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In this paper we present a Krylov subspace model-order reduction technique for time- and 
frequency-domain electromagnetic wave fields in linear dispersive media. Starting point 
is a self-consistent first-order form of Maxwell’s equations and the constitutive relation. 
This form is discretized on a standard staggered Yee grid, while the extension to infinity is 
modeled via a recently developed global complex scaling method. By applying this scaling 
method, the time- or frequency-domain electromagnetic wave field can be computed via a 
so-called stability-corrected wave function. Since this function cannot be computed directly 
due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-
order models are constructed that approximate this wave function. We show that the 
system matrix exhibits a particular physics-based symmetry relation that allows us to 
efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-
type reduction algorithm. The frequency-domain models allow for frequency sweeps 
meaning that a single model provides field approximations for all frequencies of interest 
and dominant field modes can easily be determined as well. Numerical experiments for 
two- and three-dimensional configurations illustrate the performance of the proposed 
reduction method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The efficient computation of time- and frequency-domain electromagnetic wave fields in linear dispersive media is ex-
tremely important in a wide variety of applications ranging from bioelectromagnetics [10] to nano-optics [17]. To compute 
the complex electromagnetic wave field interactions with such materials, general solution procedures such as the Finite-
Difference Time-Domain method (FDTD method, [23]) are typically used or dedicated frequency-domain solvers in which 
certain geometric features of the configuration of interest are exploited (as in periodic or aperiodic Fourier modal methods, 
see [2,28,29], for example). An advantage of an FDTD approach is that it can be applied to arbitrarily-shaped dispersive 
objects, but a drawback may be that it is not as efficient as a dedicated solver such as a Fourier modal method. The latter 
method, on the other hand, may not be as widely applicable as an FDTD method.
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In this paper we present a novel Krylov subspace model-order reduction approach, which is efficient and applicable to 
arbitrary three-dimensional configurations. The method is particularly effective for subwavelength resonating structures as 
encountered in nano-optics, for example, and both time- and frequency-domain fields can be computed simultaneously. In 
addition, the modes that dominate the electromagnetic field response at particular receiver locations can be determined 
directly at negligible additional computational costs and the method allows for so-called frequency sweeps as well, meaning 
that a single reduced-order model can be used for all frequencies within a certain frequency interval of interest even in case 
of dispersive frequency-dependent dielectric materials.

To fix the idea, we consider linear dielectric dispersive media for which the polarization vector is related to the electric 
field strength via a second-order differential equation in time. Lorentz, Drude, and Debye materials are all captured by such 
a constitutive relation. Furthermore, for simplicity we restrict ourselves to single pole or single pole pair dispersion models, 
but we stress that multiple pole models can be handled as well.

The first step of our approach consists of writing Maxwell’s equations and the constitutive relation in a self-consistent 
first-order form. The resulting system is then discretized in space on a standard staggered Yee-grid [23], while the extension 
to infinity is simulated by implementing the recently developed global complex scaling method discussed in [8] and [6]. 
Complex scaling has already been introduced in the 1970s (see [3] and [22], for example) and can be seen as a variant of 
the well known Perfectly Matched Layer (PML) technique [4,5] in which the PML frequency is fixed to a frequency s0, say. 
Standard complex scaling is therefore effective only for frequencies in a neighborhood of s0. However, in [8] and [6] it is 
shown how to turn the complex scaling method into a global method that is accurate over a complete frequency band of 
interest with frequencies belonging to this interval that are not necessarily close to s0. If we now apply this global complex 
scaling method to simulate the extension to infinity then complex-valued step sizes within the PML are obtained and the 
resulting semidiscrete Maxwell system is unstable [8]. The method can therefore not be applied directly in a standard time 
stepping solution procedure such as FDTD and frequency-domain field approximations fail to be conjugate symmetric with 
respect to frequency as well. Fortunately, this situation can be resolved via the introduction of a so-called stability-corrected 
wave function [8]. This function corrects for the anti-stable part of the solution obtained via global scaling and produces 
stable, causal, and real-valued field approximations in the time-domain and conjugate-symmetric solutions in the frequency-
domain. Thus global complex scaling in combination with stability correction allows us to simulate electromagnetic wave 
propagation in the time- and frequency-domain with a PML layer that does not explicitly depend on the frequency.

Direct evaluation of the wave function is not feasible, however, since the wave function depends on the Maxwell system 
matrix and the order of this matrix is simply too large. For three dimensional problems, for example, the order of this system 
matrix can easily run into the millions and direct evaluation is therefore practically impossible. We therefore construct time-
and frequency-domain Krylov subspace reduced-order models for the stability-corrected wave function that can be evaluated 
directly. In particular, we show that the Maxwell system matrix exhibits a particular physics-based symmetry property that 
allows us to construct the reduced-order models via a three-term Lanczos-type recurrence relation. The models can therefore 
be computed very efficiently, since the system matrix is sparse and this matrix is only needed to form matrix–vector 
products in the Lanczos algorithm (see [7] for computation of matrix functions using Lanczos algorithms). With the help of 
the Lanczos algorithm we are also able to compute the modes that contribute the most to the response at a certain receiver 
location at essentially no additional costs. Furthermore, not all Lanczos vectors need to be stored in case the solution to 
the wave field problem is required at certain receiver locations and only three vectors need to fit inside the computational 
memory.

