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Abstract Radio astronomy is known for its very large telescope dishes but
is currently making a transition towards the use of a large number of small
antennas. For example, the Low Frequency Array, commissioned in 2010, uses
about 50 stations each consisting of 96 low band antennas and 768 or 1536
high band antennas. The low-frequency receiving system for the future Square
Kilometre Array is envisaged to initially consist of over 131,000 receiving el-
ements and to be expanded later. These instruments pose interesting array
signal processing challenges. To present some aspects, we start by describing
how the measured correlation data is traditionally converted into an image,
and translate this into an array signal processing framework. This paves the
way to describe self-calibration and image reconstruction as estimation prob-
lems. Self-calibration of the instrument is required to handle instrumental
effects such as the unknown, possibly direction dependent, response of the
receiving elements, as well a unknown propagation conditions through the
Earth’s troposphere and ionosphere. Array signal processing techniques seem
well suited to handle these challenges. Interestingly, image reconstruction, cal-
ibration and interference mitigation are often intertwined in radio astronomy,
turning this into an area with very challenging signal processing problems.
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1 Introduction

Astronomical instruments measure cosmic particles or electromagnetic waves
impinging on the Earth. Astronomers use the data generated by these in-
struments to study physical phenomena outside the Earth’s atmosphere. In
recent years, astronomy has transformed into a multi-modal science in which
observations at multiple wavelengths are combined. Figure 1 provides a nice
example showing the lobed structure of the famous radio source Cygnus A
as observed at 240 MHz with the Low Frequency Array (LOFAR) overlaid
by an X-Ray image observed by the Chandra satellite, which shows a much
more compact source.

Fig. 1: Radio image of Cygnus A observed at 240 MHz with the Low Fre-
quency Array (showing mostly the lobes left and right), overlaid over an X-
Ray image of the same source observed by the Chandra satellite (the fainter
central cloud) [65] (Courtesy of Michael Wise and John McKean.)

Such images are only possible if the instruments used to observe different
parts of the electromagnetic spectrum provide similar resolution. Since the
resolution is determined by the ratio of observed wavelength and aperture
diameter, the aperture of a radio telescope has to be 5 to 6 orders of magni-
tude larger than that of an optical telescope to provide the same resolution.
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This implies that the aperture of a radio telescope should have a diameter
of several hundreds of kilometers. Most current and future radio telescopes
therefore exploit interferometry to synthesize a large aperture from a number
of relatively small receiving elements.

An interferometer measures the correlation of the signals received by two
antennas spaced at a certain distance. After a number of successful experi-
ments in the 1950s and 1960s, two arrays of 25-m dishes were built in the
1970s: the 3 km Westerbork Synthesis Radio Telescope (WSRT, 14 dishes)
in Westerbork, The Netherlands and the 36 km Very Large Array (VLA, 27
movable dishes) in Socorro, New Mexico, USA. These telescopes use Earth
rotation to obtain a sequence of correlations for varying antenna baselines,
resulting in high-resolution images via synthesis mapping. A more extensive
historical overview is presented in [52].

The radio astronomy community has recently commissioned a new genera-
tion of radio telescopes for low frequency observations, including the Murchi-
son Widefield Array (MWA) [38, 53] in Western Australia and the Low Fre-
quency Array (LOFAR) [58, 24] in Europe. These telescopes exploit phased
array technology to form a large collecting area with ∼1,000 to ∼50,000 re-
ceiving elements. The community is also making detailed plans for the Square
Kilometre Array (SKA), a future radio telescope that should be one to two or-
ders of magnitude more sensitive than any radio telescope built to date [18].
Even in its first phase of operation, the low-frequency receiving system of
the SKA (SKA-low) is already envisaged to consist of over 131,000 receiving
elements [56, 17].

The individual antennas in a phased array telescope have an extremely
wide field-of-view, often the entire visible sky. This poses a number of signal
processing challenges, because certain assumptions that work well for small
fields-of-view (celestial sphere approximated by a plane, homogenous prop-
agation conditions over the field-of-view), are no longer valid. Furthermore,
the data volumes generated by these new instruments will be huge and will
have to be reduced to manageable proportions by a real-time automated data
processing pipeline. This combination of challenges led to a flurry of research
activity in the area of array calibration, imaging and RFI mitigation, which
are often intertwined in the astronomical data reduction.

The goal of calibration is to find the unknown instrumental, atmospheric
and ionospheric disturbances. The imaging procedure should be able to apply
appropriate corrections based on the outcome of the calibration process to
produce a proper image of the sky. In this chapter, we review some of the
array processing techniques that have been proposed for use in standard
calibration and imaging pipelines, many of which are already being used in
data reduction pipelines of instruments like LOFAR.
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2 Notation

Matrices and vectors will be denoted by boldface upper-case and lower-case
symbols, respectively. Entries of a matrix A are denoted by aij , and its

columns by ai. Overbar (·) denotes complex conjugation. The transpose op-
erator is denoted by T , the complex conjugate (Hermitian) transpose by H

and the Moore-Penrose pseudo-inverse by †. For matrices A of full column
rank, i.e., AHA invertible, this is equal to the left inverse:

A† = (AHA)−1AH . (1)

The expectation operator is denoted by E{·}.
We will multiply matrices in many different ways. Apart from the usual

multiplication AB, we will use A ⊙ B to denote the Hadamard product
(element-wise multiplication), and A⊗B to denote the Kronecker product,

A⊗B =







a11B a12B · · ·
a21B a22B · · ·
...

...
. . .






.

We will also use the Khatri-Rao or column-wise Kronecker product of two
matrices: let A = [a1, a2, · · · ] and B = [b1,b2, · · · ], then

A ◦B = [a1 ⊗ b1, a2 ⊗ b2, · · · ] .

Depending on the context, diag(·) converts a vector to a diagonal matrix with
the elements of the vector placed on the main diagonal, or converts a general
matrix to a diagonal matrix by selecting its main diagonal. Further, vec(·)
converts a matrix to a vector by stacking the columns of the matrix.

Properties of Kronecker products are listed in, e.g., [43]. We frequently use

(A⊗B)(C⊗D) = AC⊗BD (2)

vec(ABC) = (CT ⊗A)vec(B) (3)

vec(A diag(b)C) = (CT ◦A)b . (4)

Property (3) is used to move a matrix B from the middle of an equation to
the right of it, exploiting the linearity of the product. Property (4) is a special
case of it, to be used if B is a diagonal matrix: in that case vec(B) has many
zero entries, and we can omit the corresponding columns of CT ⊗A, leaving
only the columns of the Khatri-Rao product CT ◦A. A special case of (3) is

vec(aaH) = ā⊗ a (5)

which shows how a rank-1 matrix aaH is related to a vector with a specific
“Kronecker structure”.
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3 Basic concepts of interferometry; data model

The concept of interferometry is illustrated in Fig. 2. An interferometer mea-
sures the spatial coherency of the incoming electromagnetic field. This is done
by correlating the signals from the individual receivers with each other. The
correlation of each pair of receiver outputs provides the amplitude and phase
of the spatial coherence function for the baseline defined by the vector point-
ing from the first to the second receiver in a pair. In radio astronomy, these
correlations are called the visibilities. In this section, we describe the data
acquisition in detail and construct a suitable data model.

x̃2(t)
g2g1

geometric
delay

x̃J (t)
gJbaseline

FOV

x̃1(t)

Fig. 2: Schematic overview of a radio interferometer.

3.1 Data acquisition

Assume that there are J receiving elements. Depending on the context, a
receiving element can be a telescope dish, a single antenna within a subarray
(usually referred to as a station) or a beamformed subarray. The RF signal
from the jth telescope, x̃j(t) is first moved to baseband where it is denoted
by xj(t), then sampled and split into narrow subbands, e.g., of 100 kHz each,
such that the narrowband condition holds. This condition states that the
maximal geometrical delay across the array should be fairly representable by
a phase shift of the complex baseband signal, and this property is discussed
in more detail in the next subsection. The resulting signal is called xj(n, k),
for the jth telescope, nth time bin, and for the subband frequency centered
at RF frequency fk. The J signals can be stacked into a J × 1 vector x(n, k).

For each short-term integration (STI) interval m and each subband k, a
covariance matrix estimate is formed by integrating (summing or averaging)
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the cross-correlation products x(n, k)xH(n, k) over N subsequent samples,

R̂m,k =
1

N

mN−1
∑

n=(m−1)N

x(n, k)xH(n, k) , (6)

This processing chain is summarized in Fig. 3.

BB
filter

bank

x(t) x(n, k)

100 kHz
10 µs

x(n, k)x(n, k)H

10 MHz

∑

10 s

10 s

R̂m,k

x̃1(t)

x̃J(t)

RF
to

Fig. 3: The processing chain to obtain covariance data.

The duration of an STI depends on the stationarity of the data, which is
limited by factors like Earth rotation and the diameter of the array. For the
LOFAR, a typical value for the STI is 1 to 10 s. A complete observation can
last from a few minutes to a full night, i.e., more than 12 hours. The resulting
number of samples N in a snapshot observation is equal to the product of
bandwidth and integration time and typically ranges from 103 (1 s, 1 kHz)
to 106 (10 s, 100 kHz) in radio astronomical applications.

3.2 Complex baseband signal representation

Before we can derive a data model, we need to include some more details
on the RF to baseband conversion. In signal processing, signals are usually
represented by their low pass equivalents, which is a suitable representation
for narrowband signals in a digital communication system, and also applicable
in the radio astronomy context. A complex valued bandpass signal, also called
the complex baseband signal, with center frequency fc may be written as

s̃(t) = s(t)ej2πfct (7)

Suppose that the bandpass signal s̃(t) is delayed by a time τ . This can be
written as
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s̃τ (t) := s̃(t− τ) = s(t− τ)ej2πfc(t−τ) = s(t− τ)e−j2πfcτej2πfct .

The complex envelope of the delayed signal is thus sτ (t) = s(t− τ)e−j2πfcτ .
Let B be the bandwidth of the complex envelope (the baseband signal) and
let S(f) be its Fourier transform. We then have

s(t− τ) =

∫ B/2

−B/2

S(f)e−j2πfτej2πftdf ≈
∫ B/2

−B/2

S(f)ej2πftdf = s(t)

where the approximation e−j2πfτ ≈ 1 is valid if |2πfτ | ≪ 1 for all frequencies
|f | ≤ B

2 . Ignoring a factor π, the resulting condition Bτ ≪ 1 is called the
narrowband condition. The quantitative interpretation of ”much less than
one” depends on the SNR of the received signals [67] and the sensitivity
loss considered acceptable [9]. Under this condition, we have for the complex
envelope sτ (t) of the delayed bandpass signal s̃τ (t) that

sτ (t) ≈ s(t)e−j2πfcτ for Bτ ≪ 1 .

