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Characterisation of Transverse Matrix Cracks in
Composite Materials Using Fibre Bragg Grating

Sensors
Aydin Rajabzadeh, Richard Heusdens, Richard C. Hendriks, and Roger M. Groves

Abstract—In this paper we propose a novel approach to
characterise barely visible transverse matrix cracks in composite
structures using fibre Bragg grating optical sensors. Matrix
cracks are one of the most prevalent types of damage in composite
structures, and detecting them in the internal layers of composites
has remained a challenge. In this paper, we will show that the
formation of cracks in the internal layers of composite structures
alters the side-lobes of the reflection spectra of FBG sensors by
adding new harmonics to them. We argue that the spread and
the location of these harmonics depends on both the mechanical
properties of the composite material and the location of the crack
along the length of the FBG sensor. Via computer simulations
and experimental measurements we validate our hypotheses, and
the results are in agreement with our model.

Index Terms—Barely visible damage, Composites, FBG, Fiber
Bragg gratings, Matrix cracks, Reflection spectrum, Smart struc-
tures, Structural health monitoring (SHM).

I. INTRODUCTION

Fibre Bragg grating (FBG) sensors are optical fibre based
sensors that are produced by creating a modulation in the
refractive index of the core of the fibre for lengths usually
in the order of a few millimetres to a few centimetres [1]. The
small diameter of these sensors allows them to be embedded
between the layers of composite laminates without severely
changing the mechanical properties of the composite struc-
ture [2]. This makes FBG sensors interesting for structural
health monitoring of composite materials. FBG sensors can
provide insight into the internal layers of composites, including
internal strain and temperature measurements [2], monitoring
the behaviour of composites during the curing process [3], and
for the detection of cracks and damages [4]–[6]. Although
the main application of FBG sensors has been in the field
of point strain and temperature measurements [1], [7], in the
last few decades several studies have been carried out on the
subject of damage detection in composites, including the most
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prevalent types of damages in composites such as delamination
and matrix cracks.

The current study belongs to the latter category, with a focus
on the characterisation of barely visible matrix cracks within
the internal layers of composites that occur along the length
of embedded FBG sensors. Within this framework, several
studies have been conducted in the past few decades. Although
most of these methods can potentially distinguish between a
uniform and a non-uniform stress field over the composite
panel, they lack the capability of differentiating a composite
part that is affected by cracks from other sorts of non-uniform
stress fields, transverse loads and birefringence effects. In [8],
chirped FBG sensors were used for crack detection. It was
argued that the formation of cracks along the length of such
chirped FBG sensors will result in the emergence of dips and
valleys in the reflection spectra. In [9] the case of transversal
crack formation around holes in composite structures was
investigated. In [10], Chambers et al. argued that the shift
of the Bragg wavelength of FBG sensors (or equivalently a
change in strain) is a measure good enough to detect impact
damages and cracks. In [6], [11] Okabe et al. argued that
there is an empirical relation between the width of the FBG
reflection spectra and the transverse crack density. Based on
the modelling that will be presented in this paper, we will show
that the argumentation on the empirical relation between the
width of the FBG reflection spectra and the transverse crack
density given in [6], [11] is indeed correct. However, we will
show that a widened FBG reflection spectrum can also be
associated with non-uniform stress fields that are not related to
transversal cracks. The width of the FBG reflection spectrum
can thus not unambiguously be used to indicate the presence
of transversal cracks.

