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Optical resonators are widely used in modern photonics. Their spectral response and temporal dynamics are
fundamentally driven by their natural resonances, the so-called quasinormal modes (QNMs), with complex
frequencies. For optical resonators made of dispersive materials, the QNM computation requires solving a non-
linear eigenvalue problem. This raises a difficulty that is only scarcely documented in the literature. We review our
recent efforts for implementing efficient and accurate QNM solvers for computing and normalizing the QNMs of
micro- and nanoresonators made of highly dispersive materials. We benchmark several methods for three geom-
etries, a two-dimensional plasmonic crystal, a two-dimensional metal grating, and a three-dimensional nanopatch
antenna on a metal substrate, with the perspective to elaborate standards for the computation of resonance
modes. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAA.36.000686

1. INTRODUCTION

Optical resonances play an essential role in current develop-
ments in nanophotonics. By providing an eagle-eye view of
the resonant features of nanostructures, it is apparent that they
are at the heart of the design of artificial materials, integrated
photonic resonators, optical sensors, and nanoparticle traps, for
instance, and find use in many areas of science and technology.

Resonances in optics are defined as factorized solutions
�Ẽm�r�, H̃m�r�� exp�−iω̃mt� of the time-harmonic source-free
Maxwell’s equations [1]�
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where the electromagnetic field satisfies the far-field outgoing
wave conditions at infinity (Sommerfeld conditions, for instance,
in uniform media), and ε�r,ω� and μ�r,ω� are the position- and

frequency-dependent permittivity and permeability tensors of
the resonator and its surrounding background. Equation (1) takes
the form of an eigenproblem, with ω̃m and �Ẽm�r�, H̃m�r��T
being the eigenvalues and eigenvectors, respectively.

In the presence of leakage or material Joule losses, the eigen-
value problem of Eq. (1) becomes non-Hermitian, and its
eigenvalues lie in the complex plane (lower half plane, in
the case of the e−iωt time dependence that is assumed through-
out the paper)

ω̃m � Ωm − iΓm∕2, (2)

where the real and imaginary parts give the resonance frequency
and the damping rate, or the mode lifetime τm � 1∕Γm.
To emphasize their difference from the normal modes of
Hermitian systems (without any damping), the eigenvectors
that satisfy Eq. (1) are called quasinormal modes (QNMs)
[1,2]. These modes are also known in the literature as decaying
states [3], resonant states [4], leaky modes [5], or scattering
modes [6]. In a spectrum, small (large) values of Γm therefore
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correspond to narrow (broad) resonances. The damping has
two origins, absorption (Joule loss) or leakage into the claddings
for open systems. Realistic resonant systems usually consist of
resonators connected to the outside world through one or sev-
eral radiative channels, and thus, even in the absence of absorp-
tion, Γm ≠ 0.

To avoid any confusion, let us mention that there are differ-
ent types of modes in optics. For systems that are periodic or
translation invariant in at least one direction of space (geometries
1 and 2), one may define a propagation constant β and compute
complex β as a function of real (angular) frequency ω. We are
then in the frame of guided modes, and β is real for truly guided
modes or complex modes because of absorption, leakage, or
both. These waveguide modes are not considered in this work,
since efficient mode solvers already exist for their computation.
Alternatively, for those modes, one may fix β as real and compute
complex ω̃’s. These are the quasinormal modes or quasi-states (in
the sense of solid-state physics) with complex energies (and thus
finite lifetimes) that we consider in the present work. There is
sometimes some confusion in the literature for systems with ab-
sorption between guided modes and quasinormal modes, and
the interested reader may refer to [7] to find a clear distinction
between guided modes or quasinormal modes for the emblem-
atic case of the surface plasmons of flat metal interfaces. Unlike
guided modes, quasinormal modes that are defined by Eq. (1)
exist for any system, with or without invariance. They are the
degrees of freedom of the system.

QNMs are initially loaded by a driving field and then
decay exponentially with time due to power leakage and absorp-
tion. In general, one expects that the electromagnetic field
�E�r, t�,H�r, t�� scattered by a resonator driven by an external
source can be expanded over the QNMs of the system
�E�r, t�,H�r, t�� � RefPmβm�t��Ẽm�r�, H̃m�r��g with βm the
temporal modal excitation coefficient. Recovering the resonator
response in the modal basis is called the reconstruction problem.
Modal methods are important as they help interpret experimen-
tal results and highlight the physics. In this paper, we do not
consider the reconstruction problem but focus on the first essen-
tial step: the computation of normalized QNMs.We benchmark
different techniques by considering three different examples.

It is convenient to consider step by step the impact of damp-
ing on the mode computation. When the damping is only due
to absorption (there is no leakage), the system is closed. This
case is the simplest one and is studied in the first benchmarked
structure, a two-dimensional (2D) plasmonic crystal composed
of a periodic array of metallic wires. The complexity of this
example comes from the dispersive nature of the resonator
material, which makes the eigenproblem of Eq. (1) a nonlinear
one. Note that for nondispersive materials, the eigenproblem is
linear, and efficient QNM solvers already exist in several com-
mercial software packages.

For the second benchmark, we are again concerned with a 2D
geometry but an open one that is periodic in one direction only:
a grating composed of an array of slits etched into a metal mem-
brane suspended in air. QNMs now have to fulfill the outgoing-
wave boundary conditions for jrj → ∞ to ensure that the QNM
energy leaks away from the resonator. The open nature of the
eigenproblem results in an unusual yet critical feature of
QNMs, being that the field distributions �Ẽm�r�, H̃m�r�� diverge

outside the resonator as jrj → ∞. Indeed, the temporal response
imposes an exponential decay for exp�−iω̃m�t − r∕c�� and thus a
negative imaginary part for ω̃m. As a consequence, an outgoing
wave of the form exp�−iω̃m�t − r∕c��∕r, as encountered in the far
field of the resonator, grows exponentially as exp�Γmr∕�2c��∕r
because of the necessary minus sign of the causal propagation
term �t − r∕c�. The exponential divergence has raised problems
and even debates in the past for normalizing the QNMs, but this
issue has been solved, even for complicated 3D geometries [1].
Normalization is a key point of QNM computation, since only
normalized fields can be used to define the modal excitation co-
efficients of the reconstruction problem. Hereafter, all the com-
puted QNMs are normalized, and the convergence of the
methods towards the normalized fields is systematically consid-
ered in the benchmarks.

The last benchmark is related to a 3D geometry, a silver
nanocube deposited on a gold substrate. With a tiny dielectric
gap separating the two metals, the geometry offers deep-
subwavelength confinements at visible frequencies, for which
we compute the fundamental magnetic-dipole mode. With two
different metals, this is the most challenging test case. As a sim-
pler version, we also consider an axisymmetric geometry with a
nanocylinder.

The paper is divided into four additional sections. Section 2
provides a short theoretical background on the normalization of
QNMs and an overview of the different techniques used to
compute QNMs in electromagnetism. The purpose of this sec-
tion is to provide the reader with sufficient background in order
to obtain a basic understanding of the numerical approaches
used by the different research groups involved in the bench-
marks. In Section 3, we summarize the main results obtained
for the three benchmarks and compare the numerical results
obtained by the different groups. We additionally discuss the
discrepancies between the results of the different methods.
Details concerning the implementations of the methods are de-
scribed in Section 4 together with additional data and related
literature. We include, however, a description of all specific
modifications made in order to improve the performance of
the methods for the considered geometry. Wall times and
memory requirements are likewise provided in this section.
We conclude this paper in Section 5 with a summary of the
derived insights.

2. QUASINORMAL MODE NORMALIZATION AND
MODE VOLUME

A. Reconstruction

An important objective, not comprehensively discussed in this
paper, of QNM theories consists in reconstructing the field
�ES�r,ω�,HS�r,ω�� exp�−iωt� scattered by a resonator (at least
in a compact subspace of R3 ) under a driving field at a real
frequency ω with a QNM expansion of the form�
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�
�
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m

αm�ω�
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in the time domain, provided that the excitation pulse can be
Fourier transformed. In Eqs. (3) and (4), the αm’s and βm’s are
complex modal excitation coefficients, which measure how
much the QNMs are excited. There are different analytical for-
mulas to compute the αm’s (see [1] for a review), while the βms
have been only scarcely considered in the literature [8,9]. Note
that throughout the manuscript, we will use a tilde to differ-
entiate the QNM fields from other fields, for instance, the scat-
tered or driving fields. Consistently, we will also use a tilde to
denote the QNM complex frequency ω̃m, m � 1,2…, in con-
trast with the real excitation frequencies that will be denoted by
ω. The intrinsic strength of QNM expansions is to provide im-
portant clues towards understanding the physics of the resona-
tor response. Since the modes are explicitly considered, their
impact on the resonance is readily available and unambiguous,
in sharp contrast with classical scattering theories.

B. Mode Normalization

The knowledge of the modal excitation coefficients contained
in expansions such as those of Eqs. (3) or (4) requires normali-
zation of QNMs [1]. Normalization has been a long-standing
issue because of the spatially exponential divergence of the
QNM field. Initial works on QNM normalization [10] focused
on simple geometries for which the field is known analytically
in the whole space, i.e., 1D Fabry–Perot cavities and spheres.
For resonators with complex shapes and materials, analytic sol-
utions are not available, and the continuous Maxwell’s operator
of Eq. (1) has to be approximated and expressed using a
numerical discretization scheme, which preserves the outgoing-
wave condition at jrj → ∞. For a long time, the normZZZ

Ω
�εjẼmj2 � μjH̃mj2�d3r, (5)

which comes from Hermitian (closed) systems and represents
the field energy, has been used [11] to normalize QNMs of
resonators with a high quality factor Q. In practice, the inte-
gration domain Ω has to be truncated to some appropriate vol-
ume, which is large enough to include most of the physically
reasonable field energy and small enough not to feel the spatial
divergence of the QNM field. This approximate way is only valid
in the limit of infinitely largeQs. However, for low-Q resonators
such as plasmonic antennas, Eq. (5) becomes incorrect, and the
classical energy normalization must be replaced by [12]ZZZ

Ω

�
Ẽm ·

∂�ω̃ε�
∂ω̃

Ẽm − H̃m ·
∂�ω̃μ�
∂ω̃

H̃m

�
d3r � 1, (6)

where the derivatives are evaluated at ω̃m and the integral runs
over the entire numerical space, including the perfectly matched
layers that regularize the divergence. The replacement of modu-
lus-squared terms, e.g., jẼmj2 in Eq. (5), by unconjugated scalar
products, e.g., Ẽm · Ẽm in Eq. (6), enable convergence, as we re-
place a positive exponentially diverging quantity by an oscillating
exponentially diverging quantity that is alternatively positive and
negative in space. However, convergence is not guaranteed, and
the integral defined by Eq. (6) is also diverging if the integration
is performed over the entire space [13].