The conclusion is that, for narrowband signals, time delays smaller than
the inverse bandwidth may be represented as phase shifts of the complex
envelope. Phased array processing heavily depends on this step. For radio
astronomy, the maximal delay τ is equal to the maximal geometric delay,
which can be related to the diameter of the array. The bandwidth B is the
bandwidth of each subband fk in the RF processing chain that we discussed
in the previous subsection.

3.3 Data model

We return to the radio astronomy context. For our purposes, it is convenient
to model the sky as consisting of a collection of Q spatially discrete point
sources, with sq(n, k) the signal of the qth source at time sample n and
frequency fk.

The signal received at the jth antenna is a sum of delayed source signals,
where the delays are geometric delays that depend on the direction under
which each of the signals is observed. In the previous subsection, we saw that
under the narrowband condition a delay of a narrowband signal s(t, k) by τ
can be represented by a phase shift:

sτ (t, k) = e−j2πfkτs(t, k)

which takes the form of a multiplication of s(t, k) by a complex number. Let
zj = [xj , yj, zj ]

T be the location of the jth antenna. Further, let lq be a
unit-length direction vector pointing into the direction of the qth source.
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The geometrical delay τ at antenna j for a signal coming from direction
lq can be computed as follows. For a signal traveling directly from the origin
of the coordinate system used to specify the antenna locations to antenna j,
the delay is the distance from the origin to the jth antenna divided by c, the
speed of light. For any other direction, the delay depends on the cosine of the
angle of incidence (compared to the baseline vector) at observing time n, and
is thus described by the inner product of the location vector with the direction
vector, i.e., τq,j(n) = zj · lq(n)/c. Overall, the phase factor representing the
geometric delay is

aj,q(n, k) = e−j2πfkτq,j(n) = e−
2πjfk

c
zTj lq(n) . (8)

The coordinates of source direction vectors lq are expressed as1 (ℓ,m, n),
where ℓ, m and n are direction cosines and n =

√
1− ℓ2 −m2 due to the

normalization. There are several conventions and details regarding coordinate
systems [52], but they are not of concern for us here.

Besides the phase factor aq,j(n, k), the received signals are also affected
by the direction dependent response of the receiving element bj(l, n, k) and
the direction independent complex valued receiver path gain gj(n, k). The
function bj(l, n, k) is referred to as the primary beam to distinguish it from
the array beam and the point spread function or dirty beam that results from
beamforming over a full synthesis observation (more about this later). The
general shape of the primary beam is known from (electromagnetic) mod-
elling during the design of the telescope. If that model is not sufficiently
accurate, it needs to be calibrated. Together with the tropospheric and iono-
spheric propagation conditions, the primary beam determines the direction
dependent gain gdj,q(n, k) of the jth receiving element. The signal xj(n, k)
received by the jth receiving element can thus be described by

xj(n, k) = gj(n, k)

Q
∑

q=1

gdj,q(n, k)aj,q(n, k)sq(n, k) + nj(n, k), (9)

where nj(n, k) denotes the additive noise in the jth receive path.
We can stack the phase factors aj,q(n, k) into an array response vector for

each source as
aq(n, k) = [a1,q(n, k), · · · , aJ,q(n, k)]T . (10)

In a similar way, we can stack the direction independent gains gj(n, k) into a
vector g(n, k), stack the direction dependent gains gdj,q(n, k) into a vector for

each source gd
q(n, k) and stack the additive noise signals in a vector n(n, k).

With these conventions, we can formulate the data model for the array signal
vector as

1 with abuse of notation, as m,n are not related to the time variables used earlier.
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x(n, k) = g(n, k)⊙
Q
∑

q=1

gd
q(n, k)⊙ aq(n, k)sq(n, k) + n(n, k). (11)

For convenience of notation, we introduce the gain matrix

G(n, k) =
[

g(n, k)⊙ gd
q(n, k), · · · ,g(n, k)⊙ gd

Q(n, k)
]

.

As we will see in Sec. 5, this gain matrix may have a specific structure de-
pending on a priori knowledge about the direction independent gains and
the direction dependent gains. This structure can then be exploited during
calibration. We can also stack the array response vectors into an array re-
sponse matrix A(n, k) = [a1(n, k), · · · aQ(n, k)]T . These conventions allow us
to write Eq. (11) as

x(n, k) = (G(n, k)⊙A(n, k)) s(n, k) + n(n, k), (12)

where s(n, k) = [s1(n, k), · · · sQ(n, k)]T .
For convenience of notation, we will in future usually drop the dependence

on the frequency fk (index k) from the notation. Previously, in (6), we defined

correlation estimates R̂m as the output of the data acquisition process, where
the time index m corresponds to the mth STI interval, such that (m−1)N ≤
n ≤ mN . Due to Earth rotation, the vectors aq(n) change slowly with time,
but we assume that within an STI it can be considered constant and can
be represented, with some abuse of notation, by aq(m). In that case, x(n)
is wide sense stationary over the STI, and a single STI covariance matrix is
defined as

Rm = E{x(n)xH(n)} , m =
⌈ n

N

⌉

(13)

where Rm has size J ×J . Each element of Rm represents the interferometric
correlation along the baseline vector between the two corresponding receiving
elements. It is estimated by STI sample covariance matrices R̂m defined in
(6), and our stationarity assumptions imply E{R̂m} = Rm.

We will model the source signals sq(n, k) and the noise signals nj(n, k) as
zero mean white Gaussian random processes sampled at the Nyquist rate.
We will also assume that the source signals and noise signals are mutually
uncorrelated. With these assumptions, we find, by substituting Eq. (12) into
Eq. (13), that

Rm = E
{

(Gm ⊙Ams(n) + n(n)) (Gm ⊙Ams(n) + n(n))
H
}

= (Gm ⊙Am)E
{

s(n)sH(n)
}

(Gm ⊙Am)
H
+ E

{

n(n)nH(n)
}

= (Gm ⊙Am)Σs (Gm ⊙Am)H +Σn, (14)

where Σs = diag (σs) with σs = [σ2
1 , · · · , σ2

Q]
T is the source covariance ma-

trix and Σn = diag (σn) with σn = [σ2
n,1, · · · , σ2

n,J ]
T is the noise covariance
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matrix. In radio astronomy, the covariance data model described in Eq. (14)
is usually referred to as the measurement equation.

3.4 Radio interferometric imaging concepts

Under ideal circumstances, the array response matrix Am is not perturbed
by the gain matrix Gm, i.e., we have Gm = 11H where 1 denotes a vector of
ones of appropriate size. The columns of Am are given by Eq. (8). Its entries
represent the phase shifts due to the geometrical delays associated with the
array and source geometry. By adding the gain matrix Gm, we can introduce
directional disturbances due to non-isotropic antennas, unequal antenna gains
and disturbances due to ionospheric effects.

Assuming ideal conditions and ignoring the additive noise, a single element
of the array covariance matrix, usually referred to as a visibility, can be
written as

(Rm)ij =

Q
∑

q=1

ai,qaj,qσ
2
q =

Q
∑

q=1

I (lq) e
−j 2π

λ
(zi(m)−zj(m))T lq . (15)

where I(lq) = σ2
q is the brightness (power) in direction lq. The function I(l)

is the brightness image (or map) of interest: it is this function that is shown
when we refer to a radio-astronomical image like Fig. 1. It is a function of the
direction vector l: this is a 3D vector, but due to its normalization it depends
on only two parameters. We could e.g., show I(·) as function of the direction
cosines (ℓ,m), or of the corresponding angles.

For our discrete point-source model, the brightness image is

I(l) =

Q
∑

q=1

σ2
q δ(l− lq) (16)

where δ(·) is a Kronecker delta, and the direction vector l is mapped to the
location of “pixels” in the image (various transformations are possible). Only
the pixels lq are nonzero, and have value equal to the source variance σ2

q .
The vector zi(m)−zj(m) is the baseline: the (normalized) vector pointing

from telescope i to telescope j. In radio astronomy, it is usually expressed in
coordinates denoted by uij = (u, v, w) and normalized by the wavenumber,
i.e., uij(m) = (2π/λ)(zi(m) − zj(m)). The objective in telescope design is
often to have as many different baselines as possible. In that case the entries
ofRm are different and non-redundant. As the Earth turns, the baselines also
turn, thus giving rise to new baseline directions. We will see later that the set
of baselines during an observation determines the spatial sampling function
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by which the incoming wave field is sampled, with important implications on
the quality of the resulting image.

Equation (15) describes the relation between the visibility model and the
desired image, and it has the form of a Fourier transform; it is known in radio
astronomy as the Van Cittert-Zernike theorem [49,52]. Image formation (map
making) is essentially the inversion of this relation. Unfortunately, we have
only a finite set of observations, therefore we can only obtain a dirty image:
if we apply the inverse Fourier transformation to the measured correlation
data, we obtain

ÎD(l) :=
∑

i,j,m

(

R̂m

)

ij
eju

T
ij(m)lq (17)

In terms of the measurement data model (15), the “expected value” of the

image is obtained by replacing R̂m by Rm, or

ID(l) :=
∑

i,j,m

(Rm)ij e
juT

ij(m)l

=
∑

i,j,m

∑

q

σ2
qe

juT
ij(m)(l−lq)

=
∑

q

I(lq)B(l− lq)

= I(l) ∗B(l), (18)

where the dirty beam is given by

B(l) :=
∑

i,j,m

eju
T
ij(m)l. (19)

The dirty image ID(l) is the desired “true” image I(l) convolved with the
dirty beam B(l): every point source excites a beam B(l − lq) centered at
its location lq. The effect of this is that the true image gets blurred, thus
limiting its resolution. Note that B(l) is a known function: it only depends
on the locations of the telescopes, or rather the set of telescope baselines
uij(m) = (2π/λ)(zi(m)− zj(m)).

Note that Eq. (17) has the form of a Fourier transform, although it has
been defined on (u, v, w) samples that are non-uniformly spaced. To be able
to use the computationally efficient fast Fourier transform (FFT), astronomy
software first applies a gridding operation that interpolates and resamples
the visibilities onto a regular grid, after which the FFT can be used to obtain
the dirty image [49, 52]. This essentially implements a non-uniform FFT as
used in other science communities [19].

