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Abstract
We consider the MRI physics in a low-field MRI scanner, in which permanent magnets are used to generate a magnetic 
field in the millitesla range. A model describing the relationship between measured signal and image is derived, resulting 
in an ill-posed inverse problem. In order to solve it, a regularization penalty is added to the least-squares minimization 
problem. We generalize the conjugate gradient minimal error (CGME) algorithm to the weighted and regularized least-
squares problem. Analysis of the convergence of generalized CGME (GCGME) and the classical generalized conjugate 
gradient least squares (GCGLS) shows that GCGME can be expected to converge faster for ill-conditioned regularization 
matrices. The �p-regularized problem is solved using iterative reweighted least squares for p = 1 and p =

1

2
 , with both 

cases leading to an increasingly ill-conditioned regularization matrix. Numerical results show that GCGME needs a sig-
nificantly lower number of iterations to converge than GCGLS.

Keywords  Conjugate gradient method · Regularization · Iterative reweighted least squares · Magnetic resonance 
imaging · Low-field MRI · Halbach cylinder · Image reconstruction

1  Introduction

In low-field magnetic resonance imaging (MRI), magnetic 
field strengths in the millitesla (mT) range are used to 
visualize the internal structure of the human body. In tra-
ditional MRI scanners, magnetic field strengths of several 
tesla are the norm. While these high-field MRI scanners yield 
images of excellent quality, their cost, size and infrastructure 
demands make them unattainable for developing countries. 
Therefore, the design of low-field MRI scanners is of great 
clinical relevance. This research is part of a project that aims 
toward creating an inexpensive low-field MRI scanner using 
a Halbach cylinder that can be used for medical purposes. A 
Halbach cylinder is a configuration of permanent magnets 
that generates a magnetic field inside the cylinder and a 
very weak, or in the ideal case, no magnetic field outside of 

it. Imaging can be done by making use of the variations in 
the magnetic field. However, the resulting reconstruction 
problem is very ill-posed. This is due to the nonlinearity 
of the magnetic field inside the Halbach cylinder that we 
consider. This field leads to non-bijective mappings and 
potentially gives rise to aliasing artifacts in the solution. 
Additionally, in the center of the cylinder, there is very little 
variation in the field, limiting the spatial resolution in that 
area. Another complication we face is low signal-to-noise 
ratios. Nevertheless, in a similar project, Cooley et al. [6] have 
shown that it is possible to reconstruct magnetic resonance 
images given signals obtained with a device based on a Hal-
bach cylinder, using a simplified signal model in which simi-
lar assumptions are made as in high-field MRI. In this paper, 
we revisit the underlying physics and formulate the general 
signal model for MRI without making these assumptions.
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Regularization is required to limit the influence of 
noise on the solution of the image reconstruction prob-
lem as much as possible. In this paper, we reformulate the 
weighted and regularized least-squares problem such that 
the conjugate gradient minimal error (CGME) method (see 
for example [2]) can be used to solve it for nontrivial covar-
iance and regularization matrices, filling a gap in existing 
literature as far as we know. We do this by deriving the 
Schur complement equation for the residual. A similar 
approach is taken by Orban and Arioli [25] to derive gen-
eralizations of the Golub–Kahan algorithm. Using these 
algorithms, they formulate generalizations of LSQR, Craig’s 
method and LSMR (see [2]) for the general regularization 
problem. We explain in which cases generalized CGME 
(GCGME) may have an advantage over generalized conju-
gate gradient least squares (GCGLS). Additionally, we apply 
GCGME to MRI data with different types of regularization.

The present paper results from our efforts to address the 
challenges of low-field MRI using advanced image process-
ing. It is interdisciplinary in nature, with an emphasis on 
image reconstruction techniques. The contributions of this 
paper include a signal model for low-field MRI that does 
not rely on any field assumptions as encountered in high-
field MRI. Also, a new generalization of the conjugate gradi-
ent method is presented for the weighted and regularized 
least-squares problem, including an analysis of when this 
generalization is expected to perform best. Although we 
focus on a low-field MRI setting, this algorithm is generally 
applicable to �p-regularized least-squares problems.

1.1 � Low‑field MRI

In magnetic resonance imaging (MRI), the internal struc-
ture of the body is made visible by measuring a voltage 
signal that is induced by time variations of the transverse 
magnetization within a body part of interest. Based on this 
measured signal, an image of the spin density � of different 
tissue types may be obtained.