For dielectric structures reduced order modeling has been shown to be efficient in model compression and reducing 
computation time (see [8]). Contrary to FDTD, model order reduction techniques based on the Lanczos algorithm adapt 
their spectrum to the spectrum of the operator as shown in [19]. In this paper, this approach is extended to dispersive ma-
terials. In general, radiation and dissipative losses enable large model-order reduction factors especially in case of a limited 
number of sources and receivers. Finally, the reduced-order models are expected to exhibit fast convergence for resonating 
subwavelength structures as encountered in nano-optics, since these configurations are typically largely oversampled and 
only a relatively small number of modes contribute to the overall measured signal. Our numerical experiments illustrate 
that the proposed solution procedure is very efficient for these types of structures, as indeed very low order approximations 
suffice.

This paper is organized as follows. In Section 2 we introduce a self-consistent first-order formulation for the electromag-
netic field in dispersive media. The discretization of the first-order system is discussed next followed by a brief discussion 
on the global complex scaling method. In Section 3 we discuss the symmetry properties of the Maxwell system matrix and 
present our Lanczos reduction algorithm together with the time- and frequency-domain reduced-order modes. The techni-
cal details of the symmetry analysis are presented in the Appendix. Finally, in Section 4 we present a number of numerical 
results that illustrate the performance of the proposed solution procedure for two- and three-dimensional problems in the 
time- and frequency-domain and the dominant field modes for these configurations are determined as well.

2. Basic equations

We consider an electromagnetic field in a dispersive material that is governed by the Maxwell equations

−∇ × H + ∂tD = −Jext (1)
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Table 1
Parameters to obtain common dispersion models with the general second-order dispersion model. Here, τ is the 
characteristic relaxation time, εs is the static relative permittivity, ωp is the volume plasma frequency, γp is the 
collision frequency, ω0 is the resonant plasma frequency, and δ is the damping coefficient.

Medium β0 β1 β2 β3

Lorentz ε0(εs − ε∞)ω2
0 ω2

0 2δ 1
Drude ε0ω

2
p 0 γp 1

Debye ε0(εs − ε∞) 1 τ 0
Conductivity σ 0 1 0

and

∇ × E + μ∂tH = −Kext, (2)

where D = εE +P with ε = ε0ε∞ and ε∞ the instantaneous or high-frequency relative permittivity. The polarization vector P
is related to the electric field strength E via the second-order constitutive relation

β3∂
2
t P + β2∂tP + β1P = β0E, (3)

where the βi , i = 0, 1, 2, 3, are parameters describing the particular dispersive material of interest. For example, for a Drude 
material we have β0 = ε0ω

2
p, β1 = 0, β2 = γp, and β3 = 1, where ωp is the volume plasma frequency and γp the collision 

frequency. The β-coefficients of other commonly used materials are summarized in Table 1.
As a first step towards our reduced-order modeling approach, we first rewrite the second-order constitutive relation in 

first-order form. To this end, we introduce the auxiliary field

U = −∂tP (4)

and rewrite Eq. (3) as

β3∂tU + β2U − β1P + β0E = 0. (5)

Combining these last two equations with Maxwell’s equations, we arrive at the first-order system

−∇ × H − U + ε∂tE = −Jext,

U + ∂tP = 0,

β2U − β1P + β0E + β3∂tU = 0,

and

∇ × E + μ∂tH = −Kext.

These equations can be written in matrix-operator form as

(D + S +M∂t)F = Q′, (6)

where F and Q are the field and source vectors given by

F = [Ex, E y, Ez, P x, P y, P z, Ux, U y, U z, Hx, H y, Hz]T (7)

and

Q′ = −[ J ext
x , J ext

y , J ext
z ,0,0,0,0,0,0, K ext

x , K ext
y , K ext

z ]T , (8)

respectively. In this paper, we only consider external sources for which the time-dependence can be factored out (which 
is usually the case) and write Q′ = w(t)Q, where w(t) is the source wavelet that vanishes prior to the time instant t = 0
and Q is a time-independent vector. Furthermore, D is a spatial differentiation matrix containing the curl operators from 
Maxwell’s equations and S and M are medium matrices containing the medium parameters βi , ε, and μ. Explicitly, the 
differentiation matrix is given by

D =

⎡
⎢⎢⎣

0 0 0 −∇×
0 0 0 0
0 0 0 0

∇× 0 0 0

⎤
⎥⎥⎦ (9)

and the medium matrices are

S =

⎡
⎢⎢⎣

0 0 −1 0
0 0 1 0
β0 −β1 β2 0
0 0 0 0

⎤
⎥⎥⎦ and M =

⎡
⎢⎢⎣

ε 0 0 0
0 1 0 0
0 0 β3 0
0 0 0 μ

⎤
⎥⎥⎦ . (10)
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Subsequently, we discretize the above first-order Maxwell system on our domain of interest using a standard second-
order finite-difference grid (Yee grid [23]) and a complex-scaling method is used to simulate the extension to infinity [1,
3,22]. Complex-scaling has been applied extensively in computational quantum mechanics and other fields (see, for exam-
ple, [13,14,16]) and can be seen as a special instance of the Perfectly Matched Layer (PML) technique as introduced by 
Berenger [4,5]. Specifically, the PML in a complex-scaling method is frequency independent and the extension to infinity is 
simulated using complex spatial step sizes. In this work we determine these step sizes using the theory of optimal grids as 
presented in [6] and [8] and we refer to these references for further details.

