to have C0 = CN−1 = IT , our task is to de-

sign {Cn}N−2
n=1 based on Theorem 7.3.1. One specific case occurs when we restrict

Cn to either Cn = IT or Cn = [ ], for each n = 1, 2, . . . , N − 2. In this case, Ψk

in (7.7) must contain at least one self Kronecker product of IT (IT ⊗IT ) to preserve

its full column rank condition. More precisely, for k ∈ {1−N, . . . , N−1}, we need

at least a pair of n, n′ ∈ {0, 1, . . . , N − 1} with n − n′ = k and Cn = Cn′ = IT

to ensure the full column rank condition of Ψk. At this stage, let us review the

concept of a linear sparse ruler discussed in [94, 100, 70].

Definition 7.3.2. A length-(N − 1) linear sparse ruler is defined as a set P ⊂
{0, 1, . . . , N − 1} such that {|p− p′||∀p, p′ ∈ P} = {0, 1, . . . , N − 1}. It is called

minimal if no other linear sparse ruler of length N − 1 exists with less elements.

Using Definition 7.3.2, it is easy to show that the full column rank condition of

{Ψk}N−1
k=1−N , when we restrict Cn to either Cn = IT or Cn = [ ] for each n,

follows the following theorem.

Theorem 7.3.3. Define W as the number of sampling matrices {Cn}N−1
n=0 that are

set to IT , i.e., Cnw = IT , for w = 0, 1, . . . ,W − 1. The full column rank of

all {Ψk}N−1
k=1−N is ensured if and only if the set W = {nw|nw ∈ {0, 1, . . . , N −

1}, w = 0, 1, . . . ,W − 1} is a linear sparse ruler.

Under the constraint that we have either Cn = IT or Cn = [ ] for each n =

0, 1, . . . , N − 1, it is of interest to obtain the strongest possible compression rate

M̃/NT . This is equivalent to minimizing the cardinality of W in Theorem 7.3.3

under the condition that W is a length-(N − 1) linear sparse ruler. This boils

down to a length-(N − 1) minimal linear sparse ruler problem [94, 100], whose

solution minimizes M̃/NT under the aforementioned constraint while maintain-

ing the identifiability of {vec(Rx[k])}N−1
k=1−N in (7.7). Once Rx̃[0] in (7.2) is re-

constructed, we can reconstruct the cyclic autocorrelation sequence r̃x[f, τ ] from

Rx̃[0] using (7.1a) and the cyclic power spectrum sx[f, φ) from r̃x[f, τ ] using (7.1b).
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7.4 Limited Correlation Support

Let us now assume that the support of Rx[k] in (7.5) is limited to 1 − N ≤ k ≤
N − 1 and that the elements of Rx[k] are all close to 0 for |k| ≥ N . In addition,

unlike in the previous sections, we also exploit the correlation between ỹ[ñ] in (7.4)

and its neighboring blocks ỹ[ñ+ 1] and ỹ[ñ− 1]. While we have written Ryn,n−k

in (7.5) as Ryn,n−k
= E[y[ñN + n]yH [ñN + n − k]] we can now also write it,

for example, as Ryn,n−k
= E[y[ñN + n]yH [(ñ − 1)N + n − k +N ]] for k > 0

or as Ryn,n−k
= E[y[ñN + n]yH [(ñ + 1)N + n − k − N ]] for k < 0. By

considering (7.3), we can now also rewrite (7.5) as

Ryn,n−k
= CnRx[k]C

H
(n−k) mod N , (7.9)

with n mod N the remainder of the integer division n/N . We stack the columns

of Ryn,n−k
into vec(Ryn,n−k

) as in Section 7.2 but we now cascade vec(Ryn,n−k
),

for all n = 0, 1, . . . , N − 1, in increasing order of n into a γ̃k × 1 vector r̃y,k with

γ̃k =
∑N−1

n=0 MnM(n−k) mod N . We can then express r̃y,k as

r̃y,k =













C(−k) mod N ⊗C0

C(1−k) mod N ⊗C1
...

C(N−1−k) mod N ⊗CN−1













vec(Rx[k])

= Ψ̃kvec(Rx[k]), k = 1−N, . . . , N − 2, N − 1. (7.10)

We can again reconstruct vec(Rx[k]) from r̃y,k in (7.10) using LS where the con-

dition that ensures a full column rank Ψ̃k in (7.10) can be found by following the

procedure in Section 7.3. By applying Remark 7.3.1 to Ψ̃k, using Definition 7.3.1

as well as Lemma 7.3.1, and following an analysis similar to the proof of Theo-

rem 7.3.1, we can find that Ψ̃k in (7.10) has full column rank if and only if

Γ̃k ≡
N−1
⋃

n=0

C(n−k) mod N,n = {(1, 1), (1, 2), . . . , (1, T ),

(2, 1), (2, 2), . . . , (T, T )}. (7.11)

It is interesting to observe that, for this limited correlation support case, we do not

have any condition similar to Theorem 7.3.2.

We again focus on the case where Cn is restricted to either Cn = IT or Cn =

[], for each n = 0, 1, . . . , N−1. In order to maintain the full column rank condition
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of Ψ̃k in (7.10), Ψ̃k must contain at least one self Kronecker product of IT , which

is equivalent, for each k ∈ {1−N, . . . , N − 1}, to having at least a pair of n, n′ ∈
{0, 1, . . . , N − 1} with (n − n′) mod N = k and Cn = Cn′ = IT . We now look

at the concept of a circular sparse ruler discussed in [100].

Definition 7.4.1. A circular sparse ruler of length N − 1 is defined as a set Q ⊂
{0, 1, . . . , N − 1} such that {(q − q′) mod N|∀q, q′ ∈ Q} = {0, 1, . . . , N − 1}. It

is called minimal if no other circular sparse ruler of length N − 1 exists with less

elements.

Using Definition 7.4.1, it is obvious that the full column rank condition of {Ψ̃k}N−1
k=1−N ,

when we restrict {Cn}N−1
n=0 to either Cn = IT or Cn = [ ], follows the following

theorem.

Theorem 7.4.1. Recall from Theorem 7.3.3 that W = {nw|nw ∈ {0, 1, . . . , N −
1}, w = 0, 1, . . . ,W − 1} with {Cnw}W−1

w=0 = IT . The full column rank of all

{Ψ̃k}N−1
k=1−N in (7.10) is guaranteed if the set W is a circular sparse ruler.

Again, if we restrict Cn to either Cn = IT or Cn = [ ], for each n = 0, 1, . . . , N −
1, the best compression M̃/NT is obtained by minimizing the cardinality of W in

Theorem 7.4.1 under the condition that W is a length-(N −1) circular sparse ruler,

which boils down to a length-(N − 1) minimal circular sparse ruler problem [100].

