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Abstract—Atrial fibrillation (AF) is the most common 
arrhythmia in the heart. Two main types of AF are defined as 
paroxysmal and persistent. In this paper, we present a method to 
discriminate between the characteristics of paroxysmal and 
persistent using tensor decompositions of a multi-channel 
electrocardiogram (ECG) signal. For this purpose, ECG signals 
are segmented by applying a Hilbert transform on the thresholded 
signal. Dynamic time warping is used to align the separated 
segments of each channel and then a tensor is constructed with 
three dimensions as time, heartbeats and channels. A Canonical 
polyadic decomposition with rank 2 is computed from this tensor 
and the resulting loading vectors describe the characteristics of 
paroxysmal and persistent AF in these three dimensions. The time 
loading vector reveals the pattern of a single P wave or abnormal 
AF patterns. The heartbeat loading vector shows whether the 
pattern is present or absent in a specific beat. The results can be 
used to distinguish between the patterns in paroxysmal AF and 
persistent AF. 

Keywords—Atrial fibrillation, Tensor decomposition, 
Electrocardiogram and Canonical polyadic decomposition 

I. INTRODUCTION
    Atrial Fibrillation (AF) is the most prevalent sustained 
arrhythmia in the heart and can lead to stroke, heart failure and 
other heart-related diseases [1]. In a normal person, the 
electrical activity of the heart starts from the sinoatrial (SA) 
node and propagates to the atrioventricular (AV) node which 
creates regular beats. However, in AF, impulses from other sites 
in the atrium generate irregular beats which change the signal 
morphology as well as the heart rate. The clearest feature of AF 
in an electrocardiogram (ECG) is the irregular R-R interval 
during the AF episode. There are two main types of AF: 
paroxysmal and persistent. In paroxysmal AF, irregular beats 
start suddenly and the heart rhythm goes back to the normal 
rhythm by itself. Episodes of AF occur occasionally and last 
between 30 seconds and 7 days. Besides, atrial premature beats 
(APB) also can lead to paroxysmal AF. APB happens when a 
site in the atrium depolarizes before SA node and subsequently 
triggers a heartbeat. Wallmann et al. [2] derived that frequent 
APB can lead to AF. They defined that if the number of APB is 
higher than 70 in 24 hours, the probability of AF increases by 
28% in stroke patients. In persistent AF, the irregular beats last 
more than 7 days and do not terminate by themselves. In both 
paroxysmal AF (AF episode) and persistent AF, instead of a 
single P wave, fibrillatory waves or absence of P wave are 

recorded in the ECG signal. However, this classification is not 
always very practical or insightful as one would have to 
measure for 7 days, and it does not describe the severity. This 
motivates to search for a different classification. 
    Currently, AF diagnosis is based on the surface ECG and 
Holter monitoring. In previous works, only the AF episodes of 
an ECG signal are selected for the classification. However, 
between 25% and 60% of AF cases are paroxysmal AF, which 
have both AF episodes and NSR episodes in the recorded ECG 
signal. Moreover, most automatic detection methods work on a 
single channel ECG [3]. A multi-channel ECG has 
spatiotemporal information which is helpful in the AF analysis. 

 In this paper, we present a novel method to define and detect 
characteristic patterns in paroxysmal AF and persistent AF in a 
multi-channel ECG. A multi-channel ECG consists of temporal 
information from different heartbeats and different channels. 
After segmentation, we stack this information in a tensor (high 
dimensional matrix). A tensor decomposition factors the tensor 
into lower-dimensional components (loading vectors), which 
approximate the original tensor. Tensor has been widely used 
in various cardiac applications. Detection and localization of 
myocardial infarction (MI) [4], ECG data compression [5], 
irregular heartbeat classification [6], and detection of T-wave 
alternans [7] are examples of these researches in cardiology. 
Previously, Giernaert et al. [8] proposed using a multilinear 
singular value decomposition	(MLSVD) for the classification 
of short periods of ECG signals into AF or NSR. However, both 
episodes are present when we analyze longer periods, as is 
necessary for detecting paroxysmal AF. If an algorithm or 
physician only looks at the NSR segment of the signal, the AF 
would not be detected. 
    Therefore, we concentrate on long-duration AF patient data 
and propose a tensor-based method to extract characteristics of 
paroxysmal AF and persistent AF. The advantage of our work 
is that the proposed method is able to compress a very long 
ECG signal into three loading vectors, which can also reveal the 
short episodes of AF. Moreover, the tensor analysis shows that 
each class of AF (paroxysmal, persistent) can be further 
decomposed into two sub-groups (type A, type B), which 
represent discriminant features of paroxysmal AF and 
persistent AF. The loading vector also allows us to estimate 
(and generalize) the AF burden, which is a widely used 
parameter to assess the severity of AF. 