After the spatial discretization procedure with complex-scaling included, we arrive at the semidiscrete Maxwell system

(D + S + M∂t)fcs = w(t)q, (11)

where the subscript “cs” indicates that complex-scaling has been applied. The matrices D, S, and M are the discretized 
counterparts of D, S , and M, respectively, while fcs, and q are the discretized counterparts of the field and source vectors 
F , and Q. We note that D has complex entries due to the application of the complex-scaling method and the above system 
is therefore complex and unstable. Real-valued and stable time-domain field responses can be obtained from the above 
system, however, via a stability-correction procedure discussed in [8]. In particular, introducing the system matrix A as

A = M−1(D + S), (12)

stable field approximations can be computed as (for details see [8])

f(t) = w(t) ∗ 2η(t)Re
[
η(A)exp(−At)M−1q

]
for t > 0, (13)

where

η(z) =

⎧⎪⎨
⎪⎩

1 if Re(z) > 0,
1
2 if Re(z) = 0,

0 if Re(z) < 0

is the Heaviside unit step function. Furthermore, by applying a one-sided Laplace transform to Eq. (13) we obtain the 
frequency-domain solution

f̃(s) = w̃(s)
[
r(A, s) + r(A∗, s)

]
M−1q, (14)

where the asterisk denotes complex conjugation and where we have introduced the filtered resolvent function

r(z, s) = η(z)

z + s
. (15)

Although Eqs. (13) and (14) provide us with an explicit expression for the time- and frequency-domain electromagnetic 
fields on our domain of interest, it cannot be evaluated directly, since the order N of the system matrix A is typically too 
large. For example, N may easily run into the millions for three-dimensional problems and direct evaluation of Eq. (13) or 
Eq. (14) is simply not feasible. However, Eqs. (13) and (14) do serve as a starting point for the Lanczos-type model-order 
reduction method discussed in the next section. Finally, we mention that our approach relies on an analytic model for the 
dielectric constant. One disadvantage of such an approach is that measured dielectric data cannot be implemented in a 
straightforward manner. However, if the experimental data can be fitted by an arbitrary sum of multiple Drude and Lorentz 
media the proposed method can still be used. Introducing auxiliary variables for every single medium leads again to a 
frequency independent system.

3. Symmetry and Lanczos reduction

The first-order Maxwell system matrix A exhibits a particular symmetry property that allows us to efficiently construct 
Lanczos-type reduced-order models for the electromagnetic field. In particular, in Appendix A it is shown that matrix A is 
symmetric with respect to a matrix W̃, that is, matrix A satisfies

〈Ax, y〉W̃ = 〈x,Ay〉W̃ for any x, y ∈C
N , (16)

where we have introduced the bilinear form 〈x, y〉W̃ = yT W̃x for x, y ∈ C
N . Furthermore, using the definition of matrix W̃

(see Appendix A), we find that 1
2 〈f, f〉W̃ approximates

L = Lfree(D) + 1

2

∫
D

β1

β0
|P|2 dV − 1

2

∫
D

β3

β0
|∂tP|2 dV ,
disp disp
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where Ddisp is the bounded domain containing the dispersive media, while L = Lfree(D) is the standard free-field Lagrangian 
given by

Lfree(D) = 1

2

∫
D

ε|E|2 dV − 1

2

∫
D

μ|H|2 dV ,

where D is the bounded domain containing the nondispersive media that are present within our computational domain of 
interest. If no second-order dispersive media are present in this domain then the integrals over Ddisp are absent, of course, 
and L reduces to L =Lfree.

The symmetry relation of Eq. (16) enables us to efficiently construct a basis for the Krylov subspace

Km = span{M−1q,AM−1q, . . . ,Am−1M−1q}
via the three-term Lanczos-type recurrence relation

ξi+1vi+1 = Avi − αivi − δiδ
−1
i−1ξivi−1,

with v0 = 0, δ0 = 1, ξ1 = ‖M−1q‖, and v1 = ξ−1
1 M−1q, and where ‖ · ‖ denotes the Euclidean norm [11]. The coefficients 

αi and δi are given by δi = 〈vi, vi〉W̃ and αi = δ−1
i 〈vi, Avi〉W̃ and the coefficients ξi follow from the normalization condition 

‖vi‖ = 1, which means that in our algorithm all Lanczos vectors have a Euclidean length equal to one.
After m steps of this algorithm, we have the Lanczos decomposition

AVm = VmHm + ξm+1vm+1eT
m, (17)

where em is the mth column of the m-by-m identity matrix Im and matrix Vm = (v1, v2, . . . , vm) is a tall N-by-m matrix that 
satisfies

〈Vm,Vm〉W̃ = diag(δ1, δ2, . . . , δm).

