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ABSTRACT
Radio-astronomical observations are increasingly corrupted by radio frequency interference, and

on-line detection and Ðltering algorithms are becoming essential. To facilitate the introduction of such
techniques into radio astronomy, we formulate the astronomical problem in an array signal processing
language and give an introduction to some elementary algorithms from that Ðeld. We consider two
topics in detail : interference detection by rank estimation of short-term covariance matrices and spatial
Ðltering by subspace estimation and projection. We discuss experimental data collected at the
Westerbork Synthesis Radio Telescope and illustrate the e†ectiveness of the spacetime detection and
blanking process on the recovery of a 3C 48 absorption line in the presence of GSM mobile telephony
interference.
Subject headings : instrumentation : interferometers È methods : analytical È methods : statistical

1. INTRODUCTION

Radio-astronomical observations are increasingly cor-
rupted by radio frequency interferers such as wireless com-
munication and satellite navigation signals. On-line
detection and Ðltering algorithms are essential to reduce the
e†ect of interference to an acceptable level. However, exist-
ing methods have a limited scope. Until now, the most
widely implemented algorithm is a single-channel total
power change detector, followed by a blanking of the correl-
ator output. Friedman (1996) has implemented an
improved power detector at the RATAN600, based on
detection of change in the power. Weber et al. (1997) pro-
posed the use of the quantized correlation at all lags to test
the presence of interference. Another detector based on
wavelet decomposition has been proposed by Maslakovic
et al. (1996). These are all single-channel detectors that do
not exploit the spatial properties of the interference. The
only detector that considered combining multiple tele-
scopes for improved detection and blanking was proposed
by Kasper, Chute, & Routledge (1982) for low-frequency
interferometry, where a robust data censoring method
based on the temporal behavior of the cross spectrum was
proposed. This requires a large number of estimated spectra
(105) to obtain reliable robust estimates, and only two chan-
nels are used. Finally, adaptive Ðltering techniques have
recently been considered by Barnbaum & Bradley (1998),
who propose to excise interference from the Green-Bank
radio telescope using a reference antenna and a least-mean
square (LMS) type algorithm.

Our aim in this paper is to introduce modern array signal
processing techniques to the context of radio astronomy
and to investigate the merits of multichannel detection and
Ðltering algorithms at the Westerbork Synthesis Radio
Telescope (WSRT). By combining cross-correlation infor-
mation of a large number of sensor pairs, we can increase
the detection performance signiÐcantly and also estimate
the spatial signature of interferers. In essence, our approach
is to compute (on-line) short-term spatial correlation
matrices in narrow subbands, and then to compute the

eigenvalue decomposition of each of these matrices
(Leshem, van der Veen, & Deprettere 1999). A rank esti-
mate based on the eigenvalues allows us to detect the
number of interfering signals in each time-frequency slot,
and the dominant eigenvectors give information on the
““ spatial signature ÏÏ of the interferers.

After detection, we can follow two directions. We can
reduce the interference by rejecting corrupted time-
frequency slots (blanking). This approach is suitable for
time-slotted communication signals such as the European
mobile telephony standard GSM or the TDMA (time-divi-
sion multiple access) based mobile telephony standards IS-
54/136 in the US.

A more challenging approach is to also use the eigen-
vector information. Indeed, we can project out those dimen-
sions in the spatial correlation matrices that correspond to
the spatial signature vectors of the interference. Such spatial
Ðltering techniques will greatly enhance the performance of
observations with continuously present interference.

The e†ectiveness of the spacetime detection and blanking
process is demonstrated by applying the algorithms to data
measured at the WSRT using an on-line eight-channel
recording system. As will be shown in ° 7, we were able to
recover an absorption line of 3C 48 that was completely
masked by a superimposed GSM interference and could not
be recovered by single-channel techniques.

The paper is written in a tutorial style, to appeal to both
the radio astronomy and the signal processing com-
munities. The structure of the paper is as follows. After
posing the astronomical measurement equations in ° 2, we
reformulate the model in terms of array processing matrix
language in ° 3. We then introduce radio frequency inter-
ference and describe its e†ect on the received data. In ° 5 we
discuss various detection algorithms. We compare the
single- and multichannel detectors for the case of a narrow-
band interferer with known spatial signature vector, and
then present two multichannel detectors that do not assume
this knowledge. We then move to spatial Ðltering tech-
niques in ° 6, where we formulate the basic ideas and
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describe a projections based approach. Finally, experimen-
tal results on multichannel blanking are shown in ° 7.

2. ASTRONOMICAL MEASUREMENT EQUATIONS

In this section we brieÑy describe a simpliÐed mathemati-
cal model for the astronomical measurement process. Our
discussion follows the introduction in Perley, Schwab, &
Bridle (1989). The purpose of this is to connect to a matrix
formulation commonly used in array signal processing, in
the next section.

The signals received from the celestial sphere may be
considered as spatially incoherent wideband random noise.
It is possibly polarized and perhaps contains spectral
absorption or emission lines. Rather than considering the
emitted electric Ðeld at a location on the celestial sphere,
astronomers try to recover the intensity (or brightness) I

f
(s)

in the direction of unit-length vectors s, where f is a speciÐc
frequency. Let be the received celestial electric Ðeld atE

f
(r)

a location r on earth (see Fig. 1a). Assume that the tele-
scopes are identical, and let A(s) denote the amplitude
response of a telescope to a source in the direction s. The
measured correlation of the electric Ðelds between two
sensors i and j with locations and is called a visibilityr

i
r
jand is (approximately) given by (Perley et al. 1989) :
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(EMÉN is the mathematical expectation operator, the super-
script T denotes the transpose of a vector, and overbar
denotes the complex conjugate.) Note that it is only depen-
dent on the oriented distance between the two tele-r

i
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jscopes ; this vector is called a baseline.
For simpliÐcation, we may sometimes assume that the

astronomical sky is a collection of discrete point sources (d)

(maybe unresolved). This gives
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Up to this point we have worked in an arbitrary coordi-
nate system. For earth rotation synthesis arrays, a coordi-
nate system is often introduced as follows. We assume an
array with telescopes that have a small Ðeld of view and that
track a reference source direction in the sky. Other loca-s0tions in the Ðeld of view can be written as

s \ s0] r , s0 or ,

(valid for small r), and a natural coordinate system is

s0\ [0, 0, 1]T , r \ [l, m, 0]T .

Similarly, for a planar array, the receiver baselines can be
parameterized as

r
i
[ r

j
\ j[u, v, w]T , j \ c

f
.

The measurement equation in (u, v, w) coordinates thus
becomes

V
f
(u, v, w) \ e~j2nw

PP
A2(l, m)I

f
(l, m)

] e~j2n(ul`vm) dl dm . (2)

The factor e~j2nw is caused by the geometrical delay associ-
ated to the reference location, and can be compensated by
introducing a slowly time-variant delay (see Fig. 1b). This
synchronizes the center of the Ðeld-of-view and makes the
reference source location appear as if it were at the north

FIG. 1.È(a) Emitted electrical Ðeld from the celestial sphere is received by a rotating telescope array ; (b) geometrical delay compensation
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pole. After compensation, we arrive at a measurement equa-
tion in (u, v) coordinates only,

V
f
(u, v)\

PP
A2(l, m)I

f
(l, m)e~j2n(ul`vm) dl dm . (3)

It has the form of a Fourier transformation.
The function is sampled at various coordinatesV

f
(u, v)

(u, v) by Ðrst of all taking all possible sensor pairs i, j or
baselines and second by realizing that the sensorr

i
[ r

j
,

locations are actually time-varying since the earthr
i
, r

jrotates. Given a sufficient number of samples in the (u, v)
domain, the relation can be inverted to obtain an image (the
““ map ÏÏ).

3. ARRAY SIGNAL PROCESSING FORMULATION

3.1. Obtaining the Measurements
We will now describe the situation from an array signal

processing point of view. The signals received by the tele-
scopes are ampliÐed and down-converted to baseband. A
time-varying delay for every telescope is also introduced, to
compensate for the geometrical delay.