To be specific, first the body part of interest is placed 
in a static magnetic field B⃗ = B0(r⃗ )⃗ix that is oriented in the 
x-direction in our Halbach measurement setup (see Fig. 1a) 
with a position-dependent x-component B0 = B0(r⃗) . A net 
magnetization

will be induced that is oriented in the same direction 
as the static magnetic field. In the above expression, 
� = 267 × 106 rad s−1 T−1 is the proton gyromagnetic ratio, 
ℏ = 1.055 × 10−34 m2 kg s−1 is Planck’s constant divided by 
2� , kB = 1.381 × 10−23 m2 kg s−2 K−1 is Boltzmann’s con-
stant, and T is the temperature in kelvin.

(1)M⃗eq = M0(r⃗ )⃗ix with M0(r⃗) =
𝛾2�2

4kBT
𝜌(r⃗)B0(r⃗)

Subsequently, a radiofrequency pulse is emitted to tip 
the magnetization toward the transverse yz-plane. After 
this pulse has been switched off (in our model at t = 0 ), 
the magnetization rotates about the static magnetic field 
with a precessional frequency � (also known as the Larmor 
frequency) given by

and will relax back to its equilibrium given by Eq. (1). Dur-
ing this process, an electromagnetic field is generated that 
can be locally measured outside the body using a receiver 
coil. This measured signal is amplified, demodulated, and 
low-pass filtered, and for the resulting signal, we have the 
signal model [23]:

where � is the domain occupied by the body part of inter-
est, T2(r⃗) is the transverse relaxation time, c(r⃗) is the so-
called coil sensitivity with amplification included, M

⟂
(r⃗, 0) 

is the transverse magnetization at t = 0 , and �� is the dif-
ference between the Larmor frequency and the demodu-
lation frequency that is used. For this demodulation fre-
quency, we take the frequency that corresponds to the 
static magnetic field at the center of our imaging domain.

Furthermore, using Eq. (2) in the expression for M0 , we 
have

and since the initial transverse magnetization M
⟂
(r⃗, 0) is 

proportional to M0(r⃗) , we can also write our signal model 
as:

where it is understood that all remaining proportional-
ity constants have been incorporated in the coil sensitiv-
ity c(r⃗) . Conventionally, the spatial dependence of � is 
ignored. Therefore, the �2 term usually does not appear in 
MRI literature. However, we incorporate it into our model 
because of the relatively large inhomogeneities in the 
magnetic field we are considering. We remark that Eq. (5) 
is a general MRI signal model, but it is more suitable for 
low-field MRI because the assumptions made for high-field 
MRI (namely, a very strong and homogeneous magnetic 
field) do not hold for low field. Ignoring T2 relaxation, the 
final signal model becomes

(2)𝜔(r⃗) = 𝛾B0(r⃗)

(3)S(t) = ∫r⃗∈�

c(r⃗)𝜔(r⃗)e−t∕T2(r⃗)M
⟂
(r⃗, 0)e−i𝛥𝜔t dr⃗,

(4)M0(r⃗) =
𝛾�2

4kBT
𝜌(r⃗)𝜔(r⃗)

(5)S(t) = ∫r⃗∈�

c(r⃗)𝜔2(r⃗)e−t∕T2(r⃗)𝜌(r⃗)e−i𝛥𝜔t dr⃗,

(6)S(t) = ∫r⃗∈�

c(r⃗)𝜔2(r⃗)𝜌(r⃗)e−i𝛥𝜔t dr⃗.
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The measurements taken in an MRI scanner consist of 
noisy samples of the signal given by Eq. (6):

where bi denotes the ith sample of the signal, measured 
at time ti . L is the number of time samples, and ei is the 
measurement error.

1.1.1 � Model‑based image reconstruction

In high-field MRI, the magnetic field is manipulated in 
such a way that Eq. (6) constitutes a Fourier transform. 
The resulting linear problem is well posed, and the image 
can be efficiently obtained using an inverse FFT. However, 
in low-field MRI, the magnetic field is usually strongly 
inhomogeneous, which prevents us from using standard 
FFT routines. Model-based image reconstruction can be 
applied instead [10].