Finally,

Hm = tridiag(ξi,αi, δi+1δ
−1
i ξi+1)

is an m-by-m tridiagonal matrix containing the Lanczos recurrence coefficients.
Based on the Lanczos decomposition of Eq. (17), we can now construct the time- and frequency-domain field Lanczos 

model-order reduction approximations

fm(t) = w(t) ∗ 2ξ1η(t)Re
[
Vmη(Hm)exp(−Hmt)e1

]
(18)

and

f̃m(s) = ξ1 w̃(s)
[
Vmr(Hm, s) + V∗

mr(H∗
m, s)

]
e1. (19)

These models can be evaluated very efficiently, since only matrix functions of the small m-by-m matrix Hm need to be 
evaluated. Our Lanczos reduction approach allows for frequency sweeps as well, meaning that a single model provides 
field approximations in dispersive media on a complete frequency interval of interest. Furthermore, we note that if field 
responses are required at certain specified receiver locations then only the rows of the Lanczos matrix Vm that correspond 
to these receiver locations need to be kept in memory to evaluate the reduced-order models. Specifically, assume the field 
needs to be computed at Nr distinct receiver locations in space. Now given an Nr × N dimensional receiver matrix R we 
define Qm = RT Vm to obtain the solution at the receiver locations as

fm(t) = w(t) ∗ 2ξ1η(t)Re
[
Qmη(Hm)exp(−Hmt)e1

]
(20)

and

f̃m(s) = ξ1 w̃(s)
[
Qmr(Hm, s) + Q∗

mr(H∗
m, s)

]
e1. (21)

Only the Nr × m matrix Qm needs to be stored.
Finally, we mention that it is possible to give a general error bound for polynomial Krylov methods (see, for example, 

[15]), but such a bound is usually not tight and leads to a gross overestimation of the required number of iterations. 
In practice, we therefore check the difference between two constructed models approximately every 500 iterations and 
terminate the algorithm as soon as their difference falls below a specified threshold.
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Fig. 1. A golden box embedded in vacuum. The side length of the box is 50 nm and a Drude model with medium parameters ε∞ = 1, ωp = 13.8 · 1015 s−1, 
and γp = 1.075 · 1014 s−1 is used as a constitutive relation. The star and triangle indicate the source and receiver location, respectively. The domain of 
interest is surrounded by a PML (red area) to simulate the extension to infinity. The PML is realized using the optimal complex-scaling method [6,8]. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Numerical results

In this section we present several numerical experiments that illustrate the performance of our proposed reduction tech-
nique. In our first experiment, we consider H-polarized fields in a two-dimensional configuration that is invariant in the 
z-direction. The configuration consists of a square golden box that is embedded in vacuum (see Fig. 1). The side length of 
the box is 50 nm and a Drude model with medium parameters ε∞ = 1, ωp = 13.8 · 1015 s−1, and γp = 1.075 · 1014 s−1 [17]
is used as a constitutive relation. The box is illuminated by electromagnetic waves that are generated by a line source 
(star in Fig. 1) and we are interested in the magnetic field response at the receiver location (triangle in Fig. 1). The source 
wavelet is a derivative of a time-shifted Gaussian (Ricker wavelet) with a peak frequency that corresponds to a wavelength 
λpeak = 350 nm in vacuum. The configuration is discretized on a uniform grid with a step size of δ = 1 nm and after in-
corporating the complex-scaling method, a discretized Maxwell system of approximately 47000 unknowns is obtained. We 
subsequently apply the Lanczos algorithm to construct the reduced-order models for the magnetic field strength at the re-
ceiver location. As a reference simulation, an ADE-FDTD scheme [23] is used that captures the electromagnetic response of a 
medium with Drude relaxation. The convergence of the time-domain reduced-order model towards the ADE-FDTD response 
is shown in Fig. 2. From this figure, we observe that early times are approximated first as can be expected from a polynomial 
Krylov method. In addition, the oscillations in the field response are quickly captured (already by a reduced-order model 
of order m = 2500, see Fig. 2 – top), but the amplitude is correct for early times only. Increasing the order to m = 4500
(Fig. 2 – middle) clearly leads to an improved response. The reduced-order model starts to align itself with the FDTD result 
on the entire time interval of interest and there is only a mismatch in amplitude after approximately t > 6 fs. Increasing 
the number of iterations even further to m = 6500 (Fig. 2 – bottom), the reduced-order model response completely coin-
cides the FDTD result on the time interval of interest. The indicated convergence behavior is typical for polynomial Krylov 
reduced-order wave field models. Early times are approximated first and field oscillations are captured quickly. Furthermore, 
the accuracy of the model improves as the order of the model is increased and usually arrival times are approximated first 
after which the amplitude of the signal is corrected. Finally, we remark that other validation results for resonant modes and 
time- and frequency-domain wave fields in dispersive and nondispersive media can be found in [27,26,8], and [9].