Following traditional array signal processing practices,
the signals at this point are called rather than andx

i
(t) E
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(r),

are stacked in vectors
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where p is the number of telescopes. These are then pro-
cessed by a correlation stage.

It will be convenient to assume that x(t) is Ðrst split by a
bank of narrow-band subband Ðlters into a collection of
frequency-components The main output of the tele-x

f
(t).

scope hardware is then a sequence of empirical correlation
matrices of cross-correlations of for a set of fre-RŒ

f
(t) x

f
(t),

quencies covering a 10 MHz band or so, and for af ½ M f
k
N

set of times covering up to 12 hours. Each corre-t ½ Mt
k
N

lation matrix is an estimate of the true covarianceRŒ
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where the superscript H denotes a complex conjugate trans-
pose, T is the sample period of and N is the number ofs

f
(t)

samples over which is averaged. This is drawn schematically
in Figure 2 (ignoring the detection stage for the moment).
The matrices are stored for o†-line spectral analysisRŒ

f
(t)

and imaging.
Typically, the averaging period NT is in the order of

10È30 s, whereas each subband has a bandwidth in the
order of 100 kHz or less. Because of the subband Ðltering,
the original sampling rate of x(t) is reduced accordingly,
resulting in T in the order of 10 ks.

The connection of the correlation matrices to theR
f
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visibilities in ° 2 is as follows. Each entry of theV
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ij
(t)

matrix is a sample of this visibility function for a spe-R
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ciÐc coordinate (u, v), corresponding to the baseline vector
between telescopes i and j at time t :r
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Note that we can obtain only a discrete set of (u, v) sample
points. Indeed, the number of instantaneous independent
baselines between p antennas is less than Also,12p(p [ 1).
using the earth rotation, the number of samples is givenMt

k
N

by the ratio of the observation time and the covariance
averaging time (e.g., 12 hr, 30 s \ 1440 samples).

A few remarks on practical issues are in order.

1. Many telescope sites including WSRT actually follow
a di†erent scheme in which the signals are Ðrst correlated at
several lags and subsequently Fourier-transformed. This
leads to similar results.

2. The geometrical delay compensation is usually intro-
duced only at the back end of the receiver. At this point, a
phase correction is also needed to compensate for the factor

in the measurement equation (2). This is referrede~j2nwij(t)
to as fringe correction (Thompson, Moran, & Swenson
1986). Since the earth rotates, is slowly time varying,w

ij
(t)

with a rate of change in the order of 0È10 Hz depending on
source declination and baseline length.

3.2. Matrix Formulation
For the discrete source model, we can now formulate our

measurement equations in terms of matrices. Let be anr0(tk)arbitrary and time-varying reference point, typically at one
of the elements of the array, and let us take the (u, v, w)
coordinates of the other telescopes with respect to this refer-
ence,

r
i
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Equation (1) can then be written slightly di†erently as

V
f
[r

i
(t), r

j
(t)]

\ ;
n/1

d
e~j2nfsnT(r i~r0)@cA2(s

n
)I

f
(s
n
)e~j2nfsnT(rj~r0)@c

7

V
f
[u

ij
(t), v

ij
(t)]\ ;

n/1

d
e~j2n*ui0(t)ln`vi0(t)mn+A(l

n
, m

n
)

]I
f
(l

n
, m

n
)A(l

n
, m

n
)ej2n*uj0(t)ln`vj0(t)mn+.

In terms of correlation matrices, this equation can be
written as
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The vector function is called the array responsea
t,f(l, m)

vector in array signal processing. It describes the response of
the telescope array to a source in the direction (l, m). As
usual, the array response is frequency dependent. In this
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FIG. 2.ÈAstronomical correlation process

case, the response is also slowly time-varying as a result of
the earthÏs rotation. Note, very importantly, that the func-
tion as shown here is completely known, since the beam
shape A(l, m) is calibrated and we know the locations of the
telescopes very well.

More realistically, the array response is less perfect. An
important e†ect is that each telescope may have a di†erent
complex receiver gain, dependent on many angle-c

i
(t),

independent e†ects such as cable losses, ampliÐer gains, and
(slowly) varying atmospheric conditions. If we take this into
account, the model now becomes
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In future equations we will drop the dependence on f.

3.3. Additive Noise
In reality, most of the received signal consists of additive

system noise. When this noise is zero mean, independent
among the antennas (thus spatially white), and identically
distributed, then it has a covariance matrix that is a multi-
ple of the identity matrix, p2I, where p2 is the noise power
on a single antenna inside the subband that we consider.
Usually the noise is assumed to be Gaussian.

The resulting model of the received covariance matrix
then becomes

R(t)\ C(t)A(t)BAH(t)C(t)H ] p2I . (7)

Note that this assumes that the noise is introduced after the
varying receiver gains. This assumption is reasonable if the
channels from the low-noise ampliÐer (LNA) outputs to the
analog-to-digital converter (ADC) units are equal. Other-
wise, it is still reasonable to assume that the noise is spa-
tially white, i.e., the noise covariance matrix is diagonal. We
can assume that it can be estimated using various cali-
bration techniques ; a simple diagonal scaling will then
bring us back to model (7). We further assumed that the
quantization is Ðne, since a large dynamic range is needed
to cope with strong interferers.

The study of factorizations of the spatial covariance
matrices such as shown above is the key to many array
signal processing techniques. The knowledge of the speciÐc
structure of the array response vector (eq. [6]) is of course
already used in radio astronomy, as it enables the construc-
tion of the map using inverse Fourier techniques. The main
point in this paper is to demonstrate that interference also

adds a speciÐc structure to the covariance matrices. This
hopefully will allow its detection, provided our models are
sufficiently accurate.

4. RADIO FREQUENCY INTERFERENCE

RF interference (RFI) usually enters the antennas
through the sidelobes of the main beam. It can be stronger
or weaker than the system noise. An important property is
that it has a certain spatial signature, or array response
vector, which becomes explicit in the case of narrowband
signals.

Examples of RFI present at WSRT are television broad-
casts (Smilde station), geolocation satellites (GPS and
Glonass), taxi dispatch systems, airplane communication
and navigation signals, wireless mobile communication
(GSM), and satellite communication signals (Iridium).
Thus, interferers may be continuous or intermittent, nar-
rowband or wideband, and strong or weak. Some examples
of actual interference are presented at the end of the section.

Interference is usually not stationary over 10 s (let alone
because of the time-varying fringe rate of 0È10 Hz), and
hence it might be argued that it would average out from the
long-term correlations. However, the amount of nonsta-
tionarity is often insufficient to provide a good and reliable
protection (Thompson 1982 ; Thompson et al. 1986).

4.1. Narrowband Interference Model
Suppose that we have a single interferer impinging on the

telescope array. The interfering signal reaches the array
with di†erent delays for each telescope. After demodu-q

ilation to baseband, we have

x
i
(t) \ a

i
s(t [ q

i
)e~j2nfqi , i \ 1, . . . , p .

Here s(t) is the baseband signal and represents the tele-a
iscope gain in the direction of the interferer, including any

possible attenuation of the channel. Unlike much of the
array signal processing literature, the are likely to bea

idi†erent for each telescope since the interferer is typically in
the near Ðeld. This implies that it impinges on each tele-
scope at a di†erent angle, whereas the response of the tele-
scopes is not omnidirectional.

For narrowband signals, time delays shorter than the
inverse bandwidth amount to phase shifts of the baseband
signal (Proakis 1995). This well-known property is funda-
mental to many phased array signal processing techniques.
If the narrowband assumption holds, then s(t[ q

i
)\ s(t)

and the model can be simpliÐed.
Note that we have already assumed before that the

signals are subband Ðltered. Let W be the bandwidth of the
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subband Ðlters. In WSRT, the largest baseline is 3000 m,
corresponding to a maximal delay of 10 ks. Hence the nar-
rowband assumption holds if W > 100 kHz (Leshem et al.
1999). Under this condition, we can stack the p telescope
outputs from a particular subband Ðlter in a vector x

f
(t)

and write

x
f
(t)\
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t

>

t

t

a1 e~j2nfq1
<

a
p
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=

t

?

t

t

s(t)4 as(t) .