Actually, it is possible to show that, by surrounding the res-
onator with perfectly matched layers (PMLs) [12], Eq. (6) with
an integration over the whole unbounded space correctly

defines a normalization. PMLs are often seen as a numerical
trick, but they are mainly a mathematically powerful tool: com-
plex coordinate transforms implemented by changing material
parameters. The PML mapping offers a precious advantage.
The mapped QNMs do not grow exponentially away from
the resonator; instead, they are even exponentially damped in-
side the PMLs, and thus the integral of Eq. (6) is easy. In prac-
tice, this means that QNMs can be easily normalized by
integrating over the whole numerical space including the
PML regions [12].

PMLs are very convenient, but they are not necessarily re-
quired. Another approach to normalize QNMs relies on the
fact that QNMs are poles of the scattering operator. With
any modern frequency-domain Maxwell’s equation software,
the scattered field can be computed for complex frequencies
very close to the pole. Since for ω ≈ ω̃m, the scattered field
of any resonator is proportional to the normalized QNM field
Ẽm�r� with an analytically known proportionality factor [1,14],
the normalized mode can be obtained just by computing scat-
tered fields at complex frequencies with or without PMLs.

Periodic structures deserve special care. The normalization
relies on two QNMs with opposite Bloch wavevectors [15]. For
illustration, let us consider a grating that is periodic in the
x-direction, translationally symmetric in the z-direction, and
aperiodic in the y-direction. Denoting by kx the x-component
of the Bloch wavevector, we may write the QNM field as
�Ẽkx �r�, H̃kx �r�� � �ẽkx �r�, h̃kx �r�� exp�ikxx � ikyy�, ẽkx and h̃kx
being periodic. If the constitutive materials are reciprocal, as it
is assumed in the benchmarks, there always exists a QNM with
an opposite propagation constant −kx [15], �Ẽ−kx �r�,H̃−kx �r����ẽ−kx �r�,h̃−kx �r��exp�−ikxx�ikyy�, and the normalization
becomesZZZ

Ω

�
Ẽkx ·

∂�ωε�
∂ω

Ẽ−kx − H̃kx ·
∂�ωμ�
∂ω

H̃−kx

�
d3r � 1, (7)

where the integral runs over the unit cell for periodic crystals
(example 1) or a unit cell including PMLs for gratings (example
2). Note that �Ẽ−kx , H̃−kx � can be deduced from �Ẽkx , H̃kx � for
symmetric gratings. For instance, in the grating example 2,
ε�x� � ε�−x�, and we have x̂ · Ẽ−kx �−x, y� � x̂ · Ẽkx �x, y�,
ŷ · Ẽ−kx �−x,y�� −ŷ · Ẽkx �x,y�, and ẑ ·H̃−kx �−x,y�� ẑ · H̃kx �x,y�.
Otherwise, two QNMs have to be computed, one with kx and
the other one with −kx [15]. Figure 1 illustrates the symmetry
and the absence of symmetry between �Ẽ−kx , H̃−kx � and
�Ẽkx , H̃kx � for symmetric and non-symmetric gratings, respec-
tively. Note that in the non-symmetric case, two different
calculations will in general yield two different values for the
normalized field Ẽkx , but the product Ẽkx · Ẽ−kx is uniquely
defined [16].

C. Mode Volume

Just like the quality factor in the temporal domain, the mode
volume is an important parameter of resonators in the spatial
domain [17]. Initially used by the cavity quantum electrody-
namics community for high-Q microcavities, the mode volume

was considered as a real quantity V �r0� �
RRR

�εjẼ j2�μ0jH̃ j2 �d3r
2ε�r0�jẼ�r0�·uj2 ,

which gauges the coupling strength of an emitting dipole
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located at r0 and parallel to the direction u�juj � 1� with the
cavity mode [1,11]. The mode volume is usually defined for
dipoles placed at the field-intensity maximum, where the cou-
pling is also maximum, but it may also be considered as spa-
tially dependent to directly take into account the dependence of
the coupling strength with the dipole position. As one escapes
from the Hermitian limit Q → ∞, the definition of a mode
volume through energy consideration has obvious shortcom-
ings and is largely inaccurate for low-Q resonators [1]. The real
mode volume V should then be replaced by a complex one

Ṽ �
RRR

�∂ωε∂ω Ẽ
2−μ0H̃ 2�d3r

2ε�r0��Ẽ�r0�·u�2 , which tends towards the classical one

in the limit of Q → ∞. For a normalized mode, Ṽ is inversely
proportional to the square of the normalized modal electric
field at the emitter position r0 and takes the simple expression

Ṽ � �2ε�r0��Ẽ�r0� · u�2�−1: (8)

Complex Ṽ s are rooted in important phenomena of light–
matter interactions in non-Hermitian open systems [1]. For
instance, the ratio ImṼ −1∕ReṼ −1 quantifies the spectral asym-
metry of the mode contribution to the modification of the
Lorentizan shape of the spontaneous-emission-rate spectrum
(Purcell effect) of an emitter weakly coupled to a cavity [12].
For strong coupling, it modifies the usual expression of the
Rabi frequency by blurring and moving the boundary between
the weak and strong coupling regimes [1,18], and for cavity
perturbation theory, the ratio ImṼ −1∕ReṼ −1 also directly im-
pacts the narrowing or broadening of the resonance linewidth
due to the perturber [1,19]. The third 3D example benchmarks
Ṽ for a plasmonic antenna.

D. Overview of QNM Solvers

For resonators with complex shapes and materials, analytic
solutions for QNMs are not available, and the continuous

Maxwell’s operator has to be approximated using a numerical dis-
cretization scheme, which preserves the outgoing-wave condition
at jrj → ∞. It is not the purpose of this section to review all the
methods that can be used to compute QNMs. The literature is so
vast that we restrict the discussion to methods that have been used
not only to compute but also to normalize QNMs.

In practice, the numerical discretization of the Maxwell’s op-
erator is correctly implemented only for a finite spectral interval.
Thus, only a sub-set of the true QNMs is accurately recovered,
namely, the states for which the outgoing-wave conditions and
discretization are well implemented, and other discrete numerical
eigenmodes, the so-called PML modes [9,20,21], emerge as a
direct consequence of the truncation of the open space. Unlike
QNMs, PML modes depend on the PML material and geomet-
ric parameters.

QNMs are preferentially computed by solving Eq. (1) with
frequency-domain methods operating at a complex frequency.
A first option is to calculate the QNMs from a Fredholm-type
integral equation [22–27], in which case the outgoing-wave
condition is perfectly fulfilled by construction. However, since
the QNM resonance frequency (i.e., the unknown) enters in
the outgoing-wave condition, the integral equation defines a
nonlinear problem, even for nondispersive materials, thereby
requiring particular care.

An alternative way is to surround the resonator with PMLs.
For nondispersive materials with frequency-independent permit-
tivities and permeabilities, Eq. (1) defines a linear eigenvalue
problem, and various mode solvers, including commercial ones
such as COMSOL Multiphysics [28], are available to compute
many QNMs very efficiently. Normalization is then performed
by evaluating the integral of Eq. (6) [or Eq. (7) for periodic struc-
tures] over the whole numerical space including the PMLs. For
the general case of resonators made of dispersive materials, Eq. (1)
defines a nonlinear eigenvalue problem, and one needs to know
the analytic continuation of the permittivity and permeability
tensors ε�ω� and μ�ω� at complex frequencies. This requirement
is usually met by using physical models, which provide fully ana-
lytic expression for the material parameters. This is, for instance,
the case for the Drude electrical conduction for free carriers in
metals or highly doped semiconductors. Alternatively, one may
fit material parameters measured at real frequencies to ad hoc
analytic expressions, such as multiple-pole Lorentz–Drude ex-
pansions [24,29,30], which guarantee causality and the fre-
quency symmetry �ε�−ω�� � ε��ω�] resulting from the real
nature of the susceptibility. Systematic and effective procedures
for fitting experimental data exist; see, for instance, the procedure
developed with Hermitian functions in the form of polynomial
fractions proposed in [31]. Three general approaches to compute
and to normalize QNMs are used in general.

1. Pole-Search Approach

The pole-search approach is probably the simplest and most
general method. It relies on the fact that the resonator response
to any driving field diverges as the driving frequency approaches
a QNM eigenfrequency. Thus, the QNMs can be computed by
searching poles in the complex frequency plane for some
representative quantities that are complex functions of the
frequency, such as the electromagnetic field response to a
driving source or some elements of the discretized scattering

Fig. 1. Normalized magnetic field distributions for kx and −kx
and for a (a–b) symmetric grating, ε�x� � ε�−x�, and (c–d) a non-
symmetric one, ε�x� ≠ ε�−x�. The symmetric case corresponds to
Example 2 (see Section 3.2 for any details on the geometry, polariza-
tion, etc.). Note that ẑ · H̃−kx �x, y� � ẑ · H̃kx �−x, y�. A dielectric inclu-
sion (ε � 2.25) has been added to break the symmetry in (c–d). In
that case, there is no symmetry relation between H̃kx and H̃−kx . The
normalized field maps are computed with the FMM3. Note that the
colorbars in (c) and (d) are different.
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matrix [25,26]. Some iterative algorithms, such as the Newton
method, are well suitable for pole searching [32]. They usually
require an initial guess value as close as possible to the actual
QNM eigenfrequency for fast numerical convergence and com-
pute QNMs one by one by iteratively exploring the complex
plane around every QNM pole. Pole-search approaches are par-
ticularly relevant when only a few QNMs need to be computed.