This research was funded in part by the Medical Delta Cardiac 
Arrhythmia Lab (CAL).   
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II. METHOD 

A. Data 
    We used ECG telemetry data, collected at Erasmus Medical 
Center (EMC) from 13 patients, 6 with paroxysmal AF and 7 
with persistent AF. The data are standard 12-lead ECG signals 
which last 72 hours and are labeled by clinicians as paroxysmal 
AF or persistent AF.  All ECG signals are recorded with a 
sampling frequency 200 Hz. As telemetry recording is a time-
consuming process and leads are connected to patient for days, 
artifacts are highly possible on the recorded data, especially on 
the body leads. Hence, we excluded body leads’ data and 
studied only the six chest leads’ data (V1-V6).  
    Moreover, power-line, electrode connection, breathing 
artifact and electromyography interference are other sources of 
noise in ECG. Hence, a band-pass filter with a cutoff frequency 
of 0.33 Hz to 30 Hz is applied on all six channels. Next, the 
signals are also normalized in amplitude to have values between 
-1 and +1. The resulting signal is denoted by 𝑠!. 

B. Segmentation 
    The ECG of a normal heartbeat consists of three main 
segments the P wave, QRS complex and T wave. The P wave 
represents atrial depolarization during a cardiac cycle and 
analyzing this part will help us to study atrial activity. However, 
during AF, rapid fibrillatory waves of atrial activity or absence 
of P wave are recorded instead of the P wave. Hence, we 
segmented the ECG signal from the end of the T-wave (Tend) to 
the start of the QRS complex (QRS start) [9] to concentrate on 
the most important part of the ECG signal from AF point of 
view.  
    In this work, we applied a Hilbert transform (HT) for the 
segmentation of the ECG signal.  The use of HT in ECG 
analysis was first presented by Bolton and Westphal [10]. 
Benitez et al. [11] used a Hilbert transform of the first 
differential of the ECG to locate the R peak in the QRS 
complex. Varghees and Ramachandran [12] showed that a HT 
is useful to detect the boundaries of the local waves in the 
signal. They proposed a HT for heart sound activity detection 
and we implemented the same pre-processing steps to detect the 
boundaries of the local waves in the ECG signal. 
    Since we aim to find the boundaries of the local waves with 
high amplitude (T wave and QRS complex), we set an adaptive 
threshold based on the standard deviation 𝜎"! of the normalized 
signal 𝑠!  (suppressing P wave and  fibrillatory waves in the 
segmentation). Hence, the thresholded signal is computed as 
 

							𝑠#$[𝑛] = ( 0, 𝑠![𝑛] < 𝜎#$
𝑠![𝑛], otherwise.                                       (1) 

 
    After analyzing an arbitrary short segment of each patient, 
we set 𝜎#$ =0.2 × 𝜎"!.  
    Let 𝑠̂#$[𝑛] be the HT of 𝑠#$[𝑛], then the analytical signal 
representation of the thresholded signal is computed as  
 
							𝑠%[𝑛] = 𝑠#$[𝑛] + 𝑗𝑠̂#$[𝑛] 	= 𝐴[𝑛]𝑒&'[!]                       (2) 
 

where 𝑠%[𝑛]  denotes the analytical signal of the thresholded 
signal, 𝐴[𝑛]and φ[𝑛]	are the amplitude and the instantaneous 
phase which are computed as  
 

𝐴[𝑛] = =𝑠#$[𝑛]* + 𝑠̂#$[𝑛]* 
                            𝜑[𝑛] = 𝑡𝑎𝑛+,("̂"#[!]

""#[!]
)                            (3)  

 
    For the signal 𝑠#$[𝑛] with zero-valued samples and positive-
valued HT samples, the phase angle is +.

*
 radian. For negative-

valued HT samples with zero-valued samples, the phase angle 
is - .