As before, a is an array response vector. Unlike before, it is
not a simple or known function of the direction of the inter-
ferer, since we are in the near Ðeld and the sidelobes of the
array are not calibrated. The vector is also called the spatial
signature of the interfering source. It is slowly time varying,
and we write a \ a(t).

Similarly, with q interferers,
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The subscript s is used to distinguish from the arrayA
s
(t)

response matrix of the astronomical sources.
The corresponding correlation matrix and its empirical

estimate are
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s
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RŒ (t)\ 1
M

;
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M~1
x
f
(t ] mT )x

f
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where is estimated by averaging over M samples. TheRŒ (t)
q ] qÈmatrix depends on the correlationR

s
(t)\ EMs(t)s(t)HN

properties of the interfering signals. For independent inter-
ferers, it will be a diagonal matrix, with the q interfering
powers on the diagonal.

How well the estimate Ðts to R(t) depends on the station-
arity of the scenario over the averaging interval MT and is
open to discussion. The power of television signals will be
stationary over long periods (order tens of seconds or
better). At the other extreme, communication signals such
as used by the GSM mobile communication system are
time-slotted : time is partitioned into frames of about 5 ms
and frames are partitioned into eight slots. In this so-called
time-division multiple access scheme (TDMA), each user
can transmit only during its slot of 0.577 ms and then has to
be silent for 7 times this period before transmitting again in
the next frame. Thus, there is a short-term stationarity (over
0.577 ms), and a cyclostationarity with periods of about
5 ms.

The stationarity of the columns of depends on theA
s
(t)

stationarity of the location of the interferer, its distance, the
fringe rate and the orientation of the telescopes. With multi-
path propagation, a mobile interferer only has to move
about 30 cm to create a di†erent a-vector, giving a station-
arity in the order of 10È100 ms for a GSM user. Even for a
Ðxed interferer such as a television station, the slow rotation
of the telescopes as they track the sky will change the a-
vector within a fraction of a second, either because of multi-
path fading or because the interferer moves through the
highly variable sidelobe pattern. Another source of nonsta-

tionarity is the fringe correction introduced at the Ðrst IF
stage to compensate for the geometrical delay. As the tele-
scopes rotate, this introduces a time-varying phase, di†erent
to each telescope, with a rate in the range of 0È10 Hz.

The conclusion is that, for interference detection, is aRŒ (t)
useful estimate only over short averaging periods over
which the interference is stationary, say MT in the order of
milliseconds. Thus, M > N, where NT B 10 s, as in equa-
tion (4).

4.2. Overall Model : Astronomical Signals
with Interference and Noise

In summary, the model that we have derived is as
follows :

R(t) \ C(t)A(t)BAH(t)C(t) ] A
s
(t)R

s
(t)A

s
H(t)] p2I .

R(t) is a p ] p covariance matrix of which we have com-
puted estimates at discrete times t. A : p ] d is the array
response matrix of the d discrete sources in the sky. Its
columns are known functions of the (unknown) locations of
the sources. It is a very wide matrix : d ? p, and assumed
stationary over 10 s. B : d ] d is a diagonal matrix (positive
real) containing the brightness of each source, and assumed
time-invariant over the complete observation. C are diago-
nal matrices (positive real) representing unknown and
slowly varying antenna gains.

is the array response matrix of the q interferers.A
s
: p] q

It is likely to be unstructured. We will consider cases where
q \ p, so that is tall. is the interference corre-A

s
R

s
: q] q

lation matrix. and are usually stationary only overA
s

R
svery short time spans (order 10 ms).

p2I is the noise covariance matrix, assuming white inde-
pendent and identically distributed noise for simplicity. The
noise power p2 is often rather well known.

pABAHp, i.e., the observed power of the astronomical
sources, is at least 2 orders of magnitudes smaller than p2,
and for the purpose of detection, it can be ignored. In con-
trast, can be of comparable magnitude.pA

s
R

s
A

s
H p

4.3. Examples of Interfering Signals
To demonstrate a few of its features, we present some

measured observations of RFI.1
As mentioned before, interference may be continuous or

intermittent. A prime example of continuously present
interference are television broadcasts. Figure 3 shows a
spectrogram centered at 780.75 MHz of the German tele-
vision transmitter TV Lingen, located at about 80 km
southeast of the WSRT. The two strong peaks in the spec-
trum are the two sound carrier waves. The received power
of the TV station is much stronger than the WSRT system
noise level, as can be seen from the fact that the baseband
Ðlter shape is barely visible.

Figure 4 shows the GSM uplink band, which contains the
communication of mobile handsets to the base stations. The
short white dashes indicate the presence of (weak) inter-
ference. At least three channels can be seen at 902.4, 904.4,
and 907.2 MHz, although there probably are more active
channels at a lower power level. The TDMA time-frame
format of about 5 ms consisting of eight user slots of

1 The data have been collected using the NOEMI recording system
described later in ° 7.
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FIG. 3.ÈTelevision broadcast

0.577 ms can be recognized. Also visible is a weak contin-
uous transmission at 902 MHz. This is likely to be an inter-
ference from the control building or an intermodulation
product.

An example of the GSM downlink band (base station to
mobiles) is shown in Figure 5. Most of the signals are con-
tinuous in time, except for a few channels at, e.g., 942.0,
942.8, and 949.8 MHz, which are time slotted.

FIG. 4.ÈGSM uplink
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FIG. 5.ÈGSM downlink

Another interferer that one would like to remove from
the observed data is the Iridium transmissions. Figure 6
shows a transmission of the Iridium satellite communica-
tion system at 1624 MHz (satellite-satellite communication
and/or downlinks). It is clearly intermittent as well.

Finally, a wideband interferer is the GPS satellite naviga-
tion signal. This is a spread spectrum signal occupying a
band of 10.23 MHz. Figure 7 shows a spectrogram of the
GPS signal around 1575 MHz. One can clearly see the
superposition of the narrow (1.023 MHz) commonly avail-

FIG. 6.ÈIridium downlink
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FIG. 7.ÈGPS transmission, showing the civil code (BW\ 1.023 MHZ) superimposed on the wideband military code (BW\ 10.23 MHZ). f
c
\ 1575

MHz.

able C/A signal on the wideband (10.23 MHz) military
P-code signal, resulting in the peak at the center fre-
quencies.

5. INTERFERENCE DETECTION

5.1. Introduction
Ideally, the output of the correlation process produces

clean estimates of A(t)BA(t)H, once every 10 s or so. In prin-
ciple, we estimate it by

RŒ
f
10s(t)\ 1

N
;
n/0

N~1
x
f
(t ] nT )x

f
H(t ] nT ) , NT \ 10 s . (8)

As we have seen, these estimates are corrupted by inter-
ference and additive system noise, and unknown antenna
gains. The objective of interference detection and rejection
schemes is to improve the signal to interference and noise
ratio (SINR) at the output of the integrators, i.e., at the 10 s
level. Interference that is stationary at these timescales or
longer can often be treated o†-line. In this paper we con-
sider on-line interference detection and excision schemes,
assuming stationarity at millisecond timescales or less.

Many interference detection schemes exist. They di†er by
the amount of knowledge that we can assume about the
interfering signals, e.g., if we know the signal wave form,
then the optimal detector has the form of a matched Ðlter.
Extensions are possible if the waveform is known up to a
few parameters such as amplitude, phase, or frequency.
However, usually the signal is modulated by a message and
hence e†ectively unknown. There are two classes of detec-
tion techniques : more or less deterministic methods that
exploit known properties of the signals such as modulation

type or certain periodicities, and those based on statistical
models with unknown parameters, leading to generalized
likelihood ratio tests (GLRT), a particular example of which
is power detection.

In principle, we can say that man-made interference is
expected to be statistically di†erent from the astronomical
sources. Although this is a very attractive feature, it is not
easy to use these properties for detection or excision, since
the long averaging periods and the central limit theorem
tend to jointly Gaussianize the interferers. For strong nar-
rowband interferers these methods are expected to give
improved suppression at an increased computational
expense (Leshem & van der Veen 1998).