In this study, expanding work first presented at the 26th
Optical Fiber Sensors Conference, OFS-26 [12], we will anal-
yse the effect of transverse cracks on FBG reflection spectra
from a new perspective. We will present a mathematical
model for the analysis of FBG reflection spectra from sensors
that are affected by transverse cracks, and we will show
that the information regarding the formation of cracks lies
within the side-lobes of these spectra. We will substantiate our
hypotheses with both computer simulations and experimental
measurements on composite coupons.
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II. FBG REFLECTION SPECTRA UNDER NON-UNIFORM
STRAIN FIELDS

One of the most interesting properties of uniform FBG
sensors is that under uniform strain distributions, the shift of
the peak wavelength of the reflection spectrum (also known
as the Bragg wavelength) depends linearly on the amount of
strain applied to the sensor [1]. This linear relationship is
characterised by the following equation:

∆λB = kss, (1)

where ks is a constant factor that depends on the physical
properties of the sensor, and s is the amount of uniform strain
applied over the length of the sensor. Under such uniform
strain fields, the reflection spectrum has a close to symmetrical
shape, with one main-lobe with a high amplitude, and several
side-lobes with smaller amplitudes. However, when the sensor
is subject to non-uniform strain fields, the reflection spectrum
will take a more complicated form with multiple peaks and a
broadened width. In that case, Eq. (1) does not have a clear
meaning anymore. As an example, in [13] we showed that
deviating from the average strain by as much as 150µε results
in the FBG reflection spectrum to be asymmetrical, and to
have side-lobes with more than half the amplitude of the main
peak. In this section, we will investigate this effect on the
overall FBG reflection spectrum of two categories of non-
uniform strain fields, namely smoothly varying strain fields
and sharply varying strain fields. We will argue that each of
these cases has a different effect on the frequency content of
the side-lobes of the FBG reflection spectrum.

In [13] we proposed an approximated transfer matrix model
(ATMM) for analysis of FBG reflection spectra under non-
uniform strain fields. The ATMM, which is based on the
classic transfer matrix model (TMM) [14], discretises the
length L of the sensor into M smaller piece-wise uniform
segments each with a length of ∆z, and assumes a staircase
approximation of the strain field over the length of the sensor.
In such conditions, we can assume that (1) is valid for each
of these individual segments. The ATMM describes the inter-
action of the forward and backward electric field amplitude
at each segment, denoted by Ai and Bi respectively, via the
following relations (

Ai

Bi

)
= Fi

(
Ai−1

Bi−1

)
,

where

Fi =

(
e−j(α−αi) −jκi∆z sinc(α− αi)

jκi∆z sinc(α− αi) ej(α−αi)

)
. (2)

Here, κi is the coupling coefficient between the forward and
backward electric field amplitude at segment i, with

α =
2πneff∆z

λ
and αi =

2πneff∆z

λBi

. (3)

In Eq. (3), neff is the effective refractive index of the
core, λ is the wavelength region under investigation, and
λBi

is the local Bragg wavelength of segment i. Therefore,

Fig. 1. Schematic view of the FBG structure.

α can be considered as a scaled frequency and αi as the
Bragg frequency of segment i. Fig. 1 shows a schematic
representation of the FBG structure under non-uniform stress
fields. The relationship between the electric field amplitudes
from the first and the last segment can be characterised as(

AM

BM

)
= F

(
A0

B0

)
, in which F =

M∏
i=1

Fi.

Considering the boundary conditions for the above equations at
the last segment (full transmission of the incident light (A0 =
1) and no reflection from the rest of the sensor (B0 = 0)), the
reflection spectrum can be calculated as

R(λ) =

∣∣∣∣BMAM
∣∣∣∣2 =

∣∣∣∣F21

F11

∣∣∣∣2,
where F21 and F11 are entries of the composite matrix F .
For the analysis of this paper, we are interested in a closed
form expression for the FBG reflection spectrum. This can be
achieved by approximating the elements of the composite ma-
trix F , such that, the reflection spectrum can be approximated
as [13]

R(λ)
(a)
≈

∣∣∣∣∣
M∑
i=1

κi∆z sinc(α− αi)e
−j
(
(M−2i+1)α+

∑
k<i

αk−
∑
k>i

αk

)∣∣∣∣∣
2

(4)