As an example, the antenna configuration for the six stations forming the
core of the LOFAR and the resulting single-STI dirty beam is shown in Fig. 4.
The dirty beam has heavy sidelobes as high as −10 dB. A resulting dirty
image (in dB scale) is shown in Fig. 5. In this image, we see the complete sky,
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Fig. 4: (a) Coordinates of the antennas in the LOFAR Superterp, which
defines the spatial sampling function, and (b) the resulting dirty beam in dB
scale.
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Fig. 5: Dirty image following (18), using LOFAR Superterp data.

in (ℓ,m) coordinates, where the reference direction is pointing towards zenith.
The strong visible sources are Cassiopeia A and Cygnus A, also visible is the
Milky Way. The image was obtained by averaging 259 STIs, each consisting of
1 s data in a single frequency channel of 195 kHz wide at a central frequency
of 58.9 MHz.

The dirty beam is essentially a non-ideal point spread function due to finite
and non-uniform spatial sampling: we only have a limited set of baselines.
The dirty beam usually has a main lobe centered at l = 0, and many side



Signal Processing for Radio Astronomy 13

lobes. If we would have a large number of telescopes positioned in a uniform
rectangular grid, the dirty beam would be a 2-D sinc-function (similar to a
boxcar taper in time-domain sampling theory). The resulting beam size is in-
versely proportional to the aperture (diameter) of the array. This determines
the resolution in the dirty image. The sidelobes of the beam give rise to con-
fusion between sources: it is unclear whether a small peak in the image is
caused by the main lobe of a weak source, or the sidelobe of a strong source.
Therefore, attempts are made to design the array such that the sidelobes are
low. It is also possible to introduce weighting coefficients (“tapers”) in (18)
to obtain an acceptable beamshape.

Another aspect is the summation over m (STI intervals) in (19), where
the rotation of the Earth is used to obtain essentially many more antenna
baselines. This procedure is referred to as Earth rotation synthesis as more
(u, v, w) sampling points are obtained over time. The effect of this is that
the sidelobes tend to get averaged out, to some extent. Many images are also
formed by averaging over a small number of frequency bins (assuming the
σ2
q are constant over these frequency bins), which enters into the equations

in exactly the same way: Replace zi(m) by zi(m, k) and also sum over the
frequency index k.

4 Image reconstruction

The goal of image reconstruction is to obtain an estimate of the true image
I(l). Many approaches to this problem have been proposed, which can be
divided into two classes. The first is a non-parametric approach that starts
from the dirty image. Since the dirty image is the convolution of the true
image by the dirty beam, this reduces the image reconstruction problem
to a deconvolution problem. Deconvolution is the process of recovering I(l)
from ID(l) using knowledge of the dirty beam and thus to obtain the high-
resolution “clean” image. A standard algorithm for doing this is CLEAN [27]
and variants; however, many other algorithms are possible, depending on
the underlying model assumptions and on a trade-off between accuracy and
numerical complexity.

The second class of approaches is to consider image reconstruction as an
estimation problem in which an unknown set of parameters describing I(l)
need to be extracted from the measured visibilities collected in the measured
array covariance matrices R̂m. This “model matching” approach is discussed
in more detail in Sec. 4.4.

After a telescope has been designed and built, algorithms for image forma-
tion are the most important topic for signal processing. Careful techniques
can increase the dynamic range (ratio between powers of the strongest and
the weakest features in the image) by several orders of magnitude. However,
the numerical complexity is often large, and high-resolution images require
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dedicated hardware solutions and sometimes even supercomputers. In this
section, we will describe some of the algorithms. Additional overviews are
available in [13, 14, 33, 36], as well as in the books [52, 4].

4.1 Constructing dirty images

4.1.1 Beamforming formulation

Previously (Eq. (17)), we formulated the dirty image as the inverse Fourier
transform of the measured correlations. Here, we will interpret this process as
beamforming. Once we have this formulation, we may derive many other dirty
images via beamforming techniques. For simplicity of notation, we assume
from now on that only a single STI snapshot is used in the imaging, hence
we also drop the time index m from the equations. The results can easily be
extended.

The imaging process transforms the covariances of the received signals to
an image of the source structure within the field-of-view of the receivers. In
array processing terms, it can be described as follows [33]. Assume a data
model as in (12) with all gain factors equal to unity, and recall the definition
of the array response vector a(l) in (8) and (10) (using yet another change
of notation to emphasize now that a is a function of the source direction l).
There are J antennas. To determine the power of a signal arriving from a
particular direction l, a weight vector

w(l) =
1

J
a(l) =

1

J
e−j 2π

λ
ZT l, (20)

where Z = [z1, · · · , zJ ], is applied to the array signal vector x(n). The op-
eration y(n) = wHx(n) is generally called beamforming. The choice w = a

precisely compensates the geometric phase delays so that the antenna signals
are added in-phase. This can be regarded as a spatially matched filter, or
conjugate field match. The (often omitted) scaling by 1/J ensures the correct
scaling of the output power. Indeed, the output power of a beamformer is,
generally,

E{|y|2} = wHE{xxH}w = wHRw .

For a data model consisting of a single source with power σ2 arriving from
direction a(l), i.e., x(n) = a(l)s(n), we have, with w = 1

J a(l),

E{|y|2} = wH(aσ2aH)w = σ2 a
Ha

J

aHa

J
= σ2 . (21)

Thus, the matched beamformer corrects precisely the signal delays (phase
shifts) present in a(l), when w matches a(l), i.e. the beamformer is pointed
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into the same direction as the source. If the beamformer is pointed into other
directions, the response is usually much smaller.

Using the beamformer to scan over all pixels l in an image, we can create
an image via beamforming as

ÎBF (l) = w(l)HR̂w(l) (22)

and the corresponding model for this image is

IBF (l) = w(l)HRw(l) . (23)

The matched filter corresponds to weights w(l) defined as in (20). Except for
a factor J2, the image IBF (l) is identical to the dirty image ID(l) defined in
(18) for this choice! Indeed, starting from (18), we can write

ID(l) =
∑

i,j

Rij e
juT

ijl =
∑

i,j

ai(l)Rijaj(l) = a(l)HRa(l)

which is the beamforming image obtained using w(l) = a(l). The response
to a single source at the origin is

B(l) = a(l)Ha(0)a(0)Ha(l)

= a(l)H11Ha(l)

= 1H [a(l)a(l)H ]1

=
∑

i,j

eju
T
ijl

which is the dirty beam defined in (19), now written in beamforming notation.
It typically has a spike at l = 0, and many sidelobes, depending on the
spatial sampling function. We have already seen that these sidelobes limit
the resolution, as they can be confused with (or mask) other sources.

So far, we looked at the response to a source, but ignored the effect of the
noise on an image. In the beamforming formulation, the response to a data
set which only consists of noise, or R = Σn is

In(l) = w(l)HΣnw(l) .

Suppose that the noise is spatially white, Σn = σ2
nI, and that we use the

matched beamformer (20), we obtain

In(l) = σ2
n

a(l)H

J

a(l)

J
= σ2

n

‖a(l)‖2
J2

=
σ2
n

J
, (24)

since all entries of a(l) have unit magnitude. As this is a constant, the image
will be “flat”. For a general data set, the responses to the sources and to
the noise will be added. Comparing (21) to (24), we see that the noise is
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suppressed by a factor J compared to a point source signal coming from
a specific direction. This is the array gain. If we use multiple STIs and/or
frequencies fk, the array gain can be larger than J .

4.1.2 Constructing dirty images by adaptive beamforming

Now that we have made the connection of the dirty image to beamforming,
we can apply a range of other beamforming techniques instead of the matched
filter, such as the class of spatially adaptive beamformers. In fact, these can
be considered as 2D spatial-domain versions of (now classical) spectrum es-
timation techniques for estimating the power spectral density of a random
process (viz. [26]), and the general idea is that we can obtain a higher reso-
lution if the sidelobes generated by strong sources are made small.

As an example, the “minimum variance distortionless response” (MVDR)
beamformer is defined such that the response towards the direction of interest
l is unity, but signals from other directions are suppressed as much as possible,
i.e.,

w(l) = argmin
w

wHRw , such that wHa(l) = 1 .

This problem can be solved in various ways. For example, after making a
transformation w′ := R1/2w, a′ := R−1/2a, the problem becomes

w′(l) = argmin
w′

‖w′‖2 , such that w′Ha′(l) = 1 .

To minimize the norm of w′, it should be aligned to a′, i.e., w′ = αa′, and the
solution is w′ = a′/(a′Ha′). In terms of the original variables, the solution is
then

w(l) =
R−1a(l)

a(l)HR−1a(l)
, (25)

and the resulting MVDR dirty image can thus be described as

IMV DR(l) = w(l)HRw(l) =
1

a(l)HR−1a(l)
. (26)

For a point-source model, this image will have a high resolution: two sources
that are closely spaced will be resolved. The corresponding beam responses
to different sources will in general be different: the beamshape is spatially
varying. While we may represent IMV DR(l) as a convolution of the true
image with a dirty beam, this is now a spatially varying convolution (viz. the
convolution in a linear time-varying system). Deconvolution is still possible
but has to take this into account.

Another consequence of the use of an adaptive beamformer is that the
output noise power is not spatially uniform. Consider the data model R =
AΣsA

H +Σn, where Σn = σ2
nI is the noise covariance matrix, then at the
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output of the beamformer the noise power is, using (25),

In(l) = w(l)HRnw(l) =
a(l)HR−1(σ2

nI)R
−1a(l)

[a(l)HR−1a(l)]2
= σ2

n

a(l)HR−2a(l)

[a(l)HR−1a(l)]2
.

Thus, the output noise power is direction dependent.
As a remedy to this, a related beamformer which satisfies the constraint

w(l)Hw(l) = 1 (and therefore has spatially uniform output noise) is obtained
by using a different scaling of the MVDR beamformer:

w(l) = µR−1a(l) , µ =
1

[a(l)HR−2a(l)]1/2
.

This beamformer is known as the “Adapted Angular Response” (AAR) [8].
The resulting image is

IAAR(l) = w(l)HRw(l) =
a(l)HR−1a(l)

a(l)HR−2a(l)
.

It has a high resolution and suppresses sidelobe interference under the white
noise constraint.

Example MVDR and AAR dirty images using the same LOFAR stations
as before are shown in figure 6. Comparing to Fig. 5, we observe that, as
predicted, the sidelobe suppression in the MVDR and AAR dirty images is
much better than the original matched beamformer dirty image. The images
have a higher contrast and it appears that some additional point sources
emerge as the result of lower sidelobe levels. This is especially true for the
AAR dirty image.

4.2 Deconvolution

Having obtained a dirty image, we then attempt to recover the true image
via deconvolution: inverting the effect of the (known) dirty beam.