Another distinction between interferers and astronomical
signals is their spatial signature vectors. Astronomical
signals enter through the main lobe of the telescopes and
have a very structured (parametrically known) array
response (viz. eq. [6]), which is used for imaging. The inter-
ferers usually enter through the sidelobes and are in the
near Ðeld, leading to unstructured a-vectors. Also, their
location relative to the array is not correlated with the
motion of the earth. It might even remain Ðxed relative to
the array during the complete observation period (e.g., TV
transmitters). Since the array tracks a Ðxed region in the
sky, which moves as the earth rotates, the directional vector
of the interference is typically time varying.

From all possibilities, we consider here two schemes :

1. Multichannel interference detection and excision.ÈThe
interference is detected at short timescales (ms), and con-
taminated samples are removed from the averaging process
in equation (8). This will work well if the interference is
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concentrated in frequency and time, as, e.g., in the GSM
system.

2. Spatial Ðltering.ÈThis more ambitious scheme is also
suitable for continuously present interference such as TV
stations. After detection, we estimate the spatial signature of
the interferer and project out that dimension or otherwise
subtract the signal coming from that direction.

For the purpose of power detection schemes, it is suffi-
cient to look at (short-term) correlation matrices based on
measurement data in a window of length MT , with
MT B 10 ms :

RŒ
k
\ 1

M
;

m/0

M~1
x
f
(t
k
] mT )x

f
H(t

k
] mT ) ,

t
k
\ 0, MT , 2MT , . . . .

If an interferer is detected in this analysis window, it is
discarded, otherwise the data is accepted and the corre-
lation matrix is used in the formation of a clean estimate of

as in Figure 2. Obviously, many variations are pos-RŒ
f
10s(t),

sible, such as sliding window techniques, or discarding
neighbors of contaminated samples as well (perhaps both in
time and frequency).

In this section we propose subband detection methods
based on and analyze their performance. Spatial ÐlteringRŒ

kis discussed in ° 6. Throughout the section, we will drop the
subscript k and write R and for simplicity.RŒ

5.2. Single-Channel Sectral Detector
Detection theory is based on hypothesis testing. We test

there is no interference, versus there is at least oneH0 : H1 :
interferer in this band. The implementation of this test
depends on the model that we pose for the interferer. We
will Ðrst discuss some particularly simple cases which will
allow analysis.

Thus let us consider the single-channel case Ðrst. We
assume that there is at most a single interferer, where the
interfering signal is independent identically distributed
(i.i.d.) Gaussian noise with unknown power The back-p

s
2.

ground noise is white Gaussian with known power p2.
Without interferer, the observed data samples x

m
4 x(t

m
)

are complex normal (CN) distributed, with zero mean and
variance p2. With an interferer, this distribution is still
complex normal, but with variance Thus, we testp

s
2] p2.

the hypothesis

H0 : x
m

DCN(0, p2) ,

H1 : x
m

DCN(0, p
s
2] p2), m\ 0, . . . , M [ 1 . (9)

We assume that we have available M samples col-Mx
m
N,

lected in a vector x \ [x1, . . . , x
M
]T.

This is a rather standard problem in detection theory (see
Kay 1998) for an introduction). A Neyman-Pearson detec-
tor selects if the likelihood ratio,H1

L (x)\ p(x ; H1)
p(x ; H0)

,

exceeds a threshold, where p(x ; H) denotes the probability
density function of x under the hypothesis H. It is known
that this leads to an optimal probability of detection, given
a certain probability of false alarm (detecting an interferer
when there is none). In our case, based on the model (9), the

Neyman-Pearson detector simpliÐes to comparing the total
received power to a threshold c, deciding if the testH1statistic

T (x) 4
1
p2 ;

m/0

M~1
o x

m
o2[ c .

Under the above assumptions we can obtain closed form
expressions for the probability of false alarm and the prob-
ability of detection. For this, recall that the sum of squares
of M real i.i.d. zero-mean unit-variance Gaussian random
variables has a s2 distribution with M degrees of freedom
(dof ). Since we have complex samples, T (x) is the sum-
square of 2M real variables. Under these have aH0,variance hence the probability of false alarm is given by12,

PFA4 PMT (x) [ c ; H0N\ Qs22M
(2c)

where is the tail probability of a s2 random variableQs22M
(c)

with 2M dof. It has a closed-form expression (see Kay
1998) :

Qs22M
(2c) \ e~c ;

k/0

M~1 ck
k !

.

Its inverse is known in terms of the inverse Gamma-
function, and allows us to select c to obtain a desired level of
false alarm. Similarly, the probability of detection of an
interference at this threshold c is given by

P
D

4 PMT (x) [ c ; H1N

\ P
G 1
p2 ;

m/1

M
o x

m
o2 [ c ; H1

H

\ P
G 2
p2] p

s
2 ;

m/1

M
o x

m
o2[

2c
1 ] p

s
2/p2 ; H1

H

\ Qs22M
A 2c
1 ] INR

B
, (10)

where is the interference-to-noise ratio.INR \p
s
2/p2

5.3. Multichannel Detector with Known Spatial Signature
A signiÐcant performance improvement is possible with a

multichannel detector. To illustrate this, we assume again
the simple case with at most a single narrowband Gaussian
interferer, with known spatial signature vector a in white
Gaussian noise. The source power of the interference is
denoted by to normalize the receiver gain we setp

s
2 ;

p a p 24 aHa \ p, where p is the number of channels.
Without interference, the data vectors are complexx

mnormal distributed with zero mean and covariance matrix
p2I. With a single interferer, the covariance matrix becomes

Thus,R \ EMx
m

x
m
HN\ p

s
2 aaH] p2I.

H0 : x
m

DCN(0, p2I) ,

H1 : x
m

DCN(0, p
s
2 aaH ] p2I), m\ 0, . . . , M [ 1 .

The Neyman-Pearson detector based on the data matrix
considers the estimated data covarianceX \ [x1, . . . , x

M
]

matrix

RŒ \ 1
M

;
m/0

M~1
x
m

x
m
H
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vs. INR, for M \ 10,30,64, and false alarm rateFIG. 8.ÈP
D

PFA\ 5%

and is given by (Kay 1998)

T (X)4
1

p2/M
aHRŒ a
aHa

H1
5 c .
H0

This test is recognized as a matched spatial Ðlter detector ;
essentially, we compare the received energy in the direction
a of the interferer to p2. If we deÐne to be the output ofy

mthe matched beamformer in the direction of x
m
,

y
m

\ aH

pap
x
m

,

then

H0 : y
m

DCN(0, p2) ,

H1 : y
m

DCN(0, pp
s
2] p2), m\ 0, . . . , M [ 1 ,

and it is seen that taking the same threshold as in the single-
channel case will provide the same false alarm probability
as before :

PFA \ PMT (X)[ c ; H0N\ Qs22M
(2c) .

However, the probability of detection is now given by

P
D

\ PMT (X)[ c ; H1N\ Qs22M
A 2c
1 ] p INR

B
.

Figure 8 presents the probabilities of detection as a function
of interference-to-noise ratio for a single-channel and for
p \ 14 channels. We have selected a threshold such that

which means that without interference, we willPFA\ 5%,
throw away 5% of the data. We can clearly see that the
probability of detection is greatly improved by moving to
the multichannel case. The improvement is equal to the
array gain, 10 log (p) \ 11.5 dB.

5.4. Single T DMA Interferer with Known Spatial Signature
Let us now consider a TDMA signal : an interferer which

is periodically active in a fraction b of the time (see Fig. 9a).
Here 0 \ b \ 1 is known as the duty cycle of the periodic
signal. Assume that the interferer is present in the selected
frequency band and that the duration of the slot in which
the interferer is active is equal to aM samples where wex

m
,

take a [ 1. Let as before denote the power of a singlep
s
2

sample of the interferer when it is present.
Since the interfering slots need not be synchronized to the

analysis window, a single interfering slot will give rise to
two analysis windows in which the interferer is partially
present, and possibly one or more analysis windows in
which the interferer is present in all the samples. Since the
interferer is time-slotted with duty cycle b, there will also be
windows that contain no interference.