(b)
=

∣∣∣∣∣
M−1∑
i=1

ζi︷ ︸︸ ︷
(ξi − ξi+1) e

−j
(
(M−2i)α+

∑
k≤i

αk−
∑
k>i

αk

)

+
(
ξMe

jM(α−ᾱ) − ξ1e−jM(α−ᾱ)
)∣∣∣∣∣

2

, (5)

where (a) is obtained by neglecting the products of the sinc
functions with the low amplitudes in the F11 and F21 elements
(see [13]), and (b) follows by re-arranging the terms in (4).
Further,

ξi =
κi∆z

2j(α− αi)
. (6)

The approximation in (4) is most accurate in the side-lobes of
the reflection spectrum [13]. To analyse the effect of different
kinds of strain fields on the reflection spectrum, we will focus
on the ζi terms given in (5) as ζi = ξi − ξi+1.

From (5) it can be seen that the reflection spectrum is
a function of the local Bragg frequencies (αi), that are a
function of the strain field over the length of the sensor, via
the following relation [13]

αi =
ρ

λi
=

ρ

λ̄B +∆λi
≈ ᾱ− ρ

λ̄2
B

∆λi = ᾱ− ks
ρ

λ̄2
B

si, (7)
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where ρ = 2πneff∆z, and λ̄2
B is the mean of all Bragg

wavelengths along the length of the sensor, and the si’s are the
local strain values of each segment of the FBG model. Indeed,
(7) suggests that a linear shift in the local Bragg wavelengths
(or a shift in strain along the FBG length) results in a linear
shift in the local Bragg frequencies, i.e., the αi’s.

When the strain field along the length of the FBG sensor is
smooth (no discontinuity along the length of the FBG sensor),
the ζi parameters will be small and the first M − 1 terms in
(5) can be neglected, so that the side-lobes of the reflection
spectrum can be approximated by

R(λ)≈(κL)2 sinc2 (M(α− ᾱ)) + (ξM − ξ1)2, (8)

where ᾱ =
∑

(αi)/M , and L = M∆z is the sensor length.
In other words, the side-lobes of the reflection spectra will
only have one dominant oscillating frequency. On the other
hand, if the strain field is not smooth and has sharp variations
along the FBG length, the ζi variables will not be negligible
anymore and additional harmonics will appear.

In the next section, we will analyse the effect of transverse
cracks on the strain field along the sensor length, the highly
non-uniform strain distribution they impose on the FBG sen-
sor, and the consequent large ζi values at the crack locations.
In Section (IV) we will investigate the effect of such large ζi
values on the frequency content of the side-lobes of the FBG
reflection spectra.

III. STRAIN FIELD UNDER TRANSVERSE CRACKS

In this section, we will use the McCartney’s theory to
characterise the stress behaviour of composite materials with
transverse matrix cracks in their internal layers. We will see
that under transverse cracks, the strain distribution along the
FBG length will be highly non-uniform, with its peaks located
at the cracks locations.

Consider an FBG sensor embedded between the layers of a
healthy unidirectional carbon fibre reinforced plastic (CFRP)
composite structure. Due to the brittle nature of the matrix
material, under fatigue or impact damages, matrix cracks could
form in the internal layers of composite. Based on McCart-
ney’s theory [15] and using the formulations derived in [16],
for a composite material with given mechanical properties,
the strain distribution along the length of an embedded optical
fibre can be analytically calculated. The schematic diagram of
a composite structure and its dimensions is shown in Fig. 2a
and an FBG sensor with a length of 10 mm embedded between
two layers with orthogonal unidirectional layer direction is
shown in Fig. 2b.