In order to estimate �(�) , we write it as a finite series 
expansion of the form:

where �(⋅) denotes the object basis function, �j is the 
center of the jth basis function and xj are the coefficients. 
Usually, rectangular basis functions are used, in which case 
N is the number of pixels. Combining Eqs. (6) and (8) yields

where

When the basis functions are highly localized, a “center of 
pixel” approximation can be used:

Here, �x�y is the pixel size and �z is the thickness of the 
slice that is being imaged. Combining Eqs.  (7) and (8) 
yields one system of equations:

where the elements of � are described by Eq. (11). This 
problem is ill-posed due to the nature of the magnetic 
field that is present within the Halbach cylinder. As 
shown in Fig. 2, the field has a high degree of symmetry. 
The precessional frequency depends linearly on the mag-
nitude of the field, which means that several pixels will 

(7)bi = S(ti) + ei , i = 1,… , L,

(8)�(�) =

N∑
j=1

xj�(� − �j),

(9)S(ti) =

N∑
j=1

aijxj ,

(10)aij = ∫object

�(� − �j)c(�)�(�)
2e−i��(�)ti d�.

(11)aij = c(�j)�(�j)
2e−i��(�j )ti�x�y�z.

(12)� = �� + �,

correspond to the same frequency. Therefore, using only 
one measured signal, it is impossible to determine the 
contribution of each pixel to the signal. By rotating the 
object to be imaged and hence obtaining a multitude of 
different signals corresponding to different rotations of the 
same object, we plan to mitigate this problem. The same 
approach was taken by Cooley et al. [6] (Table 1). 

2 � Methodology

The model that is used to reconstruct � is given by the 
linear system of Eq. (12). We can attempt to solve for � by 
finding a solution to the least-squares problem

This can be done by applying the conjugate gradient 
method introduced by Hestenes and Stiefel in 1952 [19] 
to the normal equations

with �H denoting the Hermitian transpose of �.
The conjugate gradient method tailored to Eq. (14) was 

proposed in [19] and is usually referred to as conjugate 
gradient for least squares (CGLS). The difference with the 
standard conjugate gradient method lies in the increased 
stability of the CGLS method. A review of the literature 
reveals that this method is known by other names as well. 
In [29], Saad calls it conjugate gradient normal residual 
(CGNR), while Hanke [14] and Engl [9] use the term conju-
gate gradient for the normal equations (CGNE).

(13)min
�

1

2
‖�� − �‖2

2
.

(14)�
H
�� = �

H
�,

Table 1   Overview of the main matrices and vectors used in this 
work

N is the total number of pixels in the image and M is the total num-
ber of acquired data points. F can have an arbitrary number of 
rows, which determines the dimensionality of D

Symbol Description Dimensions

� Model matrix M × N

� Signal vector M × 1

� Noise covariance matrix M ×M

� Reweighting matrix used in IRLS ⋅ × ⋅

� Noise vector M × 1

� Regularization matrix ⋅ × N

� Identity matrix N × N

� Regularization matrix in the �
2
-regu-

larized problem
N × N

� Residual �−1(� − ��) M × 1

� Total variation operator 2N × N

� Image vector N × 1
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On the other hand, the second normal equations

can be solved using the conjugate gradient method as 
well. In the literature, this is usually called conjugate gra-
dient minimal error (CGME). However, in [1] it is called 
conjugate gradient normal error (CGNE), while [30] uses 
the term Craig’s method. It was introduced by Craig in 
1955 [7]. CGLS and CGME are discussed by Björck in [2], 
Hanke in [14] and Saad in [29]. While CGLS minimizes the 
residual � = � − �� in the �2 norm over the Krylov sub-
space �0 +Kk(�

H�,�H� − �H��0) , CGME minimizes the 
error (over the same subspace). The main drawback of this 
latter method is that, in theory, it only works for consistent 
problems for which � ∈ �(�) . This means that the method 
is of limited use for most problems in practice, because the 
presence of noise renders the system inconsistent. In [21], 
this problem is circumvented by defining an operator � 
that projects � onto the column space of � . Subsequently, 
�� = �� can be solved using CGME. The obvious disad-
vantage of this method is that �� has to be calculated 
and stored.

2.1 � Regularization of the problem

Regularization of an ill-posed problem aims to make the 
problem less sensitive to noise by taking into account 
additional information, i.e., it aims at turning an ill-posed 
problem into a well-posed one. Like many iterative meth-
ods, both CGLS and CGME have a regularizing effect if the 
iterating procedure is stopped early: keeping the number 
of iterations low keeps the noise from corrupting the result 
too much. If a large number of iterations is used, noise can 
have a very strong effect on the solution. The regulariz-
ing properties of CGLS were established by Nemirovskii in 
[24] and are discussed in [2, 9, 14], among others. CGME’s 
regularizing effect was shown by Hanke in [15]. However, 
we are interested in what Hansen [17] calls general-form 
Tikhonov regularization, i.e., adding a regularization term 
to minimization problem (13), leading to

where � is a weighting matrix, and � is a Hermitian posi-
tive definite matrix. Using a CG algorithm to solve Eq. (16) 
is a natural choice [10]. The CG method is often used to 
solve image reconstruction problems in MRI when a con-
ventional Fourier model is insufficient (see for example [11, 
27, 34]). Additionally, it is used as a building block for other 
algorithms used in MRI by Pruessman [26], Ramani and 
Fessler [28] and Ye et al. [38], among others. It is straight-
forward to generalize CGLS to regularized and weighted 