*
. According to (3), the negative to positive angle change 

appears at the peak point of the thresholded signal. So, in the 
instantaneous phase waveform, the zero-crossing point is 
determined by checking the sign of the samples at time n and 
n+1. Hence, the detected zero-crossing points in the phase 
angle represent the location of the R peak and the T peak. In the 
next step, peak locations are sorted into two groups as R peaks 
and T peaks. By analyzing all data, a threshold c is defined as 
 
																														𝑐 = 0.75 ×max	(𝑠#$[𝑛])                          (4) 
 
    If 𝑠#$[𝑛] at n=npeak1 is higher than c, npeak1 is the location of 
an R peak, otherwise, it would be the location of a T peak. The 
constant 0.75 was determined empirically based on a subset of 
the ECG data, and it is considered to be able to detect the 
varying-amplitude R peaks in the ECG sequence. 
    According to the instantaneous phase of the analytical signal, 
the boundaries of the local waves in the ECG signal are 
determined by the positive-slope line. As shown in Figure 1, the 
QRS complex and T wave start from - .

*
 radian and end at 

+ .
*
	 radian.Thus, the starting point of the positive slope is 

determined by checking the amplitude of the phase in samples 
from nRpeak backward. The first location for which the amplitude 
of the phase is - .

*
 is declared as the starting point of the QRS 

complex. Similarly, the end point of the positive slope is 
determined by checking the amplitude of the phase in samples 
from nRpeak onwards.  The first location for which the amplitude 
of the phase is +.

*
	is declared as the end point of the QRS 

complex. This algorithm repeats for each T wave and it starts 
from the sample of the T peak location.  
    Based on the results, we observed that the detected 
boundaries of local waves slightly differ from the true 
boundaries. This error is due to the use of the threshold for low 
amplitude signals. The duration of the boundary location error 
is approximately 20 ms. So, we considered a 10 ms time delay 
after the Tend and 10 ms before QRS start to correct the time-
location error. We repeated the proposed method for all 
channels. As a result, the ECG signal in the Tend - QRS start 
intervals has been segmented for each channel, and they are 
stored for further analysis.   

C. Dynamic time warping 
    A normal heart rate is not entirely constant as cardiac cycles 
have slightly different lengths. This situation intensifies in       
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Figure 1.Segmentation of the ECG signal, A) Filtered signal B) Thresholded 

signal C) Instantaneous phase of the signal 

cardiac arrythmia which has uneven cardiac cycles. Hence, the 
segmented ECG signals in all heartbeats of a single channel do 
not have the same length. Thus, we used dynamic time warping 
(DTW) to align two segmented ECG signals which correspond 
to two heartbeats onto a common set of samples. The DTW 
algorithm is applied based on the dynamic programming 
techniques explained in [13]. The goal of DTW is to minimize 
the distance between two sequences of data. Hence, it searches 
for an alignment path that minimizes the total cost of alignment.  
    In the channel one, the DTW distance is calculated between 
all segments. The DTW distance matrix shows that there are 
two groups of segments in the recorded signals based on the 
measured distance. Thus, in order to minimize the DTW 
distance, we define the mean value of the DTW distance matrix 
as a threshold and divide segments into two classes. In the next 
step, the alignment method is repeated for each class, 
separately. As a result, we gained aligned ECG segments from 
channel one with the same length. Then we aligned a segment 
of the channel two with the aligned segments of channel one 
and repeat the algorithm for other beats of channel two. The 
algorithm is repeated for other channels, similarly. As a result, 
we have aligned segments with the same length in all beats and 
all channels.  

D. Tensor construction 
    A tensor is a generalization of a matrix to higher dimensions. 
While a single channel ECG can be stored in a vector (one 
dimension), the segmented ECG can be stored in a matrix (two 
dimensions). More specifically, if the length of Tend – QRS start 
segment is L and the number of heartbeats in a single-channel 
is M, we can create a matrix of size L×M in which each row 
shows a heartbeat and each column shows the time. The same 
is done for other channels and the resulting matrices are stacked 
behind each other to construct a third-order tensor with three 
dimensions as: time× heartbeat × channel. Construction of the 
third-order tensor 𝒳 ∈	R	/×1×2 is shown in Figure 2 where V= 
[V1 ,…,V6] shows the number of channels. 