4.2.1 The CLEAN algorithm

A popular method for deconvolution is the CLEAN algorithm [27]. It was
proposed for the classical, matched beamformer dirty image ID(l) defined
in (17). From ID(l) and the known dirty beam B(l), the desired image I(l)
is obtained via a sequential Least Squares fitting method. The algorithm is
based on the assumption that the sky is mostly empty, and consists of a set
of discrete point sources. The brightest source is estimated first, its contri-
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Fig. 6: Dirty images corresponding to the (a) MVDR and (b) AAR beam-
formers.

bution is subtracted from the dirty image, then the next brightest source is
subtracted, etc.

The algorithm further uses the fact that B(l) has its peak at the origin.
Inside the loop, a candidate location lq is selected as the location of the largest
peak in ID(l), the corresponding power σ̂2

q is estimated, and subsequently a
small multiple of σ̂2

qB(l − lq) is subtracted from ID(l). The objective is to
minimize the residual, until it converges to the noise level:
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q = 0
while ID(l) is not noise-like:








q = q + 1
lq = argmaxl ID(l)
σ̂2
q = ID(lq)/B(0)

ID(l) := ID(l)− γσ̂2
qB(l − lq) , ∀l

Iclean(l) = ID(l) +
∑

q γσ̂2
qBsynth(l− lq), ∀l .

The scaling parameter γ ≤ 1 is called the loop gain; for accurate convergence
it should be small because the estimated location of the peak is at a grid
point, whereas the true location of the peak may be in between grid points.
Bsynth(l) is a “synthetic beam”, usually a Gaussian bell-shape with about
the same beam width as the main lobe of the dirty beam; it is introduced to
mask the otherwise high artificial resolution of the image.

In current imaging systems, instead of the subtractions on the dirty image,
it is considered more accurate to do the subtractions on the sample covariance
matrix R̂ instead,

R̂ := R̂− γσ̂2
qa(lq)a(lq)

H

and then to recompute the dirty image. Computing a dirty image is the most
expensive step in this loop, therefore usually a number of peaks are estimated
from the dirty image together, the covariance is updated for this ensemble,
and then the residual image is recomputed.

4.2.2 CLEAN using other dirty images

Instead of the matched beamformer dirty image ID(l), we can use other
beamformed dirty images in the CLEAN loop, for example the MVDR dirty
image. Due to its high resolution, the location of sources is better estimated
than using the original dirty image (and the location estimate can be further
improved by searching for the true peak on a smaller grid in the vicinity of
the location of the maximum). A second modification to the CLEAN loop
is also helpful: suppose that the location of the brightest source is lq, then
the corresponding power αq should be estimated by minimizing the residual
‖R− αa(lq)a(lq)

H‖2. This can be done in closed form: using (5) we find

‖R− αa(lq)a(lq)
H‖ = ‖vec(R)− α[ā(lq)⊗ a(lq)]‖ .

The optimal least squares solution for α is, using (1), (3) and (2) in turn,
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αq = [ā(lq)⊗ a(lq)]
†vec(R)

=
[ā(lq)⊗ a(lq)]

Hvec(R)

[ā(lq)⊗ a(lq)]H [ā(lq)⊗ a(lq)]

=
a(lq)

HRa(lq)

[a(lq)Ha(lq)]2

=
a(lq)

HRa(lq)

J2
,

which is the power estimate of the matched filter. In the CLEAN loop, R
should be replaced by its estimate R̂ minus the estimated components until
q, and also a constraint that αq is to be positive should be included. This
method was proposed in [3].

Using the AAR dirty image in the CLEAN loop is also possible, and the
resulting CLEANed image was called LS-MVI in [3].

4.3 Matrix formulations

Because our data model is linear, it is beneficial to represent the covariance
model and all subsequent operations on it in a linear algebra framework.
In this more abstract formulation, details are hidden and it becomes easier
to recognize the connection of image formation to standard formulations and
more generic approaches, such as matrix inversion and parametric estimation
techniques.

4.3.1 Matrix formulation of the data model

Let us start again from the data model given by Eq. (12) assuming an ideal
situation, in which all gain factors are unity. For simplicity, we consider only
a single frequency bin and STI interval, but all results can be generalized
straightforwardly. The model for the signals arriving at the antenna array is
thus

x(n) = As(n) + n(n)

and the covariance of x is (viz. (14))

R = AΣsA
H +Σn .

We have available a sample covariance matrix

R̂ =
1

N

∑

n

x(n)x(n)H
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which serves as the input data for the imaging step. Let us now vectorize this
data model by defining

r̂ = vec(R̂) , r = vec(R)

where r has the data model (using (4))

r = (Ā ◦A)σs + vec(Σn) .

If Σn is diagonal, we can write vec(Σn) = (I ◦ I)σn, where σn is a vector
containing the diagonal entries of Σn. Define Ms = Ā ◦A and Mn = I ◦ I.
Then

r = Msσs +Mnσn = [Ms Mn]

[

σs

σn

]

= Mσ . (27)

In this formulation, several modifications can be introduced. E.g., a non-
diagonal noise covariance matrix Σn will lead to a more general Mn, while
if Σn = σ2

nI, we have Mn = vec(I) and σn = σ2
n. Some other options are

discussed in [47]. Also, if we have already an estimate of σn, we can subtract
it and write the model as

r′ := r−Mnσn = Msσs (28)

The available measurements r̂ should be modified in the same way. This
model is similar to (27), with the advantage that the number of unknown
parameters in σ is smaller.

We can further write

r̂ = r+w = Mσ +w , (29)

where r̂ is the available “measurement data”, r is its mean (expected value),
and w is additive noise due to finite samples. It is not hard to derive that
(for Gaussian signals) the covariance of this noise is [47]

Cw = E(r̂− r)(r̂− r)H =
1

N
(R̄ ⊗R)

where N is the number of samples on which R̂ is based. We have thus written
our original data model on x as a similar data model on r̂. Many estimation
techniques from the literature that are usually applied to data models for x
can be applied to the data model for r. Furthermore, it is straightforward to
extend this vectorized formulation to include multiple snapshots over time
and frequency to increase the amount of measurement data and thus to im-
prove the imaging result: Simply stack the covariance data in r̂ and include
the model structure in M; note that σ remains unchanged. Similarly, assum-
ing a diagonal noise coveriance matrix, astronomers often drop the autocor-
relation terms (diagonal of R̂), rather than attempting to do the subtraction
in (28); this corresponds to dropping rows in M and corresponding rows in
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Ms, and leads to a model similar to (28) but without the autocorrelation
terms.

The unknown parameters in the data model are, first of all, the powers σ.
These appear linear in the model. Regarding the positions of the sources, we
can consider two cases:

1. We consider a point source model with a “small” number of sources. In
that case, A = A(θ) and M = M(θ), where θ is some parameterization
of the unknown locations of the sources (the position vectors lq for each
source). These enter in a nonlinear way into the model M(θ). The im-
age I(l) is constructed following (16), usually convolved with a synthetic
beam Bsynth(l) to make the image look nicer. The resulting estimation
techniques are very much related to direction of arrival (DOA) estimation
in array signal processing, with a rich literature.

2. Alternatively, we consider a model where, for each pixel in the image,
we assume a corresponding point source: the source positions lq directly
correspond to the pixels in the image. This can lead to a large number
of sources. With the locations of the pixels predetermined, M is a priori
known and not a function of θ, but M will have many columns (one for
each pixel-source). The image I(l) has a one-to-one relation to the source
power vector σs, we can thus regard σs as the image in this case.

We need to pose several requirements on M or M(θ) to ensure identifia-
bility. First of all, in the first case we must have M(θ) = M(θ′) → θ = θ′,
otherwise we cannot uniquely find θ from M. Furthermore, for both cases we
will require that M is a tall matrix (more rows than columns) and has full
column rank, so that it has a left inverse (this will allow to estimate σ). This
puts a limit on the number of sources in the image (number of columns of M)
in relation to the number of observations (rows). If more snapshots (STIs)
and/or multiple frequencies are available, as is the case in practice, then M

will become taller, and more sources can be estimated thus increasing the
resolution. If M is not tall, then there are some ways to generalize this using
prior knowledge on the image, e.g. via the context of compressive sampling
where we can have M wide as long as σ is sparse [59], which we will briefly
discuss in subsection 4.5.5.

For the moment, we will continue with the second formulation: one source
per pixel, fewer pixels than available correlation data.

4.3.2 Matrix formulation of imaging via beamforming

Let us now again interpret the “beamforming image” (22) as a linear trans-
formation on the covariance data r̂. We can stack all image values I(l) over
all pixels lq into a single vector i, and similarly, we can collect the weights
w(l) over all pixels into a single matrix W = [w(l1), · · · ,w(lQ)]. From (3),

we know that wHRw = (w ⊗w)Hvec(R̂), so that we can write
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îBF = (W ◦W)H r̂ . (30)

We saw before that the dirty image is obtained if we use the matched filter.
In this case, we have W = 1

JA, where A contains the array response vectors
a(l) for every pixel lq of interest. In this case, the image is

îD =
1

J2
(Ā ◦A)H r̂ =

1

J2
MH

s r̂ . (31)

The expected value of the image is obtained by using r = Mσ:

iD =
1

J2
MH

s Mσ =
1

J2
(MH

s Ms)σs +
1

J2
(MH

s Mn)σn .

The quality or “performance” of the image, or how close îD is to iD, is related
to its covariance,

cov(̂iD) = E{(̂iD − iD)(̂iD − iD)H} =
1

J4
MH

s CwMs

where Cw = 1
N (R̄⊗R) is the covariance of the noise on the covariance data.

Since usually the astronomical sources are much weaker than the noise (often
at least by a factor 100), we can approximateR ≈ Σn. If the noise is spatially

white, Σn = σ2
nI, we obtain for the covariance of îD

cov(̂iD) ≈ σ4
n

J4N
MH

s Ms .

The variance in the image is given by the diagonal of this expression. From
this and the structure of Ms = (Ā ◦A) and the structure of A, we can see
that the variance on each pixel in the dirty image is constant, σ4

n/(J
2N), but

that the noise on the image is correlated, possibly leading to visible structures
in the image. This is a general phenomenon. Similar equations can be derived
for the MVDR image and the AAR image.

4.4 Parametric image estimation

In Sec. 4.2, we discussed various deconvolution algorithms based on the
CLEAN algorithm. This algorithm uses a successive approximation of the
dirty image using a point source model. Alternatively, we take a model-based
approach. The imaging problem is formulated as a parametric estimation
problem where certain parameters (source locations, powers, noise variance)
are unknown and need to be estimated. Although we start from a Maxi-
mum Likelihood formulation, we will quickly arrive at a more feasible Least
Squares approach. The discussion was presented in [45] and follows to some
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extent [47], which is a general array processing approach to a very similar
problem and can be read for further details.