7.5 Selection Matrix Construction

7.5.1 General Case

We focus on the formation of {Cn}N−1
n=0 for the general case discussed in Sec-

tions 7.2 and 7.3. Recall that Theorem 7.3.2 requires us to have C0 = CN−1 = IT

to obtain full column rank ΨN−1 and Ψ1−N . Also note from (7.7) that, for a

larger k, less number of matrices {Cn}N−1
n=0 are contained in Ψk. It is thus rea-

sonable to construct {Cn}N−1
n=0 by evaluating the rank condition of Ψk starting

from k = N − 1 to k = 0. Note from (7.7) that the full column rank of Ψ−k

is ensured once Ψk has full column rank. Let us start by evaluating ΨN−2 =

[(C0 ⊗CN−2)
T , (C1 ⊗CN−1)

T ]T = [(IT ⊗CN−2)
T , (C1 ⊗ IT )

T ]T . Assuming

CN−2 = {m1,m2, . . . ,mMN−2
} and C1 = {m̃1, m̃2, . . . , m̃M1}, we have from

Definition 7.3.1 C0,N−2 = {(1,m1), (1,m2), . . . , (1,mMN−2
), (2,m1), (2,m2),

. . . , (T,mMN−2
)} and C1,N−1 = {(m̃1, 1), (m̃1, 2), . . . , (m̃1, T ), (m̃2, 1), (m̃2, 2),

. . . , (m̃M1 , T )}. Note from Theorem 7.3.1 that ΨN−2 has full column rank if and
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only if ΓN−2 = C0,N−2∪C1,N−1 satisfies (7.8). Observe that this is possible only if

we have at least one of CN−2 and C1 equal to IT . Once we set either CN−2 or C1

to IT , it is reasonable in this step to set the other one to [ ] as we want to minimize

the compression rate. We proceed to evaluate ΨN−3 = [(C0 ⊗ CN−3)
T , (C1 ⊗

CN−2)
T , (C2⊗CN−1)

T ]T = [(IT ⊗CN−3)
T , (C1⊗CN−2)

T , (C2⊗IT )
T ]T . As

we have set either CN−2 or C1 to IT and the other one to [], we have C1⊗CN−2 =

[] and ΨN−3 = [(IT ⊗CN−3)
T , (C2⊗IT )

T ]T . Using the same analysis used when

we considered ΨN−2, we clearly have to set either CN−3 or C2 to IT . Again, it is

reasonable to set the other matrix to [ ].

At this stage, it can be found that we might face two possibilities with respect

to the next considered Ψk. First, we might be again required to set one of two se-

lection matrices to IT in order to ensure the full column rank of the next considered

Ψk. Second, we might have an option to set two selection matrices to [ ] while

maintaining the full column rank of the next considered Ψk. These two possibil-

ities are repeatedly faced for every considered Ψk as long as we set one selection

matrix to IT and the other one to [ ], when the first one occurs, and we set both

selection matrices to [ ], when the second one occurs. If this procedure is followed,

we can find that each of {Cn}N−1
n=0 is equal to either IT or [ ], which is the con-

straint that we considered when we formulated Theorem 7.3.3. Considering that

this procedure is a reasonable way to minimize the compression rate, we suggest

to design {Cn}N−1
n=0 by following Theorem 7.3.3 and minimizing the cardinality of

W in Theorem 7.3.3, i.e., solving the minimal linear sparse ruler problem. Many

solutions for the minimal linear sparse ruler problem have been tabulated.

7.5.2 Limited Correlation Support Case

Recall that we do not have any condition similar to Theorem 7.3.2 for the limited

correlation support case. Hence, unlike in Section 7.5.1, it is reasonable for this

case to expect that there might be better options than setting Cn either to IT or [] for

all n, which leads to a circular sparse ruler based matrices design in Theorem 7.4.1.

This motivates us to propose an algorithm, provided in Table 7.1, for designing

{Cn}N−1
n=0 for the limited correlation support case in Section 7.4. The main for

loop in step 4 of Table 7.1 decides on some rows of {Cn}N−1
n=0 while focusing on

the full column rank condition of Ψ̃k. Only non-negative k is considered since Ψ̃−k

has full column rank once Ψ̃k has full column rank. Each element of the indicator

matrix Z(k) is equal to either 0 or 1. [Z(k)]i,j = 1 indicates that the ((i−1)T+j)-th

column of Ψ̃k already has at least a single one. The while loop in step 5 checks if
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all columns of the considered Ψ̃k have at a least single one and, as long as this is

not the case, it will iterate and add one row to one of the matrices {Cn}N−1
n=0 . The

inner for loop in steps 6-9 determines the indices of the candidate rows of IT to be

added to each of the matrices {Cn}N−1
n=0 . However, steps 10-11 will decide that only

one of the matrices {Cn}N−1
n=0 is going to be updated in each iteration of the while

loop. Fig. 7.1 describes the achievable compression rate for the selection matrices

designed using the greedy algorithm in Table 7.1. We run the algorithm 1000 times

and pick the matrix offering the best compression for each N and T . Here, T is

varied from T = 18 to T = 30 and N is varied from N = 9 to N = 21. We

also plot the achievable compression rate for the selection matrices designed based

on the minimal circular sparse ruler, which is independent of T since the minimal

circular sparse ruler based Cn is set to either IT or []. Observe that the minimal

circular sparse ruler based selection matrices offer a stronger compression than the

ones produced by the greedy algorithm. However, the minimal circular sparse ruler

problem is a combinatorial problem whose solution has to be found using a brute

force, which might be computationally infeasible for a large N . Moreover, the

circular sparse ruler based selection matrices lead to many Nyquist-spaced samples

and thus, the greedy algorithm might be more attractive for some applications.
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Figure 7.1: The achievable compression rate for the selection matrices designed

using the greedy algorithm in Table 7.1 and those designed based on the minimal

circular sparse ruler.
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Table 7.1: A greedy algorithm to find a sub-optimal solution for {Cn}N−1

n=0
for limited

correlation support case.

Algorithm

1: Introduce Z(k) as a T×T indicator matrix with respect to Ψ̃k and denote

its element at the i-th row and the j-th column by [Z(k)]i,j .

2: For all k = 0, . . . , N − 1, initialize Z(k) = 0T×T with 0T×T a T × T

matrix containing only zeros.

3: For k = N − 1, randomly select i, j ∈ {1, 2, . . . , T}, and set C0 = i,

CN−1 = j, and [Z(N−1)]i,j = 1.

4: for k = N − 1 to 0 in decreasing order do

5: while Z(k) has at least one zero entry do

6: for n = 0 to N − 1 do

7: Define a set Ξ = {1, 2, . . . , T} \Cn and a function f(g′n, n) as

f(g′n, n) =
∑

i′∈C(n−k) mod N
(1− [Z(k)]i′,g′n)

+
∑

i′′∈C(n+k) mod N
(1− [Z(k)]g′n,i′′).

8: Search in Ξ for the element gn that satisfies:

gn = argmaxg′n∈Ξ f(g′n, n),

randomly pick one if we have multiple gn, and set hn = f(gn, n).

9: end for

10: Find n̄ such that hn̄ is the maximum of {hn}N−1
n=0 , randomly pick

one if have multiple maxima hn̄, and update Cn̄ to Cn̄ = Cn̄ ∪ {gn̄}.