Alternatively, a non-iterative method, the so-called Cauchy
integration method, has also been developed [33,34]. This
method is capable of finding all the poles in a closed predeter-
mined region of the complex frequency plane, but it needs an
extra computational cost associated with the contour integra-
tion over the outer boundary of the closed region to invert the
discretized Maxwell’s matrix [25,35]. For a better accuracy, the
poles found with the Cauchy integration method can be further
refined with Newton’s method [25].

A pole-search QNM-solver freeware, QNMPole, which
computes and normalizes QNMs for arbitrary resonators by
approximating the inverse of the electric field response with
a Padé approximant, has been available since 2013 [14]. The
freeware can be used with any frequency-domain Maxwell’s
equations solver, including commercial software such as
COMSOL Multiphysics.

2. Auxiliary-Field Eigenvalue Formulation

A different approach consists of computing all the QNMs “at one
time” by solving a linearized version of the eigenvalue problem, for
which a myriad of efficient and stable numerical methods exist.
A general approach consists of transforming the nonlinear eigen-
value problem into a linear one by introducing auxiliary fields to
account for material dispersion. Several variants exist, but for the
sake of simplicity, we will just provide a generic presentation of
auxiliary-field techniques [9,29,30,36–41]. The latter have been
initially used for computing band diagrams of dispersive photonic
crystals [29,30,36,37,41] and in time-domain for modelling wave
propagation in dispersive media [9,38].

For the sake of illustration, we consider an isotropic (to simplify)
medium with a dispersive permittivity described by the single-pole

Lorentz model ε�ω� � ε0ε∞
�
1 −

ω2
p

ω2−ω2
0�iωγ

�
and a nondispersive

permeability μ � μ0. We introduce two auxiliary fields, the polari-

zation P � −ε0ε∞
ω2
p

ω2−ω2
0�iωγ E and the current density J � −iωP.

With elementary algebraic manipulations, we can reformulate
Eq. (1) into an extended eigenvalue problem2
66664

0 −iμ−10 ∇× 0 0

i�ε0ε∞�−1∇× 0 0 −i�ε0ε∞�−1
0 0 0 i

0 iω2
pε0ε∞ −iω2

0 −iγ

3
77775

2
66664
H̃m�r�
Ẽm�r�
P̃m�r�
J̃m�r�

3
77775

� ω̃m

2
66664
H̃m�r�
Ẽm�r�
P̃m�r�
J̃m�r�

3
77775: (9)

The approach can be straightforwardly extended to multiple-pole
Lorentz models by increasing the number of auxiliary fields. It is

worth mentioning that the support of both auxiliary fields P and J
is not necessary in the whole computational domain but only in the
subdomains that contain the dispersive material. Note that the
Drude model, a particular case for which ω0 � 0, requires a single
auxiliary field J.

QNM eigensolvers based on an auxiliary-fields method have
been initially implemented with finite-difference methods
[39,40]. The latter may introduce inaccuracies for complex
geometries, which may lead to the prediction of spurious modes
when discretizing curved metallic surfaces on a rectangular grid,
for instance. QNM solvers based on finite-element methods
may be preferable. In [9], a general freeware using the
COMSOL Multiphysics platform is tested.

3. Polynomial Eigenvalue Formulation

A purely algebraic linearization is possible, in which the aux-
iliary fields are no longer related to physical quantities such
as the polarization vector and the current density, but to suc-
cessive time derivatives of the electric or magnetic field.
Consider, for instance, a non-magnetic dispersive medium with
a dielectric permittivity described by the same single-pole
Lorentz model as in the previous paragraph, εr�ω� �
ε∞�1 − ω2

p

ω2−ω2
0�iωγ�. The source-free propagation equation for

the electric field c2∇ × ∇ × E� ω2 εr�ω�E � 0 can be written
as a polynomial eigenvalue problem ω4M4E� ω3M3E�
ω2M2E� ωM1E�M0E � 0, where the operators Mi

are given by M4 � ε∞, M3 � iγε∞, M2 � c2∇ × ∇ × �·� −
ε∞�ω2

p � ω2
0�, M1 � iγc2∇ × ∇ × �·�, and M0 � −ω2

0c
2∇ ×

∇ × �·�. Introducing three extra fields E1 � ωE, E2 � ωE1,
and E3 � ωE2, a generalized linear eigenvalue problem of
the form LV � ωRV is obtained as follows:2
66664
−M0 −M1 −M2 −M3
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0 0 1 0

0 0 0 1
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3
77775:

(10)

As opposed to the physically meaningful auxiliary fields P
and J, the supplementary fields E1, E2, and E3 have the same
support as the electric field E, i.e., the whole computational
domain. Hence, both linearization schemes clearly lead to dis-
tinct discrete systems.

3. NUMERICAL RESULTS AND COMPARISON

Several groups in Europe and in China have been contacted to
participate in the benchmark using their in-house developed
software. In the following sections, three different numerical
exercises are benchmarked in relation with the computation
and normalization of QNMs.

In Table 1 we present the eight different implementations of
fully vectorial methods that have been benchmarked. We have
classified these implementations into three general categories:
modal methods (MM), finite-difference (FD) methods, and
finite-element methods (FEM). The methods represent a selec-
tion of the most popular frequency-domain numerical methods
used currently for QNM computations. They do not cover all
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existing methods, such as the finite-difference time-domain
method [42] or Fredholm-type integral methods [22–27],
but nevertheless the results of the benchmark may be used
with confidence by other researchers in the field to test their
in-house or commercial software. An additional complexity
may also arise for integral methods for resonators that are
not placed in a uniform background, like for the present geom-
etries for which the Green tensor is not known analytically, and
this is the reason why integral methods are not benchmarked in
the present paper.

A. Example 1: Plasmonic Crystals

We consider as the first example the case of a two-dimensional
(2D) plasmonic crystal composed of a periodic array of metallic
squares in air. The structure is depicted in Fig. 2(a). It was
previously studied by Raman et al. with a finite-difference

frequency-domain method [30] and then by Brûlé et al. with
a FEM [41]. In both studies, the dispersion diagram and modes
of this absorbing and dispersive system have been computed by
implementing an auxiliary-field formulation with a finite-
difference frequency-domain method, but different results have
been reported. The period of the square lattice is denoted by a,
and the size of the square metallic inclusions is w � 0.25a. The
relative permittivity of the metal is described by a Drude model
of the form ε�ω� � 1 − ω2

p∕�ω2 � iωγ�, with ωpa∕�2πc� � 1
and γ � 0.01ωp.

We first present the dispersion diagram of the plasmonic
crystal (complex eigenfrequencies as a function of the wavevec-
tor), and then we compare the results given by seven different
numerical methods. The benchmark consists of the calculation
of one mode (complex eigenfrequency and normalized field) for
a given value of the wavevector.

1. Dispersion Diagram

We have computed the QNMs of the plasmonic crystal in TE
polarization (magnetic field along the z-direction) for different
values of the wavevector kx and ky � 0. Figure 2(b) displays the
real part of the eigenfrequencies ω̃m as a function of the wave-
vector kx, and Fig. 2(c) shows the distribution of the eigenfre-
quencies in the complex frequency plane. The calculations have
been performed with the FEM2.

A remarkable feature of the dispersion diagram is the exist-
ence of many flat bands. The latter correspond to slow high-
order surface-plasmon QNMs [9] with high parallel momenta
and a strong degree of confinement at the metal/air interfaces.
They are highly sensitive to the radius of curvature of the wire
corners as we have shown by several computations performed
by slightly rounding the corners, in particular, in the spectral
interval corresponding to −1∕3 < Re�ε�ω�� < −3 [43–46].

It is noticeable that the spectral positions of these bands are
significantly different from those reported in Fig. 2 in [30],
although they are computed exactly for the same geometry.
To check the numerical results, we have computed the
dispersion diagram with three other numerical methods,
FEM3 and FEM4 and one in-house FD method specifically
implemented at LCF for this benchmark. An excellent agree-
ment between the four numerical methods has been obtained,
providing virtually the same spectra for the flat bands. Since the
four methods have been implemented independently, we are
inclined to think that the results reported in [30] suffer from
numerical inaccuracies.

2. Numerical Benchmark for a Single Mode

We have benchmarked several methods for computing the
eigenfrequency and the normalized field of the QNM with
the lowest frequency at kx � 0.5π∕a [red arrow in Fig. 2(b)].
Its magnetic-field modulus is shown in Fig. 2(d). The field is
calculated at the center of the metallic inclusion and normalized
according to Eq. (7). Table 2 summarizes the most accurate
results obtained by each method.

To improve the numerical accuracy, the three FMM imple-
mentations increase the number of Fourier harmonics 2N � 1
retained in the computation. The four FEM implementations
rely on different strategies. FEM1 increases the FE order p from
1 to 6, whereas FEM2–4 increase the number M of mesh

Table 1. Benchmarked Methodsa

Numerical Method Affiliation
Completed
Benchmark Acronym

Finite difference Delft-TU 3 FD
Finite element ZIB, Berlin 1–3 FEM1
a-Fourier Modal Method Nankai Univ. 1–3 FMM1
Finite element
(COMSOL)

LP2N, Bordeaux 1–3 FEM3

a-Fourier Modal Method LCF, Palaiseau 1–3 FMM3
Finite element 1–3 FEM2
Fourier Modal Method Stuttgart Univ. 1–2 FMM2
Finite element Institut Fresnel,

Marseille
1–3 FEM4

aThe last column presents the acronyms used throughout the paper. All
methods are performed with in-house developed software, except FEM1
and FEM3, which rely on JMCSuite and COMSOL Multiphysics.

Fig. 2. Band diagram of a 2D plasmonic crystal. (a) The structure
consists of a 2D array of metallic inclusions in air. The size of the
square Drude inclusions is w � 0.25a. (b) Real part of the QNMs
eigenfrequencies as a function of the wavevector kx for ky � 0.
(c) Distribution of the eigenfrequencies in the complex frequency
plane for the same wavevector values. (d) ajHz j distribution for the
normalized QNM with the lowest frequency for kx � 0.5π∕a [red
arrow in (b)].

Research Article Vol. 36, No. 4 / April 2019 / Journal of the Optical Society of America A 691



elements for a fixed FE order. FEM2 and FEM4 are based on a
second-order FE, and FEM3 is using a fourth order. These re-
sults correspond to the data obtained with the highest number
of Fourier harmonics, the largest FEM order, or the finest
mesh, except for FMM3, for which the data in Table 2 are
obtained by an extrapolation of the convergence curve; see
Section 4.4.