In Fig. 3 we show all stable eigenvalues or Lanczos poles (crosses) of the reduced tridiagonal matrix Hm of order m =
6500 in the complex λ-plane (λ = 2πc0/ω). The star in this figure indicates the wavelength that corresponds to the peak 
frequency of the source (λpeak = 350 nm). Clearly, many eigenvalues are clustered near the origin and the Lanczos poles or 
resonances that contribute the most to the field response can easily be distinguished from this figure. These eigenvalues 
are located close to the real axis and can be identified as plasmonic resonances with a high quality factor. Having identified 
these resonances with our Lanczos algorithm, we can also compute the corresponding resonance fields. The magnitude of 
the magnetic field and the real part of the x-component of the electric field of a number of these resonant fields are shown 
in Fig. 4. These modes can be computed without storing the complete basis by doubling the computation time. Specifically, 
assume the eigenvalue decomposition Hm = S�S−1 of the reduced tridiagonal matrix is at hand after running the Lanczos 
algorithm. Now the expansion coefficients of the Krylov basis that approximate the ith eigenvalue are given by the ith 
column of S. Thus we can rerun the Lanczos algorithm and construct the approximate eigenvector without saving the basis 
as the expansion coefficients are known. Usually a few vectors will actually fit into memory, such that the resonances of 
interest can be computed at once in the second run. The accuracy of the resonances can be determined using Eq. (17) (see 
[12]).
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Fig. 2. Reduced-order models of order m = 2500 (top), m = 4500 (middle), and m = 6500 (bottom) for the magnetic field strength at the receiver location 
in Fig. 1 (dashed line). The solid line signifies the magnetic field response as computed by ADE-FDTD.

It can be seen that the resonance fields are strongly localized and confined to the boundary of the box, which is typical 
for plasmonic fields. Moreover, due to the dispersive character of gold the number of field oscillations increases as the 
magnitude of the wavelength increases (increase in the magnitude of the permittivity at lower frequencies). We also observe 
that Ex is continuous across the tangential boundary and exhibits a jump with change of sign across the normal boundary, 
as expected for a material with a negative dielectric function.

To illustrate that the proposed reduced-order technique can handle large-scale wave field problems, we compute 
frequency-domain responses of a three-dimensional silver nano antenna that is excited by an electric dipole (see Fig. 5). 
The antenna has a cuboid shape, a height of 100 nm, and a width and length of 32 nm. A Drude model is chosen to de-
scribe the dispersion of silver with medium parameters ωp = 13.7 · 1015 s−1, γp = 5.139 · 1014 s−1, and ε∞ = 1 as given 
in [25]. The electric dipole is located 10 nm above the center of the upper yz-plane of antenna and is oriented in the 
x-direction. The dipole is modeled as an external electric-current density J ext

x = iωpδ(r − rs), where p is the magnitude 
of the dipole moment and rs is the position vector of the dipole and both the antenna and the dipole are embedded in a 
homogeneous nondispersive background medium with a relative permittivity of εr = 2.25. We use nine receivers to measure 
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Fig. 3. Stable eigenvalues of the reduced tridiagonal matrix H6500 in the complex λ-plane (crosses). The star indicates the wavelength that corresponds to 
the peak frequency of the source.

the electromagnetic field response in the vicinity of the nano antenna on a 700 to 1200 nm wavelength interval. Specifically, 
the nine receivers are all located on a line that runs through the dipole location (see Fig. 5). The dipole is located at the 
center of the line and the receivers are symmetrically distributed on the line such that the location of receiver number 5 
coincides with the dipole location. Configurations such as the one depicted in Fig. 5 are extensively studied in the field of 
nano optics and find their application in coherent plasmon generation and the modification of the spontaneous decay rate 
of quantum emitters, for example [17,21].

To obtain the field responses at the receiver locations, we discretize the first-order Maxwell system on a uniform Yee 
grid with a spatial step size of 2 nm and incorporate the optimal scaling method to simulate the extension to infinity. 
The resulting order of the discretized first-order Maxwell system is approximately nine million. Direct evaluation of the 
stability-corrected frequency-domain wave function is obviously not practical and we therefore construct the reduced-order 
model of Eq. (19) to approximate the electromagnetic field responses at the receiver locations on the wavelength interval 
of interest. We stress that a single reduced-order model provides field approximation for all wavelengths (frequencies) of 
interest. The order of the final model is determined by constructing reduced-order models every 500 iterations. As soon as 
the relative global error between two successively constructed models falls below a user specified tolerance (10−3 in our 
experiments) we terminate the iteration process and accept the final model as an accurate approximation of the electromag-
netic field at the receiver locations. For this problem, a model of order m = 4500 accurately describes the electromagnetic 
field response on the complete wavelength interval of interest. In our Matlab implementation, the construction of the final 
model takes about one hour on an Intel i5-3470 CPU @ 3.2 GHz under 64-bit Windows 7, while the evaluation of the model 
on our wavelength interval of interest takes less than one second for one thousand uniformly sampled wavelength values 
(so-called wavelength or frequency sweep).

In Fig. 6 we show the reduced-order model for the x-component of the electric field strength at all receiver locations and 
on our wavelength interval of interest. The responses measured to the left and to the right of the dipole coincide as they 
should, of course, since the measurement setup and configuration are symmetric with respect to the dipole location. We also 
observe that the electric field exhibits resonant behavior for a wavelength of about 820 nm, which is due to the dispersive 
nature of the silver nano antenna. Finally, we note that the largest peak in the imaginary part of the x-component of the 
electric field strength is measured at receiver 5, which coincides with the dipole location. This implies that the spontaneous 
decay rate of a quantum emitter can be significantly increased if such an emitter is placed at the electric dipole location.