11: For all i′ ∈ C(n−k) mod N and i′′ ∈ C(n+k) mod N ,

set [Z(k)]i′,gn̄ and [Z(k)]gn̄,i′′ to 1, respectively.

12: end while

13: if k > 0 do

14: for n = 0 to N − 1 do

15: For all i′ ∈ C(n−k+1) mod N , i′′ ∈ C(n+k−1) mod N and j′ ∈ Cn,

set [Z(k−1)]i′,j′ and [Z(k−1)]j′,i′′ to 1.

16: end for

17: end if

18: end for
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7.6 Conclusion

The knowledge of the cyclic period allows us to set the span of the random lin-

ear projections such that the block Toeplitz structure emerges in the WSCS signal

correlation matrix. We have shown how to exploit this block Toeplitz structure,

have introduced compression using non-uniform sampling, and have presented the

reconstruction problem as an overdetermined system. We have presented the con-

dition for the system matrix to have full column rank, which allows for LS recon-

struction of WSCS signal correlation matrix. We considered two cases, the general

case and the limited correlation support case. For the general case, we proposed the

minimal linear sparse ruler based sampling matrices design as a reasonable way to

approximately minimize the compression rate. For the limited correlation support

case, we proposed a greedy algorithm to find a suboptimal solution for the sampling

matrices, which might be more attractive in particular situations than the minimal

circular sparse ruler based solution, though the latter appears to offer a stronger

compression.
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Chapter 8
Conclusions and Future Work

In this chapter, we provide the conclusions of the thesis and present some sugges-

tions for future work.

8.1 Conclusions

In this thesis, we have formulated an approach for estimating the power spectrum

of wide-sense stationary (WSS) signals based on sub-Nyquist rate samples without

requiring any sparsity constraints. Our approach has been evaluated in both the

time- and frequency-domain. Two candidates for sampling implementation, e.g.,

complex Gaussian sampling and multi-coset sampling, have been proposed to en-

sure that the rank condition of the resulting system equations is satisfied, which

allows for a least-squares (LS) reconstruction of the power spectrum. We focus on

the multi-coset sampling procedure, relate its design to a sparse ruler problem, and

show that its design based on any sparse ruler can guarantee the full rank condition

of the system equations.

As an extension of the above method, we have adopted a so-called dynamic

array and formulated an approach to estimate the direction of arrival (DOA) of pos-

sibly fully correlated sources using second-order statistics. Here, we assume that

we can have fewer active antennas than sources at a given time slot. In this method,

the spatial correlation matrices of the output of the antenna arrays for all time slots

are collected and they are presented as a linear function of the spatial correlation

matrix of the entire underlying uniform array. We have developed the theoretical

condition that needs to be satisfied to guarantee the full column rank condition of

179
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the system matrix, which allows us to reconstruct the spatial correlation matrix

of the entire underlying uniform array using LS. Based on this spatial correlation

matrix, we have advocated three approaches to estimate the DOA of the sources,

i.e., the LS approach (suitable for a smooth spectrum in the angular domain), the

sparsity-regularized LS (suitable for a sparse angular power spectrum), and the

MUSIC algorithm supported by spatial smoothing (suitable for point sources).

We have further proposed a compressive periodogram reconstruction approach

where we consider both time-frequency and spatio-angular domains and where the

entire band is split into equal-size bins such that the received spectra at two fre-

quencies or angles, whose distance is equal to or larger than the size of a bin, are

uncorrelated. We have found that this model leads to a circulant structure in the

so-called coset correlation matrix, which allows for a strong compression. We have

found that sampling patterns based on a circular sparse ruler ensure the full column

rank condition of the system matrix, which allows for an LS reconstruction of the

periodogram. We have also provided a solution for the case when the bin size is

reduced such that, at two angles or frequencies separated by a distance larger than

the bin size, we can still have correlated received spectra.

To merge frequency and angular power spectrum reconstruction, we have pro-

posed an approach to compressively reconstruct the two-dimensional (2D) power

spectrum as a function of frequency and DOA for multiple uncorrelated time-

domain WSS signals received from different sources by a linear array of antennas.

We have performed spatial-domain compression by activating only some antennas

from an underlying uniform linear array and time-domain compression by applying

sparse ruler sampling on the receivers associated with active antennas. The correla-

tion between the sub-Nyquist rate samples at all receivers is calculated both in the

time and spatial domain. We have been able to linearly relate these correlation val-

ues with the 2D power spectrum and to find the condition for the system matrices

to have full column rank, which allows for an LS reconstruction of the 2D power

spectrum. This approach is applicable even when we have more sources than active

sensors (up to a certain limit) and even without any sparsity constraints on the true

power spectrum.

Finally, we have proposed an approach to compressively reconstruct the cyclic

spectrum of wide-sense cyclostationary (WSCS) signals from sub-Nyquist rate

samples produced by non-uniform sampling. Once the block Toeplitz structure

emerges in the WSCS signal correlation matrix, we have shown how the exploita-

tion of this structure has allowed us to write the reconstruction problem as an

overdetermined system. We have presented the condition that needs to be satis-
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fied in order to have a full column rank system matrix, which allows for an LS re-

construction of the WSCS signal correlation matrix. We have also presented some

possible non-uniform sampling designs to satisfy this full column rank condition.

Based on the overall thesis work, we have observed how concentrating on the

reconstruction of the signal statistics (instead of the reconstruction of the original

signals) have offered the increased degree of freedom, which finally leads to relaxed

sampling requirements and alleviated constraints on both the signals and the sig-

nals’ statistics. This implies that our works will be beneficial for applications where

the information about signal statistics are sufficient, such as in spectrum sensing for

cognitive radio applications, angular power spectrum map reconstruction for radio

astronomy, and DOA estimation in radar applications. The final important point

that can be concluded from this thesis is that it is important to have awareness on

what information is necessary and sufficient for particular tasks or applications be-

fore we conduct the samples or data collection process, especially in this era of big

data.

8.2 Suggestions for Future Work

Here, we present some suggestions for possible future research.

1. While, in Chapter 6, we have proposed an approach to compressively recon-

struct the 2D power spectrum as a function of frequency and DOA for uncor-

related time-domain WSS signals received by a linear array of antennas, we

still assume that the inverse of the bandwidth of the aggregated incoming sig-

nals is larger than the propagation delay across the ULA in order to allow us

to represent the delay between the antennas as a phase shift. This indirectly

implies that the overall signal bandwidth is not very wide, which contradicts

the motivation for implementing sub-Nyquist sampling in the time-domain.

It is thus interesting to refine the approach to handle signals with a very wide

bandwidth and this demands us to leave the assumption that the propagation

delay across the ULA is smaller than the inverse of the bandwidth of the ag-

gregated incoming signals. One candidate approach that can be evaluated for

this case is the coherent signal-subspace processing using focussing matrices

of [104].