Figure 3 shows how the different numerical methods con-
verge towards their best values. The convergence is displayed as
a function of the CPU time (or wall time) in seconds. We have
represented the relative difference between the data and a refer-
ence. For the reference, we chose the mean value of the results
given by the three FMM1,2,3 that provide the largest number
of common digits in Table 2. Figure 3 evidences that all
seven methods converge towards the same values both for

the eigenfrequency and for the normalized field. Remarkably,
the real and imaginary parts of the eigenfrequency are obtained
with at least six significant digits; see the bold numbers in
Table 2. The real and imaginary parts of the field are obtained
with two and four significant digits, respectively.

For this 2D problem, the wall times required to reach such
an excellent accuracy span between a few seconds and one
hundred for the slowest. The three FMM implementations
converge faster than the FEM implementations. Note that
the FEM is generally fast at extracting a large number of the
eigenvalues spectra at once, whereas the benchmark concerns
a single eigenvalue. Note also that increasing the FEM order
instead of refining the mesh leads to a faster convergence.

B. Example 2: Metal Grating

1. General Overview of the Structure

The second benchmark considers an open structure: a 1D gra-
ting made of a periodic slit array etched in a free-standing gold
membrane; see Fig. 4(a). The geometry is based on [47]. The
period is a � 482.5 nm, the rod width w � 347.5 nm,
and the rod height h � 130 nm. A Drude gold relative permit-
tivity is considered, εr�ω��1−ω2

p∕�ω2�iγω� with ωp �
1.26e16 s−1 and γ � 1.41e14 s−1. This model agrees well with
experimental ellipsometric data in the near infrared, but fails to
describe the response of gold in the blue region of the spectrum.

The grating exhibits a valuable bandpass filtering behavior
in transmission [47]. The specular transmission T 0 and absorp-
tion A are shown in Figs. 4(b) and 4(c) for three in-plane wave-
vector kx values and for TM polarization (i.e., Hz -component
parallel to the wires). The spectra are obtained using a collec-
tion of direct FE computations by iterating over the wavelength
and the parallel momentum of the incoming plane wave [48].
Note that in the frequency domain, handling the frequency
dispersion of materials is trivial since the permittivity can be
updated from tables as the frequency is swept. The goal of
the second benchmark is to retrieve with accuracy the QNMs
accounting for the main resonant transmission peaks in
Figs. 4(b) and 4(c).

2. Dispersion Relation

The dispersion relation of the grating is shown in the right
panel of Fig. 5. It has been computed using FEM4 (crosses)

Table 2. Most Accurate Numerical Values Obtained for the Complex Eigenfrequency and the Normalized
Magnetic Field H̃za

a

Method Re�ω̃�a∕�2πc� Im�ω̃�a∕�2πc� Re�H̃ z�a Im�H̃ z�a Refinement Parameter

FMM1 0.23107438 −0.0001445244 3.32867 −505.074 N � 100
FMM2 0.23107368 −0.0001440116 3.33018 −505.065 N � 50
FMM3 0.23107371 −0.0001440087 3.33023 −505.067 Extrapolationb

FEM1 0.23107370 −0.0001440083 3.32996 −505.062 p � 6, M � 1133c

FEM2 0.23107047 −0.0001441258 3.32900 −505.130 p � 2, M � 40 k
FEM3 0.23107349 −0.0001440188 3.32991 −505.061 p � 4, M � 66 k
FEM4 0.23107496 −0.0001439568 3.32819 −505.041 p � 2, M � 55 k

aThe last column summarizes the values of the refinement parameter used to obtain the data. Note that H̃ za is not a dimensionless quantity and is expressed in
A · s ·m−1∕2 · kg−1∕2. For FMMs,N represents the truncation rank, and for FEMs, p is the FE order andM is the number of mesh elements. Bold digits (in the present
table and in following ones) are believed to be correct.

bThe convergence curve is calculated up to N � 201 and extrapolated; see Section 4.4.
cRefinement by the element polynomial degree p; see Section 4.3.
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Fig. 3. Convergence performance obtained for the QNM with the
lowest frequency at kx � 0.5π∕a. Data are displayed as a function of
the CPU time in seconds. We present the relative difference between
every calculation and a reference value obtained by averaging the
results of FMM2, FMM3, and FEM1. (a) Real part of the eigen-
frequency. (b) Imaginary part. (c) Real part of the normalized magnetic
field. (d) Imaginary part.
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and a pole-search method based on FMM3 (small dots forming
a seemingly continuous line). The real parts of the normalized
eigenvalues ω̃∕η with η � 2πc∕a are represented in ordinate.
The abscissa represents the normalized Bloch wavevector in the
first reduced Brillouin zone. The imaginary part of the normal-
ized eigenvalues is encoded into a jet color scale of the dots and
crosses that form the dispersion curves. For Re�ω̃�∕η < 1.2,
the dispersion relation exhibits six branches, labeled “A”,

“B” … “F” and standing below the folded light line shown with
dashed gray lines. The insets show the QNM fields jH̃j.

With the help of the dispersion curves, we may interpret
the main features of the transmission and absorption spectra
of Figs. 4(b)–4(c). Let us begin with band B, for which
Re�ω̃�∕η lies between 0.493 and 0.83, corresponding to wave-
lengths in the interval [581; 979] nm. The QNMs can be di-
rectly linked to the absorption spectrum, when superimposing to
the absorption peaks of Fig. 4(c) with rectangular patches cen-
tered at Re�2πc∕ω̃� with widths 2 Im�2πc∕ω̃�. In particular, the
real parts shown with dashed vertical lines exactly match the
maxima of the absorption spectrum for the three values of kx .

Now, let us move to higher frequencies with the two high
sharp absorption peaks (A ≈ 50%) observed for kx � 0.05π∕d
and shown in the zoom Fig. 4(c). Again, when superimposing
patches corresponding to ω̃D1 and ω̃C1, it appears again that
these high peaks are attributable to the excitation of the
QNMs D1 at 495 nm and C1 at 497 nm (see the zoom in
the left panel in Fig. 5). Note that in the inset of Fig. 4(c), the
central peak Re�2πc∕ω̃D1� is almost superimposed with the
Rayleigh anomaly corresponding to the first diffraction order.
This is consistent with the fact that band Dmeets the first folded
light line for kx ≳ 0.05π∕d as it can be clearly seen on the zoom
of the dispersion relation in Fig. 5. Theses QNMs cannot be
excited at normal incidence for symmetry arguments, and they
cannot be excited either for large kx values since branches C and
D both reach the folded light line for kx ≈ 0.05π∕d.

In conclusion, all the resonant features of the absorption
spectrum are understood from the dispersion relation. Note
that, to recover all the features of the transmission spectra
(not only the peaks, but also the zeros of T 0 on the blue side
of every peak), one needs to compute many QNMs [49].

3. Numerical Results for One Selected Eigenmode

The grating benchmark concerns the numerical computation
of a single QNM (labelled B3 in Fig. 5) responsible for the
absorption peak centered at 650 nm in Fig. 4(c). Two numeri-
cal values are benchmarked: the complex eigenfrequency
ω̃B3a∕�2πc� and the normalized eigenfield at one point
H̃ z,B3�0, h�, the origin being chosen at the center of the rod

Fig. 4. (a) Geometry of the free-standing 1D grating. (b) Specular
transmission T 0 for three values of kx , kxa∕π � 0.05, 0.4, 0.6.
(c) Absorption A (fraction of the incident energy absorbed) spectra.
The dotted vertical lines represent the Rayleigh anomalies. The dashed
lines represent the real parts of the grating QNM eigenfrequencies
2πc∕ω̃ taken from Fig. 5. The widths of the rectangular patches cen-
tered around each dashed line are set to be 2 Im�2πc∕ω̃�, encoding the
quality factor of each resonance. The inset is a zoom with the same
color conventions, showing near normal incidence sharp resonances
and the corresponding QNMs labelled C1 and D1 in Fig. 5.

Fig. 5. Dispersion relation of the gold grating. The dashed lines represent the air light lines. Crosses represent the real parts of the eigenvalues
obtained with FEM4. Dots forming an almost continuous curve represent the real parts of the eigenvalues found using a complex pole search. The
insets represent the modulus of the magnetic field distribution of the QNM corresponding to the eigenvalue indicated by a black line. The left panel
shows a zoom close to the center of the Brillouin zone.
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and h being the height of the rod. The results are shown in
Table 3 and Fig. 6 for seven different numerical codes. The
real and imaginary parts of the normalized eigenfield aH̃ z,B3
are shown in Figs. 6(e)–6(f ). The refinement parameter for
each method is indicated in the right column. All methods
show remarkable agreement, with at least four significant digits
for the eigenvalue and three for the eigenfield.

As previously mentioned, we have represented in Fig. 6 the
relative difference between the data and a reference. For the
reference, we chose the mean value of the results given by
FMM2,3 and FEM1. These methods are the ones that have
the largest number of common digits; see Table 3. The con-
clusions regarding convergence are very similar to those made
for the first benchmark. However, the convergence speed ap-
pears to depend significantly on the implementation, with

some implementations of the FMM converging slower than
the faster implementations of the FEM; see the conver-
gence-rate results of Figs. 6(a)–6(d). Among the FEM codes,
FEM2–4 have the same refinement parameter, the number
M of mesh elements, whereas for the FEM1, the refinement
parameters are the element polynomial orders p (up to p � 6)
and of the mesh refinement around the corners that is prede-
fined with a refinement length h proportional to 10−p∕2.

Finally, note that the present QNMs are eigenvectors with a
complex frequency for a fixed in-plane real wavevector kx, im-
plying that these QNMs are the poles that would be revealed in
experiments by varying the frequency of the incident beam,
while maintaining for each frequency the product ω sin θ con-
stant. This implies that, when recording the spectrum, one
should for every new wavelength accurately tune the angle
of incidence. This is not the usual habit, since θ is generally
fixed during the acquisition of the spectrum data. Thus, con-
sidering the exact experimental protocol, further investigations
into QNM computation and normalization for fixed θ shall be
investigated [49].