Comparing the order of the converged reduced-order models in our two examples, we observe that the reduction factor 
for the three-dimensional nano antenna configuration is much larger than the reduction factor for the two-dimensional 
golden box problem. Apart from the obvious difference that these two problems are solved in different domains (the box 
problem in the time-domain, the antenna problem in the frequency-domain) and in different spatial dimensions (2D vs 
3D) this difference can be explained by the number of resonances that contribute to the measured field responses. For 
the nano antenna example, this number is much smaller than the number of contributing resonances for the golden box 
problem. Specifically, in Fig. 7 all stable Lanczos poles (stable eigenvalues of matrix Hm) are plotted (crosses) along with 
the wavelength interval of interest. From this spectral plot we can identify which resonances contribute the most to the 
received signals. For the source-receiver setup considered here, only a small number of poles essentially contribute to the 
measured signals with the most contributing pole located at λ = 828 − 39i nm (see Fig. 7). These contributing poles need 
to be found by the Lanczos algorithm, of course, and it apparently takes our Lanczos algorithm 4500 iterations to find the 
contributing poles that accurately describe the field responses on the wavelength interval of interest at all nine receiver 
locations. Compared with the order of the unreduced system (approximately nine million), the reduced-order model is 
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Fig. 4. Magnitude of Hz (left) and real part of Ex (right) for resonant fields corresponding to the complex wavelengths λ = 231 − 1i nm (top), λ = 162 −
1i nm (middle), and λ = 166 − 1i nm (bottom).

approximately 2000 times smaller clearly demonstrating that significant order reduction can be achieved for dispersive 
resonating structures.

5. Conclusions

In this paper we have presented a Lanczos model-order reduction technique for the efficient computation of time- and 
frequency-domain electromagnetic wave fields in second-order dispersive media. We have combined Maxwell’s equations 
and the dispersion relation into a first-order system and we subsequently discretized our domain of interest on a stan-
dard Yee grid. To implement the extension to infinity, we have made use of the recently developed global complex-scaling 
method presented in [6] and [8], where it is also shown that stable time-domain or conjugate symmetric frequency-domain 
field approximations can be computed via so-called stability-corrected wave functions. Direct evaluation of these functions is 
not feasible, however, since the order of the spatially discretized first-order system is simply to large. We therefore approx-
imate these wave functions by elements from a standard polynomial Krylov subspace. We have shown that for dispersive 
media the first-order Maxwell system exhibits a particular physics-based symmetry relation and exploited this symmetry 
relation to efficiently construct a basis of the Krylov subspace via a Lanczos-type three-term recurrence relation. The Lanc-
zos algorithm provides us with a so-called Lanczos decomposition that allows us to construct time- or frequency-domain 
reduced-order models for the electromagnetic wave field that approximate the stability-corrected wave functions on a de-
sired time or frequency interval. In the frequency-domain, the models allow for so-called frequency (or wavelength) sweeps 
meaning that a single model provides field approximations on a complete frequency interval of interest. Our numerical ex-
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Fig. 5. A three-dimensional silver nano antenna embedded in a nondispersive homogeneous background medium. The antenna has a height of 100 nm and 
a width and length of 32 nm and is excited by an x-directed electric dipole located 10 nm above the antenna. A Drude model with medium parameters 
ωp = 13.7 · 1015 s−1, γp = 5.139 · 1014 s−1, and ε∞ = 1 is used as a constitutive relation for silver and both the antenna and the dipole are embedded in 
a nondispersive homogeneous background medium with a relative permittivity of εr = 2.25. The arrow indicates the location of the dipole, while the blue 
triangles indicate the location of the receivers. The location of receiver 5 coincides with the dipole location.

periments for two- and three-dimensional configurations show that significant reduction is possible especially for dispersive 
resonating nanostructures. The main reasons for these large reduction factors is that subwavelength structures are heavily 
oversampled and only a relative small number of resonances contribute to the measured field response. We have shown 
that for a given nanoscale structure, these resonances can be identified using our Lanczos algorithm. The number of Lanc-
zos iterations should be large enough, however, to capture the most contributing resonances in the configuration. These 
results indicate that even though significant reduction factors can already be achieved using polynomial Lanczos reduction, 
a further order reduction may be realized by constructing reduced-order models based on rational Krylov subspaces [20]. 
Parameter dependent rational Krylov subspaces have already been applied successfully for diffusive electromagnetic fields 
in [24] and future work will focus on extending these rational subspace techniques to hyperbolic wave field problems in 
dispersive media.
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Appendix A. Symmetry properties of the system matrix

In this appendix we discuss the symmetry of the system matrix A that is exploited in our Lanczos-type reduction 
algorithm. We first consider instantaneously reacting materials and subsequently discuss the dispersive case.