2. The dynamic array approach introduced in Chapter 4 to estimate the DOA of

possibly fully correlated sources based on second-order statistics is only able

to estimate the azimuth angle of the arrival of the sources. This is because
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this dynamic array is based on a one-dimensional array as the underlying

array. It would be interesting to find out how this dynamic array approach

can be extended for a two-dimensional array so we can use it to estimate both

the azimuth and elevation angles of arrival of correlated sources where the

number of sources can be larger than the number of active antennas.

3. While the compressive wideband power spectrum estimation in Chapter 3

theoretically allows for power spectrum estimation of wideband WSS sig-

nals at very low sampling rates, it would be interesting to find out if this

achievable minimum sampling rate can further be reduced if we only focus

on detecting the existence of user signals in some particular bands instead

of estimating the exact amount of power in those bands. In other words, it

would be useful to develop a theory for wideband power spectrum detection.

4. The desire to reduce the burden on the analog-to-digital converter (ADC)

when the signal to be sampled has a wide bandwidth is one reason for the

emergence of compressive sampling (CS) a.k.a. sub-Nyquist sampling. How-

ever, the power consumption on an ADC is also dictated by the number of

quantization levels used by the ADC. One possible future research should be

related to the reconstruction of the power spectrum of WSS signals using a

sub-Nyquist sampler with a very limited number of quantization levels.

5. While, in Chapter 7, we have shown how to compressively reconstruct the

cyclic spectrum of WSCS signals from sub-Nyquist rate samples without

any sparsity constraint, we still have to set the span of the random linear

projection to an integer multiple of the cyclic period. It would be interesting

to investigate how the span of the random linear projection can be related

to the performance. Furthermore, it is also important to find the achievable

compression rate if we only focus on cyclic feature detection instead of the

reconstruction of the entire cyclic spectrum.

6. So far, the compressive power spectrum estimation approach in Chapter 3

is only implemented within the non-parametric power spectrum estimation

framework. One possible future work will be on how to implement this com-

pressive estimation approach within the parametric framework using some

models such as autoregressive moving average (ARMA) or autoregressive

(AR) models.

7. It is also interesting to find a way to elegantly integrate some classical win-

dowing techniques into our compressive power spectrum estimation approach
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like Hamming or Hann windowing. These are popular in conventional power

spectrum estimation approaches like the correlogram.



184



Bibliography

[1] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solu-

tions to linear inverse problems with multiple measurement vectors,” IEEE

Transactions on Signal Processing, vol. 53, no. 7, pp. 2477–2488, July 2005.

[2] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate

of innovation,” IEEE Transaction on Signal Processing, vol. 50, no. 6, pp.

1417–1428, June 2002.

[3] M. Unser, “Sampling-50 years after shannon,” Proceedings of the IEEE,

vol. 88, no. 4, pp. 569–587, Apr 2000.

[4] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information

Theory, vol. 52, no. 4, April 2006.

[5] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact

signal reconstruction from highly incomplete frequency information,” IEEE

Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[6] J. A. Tropp and A. Gilbert, “Signal recovery from random measurements via

orthogonal matching pursuit,” IEEE Transactions on Information Theory,

vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

[7] J. Bai and S. Shi, “Estimating high dimensional covariance matrices and its

applications,” Annals of Economics and Finance, vol. 12, no. 2, pp. 199–215,

2011.

[8] Y. Zhang and J. Schneider, “Learning multiple tasks with a sparse matrix-

normal penalty,” Advances in Neural Information Processing Systems,

vol. 23, pp. 2550–2558, 2010.

185



186 Bibliography

[9] C. E. Thomaz, Maximum entropy covariance estimate for statistical pattern

recognition: Ph.D Thesis. London, United Kingdom: Department of Com-

puting, Imperial College London, University of London, 2004.

[10] S. Shakeri, D. D. Ariananda, and G. Leus, “Direction of arrival estimation

using sparse ruler array design,” in Proceeding of The 13th IEEE Interna-

tional Workshop on Signal Processing Advances in Wireless Communica-

tions, June 2012, pp. 525–529.

[11] G. Leus and Z. Tian, “Recovering second-order statistics from compressive

measurements,” in Proceeding of IEEE International Workshop on Compu-

tational Advances in Multi-Sensor Adaptive Processing, December 2011, pp.

337–340.

[12] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on An-

tennas and Propagation, vol. 16, no. 2, pp. 172–175, March 1968.

[13] E. Candes and M. Wakin, “An introduction to compressive sampling,” Signal

Processing Magazine, IEEE, vol. 25, no. 2, pp. 21–30, 2008.

[14] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of

systems of equations to sparse modeling of signals and images,” SIAM Rev.,

vol. 51, no. 1, pp. 34–81, Feb. 2009. [Online]. Available: http://dx.doi.org/

10.1137/060657704

[15] Y. C. Eldar and G. Kutyniok, Compressed sensing: Theory and applica-

tions. The Edinburgh Building, Cambridge, UK: Cambridge University

Press, 2012.

[16] S. S. Chen, D. L. Donoho, Michael, and A. Saunders, “Atomic decomposi-

tion by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, pp.

33–61, 1998.

[17] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal

of the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288, 1996.

[18] J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk, and

Y. Massoud, “Theory and implementation of an analog-to-information con-

verter using random demodulation,” in Proceeding of IEEE International

Symposium on Circuits and Systems (ISCAS), May 2007, pp. 1959–1962.

http://dx.doi.org/10.1137/060657704
http://dx.doi.org/10.1137/060657704


Bibliography 187

[19] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk,

“Beyond nyquist: Efficient sampling of sparse bandlimited signals,” IEEE

Transactions on Information Theory, vol. 56, no. 1, pp. 520–544, Jan. 2010.

[20] M. Mishali and Y. C. Eldar, “From theory to practice: sub-Nyquist sam-

pling of sparse wideband analog signals,” IEEE Journal of Selected Topics

in Signal Processing, vol. 4, no. 2, pp. 375–391, April 2010.

[21] R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas and

bound on aliasing error in sub-Nyquist nonuniform sampling of multiband

signals,” IEEE Transactions on Information Theory, vol. 46, no. 6, pp. 2173–

2183, Sept. 2000.

[22] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,”

IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242,

October 2004.

[23] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from lim-

ited data using FOCUSS: A re-weighted minimum norm algorithm,” IEEE

Transactions on Signal Processing, vol. 45, no. 3, pp. 600–616, March 1997.

[24] B. D. Rao, K. Engan, S. F. Cotter, J. Palmer, and K. Kreutz-Delgado, “Subset

selection in noise based on diversity measure minimization,” IEEE Transac-

tions on Signal Processing, vol. 51, no. 3, pp. 760–770, March 2003.

[25] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from in-

complete and inaccurate samples,” Applied and Computational Harmonic

Analysis Elsevier, vol. 26, no. 3, pp. 301–321, May 2009.

[26] M. Mishali and Y. C. Eldar, “Reduce and boost: Recovering arbitrary sets

of jointly sparse vectors,” IEEE Transactions on Signal Processing, vol. 56,

no. 10, pp. 4692–4702, October 2008.