C. Example 3: Nanocube Antenna

The third benchmark is related to a 3D geometry, a nanocube
antenna that belongs to the family of nanoresonators relying on
slow gap plasmons [7]. This geometry has recently attracted
much attention for various applications and fundamental stud-
ies from biochemical sensors, photodetectors, metamaterials,
and nonlinear switches or light sources [50,51] to the testing
of spatial dispersion (nonlocality) in metals [52]. The geometry
is directly inspired by the experimental work in [51]; see
Fig. 7(a). An 8 nm thick polymer spacer is sandwiched between
two metals, a silver nanocube and a gold substrate. We use a bi-
pole Drude model for silver and a quadruple-pole Drude–
Lorentz model for gold to accurately take into account the
material dispersion; see details in the caption of Fig. 7(a).

The nanocube geometry offers deep-subwavelength field
confinements and enhancements. In the visible spectral range,
the response is governed by two dominant QNMs, the funda-
mental magnetic-dipole-like mode in the red spectrum and an
electric-dipole mode in the green spectrum. Only the magnetic
mode will be considered hereafter. Its resonance mechanism
can be understood from a Fabry–Perot model with a slow
gap plasmon bouncing back and forth between gap extremities,
and its resonance linewidth results from several contributions:

Table 3. Most Accurate Numerical Values Obtained for the Complex Eigenfrequency ω̃B3a∕�2πc� and the Normalized
Magnetic Field H̃z,B3�0,h�aa

Method ω̃a∕�2πc� H̃ z Refinement Parameter

FMM1 0.74303 − 0.012662i 101.358� 761.312i N � 100
FMM2 0.7430756 − 0.0126i 101.91� 761.305i N � 50
FMM3 0.74307571 − 0.012660590i 101.867� 761.313i Extrapolationb

FEM1 0.74307569 − 0.012660593i 101.887� 761.304i p � 6, M � 1256c

FEM2 0.74305 − 0.0126644i 101.99� 761.93i M � 123 k
FEM3 0.74304 − 0.0126608i 101.46� 761.64i M � 67 k
FEM4 0.74310 − 0.0126553i 101.89� 760.79i M � 281 k

aThe refinement parameter for each method is indicated in the rightmost column.
bThe convergence curve is calculated up to N � 201 and extrapolated; see Section 4.4.
cRefinement by the element polynomial degree p; see Section 4.3.

(b)

(a) (c)

(d)

(f)(e)

Fig. 6. Convergence performance obtained for the QNM labelled
B3 in Fig. 5 (second-lowest eigenfrequency for kx � 0.4π∕a�. Data are
displayed as a function of the CPU time. We present the relative differ-
ence between every calculation and a reference value obtained by aver-
aging the results of FMM2, FMM3, and FEM1. (a) and (b) Relative
difference for real and imaginary parts of ω̃B3a∕�2πc�. (c) and
(d) Relative difference for real and imaginary parts of H̃ z,B3(0, h).
(e) and (f ) Maps of the normalized QNM H̃ z,B3.
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photon radiation in the air, surface-plasmon launching around
the nanocube, and metal absorption mainly around the nano-
gap in the metal. The respective impacts of each contribution
on the QNM lifetime have been analyzed comprehensively
in [53].

We focus on two quantities related to the fundamental mode:
the complex resonance wavelength λ̃ and the complex mode vol-
ume Ṽ of the magnetic-dipole-like mode for the benchmark.
Figure 7(b) shows the precise position r0 of the z-polarized dipole
source located in the median plane of the polymer film, which is
used for the computation of Ṽ . Figure 7(c) displays the electric-
field distribution of the magnetic-dipole mode. The fundamental
mode is degenerate, meaning that there are two fields with the
same eigenvalue due to the C4v symmetry of the configuration.
Any linear combinations of these two modes are again eigenm-
odes, which renders the selected cases particularly interesting.
Only one mode is shown in the figure, the other mode being
obtained by a 90° rotation around the z-axis.

Table 4 summarizes the main results obtained for λ̃ and Ṽ
by the five partners. The numbers correspond to the most ac-
curate results obtained for “sampling grids” with the highest
resolution. Concerning the resonance wavelength and setting
aside the results obtained with FD-TU, an excellent agreement
is obtained between the two other methods. Probably due to

the rounded corners, the FD scheme suffers from inaccuracies
compared to the two FEMs that provide nearly identical results.
This explains the 15 nm shift difference for Re�λ̃� between the
second column and others. This shift is rather expected.
Because of the tiny modal volume (Re�Ṽ � ≈ 4 × 10−5 μm3),
it is inevitable that numerical inaccuracies such as those related
to sampling result in large shifts of the resonance frequency (the
nanocube is an excellent sensor in the real world and thus a
sensitive test case for numerics). The five methods rely on
the normalization of Eq. (6). They provide very similar mode
volumes. Overall, we conclude that a good agreement is
achieved, the peak deviations being <2% for Reλ̃, Imλ̃, and
ReṼ and 2.4% for ImṼ .

We conclude that, even for a complicated 3D geometries
made of two different metals, a very good accuracy (a few per-
cent for λ̃), which is often large enough for analyzing experi-
mental data, can be reached with modest computational efforts
(CPU time < 1 min), and this by all methods. We conclude
that 3D QNM solvers are available on the shelves.

Three partners have additionally performed the same com-
putations by considering a perfectly cubic nanocube with sharp
corners and edges. The results computed for the highest
numerical resolution or extrapolated are shown in Table 5.
The mean value is λ̃ � 0.6996� 0.143i with a standard

Fig. 7. Ag nanocube antenna of size 65 nm deposited on an 8 nm thick polymer film (refractive index 1.5) coated on an Au substrate.
(a) Silver is modeled as a Drude metal, with λp � 2πc∕ωp � 138 nm and γ � 0.0023ωp. For gold, we use a Drude–Lorentz model, with
ω1 � 1.317 × 1016 rad∕s, γ1 � 6.216 × 1013 rad∕s, ω2 � 4.572 × 1015 rad∕s, and γ2 � 1.332 × 1015 rad∕s. The cube corners are rounded with
a 4 nm radius. The left panel shows the fine tetrahedral mesh used with FEM1; see Section 4.3. (b) The red point, located in the median plane of the
polymer (z � 4 nm), shows the point r0 where the mode volume is computed. (c) Electric field distribution of the fundamental magnetic-dipolar
mode that resonates in the red. Owing to the symmetry, another QNM exists at the same complex eigenfrequency with a field distribution rotated by
90° around the z-axis. The distributions are computed with the FD method for a 1 nm discretization grid.

Table 4. Nanocube with Rounded Corners

Methods λ̃ [μm] Ṽ �μm3� × 104 Refinement Type

FD 0.6810� 0.0159i 0.392� 0.030i 1 nm mesh size
FEM1 0.66585� 0.015574i 0.38449� 0.02926i p � 4, M � 40 k
FEM2 0.66559� 0.015362i 0.386� 0.0283i p � 1, M � 276 k
FEM3 0.66517� 0.015468i 0.384� 0.0287i p � 2, M � 220 k
FEM4 0.66501� 0.015395i 0.383� 0.0286i p � 2, M � 51 k
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deviation 0.0034� 0.0004i. A slightly larger deviation is ob-
tained for Ṽ . Again the agreement is quantitative between all
the methods.

The benchmark geometry initially proposed was a 3D nano-
cube with rounded corners, see Fig. 7(a). For simplicity, we
have also considered a nanocylinder geometry with exactly
the same materials, the cube being just replaced by a silver cyl-
inder with a 70 nm diameter and 65 nm height. For the mode
volume, a z-polarized electric dipole placed at a distance
25

ffiffiffi
2

p
nm from the cylinder axis is considered. With the ax-

isymmetry, the implementation is easier, and more methods
have been tested. In addition, the computational results are
more accurate than for the cube case, as shown by the data
in Table 6.

4. METHOD IMPLEMENTATION AND
DISCUSSION

This section provides details that each participant judges im-
portant for the readership. It does not include a full presenta-
tion of the methods, which have been published elsewhere.
However, we include all specific modifications made in order
to improve the performance.

The FMM (also known as the rigorous-coupled-wave analysis)
[54–56] relies on an analytical integration into one (longitudinal)
direction of the space and on Fourier series expansions in the
two (transversal) others. In the direction of integration, the system
is sliced into several layers that have translational symmetry.
Maxwell’s equations are transformed in each layer into an equiv-
alent algebraic eigenvalue problem whose eigenmodes propagate
or decay within the layers. By using these eigenmodes as a basis
for the expansion of an arbitrary field, no discretization is needed
in the direction of translational symmetry, making the FMM
rather efficient for a restricted numbers of layers. Due to the
use of Fourier expansions in the transversal directions, the FMM
is restricted to periodic geometries. By incorporating absorbing
boundaries or PMLs in the transverse directions, the FMM
can be also used for non-periodic structures as well [57]. It is
known as the aFMM (“a” for “aperiodic”). The accuracy of
the FMM or the aFMM increases with the truncation rank N
of the Fourier series, corresponding to a total number of retained
Fourier harmonics of �2N � 1� in 2D or �2N � 1�2 in 3D.

The FEM and FD methods are also well-established meth-
ods that are used in many fields. The interested reader may refer
to the textbook [58] for a review in electromagnetism. Both
methods rely on a full discretization of space, and the accuracy
increases with the number of unknowns that is proportional to
the numberM of mesh elements and increases with the order p
of the FE scheme used.

A. LP2N, Bordeaux

Two freeware packages are used at LP2N to compute the
QNMs on a desktop PC with 32 GB RAM and an Intel(R)
Xeon(TM) CPU X5660 @ 2.80GHz processor.

The first freeware, QNMEig, includes a QNM solver [9] to
compute and normalize QNMs and PML modes and, in a sec-
ond step, to reconstruct the field scattered by the micro- and
nanoresonators in the QNM basis [9]. QNMEig relies on the
eigenfrequency solver of the electromagnetic radio frequency
(RF)/optics module of COMSOLMultiphysics [28]. The latter
computes a large number (set by the user) of QNMs for non-
dispersive media only and does not normalize the field. For
dispersive media, it approximately transforms nonlinear eigen-
value problems to linear ones by performing a second-order
Taylor expansion of complex material parameters with respect
to some frequency set by user, the so-called linearization point.
Thus, such approximate approach cannot accurately find
QNMs away from the linearization point.