We discretize the first-order field equations on a staggered Yee grid [23] using primary and dual nodes in each Cartesian 
direction. For example, the primary and dual nodes in the y-direction are defined as

�
p
y = {yq ∈R,q = 0,1, . . . , N y + 1, yq > yq−1}, (A.1)

and

�d
y = { ŷq ∈R,q = 1, . . . , N y + 1, ŷq+1 > ŷq}, (A.2)
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Fig. 6. The x-component of the electric field strength at the receiver locations 1–9 on the wavelength interval of interest.

Fig. 7. Stable eigenvalues of H4500 in the complex λ-plane. The most contributing eigenvalue is located at λ = 828 − 39i nm.
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respectively, with corresponding step sizes given by

δy,q = yq − yq−1, q = 1, . . . , N y + 1 and δ̂y,q = ŷq+1 − ŷq, q = 1, . . . , N y. (A.3)

Dual step sizes carry a hat, while primary step sizes do not. Grid nodes in the x- and z-direction are introduced in a similar 
manner with Nx dual step sizes in the x-direction and Nz dual step sizes in the z-direction.

On a Yee grid, differentiation in each Cartesian direction can conveniently be described in terms of bidiagonal differenti-
ation matrices. In particular, if the introduce the (N y + 1)-by-(N y + 1) diagonal matrix of primary step sizes

Wy = diag(δy;1, δy;2, . . . , δy;N y+1) (A.4)

and the N y-by-(N y + 1) bidiagonal matrix bidiagN y
(−1, 1) with −1 on the diagonal and +1 on the first upper diagonal, 

then differentiation of field quantities defined on primary grid nodes in the y-direction is carried out by the differentiation 
matrix

Y = −W−1
y bidiagN y

(−1,1)T . (A.5)

In a similar manner we can define a differentiation matrix that acts on field quantities defined on the dual nodes. Introduc-
ing the N y-by-N y diagonal step size matrix

Ŵy = diag(δ̂y;1, δ̂y;2, . . . , δ̂y;N y ), (A.6)

the difference matrix

Ŷ = Ŵ−1
y bidiagN y

(−1,1) (A.7)

computes two-point finite-differences of field quantities defined on dual nodes in the y-direction. Moreover, both differen-
tiation matrices are related to each other via the obvious symmetry relation

ŶT Ŵy = −WyY. (A.8)

Differentiation matrices X, X̂, Z, and Ẑ in the x- and z-direction are defined in an analogous manner.

A.1. Instantaneously reacting media

Discretizing the first-order Maxwell system on a standard Yee grid and arranging the unknowns in lexicographical order, 
we arrive at the state-space representation

(D + S + M∂t) f = q′. (A.9)

The order of this system is denoted by N and it is typically very large for real-world 3D problems (millions or even a billion 
of unknowns is not uncommon).

In the above representation, the spatial differentiation matrix is given by

D =
[

0 Dh
De 0

]
, (A.10)

with

Dh =
⎡
⎣ 0 Ẑ ⊗ IN y ⊗ INx+1 −INz ⊗ Ŷ ⊗ INx+1

−Ẑ ⊗ IN y+1 ⊗ INx 0 INz ⊗ IN y+1 ⊗ X̂

INz+1 ⊗ Ŷ ⊗ INx −INz+1 ⊗ IN y ⊗ X̂ 0

⎤
⎦ (A.11)

and

De =
⎡
⎣ 0 −Z ⊗ IN y+1 ⊗ INx INz+1 ⊗ Y ⊗ INx

Z ⊗ IN y ⊗ INx+1 0 −INz+1 ⊗ IN y ⊗ X
−INz ⊗ Y ⊗ INx+1 INz ⊗ IN y+1 ⊗ X 0

⎤
⎦ , (A.12)

and ⊗ is the Kronecker (tensor) product. Furthermore, the medium matrix S is given by

S =
[

Mσ 0
0 0

]
, (A.13)

where Mσ is a diagonal semi-positive definite matrix with (averaged) conductivity values on its diagonal. The medium 
matrix M is given by
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M =
[

Mε 0
0 Mμ

]
(A.14)

and both Mε and Mμ are diagonal and positive definite medium matrices with averaged permittivity and permeability values 
on their diagonal. The field vector is of the form

f = [eT
x ,eT

y ,eT
z ,hT

x ,hT
y ,hT

z ]T , (A.15)

where all field quantities are stored in lexicographical order in the corresponding field vectors ei and hi , i = x, y, z. Finally, 
the finite-difference approximations of the external sources are stored in the source vector

q′ = −[jext;T
x , jext;T

y , jext;T
z , kext;T

x , kext;T
y , kext;T

z ]T . (A.16)

Premultiplying Eq. (A.9) by the inverse of the medium matrix M, we arrive at

(A + I∂t) f = M−1q′, (A.17)

where we have introduced the system matrix as

A = M−1(D + S). (A.18)

This is the system matrix for instantaneously reacting materials.