[27] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous

sparse approximation, Part I: Greedy pursuit,” Signal Processing Elsevier,

vol. 86, no. 3, pp. 572–588, March 2006.

[28] J. A. Tropp, “Algorithms for simultaneous sparse approximation, Part II:

Convex relaxation,” Signal Processing Elsevier, vol. 86, no. 3, pp. 589–602,

March 2006.



188 Bibliography

[29] F. Zeng, C. Li, and Z. Tian, “Distributed compressive spectrum sensing in

cooperative multihop cognitive networks,” IEEE Journal of Selected Topics

in Signal Processing, vol. 5, no. 1, pp. 37–48, Feb. 2011.

[30] Y. Wang, G. Leus, and A. Pandharipande, “Direction estimation using com-

pressive sampling array processing,” in IEEE/SP 15th Workshop on Statisti-

cal Signal Processing, Sept. 2009, pp. 626–629.

[31] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction

perspective for source localization with sensor arrays,” IEEE Transactions

on Signal Processing, vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[32] R. Jagannath, G. Leus, and R. Pribic, “Grid matching for sparse signal re-

covery in compressive sensing,” in Proceedings of the 9th European Radar

Conference, Nov. 2012, pp. 111–114.

[33] H. Zhu, G. Leus, and G. B. Giannakis, “Sparsity-cognizant total least squares

for perturbed compressive sampling,” IEEE Transactions on Signal Process-

ing, vol. 59, no. 5, pp. 2002–2016, May 2011.

[34] A. Panahi and M. Viberg, “A novel method of DOA tracking by penalized

least squares,” in Proceeding of IEEE International Workshop on Computa-

tional Advances in Multi-Sensor Adaptive Processing, Dec. 2013, pp. 61–64.

[35] M. M. Hayder and K. Mahata, “Direction-of-arrival estimation using a

mixed ℓ2,0 norm approximation,” IEEE Transactions on Signal Processing,

vol. 58, no. 9, pp. 4646–4655, Sept. 2010.

[36] X. Wei, Y. Yuan, and Q. Ling, “DOA estimation using a greedy block coor-

dinate descent algorithm,” IEEE Transactions on Signal Processing, vol. 60,

no. 12, pp. 6382–6394, Dec. 2012.

[37] Z. Yang, L. Xie, and C. Zhang, “Off-grid direction of arrival estimation us-

ing sparse Bayesian inference,” IEEE Transactions on Signal Processing,

vol. 61, no. 1, pp. 38–43, Jan. 2013.

[38] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: Com-

pressed sensing for analog signals,” IEEE Transactions on Signal Process-

ing, vol. 57, no. 3, pp. 993–1009, March 2009.



Bibliography 189

[39] J. D. Krieger, Y. Kochman, and G. W. Wornell, “Design and analysis of

multi-coset arrays,” in Proceeding of IEEE International Conference on

Acoustics, Speech and Signal Processing, May 2013, pp. 3781–3785.

[40] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From theory

to applications,” IEEE Transactions on Signal Processing, vol. 59, no. 9, pp.

4053–4085, Sept. 2011.

[41] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algo-

rithm,” in Proceeding of IEEE Digital Signal Processing and Signal Pro-

cessing Education Workshop, Jan. 2011, pp. 289–294.

[42] ——, “Nested arrays: a novel approach to array processing with enhanced

degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8,

pp. 4167–4181, Aug. 2010.

[43] M. A. Lexa, M. E. Davies, J. S. Thompson, and J. Nikolic, “Compressive

power spectral density estimation,” in Proceeding of IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP 2011),

May 2011, pp. 3884–3887.

[44] C. P. Yen, Y. Tsai, and X. Wang, “Wideband spectrum sensing based on sub-

Nyquist sampling,” IEEE Transactions on Signal Processing, vol. 61, no. 12,

pp. 3028–3040, June 2013.

[45] Z. Tian, Y. Tafesse, and B. M. Sadler, “Cyclic feature detection with sub-

Nyquist sampling for wideband spectrum sensing,” IEEE Journal of Selected

Topics in Signal Processing, vol. 6, no. 1, pp. 58–69, Feb. 2012.

[46] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,”

IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–

280, March 1986.

[47] W. Ma, T. Hsieh, and C. Chi, “DOA estimation of quasi-stationary signals

via Khatri-Rao subspace,” in Proceeding of IEEE International Conference

on Acoustics, Speech and Signal Processing, April 2009, pp. 2165–2168.

[48] T. J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-

of-arrival estimation of coherent signals,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 33, no. 4, pp. 806–811, Aug. 1985.



190 Bibliography

[49] H. S. Shapiro and R. A. Silverman, “Alias-free sampling of random noise,”

Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2,

pp. 225–248, June 1960.

[50] E. Masry and M.-C. C. Lui, “Discrete-time spectral estimation of

continuous-parameter processes - A new consistent estimate,” IEEE Trans-

actions on Information Theory, vol. 22, no. 3, pp. 298–312, May 1976.

[51] E. Masry, “Poisson sampling and spectral estimation of continuous-time pro-

cesses,” IEEE Transactions on Information Theory, vol. 24, no. 2, pp. 173–

183, March 1978.

[52] ——, “Alias-free sampling: An alternative conceptualization and its appli-

cations,” IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 317–

324, May 1978.

[53] F. d. l. Huca Arce, Compressive power spectral density estimation with non-

uniform sampling: M.Sc Thesis. Pamplona, Spain: Universidad Publica de

Navarra, 2013.

[54] D. Qu and A. Tarczynski, “A novel spectral estimation method by using

periodic non-uniform sampling,” in 2007 Conference Record of the Forty-

First Asilomar Conference on Signals, Systems and Computers, Nov. 2007,

pp. 1134–1138.

[55] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Transac-

tions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[56] M. Elad, Sparse and redundant representations: From theory to applications

in signal and image processing. Spring Street, New York, USA: Springer

Science and Business Media, 2010.

[57] S. Gishkori, Compressive Sampling for Wireless Communications: Ph.D

Thesis. Delft, The Netherlands: Delft University of Technology, 2014.

[58] M. Kim and J. Takada, “Efficient multi-channel wideband spectrum sens-

ing technique using filter bank,” in Proceeding of IEEE International Sym-

posium on Personal, Indoor and Mobile Radio Communications (PIMRC

2009), Sept. 2009, pp. 1014–1018.



Bibliography 191

[59] Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor, “Optimal multiband joint

detection for spectrum sensing in cognitive radio networks,” IEEE Transac-

tions on Signal Processing, vol. 57, no. 3, pp. 1128–1140, March 2009.

[60] P. Paysarvi-Hoseini and N. C. Beaulieu, “Optimal wideband spectrum sens-

ing framework for cognitive radio systems,” IEEE Transactions on Signal

Processing, vol. 59, no. 3, pp. 1170–1182, March 2011.

[61] Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum

sensing for cognitive radios,” in Proceeding of IEEE International Confer-

ence on Cognitive Radio Oriented Wireless Networks and Communications,

June 2006.