E. Tensor decomposition 
    In the ECG signal, there are normal heartbeats and AF 
episodes. Here we assumed that the normal heartbeats are 
characterized by a certain temporal pattern which is present 
with different amplitude on different heartbeats and different 
channels. Further, during AF episodes, it is assumed that a 
different pattern is present, which is scaled in different 
heartbeats and channels. So, the tensor 𝒳 can be approximated 
by a canonical polyadic decomposition (CPD) where each rank 
1 component describes one pattern [14]. The first loading vector 
describes the time course of the pattern, while the second and 
third loading vector shows how this pattern is scaled over the 
beats and channels.  The CPD is defined as 
 
																								𝒳 = ∑ 𝑎34

35, ∘ 𝑏3 ∘ 𝑐3 + 𝐸	                             (5) 
 
where (𝑎3 , 𝑏3 , 𝑐3) are the loading vectors of component r and 
“∘” denotes the outer product. The CPD approximates a tensor 
into a sum of R rank-1 components. The rank of the tensor is 
determined by the smallest R for which 𝐸=0 (Figure 2).  
    An important issue for the CPD is its uniqueness. Define 
first, second and third factor matrices of a third-order tensor 𝒳	
as A=[a1,…,aR], B=[b1,…,bR], and C=[c1,…,cR]. The CPD is 
also written as𝒳 = [𝑨,𝑩, 𝑪]4 . Then, the CPD is unique if 
𝒳 = [𝑨,𝑩, 𝑪]4 = [𝑨,T 𝑩,T 	𝑪T ]4  implies that an 𝑅 × 𝑅 
permutation matrix 𝚷  and nonsingular diagonal matrices 
𝚲𝑨, 𝚲𝑩and 𝚲𝑪 exist such that 
 
𝑨T = 𝑨𝚷𝚲𝑨			, 𝑩T = 𝑩𝚷𝚲𝑩,				𝑪T = 𝑪𝚷𝚲𝑪, 𝚲𝑨𝚲𝑩𝚲𝑪 = 𝑰𝑹    (6) 
 
    Conditions for uniqueness of the CPD were derived by 
Kruskal [15] for third-order tensors and Sidiropoulos and Bro 
[16] for higher-order tensors. A sufficient condition for 
uniqueness is that A and B are full rank and C does not contain 
collinear columns. For small R this is satisfied to an acceptable 
extent. 

III. RESULTS 
    In the CPD model, firstly the number of extracted 
components should be determined. In order to find the correct 
R, we decomposed the tensor into the different number of 
components and calculated the residual error by comparing the 
reconstructed tensor to the original tensor 𝒳. Then the relative 
error is computed by dividing the Frobenius norm of residual 
error to the Frobenius norm of the original tensor. The relative 
error for a patient with paroxysmal AF and a patient with 
persistent AF is shown in Figure 3. For both patients, the  

 
Figure 2. Tensor construction and CPD decomposition 
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Figure 3. Relative error of tensor decomposition with different ranks 

maximum error reduction happened when the rank was 
increased from 1 to 2 which means rank 1 is able to extract the 
dominant component of the signal. However, rank 1 is too small 
because from prior knowledge about AF in both groups, we 
expect to see two different patterns in each group of AF. 
Therefore, rank 2 is chosen to extract the patterns. Next, we 
study paroxysmal and persistent AF datasets and present two 
examples for each class.  

A. Paroxysmal AF 
    Figure 4 shows the CPD components for two patients with 
paroxysmal AF. Column one shows the first loading vector 
which represents a template for Tend -QRS start segment. Column 
two shows the variation of the loading vector one in the 
different heartbeats. Note that the algorithm was applied to the 
whole telemetry data but in Figure 4 and Figure 5, we showed 
100 beats. The third loading vector corresponds to the relative 
strength (and polarity) of the extracted pattern (first loading 
vector) across channels. For paroxysmal AF, we observed two 
distinct patterns which we call type A and type B.  
    Figure 4.A shows an example of type A. Looking at the first 
loading vector, component one (in blue) is recognized as a 
single P wave contributed by the NSR part, while component 
two (in red) is a template for fibrillatory waves. The second 
loading vectors show the magnitude of the extracted patterns 
across beats. From beat number 48, the magnitude of 
component two is increasing which shows the starting point of 
fibrillatory waves. Fibrillatory waves continue until beat 
number 92, after which normal sinus rhythm is restored. This 
can also be derived from the magnitude of component one in 
the second loading vector. The second loading vector is also 
useful to find the AF burden. From this vector the duration of 
AF episodes, number of AF episodes and the percentage of time 
that the patient is in AF can be monitored.  
    Figure 4.B shows the components for an example of type B.  
Component one (in blue) of the first loading vector shows a 
single P wave while component two (in red) illustrates a pattern 
for the absence of a P wave which is related to atrial premature 
beats. By analyzing the second loading vector, it is clear that 
the magnitude of component one is mostly higher than 
component two which is close to zero except for three 
heartbeats. In beat number 10, 25 and 72, the magnitude of 
component two is higher than component one, which is close to 
zero.  This means that in these 3 beats the normal P-wave (first  

 
Figure 4. CPD loading vectors for two paroxysmal cases, A) type A B) type B 

loading vector of the second component) is absent. By counting 
the number of atrial premature beats as explained in the 
Introduction section, a total of 138 atrial premature beats could 
be detected in a total length of 24 hours. So, this case shows the 
patterns of type B in paroxysmal AF. 
    In the dataset, two patients have patterns of type A and four 
patients have patterns of type B. 