Based on McCartney’s theory, in the presence of transversal
cracks in the middle layer of the composite, the strain field
in the 0◦ layer along the length of the FBG has the form
given in Fig. 3. We will use strain distributions of this form
in Section IV to characterise the FBG reflection spectra. The
shape of the strain peaks along the length of the sensor,
their amplitude, and their width depends on the axial stress,
the physical dimensions and the mechanical properties of the
composite structure [15]. It is noteworthy that McCartney’s
theory is derived with the assumption that the transversal

(a)

(b)

Fig. 2. (a): A schematic of the cross section of the unidirectional composite
structure affected by transverse cracks in its internal layers (b): The position
of the FBG sensor between the layers of the composite structure.

cracks are equally spaced. In reality that is generally not the
case, but the effect of this non-uniformity in the distribution
of cracks on the strain distribution is negligible [6].
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Fig. 3. The strain distribution along the FBG length embedded between the
layers of a carbon fibre composite structure and affected by two transverse
cracks, calculated using McCartney’s theory at σ = 550MPa.

IV. FBG REFLECTION SPECTRA UNDER TRANSVERSE
CRACKS

In Section II it was mentioned that when we have sharp
strain changes along the length of the FBG sensor, the first
terms in Eq. (5) are not negligible anymore. A particular
example of such strain fields is when the sensor is in contact
with transverse cracks in composite structures (similar to
Fig. 3). Suppose there are N arbitrarily distributed cracks
along the FBG length located at segments tp, p = 1, 2, ..., N .
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In this case, the largest changes of the strain field are expected
at the boundaries of each segment tp. Consequently, the largest
values of the ζi parameters will be at the boundaries of
segment tp as well. Therefore, Eq. (5) can be rewritten as

Rc(λ) ≈

∣∣∣∣∣ ∑
i∈Ic

ζie
−j
(

(M−2i)α+
∑
k≤i

αk−
∑
k>i

αk

)
(9)

+
∑
i∈I

ζie
−j
(

(M−2i)α+
∑
k≤i

αk−
∑
k>i

αk

)

+ ξMe
jM(α−ᾱ) − ξ1e−jM(α−ᾱ)

∣∣∣∣∣
2

,

where I = {t1 − 1, t1, t2 − 1, t2, ..., tN − 1, tN}, and Ic =
Ω \ I is the complement of the set I in Ω = {1, 2, ...,M}.
Note that in the case of having both the magnitude and phase
spectrum, one can take the Fourier transform of the side-lobes
of the reflection spectrum where each of the non-negligible
exponential terms in (9) will be translated into a unique peak
in the Fourier domain. In that case, we can have an exact
localisation of the transverse cracks along the FBG length.
However, since practically the most convenient methods of
FBG interrogation only have access to the magnitude of this
spectrum, we will only focus on the amplitude of the reflection
spectrum in this paper.

In Eq. (9), the largest contribution of the ζi terms to the
amplitude happen due to the second summation (correspond-
ing with i = tp − 1, tp). With that in mind, Eq. (9) can be
approximated as

Rc(λ) ≈
M−1∑
i=1

|ζi|2 +
∑∑
i,k∈I

ζiζ
∗
ke
j
(

(2i−2k)α+θk−θi
)

(10)

+
∑
i∈I

2 Re[ζiζ
∗
M ] cos

(
(2M − 2i)α+ θi −Mᾱ

)
−
∑
i∈I

2 Re[ζiζ
∗
1 ] cos

(
(2i)α− θi −Mᾱ

)
+Rr +Rs,

where θi =
∑
k≤i

αk −
∑
k>i

αk, Rs is the reflection spectrum for

smooth strain fields given in (8), and Rr is the summation
of the remaining terms with lower amplitudes than the ones
mentioned in (10), which are the cross terms resulting from the
first summation term in (9). As seen from (10), the formation
of each transverse crack at location t along the length of the
FBG model results in the emergence of new harmonics at the
angular frequencies ω = 2M − 2t and ω = 2t. Additionally,
for every two cracks along the FBG length at locations i and
k, there will be a non-negligible cross term with oscillation
frequency of ω = 2(i − k). Furthermore, it can be seen
from (10) that for each crack at segment tp, each summa-
tion term consists of pairs of harmonics corresponding with
i = {tp − 1, tp} (associated with large strain changes before
and after the crack). Consequently, the emerging harmonics
due to these consecutive segments are only separated by a
frequency distance of ω = 2. Due to the decaying nature of
the ζi terms in the α domain, the harmonics associated with
each of these segment pairs overlap in the Fourier domain.