The corresponding probability density p(I) of having a
certain average interference power I per sample in an arbi-
trary analysis window of length M can be computed in
closed form as

p(I) \

4

5

6

0
0
A
1 [

a ] 1

a
b
B
d(I) , I\ 0 ,

1

Imax

2

a
b , 0 \ I\ Imax ,

a [ 1

a
bd(I[ Imax) , I\ Imax .

It is plotted in Figure 9b, where the vertical arrows indicate
the unit impulse function d(É). For example, for an interferer
of strength per sample when it is on, the maximalp

s
2

average interference power per sample is obviously p
s
2,

when all samples are contaminated. The probability of this
is (a [ 1)/a b. Power densities less than occur with ap

s
2

uniform distribution for analysis windows that are only
partly corrupted, at the edges of the interference slot.

We can deÐne

1. The average interference power per sample before
detection :

Ieff \
P

Ip(I)dI\ bp
s
2 ,

FIG. 9.È(L eft) Interferer with slot length L \ aM samples, power per on-sample, and duty cycle b. (Right) Corresponding probability density ofp
s
2

interference power in a single analysis window.
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2. The average interference power per sample after detec-
tion and blanking :

Ires \
P

I(1[ P
D
(I))p(I)dI ,

3. The fraction of number of samples kept after detection
and blanking :

nres \
P

(1[ P
D
(I))(I)dI .

Figure 10 shows the dependence of the residual
interference-to-noise ratio (INR) as a function of M (the
number of samples in an analysis block), for an interferer of
length L \ 64 subband samples, a duty cycle b \ 1/8, and a
false alarm rate of 5%. Obviously, very weak interference is
not detected, and in that case we throw away 5% of the data
because of the false alarm rate. High interference powers are
easily detected, and almost all contaminated analysis
windows will be detected and blanked. Only the tails of an
interfering slot might be missed, so that there is still some
interference remaining after detection. The worst case
occurs for interference that is not strong enough to be
detected all the time, but not weak enough to be harmless.

Several other interesting facts can be seen in these Ðgures.
The most important is the large performance gain in the
multichannel approach, as compared to a single channel. As
seen in Figure 8, the e†ect of using an array is to shift the
graphs of probability of detection to the left by the array
gain, e.g., for the 14-channel detector the graph is shifted by
11.5 dB. Hence, we require 11.5 dB less interference power
in order to detect it. However, the e†ective gain is given by
the vertical distance between the graphs : this shows the
amount of interference suppression for a given interference
power. In Figure 10 the suppression can be approximately
21 dB larger than that of the single-antenna case.

A second interesting phenomenon is the fact that the
interference suppression is almost the same for a large range
of analysis windows M. Thus, we would make this window
rather small, so that the residual number of samples is
larger. This e†ect is mainly due to the fact that the case of
partial blocks with weaker power is less frequent as the
analysis block becomes shorter. Further study of this model
appeared in (Leshem & van der Veen 1999).

5.5. Eigenvalue Analysis
So far we have looked at the detection problem from a

rather idealistic viewpoint : at most 1 interferer, and a
known spatial signature. The reason was that for this case,
we could derive optimal detectors with closed-form expres-
sions for the performance. We will now discuss an extension
to more practical situations.

Our goal is the detection of the presence of an interferer
from observed correlation data. As a start, let us Ðrst con-
sider the covariance matrix due to q interferers and no
noise,

R \ A
s
R

s
A

s
H ,

where R has size p ] p, has size p ] q and has sizeA
s

R
sq ] q. For a low number of interferers q, this brings us to

familiar grounds in array signal processing, as it admits
analysis by subspace-based techniques. We give a brief
introduction here ; see (Krim & Viberg 1996) for an over-
view and references.

If q \ p, then the rank of R is q since has only qA
scolumns. Thus, we can estimate the number of narrowband

interferers from a rank analysis. This is also seen from an
eigenvalue analysis : let

R \ UKUH

be an eigenvalue decomposition of R, where the p ] p
matrix U is unitary (UUH \ I, UHU \ I) and contains the
eigenvectors, and the p ] p diagonal matrix K contains the
corresponding eigenvalues in nonincreasing order (j1º

Since the rank is q, there are only qj2º É É É º j
p
º 0).

nonzero eigenvalues. We can collect these in a q ] q diago-
nal matrix and the corresponding eigenvectors in a p ] qK

smatrix so thatU
s
,

R \ U
s
K

s
U

s
H . (11)

The remaining p [ q eigenvectors from U can be collected
in a matrix and they are orthogonal to since U \U

n
, U

sis unitary. The subspace spanned by the columns of[U
s
U

n
]

is called the signal subspace, the orthogonal complementU
sspanned by the columns of is known as the noise sub-U

nspace (although this is a misnomer). Thus, in the noise-free
case,

R \ UKUH\<t>U
s

U
n
=t?
<
t
>

K
s

0
0 0

=
t
?

<
t
>

U
s
H

U
n
H
=
t
?

.

FIG. 10.È(L eft) E†ective residual INR after blanking vs. e†ective INR at the input ; (Right) fraction of remaining samples after blanking
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In the presence of white noise,

R \ A
s
R

s
A

s
H] p2I

p
.

denotes a p ] p identity matrix.) In this case, R is full(I
prank : its rank is always p. However, we can still detect the

number of interferers by looking at the eigenvalues of R.
Indeed, the eigenvalue decomposition is derived as
(expressed in terms of the previous decomposition (eq. [11])
and using the fact that is unitary :U \ [U

s
U

n
] U

s
U

s
H

] U
n
U

n
H\ I

p
)

R \ A
s
R

s
A

s
H] p2I

p
\ U

s
K

s
U

s
H] p2(U

s
U

s
H] U

n
U

n
H)

\ U
s
(K

s
] p2I

q
)U

s
H] U

n
(p2I

p~q
)U

n
H

\ [U
s

U
n
]
<
t
>

K
s
] p2I

q
0

0 p2I
p~q

=
t
?

<
t
>

U
s
H

U
n
H
=
t
?

4 UKUH ; (12)

hence R has p [ q eigenvalues equal to p2 and q that are
larger than p2. T hus, we can detect the number of interferers
q by comparing the eigenvalues of R to a threshold deÐned by
p2.

A physical interpretation of the eigenvalue decomposi-
tion can be as follows. The eigenvectors give an orthogonal
set of ““ directions ÏÏ (spatial signatures)2 present in the
covariance matrix, sorted in decreasing order of dominance.
The eigenvalues give the power of the signal coming from
the corresponding directions, or the power of the output of
a beamformer matched to that direction. Indeed, let the ith
eigenvector be then this output power will beu

i
,

u
i
H Ru

i
\ j

i
.

The Ðrst eigenvector, is always pointing in the directionu1,
from which most energy is coming. The second one, u2,points in a direction orthogonal to from which most ofu1the remaining energy is coming, etcetera.

If there is no interference and only noise, then there is no
dominant direction, and all eigenvalues are equal to the
noise power. If there is a single interferer with power andp

s
2

spatial signature a, normalized to p a p 2\ p, then the
covariance matrix is It follows from theR \p

s
2 aaH] p2I.

previous that there is only one eigenvalue larger than p2.
The corresponding eigenvector is and is in theu1\ a 1

AaA
,

direction of a. The power coming from that direction is

j1\ u1H Ru1\ pp
s
2] p2 .

Since there is only one interferer, the power coming from
any other direction orthogonal to is p2, the noise power.u1Note the connection with the test statistic of the previous
section, where we assumed that a is known. Since u1\
a 1
AaA

,

aHRa
aHa

\ u1H Ru1
u1H u1

\ j1 .

Thus, the test statistic of the previous section reduces to
testing the dominant eigenvalue of R, and knowledge of a is
in fact not needed.

2 Here direction is not to be interpreted as the physical direction-of-
incidence of the interferer, but rather the abstract direction of a unit-norm
vector in the vector space Cp. Because of multipath, unequal gains and
fringe corrections, the physical direction-of-incidence might not be identi-
Ðable from the spatial signature a.