QNMEig is in fact an extension of the COMSOL solver that
accurately handles dispersive media by coupling the built-in
(RF)/optics module and the weak-form module. It relies on
the auxiliary-field formulation (see Section 2.4 and [9]) and
normalizes the modes by computing the volume integral of
Eq. (6). It has been used for the three benchmarks. The
CPU time for solving 3D problems, such as the nanocube an-
tenna or a photonic crystal cavity [19], with an accuracy good
enough for challenging experimental data is typically 2 min.
QNMEig and the companion MATLAB Toolboxes are avail-
able at the group webpage. The package includes the four
COMSOL model sheets of the benchmarked geometries and
one tutorial example, a metal sphere in air, for which a docu-
ment presenting step-by-step details on how starting a
QNMEig simulation is offered for new users.

Table 5. Nanocube with 90° Corners

Methods λ̃ [μm] Ṽ �μm3� × 10−4 Refinement Type

FMM1 0.6974� 0.01412i 0.40987� 0.02515i N � 55
FMM3 0.69791� 0.01412i 0.41� 0.025i N � 60� extrapol
FD 0.7053� 0.0148i 0.4217� 0.0260i 1 nm mesh size

Table 6. 2D Axisymmetry Cylinder Nanoantenna

Methods λ̃ [μm] Ṽ �μm3� × 10−4 Refinement Type

FMM1 0.66369� 0.01480i 0.645� 0.0427i N � 50
FMM3 0.663557� 0.0146866i 0.63898� 0.04616i N � 385� extrapol
FEM1 0.66356� 0.014687i 0.6420� 0.045631i p � 4, M � 1086
FEM3 0.6644� 0.01452i 0.58� 0.0400i p � 2, M � 5 k
FD 0.6753� 0.0150i 0.523� 0.040i 1 nm mesh size
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The second freeware, QNMPole, is based on the pole-search
algorithm described in [14]. It calculates and normalizes the
modes of plasmonic or photonic micro/nanoresonators by suc-
cessive iterations, starting from an initial guess value. The pole-
search approach is completely general and can be used with
arbitrary geometries and materials and with a large variety of fre-
quency-domain Maxwell’s equations solvers. It has been tested,
for instance, with FMM1, FMM3, FMM2, and FEM3, and
could be used with the other methods as well. For researchers
that use COMSOLMultiphysics as a standardMaxwell equation
solver operating at real frequencies (electromagnetic RF or optics
modules),QNMPole includes a fewMATLAB programs that op-
erate under MATLAB-COMSOL livelink and allow the user to
compute and normalize QNMs and customize their specific de-
mands with MATLAB programming. The use of QNMPole is
recommended if one just needs to compute a few modes, if
the permittivity of some constitutive materials cannot be cast
into a N-pole Lorentz–Drude model (required by QNMEig),
or if the material is not reciprocal.

When QNMPole and QNMEig are both used with the same
mesh, they provide exactly the same eigenfrequencies and nor-
malized fields. The coincidence (more than 12 digits) has been
checked for each benchmark and for many other examples.
This is the reason why only one set of data is shown for the
LP2N results.

B. TU-Delft

The reduced-order modal solver FD used to determine QNMs
in arbitrarily shaped dispersive 3D structures on open domains
is based on a Lanczos-type reduction method that exploits a
particular symmetry property of Maxwell’s equations. The ap-
proach consists in casting the Maxwell equations and the sec-
ond-order dispersive relations into first-order form using
auxiliary field variables and discretize the resulting system in
space. Outgoing wave propagation is taken into account via
a particular realization of the PML technique in which complex
spatial step sizes match the PML to the computational domain
on a subset of the complex-frequency plane [59,60]. The order
of the resulting discretized first-order system is typically very
large (millions of unknowns in 3D), so a direct computation
of the QNMs is usually not feasible. Fortunately, the system is
symmetric with respect to the discrete counterpart of the bilin-
ear form of Eq. (6) [1] and allows us to efficiently compute the
QNMs via a three-term Lanczos-type recursion relation. Only
three vectors defined on the total computational domain need
to fit into the computational memory due to this three-term
relation. Finally, the scattered field of the resonator can be ef-
ficiently reconstructed as well without any significant addi-
tional computational costs [39,40].

The FD solver uses finite differences to come to a symme-
trizable dynamic system that depends nonlinearly on the fre-
quency because of either the dispersive PML used or the
dispersion of the material. We stress that FD solver can be used
for other types of discretizations that are symmetrizable. In
practice, we use a linearized PML that is matched to the
frequencies of QNMs of interest to get rid of the nonlinearity
introduced by the PML. Using auxiliary fields, we then obtain
a linear shifted system that is symmetric in the bilinear form.

The QNMs can then efficiently be computed as the Lanzos–
Ritz pairs of this system using short-term recurrence relations
[39,40]. The current implementation of the FD solver relies on
a MATLAB prototype implementation with a simple gridding
routine for the geometries.

For the 3D nanoantenna geometry, we use second-order
finite differences and consider seven different discretization
meshes to study the convergence performance of the FD solver
for the geometry with sharp corners and edges with a MATLAB
2016 implementation run on 4 of the 14 cores of a single Intel
Xeon E5-2695 v3 CPU at 2.30GHz. The accuracy of the com-
putational results increases quadratically as the discretization
step decreases. The computation time behaves linearly with
the number of degrees of freedom, which themselves increase
cubically with the discretization step. Thus, the error expressed
in computation time approximately scales as O�time−2∕3�.

Currently, the FD method relies on a simple gridding algo-
rithm with straightforward medium averaging to obtain the
finite-difference system. Compared to the FEMs, meshing of
complex geometries with round corners and edges with
finite-difference methods is challenging. We experienced some
difficulties while gridding the rounded corners of the nanocube
benchmark and therefore only computed the QNMs for the
two finest meshes, and our values deviate by approximately
2% from the FEM results in Table 6. Although the error made
remains reasonably low for a nanoresonator that is ultrasensitive
to fabrication or numerical imperfections, this motivates us to
further develop the solver by using more advanced homogeni-
zation and averaging schemes to better capture the geometry in
the future.

Due to the Lanczos algorithm, 99% of the wall time of the
FD-TU method is spent on sparse matrix-vector and vector-
vector products. This shows the potential of the method for
GPU implementations to obtain faster runtimes. Concerning
memory requirements, our algorithm needs to store three
double-precision complex vectors of the size of the number
of degrees of freedom. For a 2 nm discretization, this means
that 579 MB of storage is required. In the current implemen-
tation, the runtime of our algorithm is roughly 1/6000 s/#core/
#degree-of-freedom as the runtime scales close to linear with
the number of degrees of freedom.

C. Zuse Institute Berlin

FEM1 relies on the FEM software package JCMsuite, which is
developed by JCMwave at ZIB and which is also commercially
available. JCMsuite includes solvers for time-harmonic Maxwell
eigenvalue [61] and scattering [62] problems as well as for fur-
ther problem classes. The implementation includes higher-
order finite elements, with h- and p-adaptivity; mesh generators
for tetrahedral, prismatoidal, and mixed meshes; and adaptive
PMLs, which allows us to also handle resonance problems with
structured exterior domains [63].

For benchmarks 1 and 2, we have used the resonance mode
solver included in JCMsuite, which solves the nonlinear eigen-
value problem using an auxiliary field approach. For computing
QNMs with increasing resolution, we use a MATLAB script
that defines the physical and numerical project parameters and in-
vokes the solver for QNM computation and for post-processing.
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In a loop, numerical accuracy is increased stepwise by increasing
the polynomial order p of the used finite elements, p � 1…6,
and by simultaneously increasing the mesh resolution at the metal
corners. The initial guesses for the eigenfrequency are chosen as
ωa
2πc � 0.231 (benchmark 1) and ωa

2πc � �0.74 − 0.013i� (bench-
mark 2). In each step of the loop, the guess is updated with the
prior result. Computation of the normalized field values is per-
formed by computing solutions with Bloch vectors kx and k−x
and applying Eq. (7). Figures 8(a)–8(b) show the relative error
of the real and imaginary parts of ω̃ and Ṽ . Here, the relative
error δA of quantity A is defined as deviation from a quasi-exact
solution AQE, i.e., δA � jA − AQEj∕jAQEj. As the quasi-exact
solution for the eigenfrequency and normalized field, we use re-
sults obtained with the highest numerical accuracy setting, p � 6.
The relative errors are displayed as function of number of un-
knowns of the discrete problem, which increases with increased
finite element degree p and with increased mesh resolution.

For benchmark 3, we have used a recently developed con-
tour integral method based on Riesz projections [64,65]. We
solve scattering problems along a complex contour around the
eigenfrequency of interest instead of solving the nonlinear
eigenproblem directly. The resulting Riesz projection is nor-
malized within a post-process.

We increase the numerical resolution by increasing the finite
element degree up to p � 5. Figures 8(c)–8(d) show the relative
error (see above) of ω̃ and Ṽ for the nanocube and nanocylinder.
The relative errors are plotted over the number of unknowns for
the scattering solver. We choose three integration points for the
contour integration, i.e., three scattering problems are solved for
a given finite element degree p. The quasi-exact solution is
the numerical result obtained with p � 5. The unstructured
mesh for the nanocube is shown in Fig. 7(a); it contains
40,522 tetrahedrons with a minimal edge length of about
0.06 nm and a maximal edge length of about 36 nm. The fine
meshing around the rounded corners and edges of the nanocube
ensures that the geometry model error is sufficiently small. We
have checked that further refinement of the corners changes the

numerical results at p � 4 (most accurate results in the plots in
Fig. 8) only by amounts smaller than the obtained accuracy, e.g.,
the impact of further refining the mesh on Re�ω̃� is below 10−5.
At a numerical resolution with p � 4 we obtain a resonance
wavelength of λ̃ � 665.8529� 15.57386i nm	 0.0184�
0.00092i nm. At a numerical resolution with p � 5 we obtain
a resonance wavelength of λ̃ � 665.8510� 15.57396i nm.