[62] B. Le, T. W. Rondeau, J. H. Reed, and C. W. Bostian, “Analog-to-digital

converters,” IEEE Signal Processsing Magazine, vol. 22, no. 6, pp. 69–77,

Nov. 2005.

[63] Z. Tian and G. B. Giannakis, “Compressed sensing for wideband cogni-

tive radios,” in Proceeding of IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP 2007), vol. 4, April 2007, pp.

IV/1357–IV/1360.

[64] Y. Bresler, “Spectrum-blind sampling and compressive sensing for

continuous-index signals,” in Proceeding of Information Theory and Appli-

cations Workshop (ITA 2008), Jan. 2008, pp. 547–554.

[65] Y. Wang, A. Pandharipande, and G. Leus, “Compressive sampling based

MVDR spectrum sensing,” in Proceeding of the International Workshop on

Cognitive Information Processing (CIP 2010), June 2010, pp. 333–337.

[66] Y. L. Polo, Y. Wang, A. Pandharipande, and G. Leus, “Compressive wide-

band spectrum sensing,” in Proceeding of IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP 2009), April 2009, pp.

2337–2340.

[67] V. Havary-Nassab, S. Hassan, and S. Valaee, “Compressive detection for

wide-band spectrum sensing,” in Proceeding of IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP 2010)), March

2010, pp. 3094–3097.



192 Bibliography

[68] G. Leus and D. D. Ariananda, “Power spectrum blind sampling,” IEEE Sig-

nal Processing Letters, vol. 18, no. 8, pp. 443–446, Aug. 2011.

[69] S. Kirolos, T. S. Ragheb, J. N. Laska, , M. F. Duarte, Y. Massoud, and R. G.

Baraniuk, “Practical issues in implementing analog-to-information convert-

ers,” in Proceeding of the 6th International Workshop on System-on-Chip for

Real-Time Applications, Dec. 2006, pp. 141–146.

[70] J. Leech, “On the representation of 1,2,...,n by differences,” Journal of the

London Mathematical Society, vol. 31, pp. 160–169, April 1956.

[71] W. Bar and F. Dittrich, “Useful formula for moment computation of normal

random variables with non-zero means,” IEEE Transactions on Automatic

Control, vol. 16, no. 3, pp. 263–265, June 1971.

[72] S. M. Kay, Fundamentals of statistical signal processing, volume 2: detec-

tion theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.

[73] C. R. Stevenson, C. Cordeiro, E. Sofer, and G. Chouinard, “Functional re-

quirements for the 802.22 WRAN standard, IEEE 802.22-05/0007r46,” Sept.

2005.

[74] P. H. Janssen and P. Stoica, “On the expectation of the product of four matrix-

valued Gaussian random variables,” IEEE Transactions on Automatic Con-

trol, vol. 33, no. 9, pp. 867–870, Sept. 1988.

[75] P. P. Vaidyanathan and P. Pal, “Direct-MUSIC on sparse arrays,” in Proceed-

ing of International Conference on Signal Processing and Communications

(SPCOM), July 2012.

[76] A. J. Barabell, “Improving the resolution performance of eigenstructure-

based direction-finding algorithm,” in Proceeding of IEEE International

Conference on Acoustics, Speech, and Signal Processing, April 1983, pp.

336–339.

[77] J. A. Cadzow, “A high resolution direction-of-arrival algorithm for narrow-

band coherent and incoherent sources,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 36, no. 7, pp. 965–979, July 1988.

[78] S. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing tech-

niques for coherent signal identification,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 37, no. 1, pp. 8–15, Jan. 1989.



Bibliography 193

[79] J. Yin and T. Chen, “Direction-of-arrival estimation using a sparse represen-

tation of array covariance vectors,” IEEE Transactions on Signal Processing,

vol. 59, no. 9, pp. 4489–4493, Sept. 2011.

[80] P. Stoica, P. Babu, and J. Li, “New method of sparse parameter estimation

in separable models and its use for spectral analysis of irregularly sampled

data,” IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 35–47,

Jan. 2011.

[81] ——, “SPICE: A sparse covariance-based estimation method for array pro-

cessing,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 629–

638, Feb. 2011.

[82] S. U. Pillai, Y. Bar-Ness, and F. Haber, “A new approach to array geometry

for improved spatial spectrum estimation,” Proceeding of the IEEE, vol. 73,

no. 10, pp. 1522–1524, Oct. 1985.

[83] S. U. Pillai and F. Haber, “Statistical analysis of a high resolution spatial

spectrum estimator utilizing an augmented covariance matrix,” IEEE Trans-

actions on Acoustics, Speech, and Signal Processing, vol. 35, no. 11, pp.

1517–1523, Nov. 1987.

[84] Y. I. Abramovich, D. A. Gray, A. Y. Gorokhov, and N. K. Spencer, “Positive-

definite Toeplitz completion in DOA estimation for nonuniform linear an-

tenna arrays - Part I: Fully augmentable arrays,” IEEE Transactions on Sig-

nal Processing, vol. 46, no. 9, pp. 2458–2471, Sept. 1998.

[85] P. Pal and P. P. Vaidyanathan, “Correlation-aware techniques for sparse sup-

port recovery,” in Proceeding of IEEE Statistical Signal Processing (SSP)

Workshop, Aug. 2012, pp. 53–56.

[86] E. Gonen, M. C. Dogan, and J. M. Mendel, “Applications of cumulants to

array processing: direction-finding in coherent signal environment,” in 1994

Conference Record of the 28-th Asilomar Conference on Signals, Systems

and Computers, Nov. 1994, pp. 633–637.

[87] D. L. Donoho and M. Elad, “Optimally sparse representation in general

(nonorthogonal) dictionaries via ℓ1 minimization,” Proceeding of National

Academy of Sciences of the United States of America, vol. 100, no. 5, pp.

2197–2202, March 2003.



194 Bibliography

[88] S. Jokar and V. Mehrmann, “Sparse solutions to underdetermined Kronecker

product systems,” Elsevier Linear Algebra and its Applications, vol. 431,

no. 12, pp. 2437–2447, Dec. 2009.

[89] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse

overcomplete representation in the presence of noise,” IEEE Transactions

on Information Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.

[90] M. Bengtsson and B. Ottersten, “Low-complexity estimators for distributed

sources,” IEEE Transactions on Signal Processing, vol. 48, no. 8, pp. 2185–

2194, Aug. 2000.

[91] Q. Wu, K. Wong, Y. Meng, and W. Read, “DOA estimation of point and

scattered sources-vec-MUSIC,” in Proceeding of the IEEE 7th SP Workshop

on Statistical Signal and Array Processing, June 1994, pp. 365–368.

[92] A. Waters and V. Cevher, “Distributed bearing estimation via matrix comple-

tion,” in Proceeding of 2010 IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), March 2010, pp. 2590–2593.

[93] P. Stoica and R. L. Moses, Spectral analysis of signals. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc., 2005.

[94] D. D. Ariananda and G. Leus, “Compressive wideband power spectrum esti-

mation,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4775–

4789, Sept. 2012.