(15)��
H
� = �, � = �

H
�

(16)min
�

1

2
‖�� − �‖2

�
+

1

2
�‖�‖2

�

least-squares problems of the form of Eq. (16). In this case, 
because of the well-posedness of the resulting minimiza-
tion problem, the noise does not influence the solution as 
much as when Eq. (13) is considered and increasing the 
number of iterations does not lead to a noisier solution. In 
this paper, we will use � = �−1 , where � is the covariance 
matrix of the noise:

For our application, the noise can be considered to be 
white, which means that � = � . However, for complete-
ness, we consider the general case. In case � = � , Eq. (17) 
reduces to a minimization problem with standard Tik-
honov regularization [36]. The optimal value of the regu-
larization parameter � is usually unknown. An approach 
that is often used to find a suitable value is the L-curve 
method [16]. By taking the gradient and setting it equal 
to � , the normal equations are obtained:

Again, the conjugate gradient method can be used to 
solve Eq. (18). We will use the term GCGLS (generalized 
CGLS) to refer to the conjugate gradient method applied 
to the normal Eq. (18).

Saunders [30] extended Craig’s method, which is math-
ematically equivalent to CGME, to the regularized least-
squares problem with � = � and � = � . He introduces an 
additional variable � and considers the constrained mini-
mization problem

By defining �̃ =
√
𝜏� = � − �� , he shows that this con-

strained minimization problem is equivalent to

For every 𝜏 > 0 , 
�
�

√
��
���

�

�
= � is consistent, and 

hence, Eq. (19) can be solved using CGME. Unfortunately, 
no advantages to using CGME were found. Note that such 
a reformulization is necessary because the standard way 
of including the regularization matrix � = � , by simply 
solving the so-called damped least-squares problem

(17)min
�

1

2
‖�� − �‖2

�−1 +
1

2
�‖�‖2

�

(18)(�H
�

−1
� + ��)� = �

H
�

−1
�.

(19)
min
�,�

1

2

�����

�
�

�

������

2

subject to
�
�

√
��
���

�

�
= �.

(20)min
�

1

2
‖�� − �‖2 + 1

2
�‖�‖2.

(21)

�
�√
��

�
� =

�
�

�

�
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using CGME, is not possible, due to the inconsistency 
of the system. Reformulation of CGME for general-form 
regularization can be achieved using a Schur complement 
approach as will be shown as follows.

Again, we consider Eq. (17). We introduce the variable 
� = �−1(� − ��), and we note that ||�� − �||2

�−1
= ||�||2

�
 . 

Then, minimization problem (17) can be formulated as a 
constrained minimization problem:

and using the technique of Lagrange multipliers, we find 
that

(22)
min
�,�

1

2
||�||2

�
+

1

2
�||�||2

�

s.t. � = �
−1(� − ��)

If we eliminate � from Eq. (23), the original normal Eq. (18) 
is obtained, whereas if we assume �� is invertible and we 
subsequently eliminate � , we end up with a different set 
of equations. As mentioned before, the first option leads 
to the GCGLS method. The latter approach leads to the 
GCGME method.

2.2 � GCGLS

By applying the conjugate gradient method to Eq. (18) and 
making some adjustments to increase stability (see [2] for 
details), the GCGLS algorithm is obtained:

(23)� = �
−1(� − ��) and ��� = �

H
�.

Here, M is the total number of data points measured 
and N is the number of pixels in the image. The residual of 
the normal Eq. (18) is denoted by �k . We remark that the 
vectors on the left side can be overwritten by the vectors 
on the right. Only eight vectors have to be stored, namely 
� , � , � , � , � , �� , �� and �−1� . Note that the recursion for 
��k+1 is included to avoid an extra multiplication with � . It 
can be ignored in case � = � . In this algorithm, only three 
matrix-vector multiplications are carried out per iteration: 
��k+1 , �H�k and ��k . Additionally, one system with � has 
to be solved (if � ≠ � ). A slightly different formulation of 
the GCGLS algorithm can be found in [34].