In order to analyse these new emerging harmonics, we
can take the Fourier transform of the side-lobes of the FBG
reflection spectrum when the FBG sensor is in contact with
transverse cracks. However, using a rectangular window will
result in spectral leakage in the Fourier domain. In order
to resolve this problem, and to also avoid the ambiguity
of defining a proper range for the side-lobes, we propose
replacing the rectangular window with a Hann window [17].
In this paper, the lower bound of the window is chosen to be
at the centre of mass of the reflection spectrum, given by

λBc
=

∫
λ
λR(λ)dλ∫
λ
R(λ)dλ

, (11)

where λ is the wavelength region that covers the reflection
spectrum. The upper bound of the window is case dependent
and is set by the user. It should cover the wavelength region
where the side-lobes’ amplitudes are above the noise level.
After applying this window (w), we take the Fourier transform
of Eq. (10), resulting in

F{Rc} ≈ F{Rrw}+ F{Rsw}+

M∑
i=1

F{|ζi|2w} (12a)

+ 4
∑

i,k∈I , i<k

Ψi,k(ω ∓ (2i− 2k))e±(θk−θi) (12b)

+ 4
∑
i∈I

Ψi,M (ω ∓ (2M − 2i))e±(θi−Mᾱ) (12c)

− 4
∑
i∈I

Ψi,1(ω ∓ 2i)e±(−θi−Mᾱ), (12d)

where Ψi,j(ω∓ (2i−2j)) = F{Re[ζiζ
∗
j ]w}∗δ(ω∓ (2i−2j)),

and ∗ denotes the convolution operator. Based on equations
(12a) through (12d), a single peak in the strain distribution
results in 4 new peaks in the Fourier domain in (12c) and
(12d) (plus 6 other peaks that overlap with already existing
harmonics), and two cross terms that emerge for each pair
of peaks in the strain distribution in (12b). Out of these
harmonics, the harmonics at ω = {0,±2M} (included in the
F{Rs} term) are always present and are independent of the
strain field to which the sensor is subjected. Note that there are
several other harmonics within the F{Rr} term in Eq. (12a)
as well. However, since in the transverse crack scenario, the
amplitude of all the ζi for ∀ i 6= {tp−1, tp} terms are smaller
than ζtp−1 and ζtp , the corresponding F{ψiw} terms will also
have smaller amplitudes and will not form new peaks.

As mentioned before in this section, for N transverse
cracks along the FBG length, there will be 2(

(
N
2

)
+ 2N)

new harmonics in the Fourier domain with relatively large
amplitudes. In the case that the number of transverse cracks
along the FBG length increases, it is likely that due to the
limited resolution, several of the new peaks in the Fourier
domain appear to be overlapping. This makes the localisation
of the cracks challenging for the cases where we have more
than one or two cracks along the length of the sensor, without
any prior knowledge about the strain field. However, for
early stages of crack formation (having one or two cracks
along FBG length), this information can be used to precisely
localise the cracks as well (except for a reflection line of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JLT.2019.2919339

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

1557 1558 1559 1560 1561 1562 1563 1564

Wavelength (nm)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
e

fl
e

c
te

d
 s

p
e

c
tr

u
m

 [
-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
a

n
n

 w
in

d
o

w

(a)

-1500 -1000 -500 0 500 1000 1500

Angular frequency (rad)

0

0.5

1

1.5

A
b

s
o

lu
te

 v
a

lu
e

 o
f 

th
e

 F
o

u
ri
e

r 
tr

a
n

s
fo

rm
 [

-]

10
-6

Affected by 2 cracks

Unstressed sensor

=0

=600

=150

=250
=750

=850
=1000

(b)

Fig. 4. (a): Reflection spectrum of a sensor near two cracks and the scaled Hann window. (b): Fourier transform of the windowed side-lobes for both stressed
and unstressed sensors.

symmetry ambiguity). Furthermore, by choosing FBG sensors
with shorter lengths, the spatial resolution can be improved.