[95] ——, “Cooperative compressive wideband power spectrum sensing,” in

2012 Conference Record of the Forty-Sixth Asilomar Conference on Signals,

Systems and Computers, Nov. 2012, pp. 303–307.

[96] O. Mehanna and N. D. Sidiropoulus, “Frugal sensing: wideband power

spectrum sensing from few bits,” IEEE Transactions on Signal Processing,

vol. 61, no. 10, pp. 2693–2703, May 2013.

[97] D. Cohen, E. Rebeiz, Y. C. Eldar, and D. Cabric, “Cyclic spectrum recon-

struction and cyclostationary detection from sub-Nyquist samples,” in Pro-

ceeding of IEEE 14th Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), June 2013, pp. 420–424.



195

[98] D. D. Ariananda and G. Leus, “Direction of arrival estimation for more cor-

related sources than active sensors,” Signal Processing Elsevier, vol. 93,

no. 12, pp. 3435–3448, Dec. 2013.

[99] D. Romero and G. Leus, “Wideband spectrum sensing from compressed

measurements using spectral prior information,” IEEE Transactions on Sig-

nal Processing, vol. 61, no. 24, pp. 6232–6246, Dec. 2013.

[100] ——, “Compressive covariance sampling,” in Proceeding of Information

Theory and Applications Workshop (ITA 2013), Feb. 2013.

[101] D. D. Ariananda, D. Romero, and G. Leus, “Compressive angular and fre-

quency periodogram reconstruction for multiband signals,” in Proceeding of

IEEE International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing, Dec. 2013, pp. 440–443.

[102] M. H. Hayes, Statistical digital signal processing and modeling. Hoboken,

NJ, USA: John Wiley and Sons, Inc., 1996.

[103] D. D. Ariananda and G. Leus, “Compressive joint angular-frequency power

spectrum estimation,” in Proc. the 21st European Signal Processing Confer-

ence, Sept. 2013.

[104] H. Hung and M. Kaveh, “Focussing matrices for coherent signal-subspace

processing,” IEEE Transactions on Acoustics, Speech, and Signal Process-

ing, vol. 36, no. 8, pp. 1272–1281, Aug. 1988.



196



Samenvatting

Bemonstering en kwantisatie die analoge signalen omzetten in digitale samples via

een analoog-digitaalomzetter vormen het hart van digitale signaalverwerking. Er

zijn recent heel wat signaalverwerkingstoepassingen waarbij signalen met een hoge

bandbreedte moeten verwerkt worden. Dergelijke signalen vergen een hoge be-

monsteringsfrequentie en analoog-digitaalomzetters met een hoog vermogen. Com-

pressive sensing (CS) biedt een oplossing voor dit probleem en laat toe om een

breedbandig signaal te reconstrueren op basis van samples verkregen aan een snel-

heid beneden de Nyquist snelheid. Om CS te kunnen toepassen is echter een extra

voorwaarde nodig zoals de spaarsheid van het signaal. Maar er zijn ook toepassin-

gen waarbij enkel de tweede-orde statistiek van het signaal moet gereconstrueerd

worden (in plaats van het signaal zelf). In dat geval is het mogelijk om de tweede-

orde statistiek te reconstrueren op basis van samples verkregen aan een snelheid

beneden de Nyquist snelheid, zonder dat er extra voorwaarden nodig zijn. Dit idee

vormt het startpunt van deze thesis.

Eerst richten we ons op tijdsdomein signalen die stationair zijn in de brede zin.

We introduceren een methode die het frequentievermogenspectrum reconstrueert

op basis van samples verkregen aan een bemonsteringssnelheid die lager is dan de

Nyquist snelheid en dit zonder enige beperkingen op te leggen aan dit spectrum

zoals spaarsheid. Onze methode is gebaseerd op de kleinste-kwadratenmethode en

werkt zowel in het tijdsdomein als in het frequentiedomein. Enkel als de systeem-

matrix van volle rang is wordt een oplossing verkregen. Om hieraan te kunnen

voldoen stellen we twee bemonsteringsmethodes voor, waaronder de zogenaamde

multi-coset methode. In deze thesis wordt aangetoond dat elke zogenaamde spaarse

meetlat een multi-coset bemonstering genereert waarbij de gerelateerde systeem-

matrix van volle rang is. De optimale compressie wordt dus bereikt met een mini-
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male spaarse meetlat.

We kunnen de aanpak die wordt beschreven in de vorige paragraaf ook uit-

breiden naar het spatiale domein. Hierbij zijn we vooral geı̈nteresseerd in het re-

construeren van het hoekvermogenspectrum op basis van een uniform lineair an-

tennerooster waarbij een aantal antennas worden uitgeschakeld. Dit hoekvermo-

genspectrum is bijvoorbeeld belangrijk voor het schatten van de richtingen waaruit

de signalen worden ontvangen. In deze thesis stellen we een methode voor om

de richtingen van sterk gecorreleerde signalen te schatten op basis van een zoge-

naamde dynamisch antennrooster dat afgeleid is van het originele uniform lineair

antennerooster.

Vervolgens bestuderen we de reconstructie van het periodogram op basis van

gecomprimeerde signalen, en dit voor zowel het spatiale domein als het tijds-

domein. We introduceren een multisectie model waarbij de volledige band (in

hoek of frequentie) wordt opgesplitst in uniforme secties zodanig dat het spectrum

op twee hoeken of frequenties, die verder uit elkaar liggen dan de sectielengte,

ongecorreleerd is. Zo een model geeft aanleiding tot een circulaire structuur in de

systeemmatrix resulterend in een sterke compressie. We stellen bemonsteringspa-

tronen voor die gebaseerd zijn op een circulaire spaarse meetlat en die een sys-

teemmatrix opleveren met volle rang. Op die manier verkrijgen we een unieke

oplossing voor het periodogram (in hoek of frequentie). We presenteren ook een

methode voor het geval dat de sectielengte kleiner is zodanig dat het spectrum op

twee hoeken of frequenties, die verder uit elkaar liggen dan de sectielengte, ook

gecorreleerd kan zijn.

We stellen ook een gecomprimeerde tweedimensionale vermogenspectrumschat-

ter voor waarbij zowel het frequentie- als het hoekvermogenspectrum wordt gere-

construeerd, en dit voor verschillende ongecorreleerde signalen die stationair zijn

in brede zin en die worden ontvangen door een uniform linear antennerooster. We

comprimeren in het spatiale domein door sommige antennes uit te schakelen en

comprimeren in het tijdsdomein via multi-coset bemonstering.

Tot slot bestuderen we een reconstructiemethode voor het cyclisch vermogen-

spectrum van signalen die cyclostationair zijn in de brede zin en die bemonsterd

worden aan een snelheid lager dan de Nyquist snelheid. Deze methode buit de

blok-Toeplitz structuur uit van de correlatiematrix van het cyclostationaire signaal.

Opnieuw wordt de kleinste-kwadratenmethode gebruikt waarbij de systeemmatrix

van volle rang moet zijn. We stellen een aantal mogelijke bemonsteringstechnieken

voor die aan deze voorwaarde voldoen.