With more than one interferer, this generalizes. Suppose
there are two interferers with powers and and spatialp1 p2,signatures and If the spatial signatures are orthog-a1 a2.onal, then will be in the direction of thea1H a2\ 0, u1strongest interferer, number 1, say, and will be the corre-j1sponding power, Similarly,j1\ pp12] p2. j2\ pp22] p2.

In general, the spatial signatures are not orthogonal to
each other. In that case, will point into the direction thatu1is common to both and and will point in thea1 a2, u2remaining direction orthogonal to The power comingu1. j1from direction will be larger than before because it com-u1bines power from both interferers, whereas will bej2smaller.

The covariance matrix eigenvalue structure can be nicely
illustrated on data collected at the WSRT. We selected a
narrowband slice (52 kHz) of a GSM uplink data Ðle,
around 900 MHz. In this subband we have two interfering
signals : a continuous narrowband CW signal that leaked in
from a local oscillator, and a weak GSM signal. From this
data we computed a sequence of short term cross spectral
matrices based on 0.5 ms averages. Figure 11 showsRŒ

k
0.5ms

the time evolution of the eigenvalues of these matrices. The
largest eigenvalue is due to the CW signal and is always
present. The GSM interference is intermittent : at time inter-
vals where it is present the number of large eigenvalues
increases to two. The remaining eigenvalues are at the noise
Ñoor, p2. The small step in the noise Ñoor after 0.2 s is due to
a periodically switched calibration noise source at the input
of the telescope front ends.

The eigenvalue decomposition (eq. [12]) shows more
than just the number of interferers. Indeed, the columns of

span the same subspace as the columns of This is clearU
s

A
s
.

in the noise-free case (eq. [11]), but the decomposition (12)
shows that the eigenvectors contained in and respec-U

s
U

n
,

tively, are the same as in the noise-free case. Thus,

span(U
s
) \ span(A

s
) , U

n
H A

s
\ 0 . (13)

Given a correlation matrix estimated from the data, weRŒ
compute its eigenvalue decomposition. From this we can
detect the rank q from the number of eigenvalues larger
than p2, and we can determine and hence the subspaceU

sspanned by the columns of Although we cannot directlyA
s
.

identify each individual column of its subspace estimateA
s
,

FIG. 11.ÈEigenstructure as a function of time
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can nonetheless be used to Ðlter out the interferenceÈsuch
spatial Ðltering algorithms are discussed in ° 6. Note that it
is crucial that the noise is spatially white. For colored noise,
an extension (whitening) is possible but we have to know
the coloring.

5.6. Multichannel Detector with Unknown Spatial Signature
In case we only have an estimate based on a ÐniteRŒ

amount of samples M and the spatial signature vectors of
the interference are unknown, there are no optimal results.
The eigenvalue analysis suggested that we should compare
the eigenvalues to a threshold deÐned by p2 : without inter-
ference, all eigenvalues are asymptotically equal to p2. We
will discuss two detectors, one for the case where p2 is
known, and another one for which it is unknown.

If the noise power p2 is known, we can apply the
(generalized) likelihood ratio test (GLRT), which leads to a
method due to Box (1949) for testing the null hypothesis
that (no interference). The GLRT leads to a testp~2RŒ \ I
statistic given by

T (X)4 [Mp log <
i/1

p jü
i

p2 , (14)

where is the ith eigenvalue of and we detect an inter-jü
i

RŒ ,
ferer if T (X)[ c. This basically tests whether all eigenvalues
are equal to p2, with a certain conÐdence. In the no-
interference case, one can show that

T (X)D s(p`1)(p~2)2 .

This allows to select the value of c to achieve a desired false
alarm rate.

If also the noise power is unknown, we propose to use the
Minimum Description Length (MDL) detector (Wax &
Kailath 1985). In this case, rather than setting a threshold
based on the asymptotic distribution of the LRT, we try to
Ðnd the correct model order which minimizes the descrip-
tion length of the data. The MDL rank estimator is given by

qü \ arg min
n

MDL(n) , (15)

where

MDL(n)\ [(p [ n)M log
(<

i/n`1p jü
i
)1@(p~n)

1/(p [ n) ;
i/n`1p jü

i

] 1
2

n(2p [ n ] 1) log M

and an interference is detected if The Ðrst term basi-qü D 0.
cally tests if the geometric mean of the smallest p [ n eigen-
values is equal to the arithmetic mean, which is only true if
these eigenvalues are equal to each other. (The second term
is a correction that grows with the number of unknown
parameters to be estimated). Note also that the arithmetic
mean of the small eigenvalues is an estimate of the noise
variance, so in the case of testing whether n \ 0 or not the
Ðrst term in the MDL reduces to a sample estimate T (x) of
(14). This rank detector is simple to implement since it is
independent of the varying SINR in the system. A disadvan-
tage is that the false alarm rate is not known and not Ðxed.

Finally a simple option which can be used to limit the
false alarm rate is to collect a number of processing blocks,
sort them according to the value of the statistic T (x),
deÐned in equation (14) and throw away a given percentage

with the highest score. This is conceptually simple but needs
more memory available.

Experimental results on multichannel blanking are pre-
sented in ° 7.

6. SPATIAL FILTERING

Let us now assume that we have obtained a covariance
matrix R, which contains the rather weak covariance matrix
of the astronomical sources (visibilities) plus white noise.R

v
,

Suppose also that there is an interferer with power p
s
2 :

R \ R
v
] p

s
2 aaH] p2I .

In the previous section, we considered schemes to detect the
interferer from the eigenvalues of a short-term estimateRŒ ,
of R. After detection, we proposed to discard from aRŒ
longer-term average if it is found to be contaminated, but
what if the interferer is present all the time? In that case, it is
more suitable to try to suppress its contribution p

s
2 aaH.

This leads to spatial Ðltering techniques.

6.1. Projecting Out the Interferer
An elementary form of spatial Ðltering is to null all energy

with spatial signature a. To this end, we can introduce the
p ] p projection matrix

P
a
M \ I [ a(aHa)~1aH .

is a projection because It is also easily seenP
a
M P

a
M P

a
M \ P

a
M.

that this direction is projected out. If we denoteP
a
M a \ 0 :

by the Ðltered covariance matrix, we obtainRŒ

R 43 P
a
M RP

a
M \ P

a
M R

v
P

a
M ] p2P

a
M . (16)

Thus, the interference is removed by the projection. At the
same time, the visibility matrix is modiÐed by the projec-
tions, and the noise is not white anymore, since one dimen-
sion is missing. The imaging stage has to be aware of this,
which is the topic of (Leshem & van der Veen 2000).

In general, a is not known. However, note that we do not
need a, but only a projection matrix to project it out. Recall
from equation (12) the eigenvalue decomposition of R, and
in particular the matrix containing an orthonormal basis of
the ““ noise subspace ÏÏ which is the orthogonal com-U

n
,

plement of a, with p [ 1 columns. According to equation
(13), It is now straightforward to show thatU

n
H a \ 0.

P
a
M \ U

n
U

n
H . (17)

Indeed, since U
n
H U

n
\ I

p~1,
P
a
M P

a
M \ U

n
U

n
H U

n
U

n
H\ U

n
U

n
H\ P

a
M

and

P
a
M a \ U

n
U

n
H a \ 0 .

Thus, we can compute the required projection matrix
directly from the eigenvalue decomposition of R.

Equation (17) can immediately be generalized to the more
general case of q \ p interferers and unknown a-vectors.
Indeed, in this case, the projection onto the complement of
the of the interference is given byA

s
-matrix

P
As
M \ I [ A

s
(A

s
H A

s
)~1A

s
H\ U

n
U

n
H .

Note that we do not have to know the relevant noiseA
s
:

subspace is estimated from the eigenvalue decomposition of
R. This hinges upon the fact that the noise covariance is
white (in general : known), and the visibility matrix isR

v
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insigniÐcant at these timescales (otherwise, it might disturb
the eigenvalue decomposition).

As an alternative to equation (16), we can deÐne another
Ðltered covariance matrix

R 43 U
n
H RU

n
\ U

n
H R

v
U

n
] p2I

p~q
, (18)

where we have used and In this case,U
n
oA

s
U

n
H U

n
\ I

p~q
.

has size (p [ q)] (p [ q). Although smaller, this matrixR3
contains the same information as Besides theP

a
M RP

a
M.

dimension reduction, an advantage of this scheme is that
the noise term stays white.