4.4.1 Weighted Least Squares imaging

The image formation problem can be formulated as a maximum likelihood
(ML) estimation problem, and solving this problem should provide a statis-
tically efficient estimate of the parameters. Since all signals are assumed to
be i.i.d. Gaussian signals, the derivation is standard and the ML estimates
are obtained by minimizing the negative log-likelihood function [47]

{σ̂, θ̂} = argmin
σ,θ

ln |R(σ, θ)|+ tr
(

R−1(σ, θ)R̂
)

(32)

where | · | denotes the determinant. R(σ, θ) is the model, i.e., vec(R(σ, θ)) =
r = M(θ)σ, where θ parameterizes the source locations, and σ their inten-
sities.

We will first consider the overparameterized case, where θ is a (known)
list of all pixel coordinates in the image, and each pixel corresponds to a
source. In this case, M is a priori known, the model is linear, and the ML
problem reduces to a Weighted Least Squares (WLS) problem to match r̂ to
the model r:

σ̂ = argmin
σ

‖C−1/2
w (r̂− r)‖22 = argmin

σ
(r̂−Mσ)HC−1

w (r̂−Mσ) (33)

where we fit the “data” r̂ to the model r = Mσ. The correct weighting is the
inverse of the covariance of the residual, w = r̂− r, i.e., the noise covariance
matrix Cw = 1

N (R̄⊗R). For this, we may also use the estimate Ĉw obtained

by using R̂ instead of R. Using the assumption that the astronomical sources
are much weaker than the noise we could contemplate to use R ≈ Σn for the
weighting. If the noise is spatially white, Σn = σ2

nI, the weighting can then
even be omitted.

The solution of (33) is obtained by applying the pseudo-inverse,

σ̂ = [C−1/2
w M]†C−1/2

w r̂ = (MHC−1
w M)−1MHC−1

w r̂ =: M−1
d σ̂d (34)

where
Md := MHC−1

w M , σ̂d := MHC−1
w r̂ .

Here, we can consider the term σ̂d = MHC−1
w r̂ as a “dirty image”: it is

comparable to (31), although we have introduced a weighting by C−1
w and

estimate the noise covariance parameters σn as well as the source powers
in σs (the actual image). The factor 1/J2 in (31) can be seen as a crude
approximation of M−1

d .
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Fig. 7: Image corresponding to the WLS formulation (34).

Figure 7 shows an example WLS image for a single LOFAR station. The
image was obtained by deconvolving the dirty image from 25 STIs, each
consisting of 10s data in 25 frequency channels of 156 kHz wide taken from
the band 45–67 MHz, avoiding the locally present radio interference. As this
shows data from a single LOFAR station, with a relatively small maximal
baseline (65 m), the resolution is limited and certainly not representative of
the capabilities of the full LOFAR array. The resolution (number of pixels)
in this image is kept limited (about 1000) for reasons discussed below.

The term M−1
d = (MHC−1

w M)−1 is a deconvolution operation. This inver-
sion can only be carried out if the deconvolution matrix Md = MHC−1

w M is
not rank deficient. This requires at least that M is a tall matrix (“less pixels
than observations” in case we take one source per pixel). Thus, high resolu-
tion WLS imaging is only possible if a limited number of sources is present.
The condition number of Md, i.e., the ratio of the largest to the smallest
eigenvalue of Md, gives important information on our ability to compute its
inverse: LS theory tells us that the noise on σ̂d could, in the worst case, be
magnified by this factor. The optimal (smallest) condition number of any
matrix is 1, which is achieved if Md is a scaling of the identity matrix, or

if the columns of C
−1/2
w M are all orthogonal to each other. If the size of M

becomes less tall, then the condition number of Md becomes larger (worse),
and once it is a wide matrix, M is singular and the condition number will be
infinite. Thus, we have a trade-off between the resolution (number of pixels
in the image) and the noise enhancement.



26 Alle-Jan van der Veen, Stefan J. Wijnholds and Ahmad Mouri Sardarabadi

East ← l → West

S
o
u
th

 ←
 m

 →
 N

o
rt

h

KLT image

 

 

−1−0.500.51
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.05

0

0.05

0.1

0.15

Fig. 8: Image corresponding to the KLT solution (35).

The definition of Md shows that it is not data dependent, and it can
be precomputed for a given telescope configuration and observation interval.
It is thus possible to explore this trade-off beforehand. To avoid numerical
instabilities (noise enhancement), we would usually compute a regularized
inverse or pseudo-inverse of this matrix, e.g., by first computing the eigenvalue
decomposition

Md = UΛUH

where U contains the (orthonormal) eigenvectors and Λ is a diagonal matrix
containing the eigenvalues, sorted from large to small. Given a threshold ǫ
on the eigenvalues, we can define Λ̃ to be a diagonal matrix containing only
the eigenvalues larger than ǫ, and Ũ a matrix containing the corresponding
eigenvectors. The ǫ-threshold pseudo-inverse is then given by

M
†
d := ŨΛ̃

−1
ŨH

and the resulting image is

σ = ŨΛ̃
−1

ŨHσd . (35)

This can be called the “Karhunen-Loève” image, as the rank reduction is
related to the Karhunen-Loève transform (KLT). It corresponds to selecting
an optimal (Least Squares) set of basis vectors on which to project a certain
data set, here σd.
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An example KLT image is shown in figure 8. In this image, the number of
pixels is much larger than before in figure 7 (about 9000), but the rank of the
matrix Md is truncated at 1/200 times the largest eigenvalue, leaving about
1300 out of 9000 image components. The result is not quite satisfactory: the
truncation to a reduced basis results in annoying ripple artefacts in the image.

Computing the eigenvalue decomposition for large matrices is complex. A
computationally simpler alternative is to compute a regularized inverse of
Md, i.e., to take the inverse of Md + ǫI. This should yield similar (although
not identical) results.

If we use the alternative sky model where we assume a point source model
with a “small” number of sources (M = M(θ)), then the conditioning of
Md, and thus the performance of the deconvolution, is directly related to the
number of sources and their spatial distribution.

The performance of the method is assessed by looking at the covariance
of the resulting image (plus noise parameters) σ̂ in (34). It is given by

Cσ = (MHC−1
w M)−1MHC−1

w (Cw)C
−1
w M(MHC−1

w M)−1

= (MHC−1
w M)−1 = M−1

d .

This again shows that the performance of the imaging method follows directly
from the conditioning of the deconvolution matrix Md. If Md is sufficiently
well conditioned, the noise on the image is limited, otherwise it may be large.
The formulation also shows that the pixels in the image are correlated (Md

is in general not diagonal), as we obtained before for the dirty image.

Similarly, if we use the pseudo-inverse M†
d = ŨΛ̃

−1
ŨH for the deconvolu-

tion, then we obtain Cσ = M
†
d. In this case, the noise enhancement depends

on the chosen threshold ǫ. Also, the rank of Cσ depends on this threshold,
and since it is not full rank, the number of independent components (sources)
in the image is smaller than the number of shown pixels: the rank reduction
defines a form of interpolation.

Using a rank truncation for radio astronomy imaging was already sug-
gested in [10]. Unfortunately, if the number of pixels is large, this technique
by itself is not sufficient to obtain good images, e.g., the resulting pixels
may not all be positive, which is unplausible for an intensity image. Thus,
the overparameterized case requires additional constraints; some options are
discussed in subsections 4.5.4 and 4.5.5.

4.4.2 Estimating the position of the sources

Let us now consider the use of the alternative formulation, where we write
A = A(θ) and M = M(θ), where θ captures the positions of the limited
number of sources in the image. In this case, we have to estimate both σ and
θ. If we start again from the ML formulation (32), it does not seem feasible
to solve this minimization problem in closed form. However, we can again
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resort to the WLS covariance matching problem and solve instead

{σ̂, θ̂} = argmin
σ,θ

‖C−1/2
w [̂r− r(σ, θ)]‖2

= argmin
σ,θ

[̂r−M(θ)σ]HC−1
w [(r̂−M(θ)σ] . (36)

It is known that the resulting estimates are, for a large number of samples,
equivalent to ML estimates and therefore asymptotically efficient [47].

The WLS problem is separable: suppose that the optimal θ is known, so
that M = M(θ) is known, then the corresponding σ will satisfy the solution
which we found earlier:

σ̂ = (MHC−1
w M)−1MHC−1

w r̂ .

Substituting this solution back into the problem, we obtain

θ̂ = argmin
θ

r̂H [I−M(θ)(M(θ)HC−1
w M(θ))−1M(θ)HC−1

w ]H ·

· C−1
w · [I−M(θ)(M(θ)HC−1

w M(θ))−1M(θ)HC−1
w ]̂r

= argmin
θ

r̂HC−1/2
w (I−Π(θ))C−1/2

w r̂

= argmax
θ

r̂HC−1/2
w Π(θ)C−1/2

w r̂

where Π(θ) = C
−1/2
w M(θ)

(

M(θ)HC−1
w M(θ)

)−1
M(θ)HC

−1/2
w .

Π(θ) is an orthogonal projection: Π2 = Π, ΠH = Π . The projection is

onto the column span of M′(θ) := C
−1/2
w M(θ). The estimation of the source

positions θ is nonlinear. It could be obtained iteratively using a Newton
iteration (cf. [47]). The sources can also be estimated sequentially [47], which
provides an alternative to the CLEAN algorithm.

4.4.3 Preconditioned WLS

WLS imaging can be improved using preconditioning, and this has an in-
teresting relation to the adaptive beamforming techniques discussed earlier.
From this point forward we assume that an estimate of the noise has been
subtracted from the images as in (28) such that M = Ms and σ = σs.

If M has full column rank then HLS := MHM and HWLS := MHC−1
w M

are non-singular and there exists a unique solution to LS and WLS. For
example the solution to the LS imaging becomes

σ = H−1
LS σ̂D (37)
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where σ̂D = MH r̂ is the estimated dirty image. Unfortunately, if the number
of pixels is large then HLS and HWLS become ill-conditioned or even singular.
Generally, we need to improve the conditioning of the deconvolution matrices
and to find appropriate regularizations.