For the nanocylinder, we consider a two-dimensional cross
section of a rotationally symmetric geometry. The unstructured
mesh consists of 1086 triangles. At a numerical resolution with
p � 4 we obtain a resonance wavelength of λ̃ � 663.5622�
14.68720i nm	 0.0207� 0.00197i nm. At a numerical res-
olution with p � 5 we obtain a resonance wavelength of
λ̃ � 663.5601� 14.68740i nm.

D. LCF, Palaiseau

Two different in-house softwares implemented with MATLAB
have been used to solve the three benchmarks. The first one
uses the FMM [54] and its aperiodic extension [57,66], and
the second one uses the FEM [58].

1. Fourier Modal Method FMM3—LCF

The FMM3 used for benchmarks 1 and 2 is a FMM used in
transverse magnetic polarization [54,55]. Our implementation
includes the S-matrix algorithm [67], an accurate computation
of the field with Fourier-series expansions [68] and adaptive
spatial resolution around air/metal interfaces [69,70]. Since the
nanocube resonator of benchmark 3 is not a periodic structure,
we use for the computation the aperiodic FMM (aFMM) [57]
implemented with complex coordinate transforms [66]. For the
cylindrical version of benchmark 3, we use a particular imple-
mentation of the aFMM for body-of-revolution objects [71].

In all cases, we compute the QNM eigenfrequencies with
the pole-search approach. For the convergence calculation,
the guess value for the iterative pole with N Fourier harmonics
is the prior result of the calculation with N − 1 Fourier har-
monics. The initial guess value (first calculation with the
smallest value of N ) is chosen as the real part of the complex
eigenfrequency, rounded to the nearest number with two sig-
nificant digits, e.g., ωa∕�2πc� � 0.23 for benchmark 1. After
each iteration, the QNM field is computed as the field scattered
by a dipole source exciting the resonator at the complex fre-
quency of the pole [14].

The following describes some technical issues that are spe-
cific to each benchmark. We finally show full convergence
curves for the calculations of benchmarks 2 and 3. We also
describe the method used to determine the most accurate re-
sults and the corresponding relative error.

For the plasmonic crystal, we have slightly reformulated the
FMM in order to apply periodic boundary conditions in the
y-direction instead of the usual outgoing waves conditions,
the analytical integration with the S matrix method being per-
formed along the y-axis with a fixed wavevector along x,
kx � 0.5π∕a. We calculate the QNM field by inserting a
magnetic dipole source in the center of the metallic square.
Then we deduce from the symmetries of the system the field
of the counter-propagating QNM with −kx . Finally, the field is
normalized by calculating the surface integral in Eq. (7) over
the surface of one unit cell.

Fig. 8. Convergence of FEM1 results: (a–d) Relative error of the
real and imaginary parts of the eigenfrequency ω̃ and of the field values
H̃ z and Ṽ as a function of the number of unknowns for benchmark
(a) case 1, (b) case 2, (c) case 3/nanocube, (d) case 3/nanocylinder.
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For the grating example, the analytical integration of the
FMM is performed along the y-axis with a fixed wavevector
along x, kx � 0.2π∕a [15,72]. The rest of the computation is
the same as for benchmark 1. In principle, the use of PMLs in
the y-direction is not necessary since outgoing boundary condi-
tions are automatically satisfied with the FMM. However, we are
using PMLs for normalization purposes, according to Eq. (7).

For the third example, the QNMs are computed by
inserting a magnetic dipole source (linearly polarized along
the x-direction) below the metallic patch in the center of
the dielectric layer. After computing the pole, we obtain the
QNM field by computing the field scattered by the dipole
source at a complex wavelength slightly shifted from the pole
value. Unlike benchmarks 1 and 2, the QNMs are then nor-
malized with the QNMPole method [14].

To estimate the relative error of our numerical results, we
follow a strict procedure, illustrated in Fig. 9 for two examples:
the normalized QNM field for benchmark 2, Figs. 9(a)–9(b)
and the mode volume for benchmark 3 (nanocube with 90°
corners); see Figs. 9(c)–9(d). Figure 9 shows the convergence
of a calculated physical quantity (ω̃, Ṽ…) as a function of the
number of Fourier harmonics N used with the FMM or the
aFMM. Then, we extrapolate the value of this physical quantity
for 1∕N → 0. The extrapolation is done by finding a poly-
nomial of degree 0 that best fits the convergence curve in a
least-squares sense; see the red dashed lines in Figs. 9(a) and
9(c). The fit is performed with the numerical data com-
prised between the smallest 1∕N value and a larger value

[1∕N �0.02 in (a) and 0.03 in (c)] for which convergence
is assumed to be reached. As shown in the insets of Figs. 9(a)
and 9(c), convergence is reached with a numerical noise. The
dashed lines in Figs. 9(b) and 9(d) highlight that, for N ≥ 50, a
relative error as small as 2 × 10−7 is reached for the 2D structure
of benchmark 2 and a relative error of 10−2 is reached for the
3D structure of benchmark 3.

2. Finite-Element Method FEM2—LCF

FEM2 is based on edge Whitney elements of order 2 with tri-
angular and tetrahedral adaptive meshes. The QNMs of all
three benchmarks have been calculated with a combination
of the auxiliary-field and polynomial formulations presented
in Section 2.4.

To unveil the implementation, let us consider a single-pole
Lorentz model. First, by introducing the current density J �
iωε0ε∞

ω2
p

ω2−ω2
0�iωγ E as an auxiliary field, the propagation equa-

tion ∇ × μ−1∇ × E � ω2ε�ω�E can be recast into a quadratic
eigenproblem,
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The latter is solved by introducing two extra fields E1 � ωE and
J1 � ωJ; see Section 2.4. Note that the fields E and E1 are de-
fined over the whole computational domain, whereas the fields J
and J1 are only defined over the subdomains that contain the
Lorentz material. The coupled system of Eq. (11) is then con-
verted into its corresponding continuous Galerkin weak-form
formulation with second-order edge elements. Note that this for-
mulation can also be used for 2D geometries in TM polarization
(benchmarks 1 and 2) with E � �Ex , Ey, 0�. The associated
matrix equation takes the following form:2
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where the elements of the matrices M�α� and K are given by
Mij�α� �

R
Ω wi�r�α wj�r�d3r and K ij �

R
Ω ∇ × wi�r�μ−1∇×

wj�r�d3r, respectively. The test functions wi�r� are the edge basis
functions. The notation �M�α��AB specifies the size of the matrix
and the subdomain over which it is defined. �M�α��EE is a square
matrix defined over the whole computational domain, while
�M�α��JJ is defined over the Lorentz-material subdomains.

The matrices �M�α��JE and �M�α��EJ are rectangular matrices that
relate one field defined over the whole computational domain to
another field defined over the subdomains. Note that the matrix

Fig. 9. Estimation of the relative error for (a)–(b) benchmark 2 and
(c)–(d) benchmark 3. (a) Convergence of the normalized field modu-
lus as a function of 1∕N , 2N � 1 being the total number of Fourier
harmonics used in the FMM. (b) Relative error on the field modulus as
a function ofN . The horizontal dashed line marks an error of 2 × 10−7.
(c) Convergence of the modulus of the mode volume for benchmark 3
as a function of 1∕N , �2N � 1�2 being the total number of Fourier
harmonics used in the aFMM. (d) Relative error on the volume modu-
lus as a function of N . The horizontal dashed line marks an error of
10−2. In (a) and (c), the red dashed lines represent the extrapolated
values for 1∕N → 0 used to compute the relative errors in (b) and
(d). The insets display a zoom of the convergence curve inside the
rectangular box. The vertical scales in the insets in (a) and (b) span
over 700 A · s ·m−3∕2 · kg−1∕2 and 1.6 × 10−24 m3.
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in the right-hand side of Eq. (12) is block-diagonal. It is thus well
conditioned, and the CPU time for its diagonalization can be
reduced compared to other possible configurations of the final
linear algebraic system.

E. Nankai Univ.

The FMM1 is implemented with an in-house Matlab software
[73] and run on a workstation computer with 32GB RAM and
two Intel(R) Xeon(R) X5450 CPUs of 3.00 GHz and
2.99 GHz. It incorporates correct Fourier factorization rules
to improve the convergence [55,56,74–76], a real-to-Fourier
space transform to avoid the Gibbs oscillation of discontinuous
field components [68], adaptive spatial resolution [69] to im-
prove the convergence, mirror symmetries to save computa-
tional memory [76], and the scattering-matrix algorithm [77]
to ensure the numerical stability. For the nanocylinder example,
the technique of matched coordinates [78] is adopted and fur-
ther extended to aperiodic problems to model the curved boun-
daries of the nanocylinder along with PMLs.

For benchmarks 1 and 2, the QNMs are solved as waveguide
Bloch modes by treating the structures as periodic waveguides
along the x-direction [15]. The computation consists of comput-
ing the propagation constant kx,m�ω� for a fixed frequency ω of
the mth waveguide Bloch mode and then iteratively solving a
transcendental equation f �ω� � kx,m�ω� − kx � 0, whose sol-
ution is the eigenfrequency ω � ω̃m of the QNM. Note that
this equation is essentially related to the eigenvalue formulation
of Eqs. (9) or (10). But differently, for the latter ω̃m is solved
directly for a given kx , while for the former kx,m�ω� is returned
with the FBMM solver for a givenω. To solve the transcendental
equation, we adopt a simple algorithm based on an iteration pro-
cess with a linear interpolation of f �ω� [79,80], which converges
in less than four (six) iterations for benchmark 1 (two). The two
initial guessed values to start the iteration are ωa

2πc � 0.23 and
0.23−10−6i for benchmark 1 and λ � 0.65 μm and 0.65�
10−6i μm for benchmark 2.

For the benchmark 3, the QNMs are computed with the pole-
search approach (see Section 2.4). The driving source is set to be a
z-polarized electric planar source at the central x-y plane of the
gap (composed of four symmetrically shifted Gaussian sources
with a ≈12 nm standard deviation). The poled function is
f �λ� � H −1

x �λ� at the gap center. The two initial guessed values
for the pole are λ � 0.65 μm and 0.65� 10−6i μm, and
convergence is typically obtained in six iterations.