6.2. Keeping Track of Projections
Since the projections alter the visibility data in it isR

v
,

essential, for the purpose of imaging, to store the linear
operation represented by the projections. At the same time,
it might be necessary to adapt the projection several times
per second, since the a-vectors of interferers are time-
varying. Hence, in the construction of the 10 s correlation
average from short-term projected correlation matrices, we
also have to construct the e†ective linear operation.

Let denote the short-term correlation matrix, whereR
kk \ 0,1, . . . , N [ 1 is the time index, and N is the number of

short-term matrices used in the long-term average. Denote
for generality the linear operation representing the projec-
tion by where in the Ðrst ÐlteringL

k
, L

k
\ (U

n
)
k
(U

n
)
k
H

scheme (eq. [16]), and in the second (eq. [18])).L
k
\ (U

n
)
k
H

Consider now the short-term Ðltered averages,

R3
k
4 L

k
R

k
L

k
H\ L

k
R

v
L

k
H] p2L

k
L
k
H ,

k \ 0, 1, . . . , N [ 1 .

By simply averaging these, the long-term average will be

R3 10s \ 1
N

;
k/0

N~1
R3

k
\ 1

N
;
k/0

N~1
L
k

R
k

L
k
H .

The appear here at both sides of To move them toL
k

R
k
.

one side, we make use of the general expression

vec (ABC )\ (CT ? A) vec (B)

where ? denotes a Kronecker product, and vec (É) the
column-wise stacking of a matrix into a vector,

A ? B 4

<

t

>

t

t

a11 B a12 B É É É
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In this case, we obtain

vec (R3 10s)4 1
N

; [(L1
k
? L

k
) vec (R

k
)]

\
C 1
N

; L1
k
? L

k

D
vec (R

v
)

] p2
C 1
N

; L1
k
? L

k

D
vec (I

p
)

\ C vec (R
v
)] p2C vec (I

p
) ,

where

C 4
1
N

;
k/0

N~1
L1

k
? L

k

and the overbar denotes complex conjugation. C is the
e†ective linear mapping of entries of to entries ofR

v
R3 10s.

For the imaging step, we have to know how dependsR3 10s
on Thus, we have to construct and store C along withR

v
.
Unfortunately, it is a rather large matrix : p2] p2 inR3 10s.

the Ðrst Ðltering scheme, and (p [ q)2] p2 in the second.
Another problem for imaging might be that the noise con-
tribution on is no longer white, but determined by C.R3 10s
Two possible remedies are the following :

1. Assume that the a-vectors were sufficiently variable
over the time interval. In that case, C is likely to be of full
rank and thus invertible, and we can construct

C~1 vec (R3 10s) \ vec (R
v
) ] p2 vec (I

p
) .

By unstacking the result, we recover our interference-free
model However, the inversion of C might be aR

v
] p2I.

formidable, and numerically dubious, task.
2. If we take as in equation (18), then theL

k
\ (U

n
)
k
H

noise contribution on each is white. We can averageR3
kthe if they have the same dimension, i.e., p [ q where theR3

knumber of interferers q is constant over the interval. In that
case,

p2 1
N

;
n/0

N~1
(U

n
)
k
H(U

n
)
k
\ p2I

p~q
,

so that the noise contribution on is white. Note that noR3 10s
inversion is necessary.

If we do not invert C then the observed visibilities
in the matrix are modiÐed by some (known)V (u

ij
, v

ij
) R

vlinear combination. This has implications for the synthesis
imaging step. The usual construction of an image using
inverse Fourier transformation (based on eq. [3]) now gives
rise to a point-source image convolved with a space-varying
point-spread function (““ dirty beam ÏÏ). Since the point-
spread function is known at every location in the image, it is
still possible to correct for it using an extension of the usual
CLEAN deconvolution algorithm. Details are in Leshem &
van der Veen (2000).

Since C is a factor p2 larger than it might in fact beR3 10s,
more efficient to store the sequence of spatial Ðlters ThisL

k
.

is the case if is to be updated at timescales of 10 s/p2\ 50L
kms or longer.

6.3. Other Spatial Filtering Possibilities
Without going into too much detail, we mention a few

other possibilities for spatial Ðltering and interference can-
cellation. Suppose there is a single interferer,

R \ R
v
] p

s
2 aaH] p2I .

1. Subtraction.ÈWith an estimate of a and we can tryp
s
2,

to subtract it from the covariance data :

R3 \ R [ pü
s
2 aü aü H . (19)

Without other knowledge, the best estimate of a is the dom-
inant eigenvector, of R, and likewise the best estimate ofu1,is Since both of these are derived from R, itp
s
2 j1[ p2.
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turns out to be not too di†erent from the projection scheme.
Indeed, if we look at

(I [ au1 u1H)R(I [ au1 u1H)\ R [ u1 u1H j1(2a [ a2) ,

we can make it equal to equation (19) by selecting a such
that The projection scheme had a \ 1.j1(2a [ a2)\ pü

s
2.

Our point here is that also subtraction can be represented
by a two-sided linear operation on the correlation matrix.
Consequently, the visibility matrix is altered, and henceR

vthe corrections mentioned in ° 6.2 are in order.
2. Subtraction of a reference signal.ÈIf we have a refer-

ence antenna that receives a ““ clean ÏÏ copy of the interfering
signal, then we might try to subtract this reference signal
from the telescope signals. There are many adaptive
schemes for doing so, e.g., the least-mean square algorithm
of Haykin (1995). The general scheme is as illustrated in
Figure 12. In this Ðgure, the a-vector of the interferer is
found by cross-correlating with the reference antenna. We
also estimate its power. After correcting for the noise power
on the reference antenna, we can reconstruct and subtract
as(t).

This scheme is rather similar to the original projection
approach where we reduce the dimension to the noise sub-
space, viz. equation (18). The main di†erence is that, now,
we reduce the dimension from p ] 1 antennas back to p
antennas, so there is no loss of dimensions from the
astronomy point of view. It appears that this only has
advantages if the reference antenna has a better INR than
the telescopes. Also, we need as many reference antennas as
there are interferers.

As with the projection technique, all of these forms of
spatial Ðltering modify the observed visibilities in the matrix

by a known linear combination, with implications forR
vthe synthesis imaging step (Leshem & van der Veen 1999).

7. MULTICHANNEL BLANKING : EXPERIMENTAL RESULTS

To test the blanking and Ðltering algorithms, we have
attached the WSRT antennas to a multichannel data
recorder that can collect a few seconds of data at 20 MHz
rate and store it on CD-ROM. This enabled us to record a
variety of actual interference and process it o†-line. In this
section, we demonstrate the performance of the blanking
algorithm by adding GSM observations to ““ clean ÏÏ galactic

3C 48 data, in a variety of scalings. The results are quite
good, as it is possible to recover a 3C 48 absorption line
that was completely masked by the GSM interference.