One way to improve the conditioning of a matrix is by applying a pre-
conditioner. The most widely used and simplest preconditioner is the Jacobi
preconditioner [1] which, for any matrix M, is given by [diag(M)]−1. Let
DWLS = diag(HWLS), then by applying this preconditioner to HWLS we
obtain

[D−1
WLSHWLS]σ = D−1

WLSσ̂WLS (38)

where σ̂WLS = MHC−1
w r̂. We take a closer look at D−1

WLSσ̂WLS. For a single
STI

HWLS = (Ā ◦A)H(R̂−T ⊗ R̂−1)(Ā ◦A)

= (AT R̂−T Ā)⊙ (AHR̂−1A)

and

D−1
WLS =









1
(aH

1 R̂−1a1)2

. . .
1

(aH
Q
R̂−1aQ)2









, (39)

where we have assumed that ai is normalized by a factor 1/
√
J such that

aHi ai = 1. This means that

D−1
WLSσ̂WLS = D−1

WLS

(

(R̂−T ⊗ R̂−1
1 )(Ā ◦A)

)H

r̂

= (R̂−T ĀD
−1/2
WLS ◦ R̂−1AD

−1/2
WLS )

H r̂

which is equivalent to a dirty image that is obtained by applying a beam-
former of the form

wi =
1

aHi R̂−1ai
R̂−1ai (40)

to both sides of R̂ and stacking the results, σ̂i = wH
i R̂wi, of each pixel into a

vector. This beamformer is the MVDR beamformer which we have introduced
before! This shows that the Preconditioned WLS (PWLS) image (motivated
from its connection to the maximum likelihood) is expected to exhibit the
features of high-resolution beamforming associated with the MVDR. The
PWLS was introduced in [45].
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4.5 Constraints on the image

Another approach to improve the conditioning of a problem is to introduce
appropriate constraints on the solution. Typically, image formation algo-
rithms exploit external information regarding the image in order to regularize
the ill-posed problem. For example maximum entropy techniques [21] impose
a smoothness condition on the image while the CLEAN algorithm [27] ex-
ploits a point source model wherein most of the image is empty, and this has
recently been connected to sparse optimization techniques [59].

4.5.1 Non-negativity constraint

A lower bound on the image is almost trivial: each pixel in the image rep-
resents the intensity at a certain direction, hence is non-negative. This is
physically plausible, and to some extent already covered by CLEAN [41].
It is an explicit condition in a Non-Negative Least Squares (NNLS) formu-
lation [10], which searches for a Least Squares fit while requiring that the
solution σ has all entries σi ≥ 0:

min
σ

‖r̂−Mσ‖2

subject to 0 ≤ σ
(41)

4.5.2 Dirty image as upper bound

A second constraint follows if we also know an upper bound γ such that
σ ≤ γ, which will bound the pixel intensities from above. We will propose
several choices for γ.

By closer inspection of the ith pixel of the matched beamformer dirty
image σ̂D, we note that its expected value is given by

σD,i = aHi Rai .

Using normalization aHi ai = 1, we obtain

σD,i = σi + aHi Rrai, (42)

where
Rr =

∑

j 6=i

σjaja
H
j +Rn (43)

is the contribution of all other sources and the noise. Note that Rr is positive-
(semi)definite. Thus, (42) implies σD,i ≥ σi which means that the expected
value of the matched beamformer dirty image forms an upper bound for the
desired image, or
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σ ≤ σD . (44)

We can extend this concept to a more general beamformer wi. The output
power of this beamformer, in the direction of the ith pixel, becomes

σw,i = wH
i Rwi = σiw

H
i aia

H
i wi +wH

i Rrwi . (45)

If we require that
wH

i ai = 1 (46)

we have
σw,i = σi +wH

i Rrwi . (47)

As before, the fact that Rr is positive definite implies that

σi ≤ σw,i . (48)

We can easily verify that the matched filter weights wD,i as given in (20)
satisfy (46) and, hence, that the resulting dirty image σD,i is a specific upper
bound.

4.5.3 Tightest upper bound

The next question is: What is the tightest upper bound for σi that we can
construct using linear beamforming?

We can translate the problem of finding the tightest upper bound to the
following optimization question:

σopt,i = min
wi

wH
i Rwi (49)

s.t. wH
i ai = 1

where σopt,i would be this tightest upper bound. This optimization prob-
lem is exactly the same as the one used in Sec. 4.1.2 to obtain the MVDR
beamformer. Hence

wi =
1

aHi R−1ai
R−1ai.

This means that for a single STI the MVDR image is the tightest upper
bound that can be constructed using beamformers.

Note that wD,i also satisfies the constraint in (46), i.e. wH
D,iai = aHi ai = 1,

but does not necessary minimize the output power wH
i Rwi, therefore the

MVDR dirty image is smaller than the matched beamformer dirty image:
σMVDR ≤ σD. This relation also holds if R is replaced by the sample covari-
ance R̂.

For multiple snapshots the tightest bound can be obtained by taking the
minimum of the individual MVDR estimates [44]. The bound becomes
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σopt,i = min
m

1

am,iR
−1
m am,i

.

One problem with using this result in practice is that σopt,i depends on
a single snapshot. Actual dirty images are based on the sample covariance
matrix R̂ and hence they are random variables. If we use a sample covariance
matrix R̂ instead of the true covariance matrix R, this bound would be too
noisy without any averaging. Hence we would like to find a beamformer that
exhibits the same averaging behavior as the matched beamformer while being
as tight as possible. Sardarabadi [44] shows that a modified multi-snapshot
MVDR image can be defined as

σMVDR,i =
1

1
M

∑

m aHm,iR
−1
m am,i

, (50)

which satisfies σi ≤ σMVDR,i ≤ σD,i and produces a very tight bound.

4.5.4 Constrained WLS imaging

Now that we have lower and upper bounds on the image, we can use these
as constraints in the LS imaging problem to provide a regularization. The
resulting constrained LS (CLS) imaging problem is

min
σ

‖r̂−Mσ‖2

s.t. 0 ≤ σ ≤ γ
(51)

where γ can be chosen either as γ = σD for the matched beamformer dirty
image or γ = σMVDR for the MVDR dirty image.

The extension to constrained WLS leads to the problem formulation

min
σ

‖C−1/2
w (r̂−Mσ) ‖2

s.t. 0 ≤ σ ≤ γ .
(52)

It is also recommended to include a preconditioner which, as was shown in
Sec.4.4.3, relates the WLS to the MVDR dirty image. However, because of
the inequality constraints, (52) does not have a closed form solution and it
is solved by an iterative algorithm. In order to have the relation between the
WLS and MVDR dirty image during the iterations we introduce a change of
variables of the form σ̌ = Dσ, where σ̌ is the new variable for the precon-
ditioned problem and the diagonal matrix D is given in (39). The resulting
constrained preconditioned WLS (CPWLS) optimization problem is

σ̌ = argmin
σ̌

‖C−1/2
w

(

r̂−MD−1σ̌
)

‖2

s.t. 0 ≤ σ̌ ≤ Dγ
(53)
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and the final image is found by setting σ = D−1σ̌. Here we used that D is a
positive diagonal matrix so that the transformation to an upper bound for σ̌ is
correct. As mentioned, the dirty image that follows from the (unconstrained)
Weighted Least Squares part of the problem is given by the MVDR image
σ̂MVDR.

These problems are convex and their solutions can be found using various
numerical optimization techniques such as the active set method, as dis-
cussed in more detail in [45]. Some experimental results using non-negative
constraints are shown in [37, 51, 23].

4.5.5 Imaging using sparse reconstruction techniques

Compressive sampling/sensing (CS) is a “new” topic, currently drawing wide
attention. It is connected to random or non-uniform sampling, and as such, it
has been used in radio astronomy for a long time. In the CS community, the
recovery of full information from undersampled data is the central problem,
and to regularize this problem, the main idea has been to exploit the sparsity
of the solution: the number of nonzero entries in the solution is supposed to be
small. This is measured by the ℓ0-norm: ‖σ‖0 is the number of nonzero entries
in σ. Optimizing using this norm is difficult, and therefore as a surrogate,
the ℓ1-norm is used.

To introduce this, let us start from the Least Squares formulation, and
consider the KLT regularization. This constraints the solution image to lie
on a basis determined by the dominant column span of M (possibly giving
rise to artefacts). It is straightforward to show that this regularization is
connected to adding a regularization term

min
σ

‖r̂−Mσ‖22 + λ‖σ‖2

where λ is related to the truncation threshold used in the KLT. The used
norm on σ is ℓ2, the sum of squares, or the total “energy” of the image.

An alternative to this is to use a regularization term ‖σ‖1 based on the ℓ1
norm of σ, or the sum of absolute values [35, 59]: solve

min
σ

‖r̂−Mσ‖22 + λ‖σ‖1

An alternative formulation of this problem is

min
σ

‖σ‖1 subject to ‖r̂−Mσ‖22 ≤ ǫ

where ǫ is threshold on the residual noise. Like for KLT, the results depend
on the chosen noise threshold ǫ (or regularization parameter λ).

Minimizing the ℓ1-norm is known to promote the sparsity of the solution
vector. The implied sparsity assumption in the model poses that the sky is
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mostly empty. Although it has already long been suspected that CLEAN is
related to ℓ1-optimization [41] (in fact, it is now recognized as a Matching
Pursuit algorithm [39]), CS theory states the general conditions under which
this assumption is likely to recover the true image [35, 59]. Extensions are
needed in case of extended emissions [37]. As images may consist of sources
with different source structures, different sources may be best represented,
i.e., best compressible, by different bases. This is the basic idea behind the
Sparsity Averaging Reweighted Analysis (SARA) algorithm, which aims to
find the sparsest representation using an overdetermined dictionary composed
of multiple complete bases [11, 12].
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Fig. 9: Solutions for different algorithms with and without regularization;(a)
Unconstrained LS. (b) Unconstrained PWLS. (c) Constrained LS. (d) Con-
strained PWLS.
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4.5.6 Comparison of regularization techniques

In this section, we discussed a number of constraints to regularize the ill-
posed inverse imaging problem: non-negativity, upper bound, and sparsity of
the image. This can be combined into a single problem,

min
σ̌

‖C−1/2
w

(

r̂−MD−1σ̌
)

‖2 + λ‖D−1σ‖
s.t. 0 ≤ σ̌ ≤ Dγ

(54)

where D is an optional preconditioner, the resulting image is σ = D−1σ̌,
and the norm is either ℓ1 or ℓ2. Many variations on this problem are possi-
ble. Taken by itself, the non-negativity constraint is already known to be a
strong constraint for regularization. It can even be shown that, when certain
conditions are satisfied, the non-negativity constraint alone already promotes
a sparse solution [20]. In cases where there is a combination of sparse and
extended structures in the image, an ℓ2 regularization might be more appro-
priate.