In order to visualise the analyses, we will focus on trans-
verse crack formation in two different types of composites,
namely carbon fibre and glass fibre composites. The mechan-
ical and physical properties of the materials that we used in
this study are listed in Table I.

Table I. Mechanical properties of the composite structure (using the data in
the datasheet of the Hexply 8552 and [18]). The FBG sensor is embedded in
the 0◦ layer, in the proximity of the 90◦ layer and the cracks.

Material Carbon fibre Glass fibre

Elastic moduli (GPa) E0 148 36.5

E90 9.57 12.6

Shear modulus (GPa) Gxz 5.6 3.9

Dimensions (mm) t0 0.732 0.34

t90 1.46 0.51

Axial stress (MPa) σ 550 250

Consider the strain field given in Fig. 3 in a carbon fibre
composite material, where the transverse cracks are located
at z = 2.5 mm and at z = 8.5 mm from the start of a
simulated FBG sensor with a total length of 10 mm and a
nominal Bragg wavelength of 1550 nm. The calculated reflec-
tion spectrum in response to the FBG sensor being subjected
to such a strain field is shown in Fig. 4. The FBG model
was assumed to have M = 500 segments, therefore, the
location of the crack will lie within the t1 = 125’th and
t2 = 425’th segments. In all the computer simulations in
this paper, we considered an additive zero mean Gaussian
noise on the ac amplitude of the refractive index of the core
(SNR = 18dB), and also on the grating period of the FBG
structure. This additive noise could lead to the emergence of
new arbitrary peaks in the Fourier domain between ω = 0 rad
and ω = 1000 rad angular frequencies, but for an unstressed
sensor, they have much lower amplitudes than those resulting
from transverse cracks. From equations (12b) through (12d)

we expect to see new peaks emerging at angular frequencies
ω = {0,±150,±250,±600,±750,±850,±1000} rad.

As seen from Fig. 4, new peaks have emerged in the
Fourier transform of the side-lobes of the reflection spectra
at the predetermined frequencies, which are more noticeable
in the stressed sensor signal when compared with the healthy
unstressed sensor signal (Fig. 4b).

In a second computer simulation, we considered a glass
fibre composite material, of which the physical properties are
given in Table I. In this example we assigned the composite
structure to have 6 cracks along the length of the FBG sensor.
The resulting reflection spectrum, and the Fourier transform
of its side-lobes, are given in Fig. 5. Based on the discussions,
for 6 transverse cracks, we expect to have 54 new peaks in
the Fourier domain. However, due to the overlap of several
of these peaks, there are only 14 peaks visible in the figure,
which mostly correspond with cross terms that are defined in
(12b) (due to their relatively higher amplitudes).

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we will validate our hypotheses using
experimental measurements. For this purpose, we embedded
FBG sensors within the layers of two different types of
unidirectional (UD) composites. In the first example, we used
AS4-UD carbon/Hexply 8552 prepreg sheets from Hexcel
corporation, with the layup of [04, 9016, 04], and an FBG
sensor with a length of L = 10 mm embedded between the
4th and 5th layer of the composite (at the interface of the 0◦

and 90◦ layers). We followed the curing process specified in
the datasheet of the material. The FBG sensor was a DTG
type sensor from the company FBGS, with a nominal Bragg
wavelength of λn = 1570 nm. The DTG sensors had an
Ormocer coating, which according to the producing company,
allows a 1:1 strain transfer to the sensor. The mechanical and
physical properties of the material are given in Table I. After
the production, the specimens were cut into coupons of 2.5
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Fig. 5. (a): Strain distribution along the length of the sensor when subjected to 6 transverse cracks, at σ = 250MPa (b): Reflection spectrum of a sensor
near six cracks and the scaled Hann window. (b): Fourier transform of the windowed side-lobes of the reflection spectrum.
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Fig. 6. (a): Carbon fibre specimen under a quasi-static tensile test, (b): Reflection spectra of the FBG before any cracks (blue) and after the formation of a
crack (red), and (c): Fourier transform of the windowed side-lobes of the reflection spectrum.