7.1. Experimental Setup
The data recorder has been acquired in the context of the

STW NOEMI project, a cooperation between Delft Uni-
versity of Technology and ASTRON/NFRA. It basically
consists of an industrial PC with four PCI.212 sampling
boards. Each board contains two ADCs, and the boards are
synchronized so that in total eight telescope channels can be
sampled simultaneously. The ADCs have a resolution of 12
bit with sampling rates of 20 MHz down to 0.313 MHz in
steps of a factor of 2. After collecting a batch of data, it can
be copied into system memory (384 MB), previewed and
stored onto CD-ROM.3

Figure 13 shows an overview of the WSRT system to
indicate the point where the NOEMI data recorder was
connected. The WSRT is an east-west linear array of 14
telescope dishes, mostly spaced at 144 m. Each dish is
equipped with a front-end receiver that can be tuned to
several frequency bands. Both polarizations (X and Y) are
received. The resulting 14] 2 channels are ampliÐed, Ðl-
tered, down-converted to an intermediate frequency (IF)
range around 100 MHz, and transported to the main build-
ing via coaxial cables. Here the signals are fed to the equal-
izer unit, which compensates for the frequency-dependent
attenuation in the ground cables. The equalizer unit has
outputs for the broadband continuum system (DCB, eight
bands of 10 MHz) and for the spectral line system (DLB,
10 MHz). In the equalizer unit and in the DCB/DLB IF
systems are mixers, ampliÐers, and Ðlter units that take care
of the baseband conversion and Ðltering. At baseband the
signals are digitized to 2-bit resolution, a correction is
applied for the geometrical delay di†erences between the
telescopes, and the signals are correlated (in pairs) in the
DZB/DCB correlators. The NOEMI recorder is connected
at the output of the DLB spectral line IF system. Of the
14 ] 2 available telescope channels, a selection of eight are
connected to the NOEMI ADC samplers. The geometrical

3 We would like to thank G. Schoonderbeek for programming the data
acquisition software.

FIG. 12.ÈEstimation of a using a reference antenna
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FIG. 13.ÈOverview of main WSRT systems with the NOEMI data recorders

delay compensations and fringe rate corrections were not
included in the measurements.4

The WSRT system contains also calibration noise
sources, which are switched on for a 1.25 s period every 10 s.
For regular WSRT observations these noise sources are
used for system noise and gain calibration purposes. In
some of the observed NOEMI data sets these noise sources
are clearly visible as a 5%È15% power step.

Two important tests have been applied to the recording
system. The synchronization of the channels was checked
by applying a common wideband signal and was found to
be in order. The cross-talk between the channels was mea-
sured by applying a signal to only one of the channels and
looking at the leakage into the other channels. The power
insulation between two channels on the same PCI board is
found to be 51 dB (0.28% in voltage), and at least 90 dB
(0.0032% in voltage) across boards. This is sufficient for
spectral line work and for RFI mitigation tests.

7.2. Clean 3C 48 Absorption Data
To compare our o†-line frequency domain correlation

process based on recorded data to the on-line Westerbork
correlator (the DZB) we have made an interference-free
observation of the galactic H I absorption of 3C 48, a spec-
tral line at 1420 MHz. Figure 14 shows the estimate of the
power spectral density of the received signal based on the
largest eigenvalue of the covariance matrix.

The coherency (correlation coefficient) of signals andx
iat the output of telescopes i and j is deÐned asx

j

o
ij
( f )\ Ex

i
( f )x6

j
( f )

JEM o x
i
( f ) o2NEM o x

j
( f ) o2N

\ R
ij
( f )

JR
ii
( f )R

jj
( f )

. (20)

4 Since these fringe rates are in the order of 0È10 Hz, this has no
consequences for the detection of interference based on short-term corre-
lation matrices, with typical integration periods in the order of milli-
seconds.

FIG. 14.È3C 48 : largest eigenvalue of the covariance matrix

Since all telescopes are tracking the same source s, we have
that where is the noise at telescope i. Withx

i
\ a

i
s] n

i
n
iuncorrelated noise of power and a sourceEM o n

i
o2N\ p2,

power of it follows thatp
s
2,

o
ij
( f ) \ a

i
a6
j

p
s
2( f )

p
s
2( f ) ] p2( f ) (i D j) .

Thus, the theoretical value of the coherency is constant over
all nonzero baselines and can be estimated based on the
parameters of 3C 48 and knowledge of the receiver gains
and noises. These theoretically expected (asymptotic) values
can then be compared to the computed coherencies of the
recorded observation using equation (20) and can also be
compared to the coherency measured with the DZB hard-
ware.

Figure 15a shows the magnitude of the coherency func-
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FIG. 15.È3C 48 coherency function, magnitude (for all baselines). (a) NOEMI recording and o†-line processing, (b) on-line WSRT processing by the DZB.

tion for all nonzero baselines as based on a NOEMI record-
ing of a few seconds. The coherency is around 5%, and the
spectral absorption at 1420.4 MHz shows up as a dip. We
veriÐed that the absorption line is statistically signiÐcant.
For comparison we include the same spectral line as pro-
cessed by the WSRT DZB correlator in Figure 15b. The
values of the coherency are in good agreement (di†erences
are due to di†erences in processing bandwidths, obser-
vation times and instrumental settings).

To verify the phase behavior of the coherency we have
computed the unwrapped phase as a function of frequency.
Note that the geometrical delay compensation and fringe
corrections were not included in the recording. As a result
of the narrowband processing, the delay o†set of oneq

ijchannel with respect to another shows up as a frequency-
dependent phase shift (the fringe), which will be thee~j2nfqij
phase of Here depends on the location of 3C 48o

ij
( f ). q

ijand the baseline vector between antenna i and j, andr
i
[ r

jis known. Figure 16 compares the observed phase di†er-
ences (averaged over all identical baselines) to the computed

FIG. 16.È3C 48 averaged coherency phase function vs. frequency,
various baselines.

phase, as a function of frequency and baseline length. It is
seen that the correspondence is very good. Note that for the
shorter baselines we have more realizations so that their
correspondence is better.

7.3. 3C 48 Absorption L ine with GSM Interference
At this point we are ready to demonstrate the per-

formance of the subband detection and blanking method as
presented in ° 5. To this end, we have superimposed on the
3C 48 data (at 1420 MHz) another measurement Ðle con-
taining GSM interference (at 905 MHz), with the same
bandwidth and for various amplitude scalings of each Ðle.
Although a bit artiÐcial, the good linearity of the WSRT
system implies that had a GSM signal been transmitted
with a carrier frequency of 1420 MHz, then the measured
data would be the superposition of the two signals plus
system noise. The overlay allows us to verify the blanking
performance for various mixtures of signal-to-interference
power, since the clean data is now available as a reference
and also the theoretical coherency is well known.

As described in ° 5, the detection of an interferer in a
speciÐc time-frequency cell is based on the eigenvalues of
the corresponding correlation matrix of the resulting
mixture. In this scheme, if one or more eigenvalues are
above a threshold, then an interferer is detected and that
data block is omitted. However, to avoid the selection of the
threshold based on a desired false alarm rate, we have
chosen to simply throw away the worst 30 percent of the
data according to the value of the detector. We have com-
puted the coherency of the clean, the contaminated and the
blanked signals. Figure 17 shows the coherency functions
over all baselines for a particular mixture of signals and
interference : scaling the GSM data Ðle by 0.1 and the clean
3C 48 data Ðle by 0.9. It is seen that (top left) the clean 3C 48
spectrum shows the absorption line, which is (top right)
completely masked when GSM interference is added. After
blanking, (bottom right) the absorption line is almost per-
fectly recovered. For comparison we also included (bottom
left) the results of blanking based on single-channel power
detection from channel 2 only, without the subband decom-
position. The failure of this common way of single-channel



FIG. 17.ÈMagnitude of the coherency functions of 3C 48 mixed with GSM interference. GSM data scaled by 0.1 (top left) clean 3C 48 data, (top right) 3C
48 mixed with GSM, (bottom left) after single-channel detection/blanking, (bottom right) after multichannel subband detection/blanking.

FIG. 18.ÈMagnitude of the coherency functions of 3C 48 mixed with GSM interference. GSM data scaled by 0.5. (top left) clean 3C 48 data, (top right) 3C
48 mixed with GSM, (bottom left) after single-channel detection/blanking, (bottom right) after multichannel subband detection/blanking.
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detection is clearly seen. The reason is that the GSM signal
was rather weak, so that for single-channel wideband pro-
cessing the probability of detection was quite low, even for a
false alarm rate of up to 30%.

To show the e†ect of interference power we have repeated
the experiment with the GSM data set weighted by a factor
0.5. The stronger GSM interferer is now more easily
detected and the resulting spectrum after blanking is better
as seen in Figure 18.

8. CONCLUSIONS

In this paper we considered various aspects of multi-
channel interference suppression for radio astronomy. It
was shown that by subband processing we have access to

the many narrowband techniques available in array signal
processing. We have demonstrated the beneÐts of multi-
channel spatiospectral blanking, both theoretically and on
measured data. The results are very pleasing. We have also
discussed spatial Ðltering techniques and demonstrated how
they can be incorporated into the radio-astronomical mea-
surement equation.
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