B. Persistent AF 
    Figure 5 shows the CPD components of two patients with 
persistent AF. As described in the Introduction, fibrillatory 
waves or the absence of a P wave are indicators of persistent 
AF. We observed two distinct patterns of persistent AF which 
we also call type A and type B (they are not related to the 
previous A and B). 
    In Figure 5.A, patterns of type A are observed. The first 
loading vector shows two components. Component one is a 
template of fibrillatory waves and component two is a template 
for the absence of P wave. The second loading vector gives 
information about the distribution of fibrillatory waves as well 
as the absence of P wave. By analyzing two components of the 
second loading vector, it is determined that most beats represent 
the pattern of the fibrillatory wave while some beats, like beat 
number 54, have an absence of a P wave.  

 
Figure 5. CPD loading vectors of in two persistent cases, A) type A B) type B 
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    In case two, fibrillatory waves and the absence of a P wave 
are shown as components of the first loading vector, similarly. 
The difference between type A and type B is in the distribution 
of components. In type B, the number of beats with a 
fibrillatory pattern are almost the same as the beats with the 
absence of a P wave pattern. These features are considered as 
patterns of type B in persistent AF. In other words, the most 
discriminant feature of type A and type B is the percentage of 
fibrillatory waves compared to the absence of P waves. For type 
B, the percentage of fibrillatory waves is higher than for type 
A, and this feature can be used to assess the severity of 
persistent AF. For further analysis of such a severity estimation, 
we have to observe more data. In the dataset, three patients have 
patterns of type A and four patients have patterns of type B.  

IV. DISCUSSION  
    In this work, we present a novel method to find specific 
patterns in multichannel ECGs to reveal differences between 
paroxysmal AF and persistent AF. The most important 
difference between these conditions is the fact that in 
paroxysmal AF, NSR (including P-waves) and AF episodes 
(without P-waves) are alternating, while in the persistent AF, 
NSR (i.e. P-waves) is almost absent. This difference can only 
be established using long ECG recordings. Reading long-term 
multichannel ECG is time-consuming and cumbersome. Our 
approach provides a compact and easy-to-interpret summary of 
all the patterns present in the ECG in just 3 figures that visualize 
the loading vectors: the most prevalent patterns, their presence 
in the consecutive waves and their relative strength in the 
different channels. Paroxysmal and persistent AF can be 
differentiated directly from the first loading vector, based on 
the presence or absence of a loading vector resembling a P-
wave pattern. 
    It is important to note that while the proposed method is able 
to distinguish between persistent AF and paroxysmal AF, in 
borderline cases an improvement in the method is needed. For 
example, if the AF episodes in a paroxysmal case lasts slightly 
less than 7 days, the NSR episode would be too short. So, it is 
possible that the pattern of a single P wave is not extracted by 
the rank 2 CPD. Also, atrial activity can be modeled by the sum 
of complex exponentials and the block term decomposition 
(BTD) exploits this signal model to apply source separation. 
Thus, based on the signal model, using BTD can be helpful in 
the detection of borderline cases [17]. 
    Moreover, the second loading vector of the CPD can also be 
useful in the severity detection of AF. This vector shows the 
distribution of a single P wave, absence of P wave and 
fibrillatory waves. Hence, by analyzing the second loading 
vector of a large group of the graded data we can find the 
relationship between the extracted patterns and the severity of 
AF. 

V. CONCLUSION 
    This paper presents a tensor-based method to extract 
characteristics of paroxysmal and persistent AF in the multi-
channel ECG signals. Results of patients in both groups reveal 

that CPD is able to find components that illustrate the 
distinction between paroxysmal and persistent. Our future work 
is to improve the proposed method for borderline cases and 
apply this method to a larger dataset to classify them 
automatically. Having more information about AF will lead to 
the improvement of AF treatment. Hence, we aim to extend this 
method to find the relationship between the extracted 
components and the severity of AF. This can be also helpful for 
the treatment of patients in the early stages.   
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