A.1.1. Symmetry relations
To discuss the symmetry properties satisfied by the system matrix, we first introduce the diagonal step size matrices

We =
⎡
⎣ Ŵz ⊗ Ŵy ⊗ Wx 0 0

0 Ŵz ⊗ Wy ⊗ Ŵx 0
0 0 Wz ⊗ Ŵy ⊗ Ŵx

⎤
⎦ , (A.19)

and

Wh =
⎡
⎣ Wz ⊗ Wy ⊗ Ŵx 0 0

0 Wz ⊗ Ŵy ⊗ Wx 0
0 0 Ŵz ⊗ Wy ⊗ Wx

⎤
⎦ . (A.20)

Using the symmetry relation of Eq. (A.8) (and the corresponding relations in the x- and z-directions), it is now easily verified 
that

DT
h We = −WhDe and DT

e Wh = −WeDh. (A.21)

Furthermore, with

W =
(

We 0
0 −Wh

)
(A.22)

we also have

DT W = WD, (A.23)

which leads to the symmetry property

AT W̃ = W̃A with W̃ = MW = WM = W̃T . (A.24)

This symmetry property is related to reciprocity as shown in [18].

A.2. Dispersive media

Loosely speaking, the main difference in setting up the semidiscrete Maxwell system for dispersive media is the presence 
of the polarization vectors P and U in the field equations. These vectors are only active at points where a dispersive material 
is present. From a storage point of view, it is therefore advantageous to only keep the finite-difference approximations of P
and U at these points in memory. Since the polarization is related to the electric field strength and electric field strength 
approximations are defined over the total computational domain, we need to introduce support matrices to implement the 
local dispersion relations. To this end, we define selection or logical projection matrices, which select the relevant electric 
field strength components from the total electric field vector. For example, if Isup

y is the support matrix of a dispersive mate-
rial in the y-direction and ey contains all finite-difference approximations of the y-component of the electric field strength, 
then the vector Isup

y ey contains only those y-components of E y located within the dispersive material. An illustration of 
how the support matrix is constructed is shown in Fig. 8.
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Isup =
(

0 0 1 0 0
0 0 0 1 0

)
(A.26)

Fig. 8. Construction of a support matrix. Grid points y2 and y3 are within the dispersive medium and thus y2, y3 ∈ �sup. The rows of Isup are the basis 
vectors of �sup expressed in the basis vectors of �DOI.

Using this definition of the support matrices, the constitutive relation of Eq. (3) relating the electric and polarization 
fields to each other can be implemented in a straightforward manner. For example, for the y-component of Eq. (3) we have

B3,y∂tuy + B2,yuy − B1,ypy + B0,y Isup
y ey = 0, (A.25)

where the matrices B{0,1,2,3},y are diagonal matrices with (averaged) medium values β{0,1,2,3} on their diagonal.
Using the Yee grid introduced earlier, approximating the partial derivatives by two-point finite-difference formulas, and 

arranging the unknowns in lexicographical order, we now again arrive at the state-space representation

(D + S + M∂t) f = q′. (A.27)

In this equation, the spatial differentiation matrix is given by

D =

⎡
⎢⎢⎣

0 0 0 Dh
0 0 0 0
0 0 0 0

De 0 0 0

⎤
⎥⎥⎦ , (A.28)

where Dh and De are given by Eqs. (A.11) and (A.12), respectively.
Furthermore, matrix S is given by

S =

⎡
⎢⎢⎣

0 0 −Isup;T 0
0 0 I 0

B0Isup −B1 B2 0
0 0 0 0

⎤
⎥⎥⎦ , (A.29)

where B{0,1,2} are diagonal matrices only defined on the support of the dispersive media. In addition, Isup is the total support 
matrix and the medium matrix M is given by

M =

⎡
⎢⎢⎣

Mε 0 0 0
0 I 0 0
0 0 B3 0
0 0 0 Mμ

⎤
⎥⎥⎦ , (A.30)

where B3 is again a dispersion matrix and both Mε and Mμ are diagonal and positive definite medium matrices with 
averaged permittivity and permeability values on their diagonal. The field vector is now of the form

f = [eT
x ,eT

y ,eT
z ,pT

x ,pT
y ,pT

z ,uT
x ,uT

y ,uT
z ,hT

x ,hT
y ,hT

z ]T , (A.31)

where all field quantities are stored in lexicographical order in the corresponding field vectors ei , pi , ui , and hi , i = x, y, z. 
Finally, the finite-difference approximations of the external sources are stored in the source vector

q′ = −[jext;T
x , jext;T

y , jext;T
z ,0,0,0,0,0,0, kext;T

x , kext;T
y , kext;T

z ]T . (A.32)

A.2.1. Symmetry relations
The system matrix for media exhibiting relaxation is given by

A = M−1(D + S). (A.33)

To discuss its symmetry properties, we introduce the matrix

W =

⎡
⎢⎢⎣

We 0 0 0
0 Wp 0 0
0 0 −Wu 0
0 0 0 −W

⎤
⎥⎥⎦ (A.34)
h
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and We and Wh as defined in Eqs. (A.19) and (A.20). Furthermore, Wu and Wp are given by

Wu = B−1
0 IsupWeIsup;T and Wp = B1Wu = B1B−1

0 IsupWeIsup;T . (A.35)

It is now easily verified that the system matrix satisfies the symmetry relation

AT W̃ = W̃A with W̃ = MW = WM = W̃T , (A.36)

which is similar in form to the symmetry relation for instantaneously reacting media. Equation (A.36) can be exploited in a 
Lanczos-type algorithm to efficiently construct a basis of a Krylov subspace generated by the system matrix A.
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