To illustrate the effects of regularization, constraints, and preconditioning,
we consider a 1D “image” reconstruction example. A uniform linear array
(ULA) with 20 receivers is simulated. The array is exposed to two point
sources with magnitudes 5 and 2 and an extended rectangular source with
a magnitude of 1. Because it is a ULA, rank(M) = 2J − 1 = 39, while the
number of pixels is Q = 245. This shows that HLS = MHM is singular. We
use ℓ2-norm regularization with a regularization coefficient λ = 1/

√
N where

N = 1000 is the number of samples in a single STI.
Figure 9 shows the result of the various estimation techniques with and

without bound constraints and regularization. Figure 9a shows the result of
standard LS with and without regularization, Fig. 9b shows similar results
for unconstrained Preconditioned WLS, Fig. 9c incorporates the bound con-
straints for the LS problem, and Fig. 9d shows the results for CPWLS.

The figures show the following:

• Both standard LS and PWLS are unable to recover the point sources
and suffer from high sidelobe levels. The regularization does not seem to
affect the LS solution while it improves the sidelobe behavior in the PWLS
solution at the cost of less accurate estimates for the extended structure.

• Both Constrained LS and Constrained PWLS without regularization at-
tempt to model the extended structure using a series of point sources.
This is the consequence of the non-negativity constraint which tends to
promote sparsity.

• For CLS and CPWLS an ℓ2-norm regularization helps with the recovery
of the extended structure. The value of λ = 1/

√
N seems to be a good

balance for both extended and point sources.
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5 Calibration

5.1 Non-ideal measurements

In the previous section we showed that there are many options to make
an image from radio interferometric measurements. However, we assumed
that these measurements were done under ideal circumstances, such that the
gain matrix in our data model given by (14) only contains ones. In practice,
there are several effects that make matters more complicated causing G 6=
11H (where we omitted the STI index m for convenience of notation as
we will initially consider calibration on a per-STI basis). These effects need
to be estimated and corrected for in a process called calibration. For this,
some reference information is needed. In this section, we will assume that the
locations and powers of Q reference sources are known, where Q can be small
(order 1 to 10) or large (up to a complete image). In practice, calibration is
an integral part of the imaging step, and not a separate phase as we will see
in Sec. 6. The model given by (14) is not identifiable in its generality unless
we make some assumptions on the structure of G (in the form of a suitable
parameterization) and describe how it varies with time and frequency, e.g.,
in the form of (stochastic) models for these variations.

The effects captured by the gain matrix G can be subdivided in instru-
mental effects and propagation effects. We start by describing a few basic
effects as understanding those will help to establish a suitable representation
of the gain matrix.

5.1.1 Instrumental effects

The instrumental effects consist of the directional response of the receiving el-
ements (antennas) and the direction-independent electronic gains and phases
of the receivers.

The directional response or primary beam of the receiving elements in
the array can be described by a function bj(l), where we have assumed that
this function is constant over the time and frequency span of the STI. It is
generally assumed that the primary beam is equal for all elements in the array.
With Q point sources, we will collect the resulting samples of the primary
beam into a vector b = [b(l1), · · · , b(lQ)]T . These coefficients are seen as
gains that (squared) will multiply the source powers σ2

q . The general shape
of the primary beam b(l) is known from electromagnetic modeling during the
design of the telescope. If this is not sufficiently accurate, then it has to be
calibrated, which is typically done off-line in the lab.

Next, each receiver element in the array is connected to a receiver chain
(low-noise amplifier, bandpass filter, down-modulator), and initially the
direction-independent electronic gains and phases of each receiver chain are
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unknown and have to be estimated. They are generally different from element
to element. We thus have an unknown vector g (size J × 1) with complex
entries that each multiply the output signal of each telescope. As the di-
rection independent gains are identical for all Q sources while the direction
dependent response is identical for all elements, the gain matrix can be fac-
tored as G = gbH . By introducing the diagonal matrices Γ = diag(g) and
B = diag(b), we can write G⊙A = ΓAB.

Also the noise powers of each element are unknown and generally unequal
to each other. We will still assume that the noise is independent from element
to element. We can thus model the noise covariance matrix by an (unknown)
diagonal Σn.

For instrumental calibration, we can thus reformulate our data model in
(14) to

R = (ΓAB)Σs(B
HAHΓH) + Σn (55)

Usually, Γ and B are considered to vary only slowly with time m and fre-
quency k.

5.1.2 Propagation effects

Ionospheric and tropospheric turbulence cause time-varying refraction and
diffraction, which has a profound effect on the propagation of radio waves. In
the simplest case, the ionosphere is modeled as a thin layer at some height
(say 100 km) above the Earth, causing delays that can be represented as
phase shifts. At the low frequencies used for LOFAR, this effect is more
pronounced. Generally it is first assumed that the ionosphere is “constant”
over about 10 km and about 10 s. A better model is to model the ionospheric
delay as a “wedge”, a linear function of the distance between piercing points
(the intersection of the direction vectors lq with the ionospheric phase screen).
As illustrated in figure 10, this modifies the geometric delays, leading to a
shift in the apparent position of the sources. For larger distances, higher-
order functions are needed to model the spatial behaviour of the ionosphere,
and if left uncorrected, the resulting image distortions are comparable to the
distortions one sees when looking at lights at the bottom of a swimming pool.

Previously, we described the array response matrix A as a function of the
source direction vectors lq, and we wrote A(θ) where the vector θ was a suit-
able parameterization of the lq (typically two direction cosines per source). If
a linear model for the ionospheric disturbance is sufficient, then it is sufficient
to replace A(θ) by A(θ′), where θ′ differs from θ due to the shift in apparent
direction of each source.

The modified data model that captures the above effects is thus

R = (ΓA(θ′)B)Σs(B
HA(θ′)HΓH) + Σn . (56)
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geometric delays
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phase screen
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beamformers
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xJ(t)x1(t)

Fig. 10: A radio interferometer where stations consisting of phased array
elements replace telescope dishes. The ionosphere adds phase delays to the
signal paths. If the ionospheric electron density has the form of a wedge, it
will simply shift the apparent positions of all sources.

In the next subsection, we will first describe how models of the form (55)
or (56) can be identified. This step will serve as a stepping stone in the
identification of a more general G.

5.2 Calibration algorithms

5.2.1 Estimating the element gains and directional responses

Let us assume a model of the form (55), where there are Q dominant calibra-
tion sources within the field of view. For these sources, we assume that their
positions and source powers are known with sufficient accuracy from tables,
i.e., we assume that A and Σs are known. We can then write (55) as

R = ΓAΣAHΓH +Σn (57)
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where Σ = BΣsB is a diagonal matrix with apparent source powers. With
B unknown, Σ is unknown, but estimating Σ is precisely the problem we
studied in Sec. 4 when we discussed imaging. Thus, once we have estimated
Σ and know Σs, we can easily estimate the directional gains B. The problem
thus reduces to estimate the diagonal matrices Γ , Σ and Σn from a model
of the form (57).

For some cases, e.g., arrays where the elements are traditional telescope
dishes, the field of view is quite narrow (degrees) and we may assume that
there is only a single calibrator source in the observation. Then Σ = σ2 is a
scalar and the problem reduces to

R = gσ2gH + Σn

and since g is unknown, we could even absorb the unknown σ in g (it is
not separately identifiable). The structure of R is a rank-1 matrix gσ2gH

plus a diagonal Σn. This is recognized as a “rank-1 factor analysis” model
in multivariate analysis theory [40, 32]. Given R, we can solve for g and Σn

in several ways [6,7,64]. For example, any submatrix away from the diagonal
is only dependent on g and is rank 1. This allows direct estimation of g.
This property is related to the gain and phase closure relations often used in
the radio astronomy literature for calibration (in particular, these relations
express that the determinant of any 2 × 2 submatrix away from the main
diagonal will be zero, which is the same as saying that this submatrix is rank
1).

In general, there are more calibrator sources (Q) in the field of view, and we
have to solve (57). A simple idea is to resort to an Alternating Least Squares
approach. If Γ would be known, then we can correct R for it, so that we have
precisely the same problem as we considered before, (33), and we can solve
for Σ and Σn using the techniques discussed in section 4.4.1. Alternatively,
with Σ known, we can say we know a reference model R0 = AΣAH , and
the problem is to identify the element gains Γ = diag(g) from a model of the
form

R = ΓR0Γ
H +Σn

or, after applying the vec(·)-operation,

vec(R) = diag(vec(R0))(g ⊗ g) + vec(Σn) .

This leads to the Least Squares problem

ĝ = argmin
g

‖vec(R̂−Σn)− diag(vec(R0))(g ⊗ g)‖2 .

This problem cannot be solved in closed form. Alternatively, we can first solve
an unstructured problem: define x = g⊗ g and solve

x̂ = diag(vec(R0))
−1vec(R̂−Σn)
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or equivalently, if we define X = ggH ,

X̂ = (R̂ −Σn)⊘R0.

where ⊘ denotes an element-wise matrix division. After estimating the un-
structured X, we enforce the rank-1 structure X = ggH , via a rank-1 ap-
proximation, and find an estimate for g. The element-wise division can lead
to noise enhancement; this is remediated by only using the result as an initial
estimate for a Gauss-Newton iteration [22] or by formulating a weighted least
squares problem instead [61, 64].

With g known, we can again estimate Σ and Σn, and make an iteration.
Overall we then obtain an alternating least squares solution. A more optimal
solution can be found by solving the overall problem (57) as a covariance
matching problem with a suitable parameterization, and the more general
gradient descent algorithms (e.g., Gauss-Newton and Levenberg-Marquardt)
presented in [47] lead to an asymptotically unbiased and statistically efficient
solution.

For large arrays, Gauss-Newton iterations or weighted least squares ap-
proaches become computationally expensive as they scale cubicly with the
number of receiving elements in the array. Several people have therefore pro-
posed an iterative alternating direction implicit (ADI) method [25, 42, 50],
which was demonstrated to have robust convergence and to be statistically
efficient for typical scenarios encountered in radio astronomy in which the
noise powers dominate over the source powers and are very similar for all
elements in the array [50].

The resulting calibration algorithms are one step in the classical self-
calibration (SelfCal) algorithm [15, 48] widely used in the radio astronomy
literature, in particular for a single calibrator source. In the calibration step
of SelfCal, R0 is a reference model, obtained from the best known map at
that point in the iteration. Next, in the imaging step of SelfCal, the cali-
bration results are used to correct the data R̂ and the next best image is
constructed. This leads to a new reference model R0, etc.

5.2.2 Estimating the ionospheric perturbation

The more general calibration problem (56) follows from (55) by writing A =
A(θ′) where θ′ are the apparent source locations. This problem can be easily
solved in quite the same way: in the alternating least squares problem we
solve for g, θ′, σs and σn in turn, keeping the other parameters fixed at their
previous estimates. After that, we can relate the apparent source locations
to the (known) locations of the calibrator sources θ.