The convergence performance of FMM1 is shown in
Fig. 10. Like in Section 4.3, the relative error δ is defined
as δ�N � � jA�N � − AQEj∕jAQEj, where AQE is the numerical
value obtained for the highest truncated rank Nmax. The rel-
ative error δQE of AQE can be approximately estimated as
δ�Nmax − 5�. δQE is seen to be close to or below 1%. For quan-
tities with much smaller imaginary parts than their real parts,
such as ω̃ and Ṽ , δQE of the imaginary parts is always larger
than that of the real parts.

F. Stuttgart Univ.

FMM2 has been used for benchmarks 1 and 2. FMM2 is an
in-house implementation of the FMM [54,55] with the final
result of the numerical calculations being the scattering matrix

that relates incoming with outgoing fields [81,82]. FMM2 in-
cludes the so-called factorization rules [55,56] and adaptive
spatial resolution [69]. Details can be found in [83,84].

The optical resonances are derived from the scattering ma-
trix in an iterative manner. While it is possible to retrieve them
as roots of the inverse scattering matrix (i.e., solutions in the
absence of any incident field) [83], a general pole ansatz turns
out to be more stable [35]. In both cases, a matrix eigenvalue
problem is constructed with the smallest eigenvalues providing
guess values for the eigenfrequencies for further iterations. If an
eigenvalue is close to zero, the corresponding frequency can be
considered as the eigenfrequency of an optical resonance. It has
to be emphasized that solving the matrix eigenvalue equation
turned out to be much more efficient than using an equivalent
root-search algorithm for the corresponding determinant, since
all resonances are reduced in the determinant approach to the
same single number, so good guess values are required in order
to converge to a certain optical resonance in afew iterations.
More details can be found in the supplemental material of [84].

A great advantage of the scattering matrix approach for
benchmark 2 is that it does not require PMLs for periodic sys-
tems. Furthermore, the outgoing fields in the scattering matrix
are given in terms of s- and p-polarized plane waves in the
homogeneous top and bottom half spaces, which allows for us-
ing analytical normalization schemes [16,84,85]. Here, we have
implemented the formulation described in [85].

The following specifications are common to the results in
benchmark 1 and 2: the numerical code is implemented in
MATLAB with the Fourier expansion being carried out by fast
Fourier transform using a spatial grid with 1024 points. These
points are not equally distributed over one unit cell but exhibit
an increased resolution at the metal–dielectric interfaces. The
exact form of the coordinate transformation is taken from [70],
with the crucial parameter for the resolution increase being
G � 0. The filling fraction of the metal in the transformed
coordinates is 50% of the unit cell. Although the considered
benchmarks are effectively one-dimensional periodic with s

Fig. 10. Convergence performance of FMM1 for the (a) plasmonic
crystal, (b) grating, (c) nanocube, and (d) nanocylinder. Blue circles,
Re�ω̃�; blue triangles, Im�ω̃�; red circles, Re�H̃ z� in (a–b) and Re�Ṽ �
in (c–d); red triangles, Im�H̃ z� in (a–b) and Im�Ṽ � in (c–d).
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and p polarization being decoupled, the numerical code calcu-
lates solutions for both polarizations at the same time, i.e., it is
not optimized for these examples. The normalization of the
resonant field distributions is carried out in Fourier space.
The method for constructing the spatial fields is described
in [68]. In both benchmarks, the truncation rank N has been
increased stepwise from 10 to 50 with step size 1. The calcu-
lations have been carried out on a desktop PC with 16 GB
RAM and an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
processor.

The plasmonic crystal has no open boundaries. The optical
resonances are computed from a modified nonlinear matrix
eigenvalue equation that can be derived from the scattering ma-
trix [72]. The eigensolutions have been obtained by the iter-
ative method for finding the roots of a nonlinear matrix
eigenvalue equation described in [83]. The initial guess value
for the eigenfrequency was ωa∕�2πc� � 0.2310737. The iter-
ations are stopped when the magnitude of the ratio of the
eigenvalue and the frequency drops below 2 × 10−6. The eigen-
frequency calculated for the highest accuracy of 101 plane
waves is 0.2310737 − 0.000144i.

For the second benchmark, we use the pole method described
in the supplemental material of [84]. The guess value for the
eigenfrequencies was ωa∕�2πc� � 0.7430725 − 0.012661i.
The iteration was stopped when the magnitude of the ratio
of the eigenvalue and the frequency had dropped below 10−7

for one eigenvalue. The eigenfrequency calculated for the highest
accuracy of 101 plane waves is 0.7430756 − 0.0126606i.

G. Fresnel Institute, Marseille

For FEM4–IF, the geometries and meshes are obtained using the
GNU software Gmsh [86], and the finite element discretization
is handled using GetDP [87]. This open-source freeware, devel-
oped at the Université de Liège and Université Catholique de
Louvain in Belgium, allows us to handle the various required
basis functions handily. As detailed in [46], several nonlinear ei-
gensolvers from the SLEPc library [88] (developed in Universitat
Politècnica de València) have recently been added to GetDP in
order to tackle problems involving frequency-dispersive materi-
als. Depending on the choice of formulation of the nonlinear
eigenproblem, GetDP calls linear, general polynomial, or rational
eigenvalue SLEPc solvers. These solvers rely on modern Krylov
subspace methods. An open-source template GetDP 1D grating
model is available [89].

To deal with the unbounded domains, PMLs are used for
the domain truncation and to unveil the resonances by rotating
the continuous spectrum in the complex plane. In order to take
into account material dispersion, a suitable representation of
the permittivities as functions of the frequency is provided
by rational functions.

For benchmarks 1 and 2, the spectra have been computed
using four different formulations: (i) using physical auxiliary
fields of Eq. (9) coupled with the vector wave equation for
the electric field, (ii) using a polynomial eigenvalue formulation
of Eq. (11) of the vector wave equation for the electric field,
(iii) using a polynomial eigenvalue formulation of Eq. (11) of
the scalar wave equation for the z-component of the magnetic
field, and (iv) using a rational eigenvalue formulation of the
wave equation for the electric field. In the latter case, the lin-

earization is performed internally by the SLEPc solver, and the
user can only specify the rational function describing the per-
mittivity. The vector electric field formulations are discretized
using edge elements (and their higher-order generalizations
[90], order 2 here). The scalar magnetic field formulations
are discretized using Lagrange elements of the second order.
All electric field formulations lead to the same eigenvalues,
up to the machine precision. The scalar magnetic field formu-
lation led to slightly different results (∼10−6 in relative preci-
sion with respect to the electric-field-based ones) due to the
different basis functions. The benchmark results shown in
the paper are those obtained with the scalar magnetic field un-
known. In benchmark 1, the initial target value was set to
ω̃a∕2πc � 0.23 − 0.00014i. In benchmark 2, the initial target
value was set to ω̃a∕2πc � 0.75 − 0.01i.

For benchmarks 3, the results were computed using the ra-
tional eigenvalue formulation of the wave equation for the elec-
tric field, providing the two dispersive permittivities as rational
functions. The two planar symmetries of the structure were
taken into account, and one fourth of the structure was
meshed. In this benchmark, the initial target value was set
to λ̃ � 670� 15i.

5. COMPARISON AND SUMMARY

Benchmarks have a long tradition in computational electro-
magnetism. They are issued for different purposes, for compari-
son of modeling approaches and verification of computer codes
[91,92], elucidation of controversial interpretations of experi-
mental results [93], or prediction of important figures of merit
of optical devices [94].

Since optical resonances play an important role in nanopho-
tonics and impact many areas of modern photonics, the compu-
tation of resonator eigenmodes is becoming a major issue. For
nondispersive materials, QNMs can be computed very efficiently
with several numerical approaches [92], including commercial
software [28]. Taking into account dispersive materials is more
challenging, since the eigenproblem becomes nonlinear. This is
the issue we have considered here for three different resonator
geometries made of highly dispersive materials, i.e., metals at op-
tical frequencies. The third geometry, composed of two different
metals described by permittivity models with a total number of
six poles, is exemplary on this point.

For every geometry, we have benchmarked two important
physical quantities: the eigenfrequency ω̃ and the mode volume
Ṽ . The latter is directly related to QNMnormalization, which is a
crucial issue for reconstruction problems [1]. We have bench-
marked several computational approaches, the classical pole-search
approach and other more novel ones relying on auxiliary-field or
polynomial formulations, and several numerical methods, finite
differences, finite elements, and Fourier expansions (see Table 1).
All three approaches require a description of the material permit-
tivity with an analytical function. The pole-search approach is very
general and can be applied with any function describing the
dispersion, while the two other approaches require that the
permittivity be cast into the specific form of an algebraic fraction
between two polynomials of the frequency.

The results of the three benchmarks are summarized in
Tables 2–4 and 6 and in Figs. 3 and 6, which illustrate the
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convergence performance and wall-clock time as the numerical
resolution is increased. Concerning the accuracy of the com-
puted ω̃ and Ṽ , the conclusion is clear: the different approaches
have virtually identical performance; the numerical deviations
and wall-clock time differences in the tables and figures solely
depend on the numerical methods themselves. Some achieve-
ments in terms of accuracy are impressive, and some others suf-
fer from known issues related to the suitability of the method to
the geometry. It is, for instance, well known that FD schemes
have difficulties in handling geometries with curved surfaces,
especially for metals. When examining the different data,
one should also compare the results with care, since the numeri-
cal methods have been benchmarked with different software
and computers, and the wall-clock time depends on the initial
guess value for pole-search approaches and on subtle numerical
details. For instance, the convergence performance of FEMs or
(a)FMMs strongly depends on the efforts taken for optimizing
the mesh or the adaptive spatial coordinate transform.

Additionally, when analyzing the agreement between all the
results, one should put them into perspective, considering that
nanoresonators are extremely sensitive structures. For instance,
the ω̃ and Ṽ are extremely sensitive to the tiny gap width and
length for the nanocube resonators [51], and even the largest
numerical deviations observed for the nanocube are well below
experimental uncertainties. Aside from the achieved accuracy,
by evidencing that several methods can efficiently predict
the ω̃ and Ṽ of electromagnetic resonators, we expect to estab-
lish reliable standards for QNM computation and normaliza-
tion. We expect that this standardization will help further
developments of modal approaches for analyzing electromag-
netic resonances.
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