Deze thesis bewijst dat de reconstructie van statistische informatie van een
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gemeten signaal de bemonsteringsvoorwaarden beduidend verzwakt. Voor een

bepaalde signaalverwerkingstaak moet men zich dus altijd afvragen of de recon-

structie van statistische informatie niet voldoende is, omdat het antwoord op deze

vraag zal bepalen hoe we de data moeten vergaren.
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Propositions

1. The sampling process should take the considered signal processing task into

account, especially in this era of big data.

2. While the power spectrum is always positive, the removal of this assumption

in compressive power spectrum reconstruction is beneficial to carry out a

performance analysis.

3. In a cognitive radio network, the proposed compressive power spectrum esti-

mator is a more promising candidate for detecting spectral holes than a signal

reconstruction approach exploiting the sparsity of the frequency occupancy.

4. If the goal of compressive power spectrum sensing is to reduce the power

consumption in the analog-to-digital converters (ADCs), then not only re-

ducing the number of samples but also reducing the number of quantization

levels will be beneficial.

5. While sparsity-aware estimation tools show promising results in several ap-

plications, many features in nature are not sparse but have a more general

structure. Hence, the development of structure-aware estimators will become

important.

6. A great teacher is not the one that converts intelligent and highly talented

students into achievers or award winners. Instead, it is the one that can help

average or below average students to reach their potential.

7. Hard working but less talented people should be given more credit.

8. A person’s attitude can be perceived as the statistics of a random variable

and his/her actions as the realizations of this random variable. Assuming the

statistics do not change, this person will end up where he/she belongs sooner

or later.
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9. Assume the objective is to minimize the number of people who dislike us,

under the constraint that a certain level of human interaction is required. A

good solution for this problem can be obtained by being low profile and by

always trying to give more than we take.

10. Research can be successful or unsuccessful, and naturally requires freedom,

passion and enjoyment. Unfortunately, society demands success, which takes

away this freedom, passion and enjoyment.

These propositions are considered opposable and defendable, and as such have been

approved by the supervisor prof.dr.ir. G.J.T. Leus.



Stellingen

1. Het bemonsteringsproces zou rekening moeten houden met de specifieke signaalver-

werkingstaak, zeker in dit big data tijdperk.

2. Hoewel het vermogenspectrum altijd positief is, is het weglaten van deze veronder-

stelling in gecomprimeerde vermogenspectrumreconstructie nuttig om een performantie-

analyse uit te voeren.

3. In een cognitief radionetwerk is de voorgestelde gecomprimeerde vermogenspec-

trumschatter een meerbelovende kandidaat om spectrale gaten te detecteren dan een

signaalreconstructieaanpak die de spaarsheid van de frequentiebezetting uitbuit.

4. Als het reduceren van het vermogenverbruik van een analoog-digitaalomzetter het

doel is van gecomprimeerde vermogenspectrumschatting, dan is het niet alleen nut-

tig om het aantal samples te reduceren maar ook het aantal kwantisatieniveaus.

5. Hoewel spaarse schattingstechnieken veelbelovende resultaten behalen in verschil-

lende toepassingen, zijn vele eigenschappen in de natuur niet spaars maar hebben

ze een meer algemene structuur. Vandaar dat de ontwikkeling van gestructureerde

schatters alsmaar belangrijker wordt.

6. Een groot docent is niet diegene die intelligente en getalenteerde studenten omvormt

tot strebers en prijzenwinnaars. Daarentegen, het is diegene die gemiddelde of on-

dermaatse studenten helpt om hun potentieel te bereiken.

7. Hardwerkende maar minder getalenteerde mensen zouden meer erkenning moeten

krijgen.

8. Het gedrag van een persoon kan gezien worden als de statistiek van een stochastische

variabele en zijn/haar akties als de realisaties van deze stochastische variabele. In

de veronderstelling dat de statistiek niet verandert, zal deze persoon vroeger of later

eindigen waar hij/zij thuis hoort.

9. Veronderstel dat we het aantal mensen die ons minachten willen minimaliseren,

gegeven dat een zeker niveau van menselijke interactie nodig is. Een goede oploss-

ing voor dit probleem kan bereikt worden door onopvallend te zijn en altijd te

proberen om meer te geven dan te nemen.
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10. Onderzoek kan succesvol zijn of niet en vergt natuurlijk ook vrijheid, passie en

plezier. Jammer genoeg eist de maatschappij succes, wat deze vrijheid, passie en

plezier wegneemt.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig

goedgekeurd door de promotor prof.dr.ir. G.J.T. Leus.
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Glossary

Acronyms

2D Two Dimensional

ADC Analog to Digital Converter

AIC Analog to Information Converter

AP Averaged Periodogram

AR Autoregressive

ARMA Autoregressive Moving Average

ATD Alternative Time Domain

CAP Compressive Averaged Periodogram

CB Correlated Bins

CFAR Constant False Alarm Rate

CR Cognitive Radio

CS Compressive Sampling

CSD Cross Spectral Density

CSI Channel State Information

DFT Discrete Fourier Transform
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DLA Dynamic Linear Array

DOA Direction of Arrival

DTFT Discrete Time Fourier Transform

FBSS Forward Backward Spatial Smoothing

FC Fusion Centre

FFT Fast Fourier Transform

GBCD Greedy Block Coordinate Descent

IDFT Inverse Discrete Fourier Transform

JLZA Joint ℓ0 Approximation

LASSO Least Absolute Shrinkage and Selection Operator

LS Least Squares

MMV Multiple Measurement Vectors

MRA Minimum Redundancy Array

MUSIC Multiple Signals Classification

MV Measurement Vector

MVDR Minimum Variance Distortionless Response

NAP Nyquist-rate Based Averaged Periodogram

NMSE Normalized Mean Squared Error

NULA Non-Uniform Linear Array

p.s.d positive semi-definite

PSBS Power Spectrum Blind Sampling

PSD Power Spectral Density

RIP Restricted Isometry Property

RMSE Root Mean Squared Error

ROC Receiver Operating Characteristic
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SBS Spectrum Blind Sampling

SMV Single Measurement Vector

SNR Signal to Noise Ratio

SPICE Sparse Iterative Covariance-Based Estimation

SRACV Sparse Representation of Array Covariance Vectors

SS Spatial Sampling

SVD Singular Value Decomposition

TD Time Domain

TS Temporal Sampling

UB Uncorrelated Bins

ULA Uniform Linear Array

ULS Uniform Linear Subarray

UWB Ultra-Wideband

WSCS Wide-Sense Cyclostationary

WSS Wide-Sense Stationary
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Notations

x Scalar x

x Vector x

xT Transpose of vector x

xH Conjugate transpose of vector x

X Matrix X

X−1 Inverse of matrix X

tr(X) Trace of matrix X (sum of all diagonal entries of matrix X)

IN Identity matrix of size N ×N

⊗ Kronecker product

⊙ Khatri-Rao product
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