The resulting phase corrections A′ to relate A(θ′) to A(θ) via A(θ′) =
A(θ)⊙A′ give us an estimate of the ionospheric phase screen in the direction
of each source. These “samples” can then be interpolated to obtain a phase
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screen model for the entire field of view. This method is limited to the regime
where the phase screen can be modeled as a linear gradient over the array.
An implementation of this algorithm is called Field-Based Calibration [16].

Other techniques are based on “peeling” [42]. In this method of succes-
sive estimation and subtraction, calibration parameters are obtained for the
brightest source in the field. The source is then removed from the data, and
the process is repeated for the next brightest source. This leads to a collection
of samples of the ionosphere, to which a model phase screen can be fitted.

5.2.3 Estimating the general model

In the more general case (14), viz.

R = (G⊙A)Σs(G⊙A)H +Σn ,

we have an unknown full matrix G. We assume A and Σs known. Since A

element-wise multiplies G and G is unknown, we might as well omit A from
the equations without loss of generality. For the same reason also Σs can be
omitted. This leads to a problem of the form

R = GGH +Σn ,

where the J × Q matrix G and Σn (diagonal) are unknown. This problem
is known as a rank-Q factor analysis problem. Note that if the noise would
be spatially white (Σn = σ2

nI), then G can be solved from an eigenvalue
decomposition of R, up to a unitary factor at the right.

The more general Factor Analysis problem is a classical problem in mul-
tivariate statistics that has been studied since the 1930s [32, 40]. Currently,
FA is an important and popular tool for latent variable analysis with many
applications in various fields of science [2]. However, its application within
the signal processing community has been surprisingly limited. The problem
can be regarded as a special case of covariance matching, studied in detail
in [47]. Thus, the problem can be solved using Gauss-Newton iterations. The
current algorithms are robust and have a computational complexity similar
to that of an eigenvalue decomposition of R [44].

It is important to note that G can be identified only up to a unitary factor
V at the right: G′ = GV would also be a solution. This factor makes the
gains unidentifiable unless we introduce more structure to the problem. To
make matters worse, note that this problem is used to fine-tune earlier coarser
models (56). At this level of accuracy, the number of dominant sources Q is
often not small anymore, and at some point G is not identifiable: counting
number of equations and unknowns, we find that the maximum factor rank
is limited by Q < J −

√
J .

As discussed in [46] and studied in more detail in [55], more structure
needs to be introduced to be able to solve the problem. Typically, what helps
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is to consider the problem for a complete observation (rather than for a single
snapshot R) where we have many different frequencies fk and time intervals
m. The directional response matrixAm,k varies withm and k in a known way,
and the instrumental gains g and b are relatively constant. The remaining
part ofG = gbH⊙A′ is due to the ionospheric perturbations, and models can
be introduced to describe its fluctuation over time, frequency, and space using
some low order polynomials. We can also introduce stochastic knowledge that
describe a correlation of parameters over time and space.

For LOFAR, a complete calibration method that incorporates many of the
above techniques was recently proposed in [28]. In general, calibration and
imaging need to be considered in unison, leading to many potential directions,
approaches, and solutions. Once calibration reaches the stage of full image
calibration at the full resolution, we basically try to identify a highly detailed
parametric model using gradient descent techniques. The computational com-
plexity can be very high. To limit this, SAGEcal [31] clusters parameters into
non-overlapping sets associated with different directions on the sky, solves the
“independent” problems separately, and then combines in a parameter-fusing
step. Distributed SAGEcal [66] also exploits parallelism such as continuity
over time and frequency, again solving “independent” problems separately in
parallel, followed by a fusion step.

6 A typical signal processing pipeline

To conclude this chapter, we discuss how calibration and imaging techniques
are put together to form an imaging pipeline. We do this using a pipeline
developed to guide the design of the SKA computing systems [30, 29] as an
example. If the receiving elements of such a system are phased array stations,
as is the case for the low-frequency system of the SKA, an end-to-end imaging
pipeline consists of three stages of processing: Station Beamforming, process-
ing in the Central Signal Processor (CSP), and the Science Data Processor
(SDP). Block diagrams for each stage are shown in figures 11, 12 and 13.

Figure 11 shows a typical block diagram for signal processing within a
phased array station. The signals from the receiving elements within a sta-
tion are digitized and combined into a single beamfomed output, providing
a well-defined beam on the sky. This is usually done by a standard delay
beamformer by applying weights as described in (20). As the delays are rep-
resented by phase shifts, the signals need to be narrowband with respect to
this delay. This is ensured by splitting the digitized signal of each receiver
path into multiple coarse frequency channels (typically order (a few) 100 kHz
wide) by a polyphase filter bank. The time series produced for each of these
coarse channels can also be fed into a correlator to produce array covariance
matrices for the station. These covariance matrices can be used to perform
calibration. Usually, this only concerns direction independent gain calibra-
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Fig. 11 Typical block
diagram for signal pro-
cessing within a phased
array station [30, 29].

tion as described in Sec. 5.2.1. Those calibration solutions can be used to
adapt the beamformer weights to correct for complex valued gain differences
between receive paths. The beamformed output of each phased array station
is sent to the CSP for further processing.

Fig. 12 Block diagram
for data processing in the
Central Signal Processor
(CSP) of the SKA [30,29].
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Figure 12 shows the block diagram for the signal processing within the
CSP of the SKA. The goal of the CSP is to combine data from the receiving
elements of the SKA interferometer by correlating its input signals. As the
signals can be integrated after correlation, this step can significantly reduce
the data volume using relatively simple operations. The input signals are ei-
ther beamformed signals from phased array stations or coarsely channelized
signals from reflector dishes. As the longest baselines of the SKA interferom-
eter are much longer than the size of an individual station, much narrower
frequency channels are required to satisfy the narrowband assumption dis-
cussed in Sec. 3.2. This is achieved by a second polyphase filter bank, which
splits the coarse frequency channels further into fine channels (typically order
1 kHz wide). Any residual time delay across the array remaining after the
coarse delay correction done by shifting time series with respect to each other
before the polyphase filter bank, is then corrected by applying an appropriate
phase rotation. As the power received in individual frequency channels may
vary significantly across frequency due to the intrinsic spectrum of most as-
tronomical sources and the gain characteristics of the instrument, a bandpass
correction is applied to equalize the power across frequency before the signals
are correlated. After correlation, the data is integrated into STIs and data
corrupted by radio frequency interference (RFI) is flagged before the data is
transferred to the SDP.

Fig. 13: Block diagram for the imaging pipeline in the Science Data Processor
of the SKA [30,29].

A block diagram for an imaging pipeline within the SDP is shown in
Fig. 13. After some pre-processing, consisting of demixing, integration and
initial calibration, a self-calibration and imaging cycle is started.

We first discuss the pre-processing steps. A few exceptionally bright as-
tronomical radio sources, like Cas A and Cyg A, are so bright that their
signature can be detected in the data even in observations on fields that are
at a considerable distance from these sources. This is mitigated by applying
phase rotation (effectively applying beamforming weights to the visibilities
without adding them together) towards these sources, estimating and sub-
tracting their response, and undoing the phase rotation again. This process is
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called demixing. After demixing, further integration is possible, which reduces
the computational burden in further stages of the pipeline. Initial calibration
usually consists of direction independent calibration of the complex valued
gains of the individual receive paths in the interferometer array. The algo-
rithms used here are very similar to those exploited in the station calibration
mentioned before.

After initial calibration, the self-calibration and imaging cycle is entered,
which is the main part of the SDP imaging pipeline. It starts by computing
the residual visibilities obtained after subtracting the best available model for
the visibilities based on the current best knowledge of calibration parameters
and sky model from the measured visibilities. A dirty image is made from
the residual visibilities. The required operations (17) are essentially a Fourier
transform, but on non-uniformly sampled data. To be able to use the fast
Fourier transform (required because this step is the most expensive in the
entire processing pipeline), the residual visibilities are gridded onto a uniform
grid, after which the inverse FFT is applied. Other computationally efficient
implementations for non-uniform fast Fourier transforms may be considered.
As this processing step is similar in many other image formation instruments
(e.g., geophysics [19] and MRI), the available literature is rich.

Iterative algorithms such as CLEAN are used to find and subtract new
sources in the residual image. This is referred to as the minor cycle. The new
source components are added to the sky model, which is then used in the
next iteration of the self-calibration and imaging cycle, the major cycle. Once
this process has converged sufficiently, the sky model (deconvolved image) is
added to the residual image, which should ideally only contain noise at this
stage. That result is then presented as the final image. Since the major cycle
is very expensive, the usual approach is to detect thousands of sources in
each minor cycle, and to run the major cycle less than 10 times.

7 Concluding remarks and further reading

In this chapter, we presented a signal processing viewpoint on radio astron-
omy. We showed how, with the right translations, the “measurement equa-
tions” are connected to covariance matrix data models used in the phased
array signal processing literature. In this presentation, the resulting data
models are very compact and clean, in the sense that the most straightforward
covariance data models, widely studied in the signal processing literature as
theoretical models, already seem valid. This is because far field assumptions
clearly hold, and the propagation channels are very simple (no multipath), in
contrast to other array processing applications such as seismology, synthetic
aperture radar, or biomedical tomography.

However, this does not mean that radio astronomy is a “simple” applica-
tion: data volumes are massive, and the requirements on resolution and ac-
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curacy are mind-boggling. Current telescopes, developed in the 1970s, start
with signals sampled at 1–2 bits accuracy (because anyway the signals are
mostly noise), and after data reduction and map making routinely end up
with images with a dynamic range of 105.

So far, radio astronomy has done very well without explicit connection to
the array signal processing literature. However, we expect that, by making
this connection, a wealth of new insights and access to “new” algorithms can
be obtained. This will be beneficial, and possibly essential, for the develop-
ment of new instruments like LOFAR and SKA.

For further reading we suggest, first of all, the classical radio astron-
omy textbooks, e.g., by Thompson, Moran and Swenson [52] and by Perley,
Schwab and Bridle [49]. The August 2009 issue of the Proceedings of the IEEE
was devoted to the presentation of new instruments. The January 2010 issue
of IEEE Signal Processing Magazine gave a signal processing perspective. For
general insights into imaging and deconvolution, we suggest Blahut [4].

Challenges for signal processing lie in (1) imaging, (2) calibration, (3)
interference suppression. These problems are really intertwined. It is inter-
esting to note that, especially for calibration and interference suppression,
factor analysis is an essential tool. Our contributions in these areas have ap-
peared in [34, 33, 57, 3, 36, 6, 55, 63, 64, 62] and are summarized in the PhD
theses [5, 54, 60, 44], which should provide ample details for further reading.
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