by 15 centimetres, with the FBG at the centre of the coupon.
The specimens were then subjected to a quasi-static test using
a 100 kN MTS machine, where we increased the tensile stress
from σ = 50 MPa to σ = 400 MPa in steps of ∆σ = 10 MPa.

The FBG reflection spectra were recorded using a PXIe-
4844 FBG interrogator from National Instruments, which has a
dynamic range of 40 dB and a wavelength resolution of 4 pm.
Also, in order to localise the cracks, we placed a camera facing
the side of the specimens (therefore directly viewing the crack
formation in the 90◦ layers of the composite, as seen in Fig.
6a). As expected from our model and the literature, before
the formation of the cracks the FBG reflection spectrum held
its general shape without much difference during the tensile
test. It is noteworthy that since the curing of the carbon fibre
panel was performed in an autoclave with pressures as high
as 8 bar, there was already a residual transverse load on the
FBG sensor. Therefore, even a sensor in an unloaded coupon
was already affected by birefringence effects and widened
reflection spectrum (widened by more than 2 times), and
hence the asymmetrical shape of the sensor at the start of the
experiment. Right after the formation of the first crack, the

reflected spectrum changed shape and new harmonics were
created. Fig. 6 shows the specimen under tensile testing, the
FBG reflection spectrum before and after crack formation, and
the emerged new harmonics in the Fourier transform of the
side-lobes of the reflection spectrum. As seen from this figure,
at this particular time during the test (at σ = 330 MPa), one
single crack was formed at location z = 1.65 mm from the
start of the sensor, which results in the emergence of two
additional peaks at ω = {165, 835} rad in the Fourier domain.
The resulting new harmonics due to this crack are shown in
Fig. 6c, and it can be seen that they are located at the expected
locations with respect to the location of the crack.

In the second experiment, we used UD glass fibre materials
from Saertex GmbH, with a density of 228 g/m2, a layup of
[02, 906, 02] and an overall thickness of 1.65 mm. The FBG
sensors were embedded between the 2nd and the 3rd layers of
the composite (again at the interface of the 0◦ and 90◦ layers).
For this material, we used the fusion method to produce
the composites, from Epikote 04908 resin and curing agent
from Hexion Ltd. The material was initially cured at room
temperature for 24 hours, and then for 6 hours in the oven at
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Fig. 7. (a): Glass fibre specimen under a quasi-static tensile test, (b): Reflection spectra of the FBG before any cracks (blue) and after the formation of two
cracks (red), and (c): Fourier transform of the windowed side-lobes of the reflection spectrum.
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Fig. 8. (a): Reflection spectrum of an FBG under a three point bending test, (b): Fourier transform of the windowed side-lobes of the reflection spectra from
the stressed and unstressed sensor.

80◦C and at a pressure of 1000 mbar. After the curing process,
the specimens were cut into 3 by 25 centimetre coupons, with
the FBG sensor at the centre of the coupon. For this example
we also used a camera to record the crack formation, but
since glass is translucent, the camera was facing the surface
of the material, and we could see the cracks forming in
the internal layers of the composite from the surface. The
GFRP specimens were subjected to a similar test as the CFRP
specimens, but starting at σ = 10 MPa to σ = 150 MPa in
steps of ∆σ = 5 MPa, as the GFRP specimens were less stiff
than the CFRP specimens used in this study. Fig. 7 shows
the specimen under tensile test at σ = 50 MPa, where two
transverse cracks have already formed at locations z = 6 mm
and z = 7.68 mm from the start of the sensor. The localisation
of the cracks from the recorded images was performed by
visually comparing consecutive images at different force loads.
The FBG reflection spectra before and after crack formation,
and the emerged new harmonics in the Fourier transform of
the side-lobes of the reflection spectrum are also shown in
this figure. Also note that since the sensor did not undergo
high transverse pressures during its production, the FBG

reflection spectrum looks more pristine and is less affected
by birefringence effects. Given the locations z = 6 mm and
z = 7.68 mm, we expect the emergence of additional peaks
at ω = {600, 768, 400, 232, 336}rad in the Fourier domain,
which correspond well with the resulting peaks from the
experiment. Note that in both experiments, since the number
of cracks were limited to just 1 or 2, we could also localise
the cracks. But having more than 2 cracks and having no
access to the phase of the reflection spectrum will make their
localisation much more difficult.

As it is evident from these experiments, our model could
perfectly explain the emergence of the new peaks in the
Fourier transform of the side-lobes of the reflection spectrum,
and the peaky nature of the strain field due to the transverse
cracks has a clear effect on these new harmonics. It can be
also seen that birefringence effects and other noise sources
did not affect the results. Note that the sensors used in these
experiments were partially apodized, and hence, the lower
amplitude of the ω = 1000 peaks compared with the simulated
examples.

As a last example, we tried to create a widened FBG
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reflection spectrum under a smooth non-uniform strain field,
without having any cracks along the FBG length. We applied
a three point bending test (loading pin on the sensor location)
on one of the glass fibre specimens with an embedded FBG.
Due to the non-uniformity of this strain field, the resulting
reflection spectrum (shown in Fig. 8) became wider (the
FWHM of an unstressed sensor was 84 pm, and it was widened
by three times under the test), however, as seen from Fig. 8b,
no meaningful new harmonics have been added to the Fourier
transform of the side-lobes of the reflection spectrum.

In summary, we argue that if there is a sudden change of
strain distribution along the FBG length, it will have a direct
effect on the reflection spectrum side-lobes. In this paper,
we analysed this phenomenon in the formation of transverse
cracks in uni-directional composite materials, but it can be
extended to any other structure or material as well, including
metals or concrete. The conditions that need to be met in order
to perceive this effect are firstly, a direct contact of the sensor
with the sharply varying strain field, and secondly, a high
enough strain peak amplitude. The latter condition depends
on the type of sensor in use, and also, the host material
under investigation. For instance, in the glass fibre composite
specimens with the given dimensions used in this study, and
using DTG type sensors, computer simulations suggest that
a strain peak of around 400µε will result in distinguishable
new harmonics in the Fourier transform of the FBG reflection
spectrum side-lobes, whereas for the carbon fibre specimens,
this value was around 300µε, which is due to the stiffer nature
of the carbon fibre samples. With that in mind, it should be
noted that in the laboratory experiments, the first cracks were
forming under strain peak values of more than 1000µε, which
is already far more than the theoretical sensitivity threshold of
the FBG sensors.

VI. CONCLUSIONS

In this paper we have demonstrated a clear relationship
between the transverse cracks along the length of FBG sensors,
and the emergence of new harmonics in the Fourier transform
of the side-lobes of the FBG reflection spectra. We argued
that the mere widening of the FBG reflection spectra is not a
reliable measure for detection of cracks, as it might also occur
in response to other types of non-uniform strain fields, and
we suggested to focus on the information in the side-lobes of
the reflection spectra as a more reliable indication of cracks
along the sensor length. We validated our model with both
computer simulations and experimental measurements, and the
results were in good agreement with our model. Future works
in this subject could include analysis of the crack formation
in different layup configurations of composite materials, and
their effects on the FBG reflection spectra. Also, extending
the current model to the other types of damages in composite
structures could also be beneficial to the community.
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