2.3 � GCGME

If �� is invertible, � can be eliminated from Eq.  (23), 
yielding

Subsequently, � can be obtained from � as:

In [25], Arioli and Orban derive a generalization of Craig’s 
method [7] based on Schur complement (24). Below, we 
formulate a similar generalization of the CGME method 
applied to this system. We are not aware this generaliza-
tion of CGME has been formulated elsewhere.

(24)
(
1

�
��

−1
�

H + �

)
� = �.

(25)� =
1

�
�

−1
�

H
�.
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in which �max(�) and �min(�) are the largest and smallest 
eigenvalue of � , respectively. In this section, we bound the 
condition numbers of the two Schur complement matrices 
in Eqs. (18) and (24) to gain insight into when GCGME can 
be expected to perform better than GCGLS, and vice versa. 
Given two HPD matrices � and � , the following bound on 
the condition number holds:

This inequality follows from Weyl’s theorem [37], which 
states that for eigenvalues of Hermitian matrices � and 
� , the following holds:

Here, �i(�) denotes any eigenvalue of the matrix � . For 
GCGLS, we have that

and, using the following inequalities

with �max(�) the largest singular value of � , we get that

Analogously, for CGME, we have

(28)

�max(�) + �min(�)

�min(�) + �max(�)
≤ �2(� +�) ≤ �max(�) + �max(�)

�min(�) + �min(�)
.

(29)�i(�) + �min(�) ≤ �i(� +�) ≤ �i(�) + �max(�).

(30)� = �� , � = �
H
�

−1
�

(31)�max(�
H
�

−1
�) ≤ �max(�)

2

�min(�)
, �min(�

H
�

−1
�) ≥ 0,

(32)

��max(�)�min(�)

��min(�)�min(�) + �max(�)
2
≤ �2(�

H
�

−1
� + ��)

≤ ��max(�)�min(�) + �max(�)
2

��min(�)�min(�)

Here, �k is the residual of the normal Eq. (24). Note that 
the original CGME algorithm can be recovered from 
the generalized CGME algorithm given above by taking 
1

�
� = � and � = � , the zero matrix. Only seven vectors 

have to be stored, namely � , � , � , � , � , �−1� and �� . Like 
GCGLS, GCGME needs four matrix operations per itera-
tion: ��k , �H�k , �−1�k and ��−1�k . We remark that there 
is an essential difference between GCGLS and GCGME. 
GCGLS iterates for the solution vector �, and the equal-
ity �k = �−1(� − ��k) is explicitly imposed. The equality 
�k =

1

�
�−1�H�k is not enforced and is only (approximately) 

satisfied after convergence. GCGME, on the other hand, 
iterates for �k . The equality �k =

1

�
�−1�H�k is enforced, 

while �k = �−1(� − ��k) is only satisfied approximately 
after convergence.

2.4 � Convergence of GCGLS and GCGME

The convergence of the conjugate gradient method 
depends on the condition number of the system matrix. 
Again, suppose that CG is used to solve the system �� = � 
for the unknown vector � , where � is a Hermitian positive 
definite (HPD) matrix and �  is a known vector. Then, the 
following classical convergence bound holds [2]:

where �2(�) is the �2-norm condition number of � , which, 
for HPD matrices, is equal to

(26)‖� − �k‖� ≤ 2

�√
�2(�) − 1√
�2(�) + 1

�k

‖� − �0‖�,

(27)�2(�) =
�max(�)

�min(�)
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and using similar manipulations as above we obtain

These inequalities indicate that if

GCGLS can be expected to perform best, and that if

GCGME should be preferred. This latter situation may occur 
when the regularization term is minimized in the �p-norm 
with p ∈ (0, 1] , as we will discuss in the next section.

2.5 � Types of regularization

Instead of an �2-penalty, we will consider the more general 
case of an �p penalty with p ∈ (0, 2] . Then, the minimiza-
tion problem becomes

A vast literature regarding this �2�p minimization prob-
lem is available. In for example [3, 4, 20, 22], this problem 
is solved using a majorization–minimization approach. In 
this work, we will focus on the classical approach using 
iterative reweighted least squares (IRLS), also known as 
iterative reweighted norm (IRN), see for example [2], for 
solving minimization problem (37), in which GCGLS and 
GCGME can be used as building blocks. Their perfor-
mances will be compared. We choose the IRLS algorithm 
for three reasons: its simplicity, the fact that it is a well-
known technique and that in this algorithm, the regulari-
zation matrix changes in each iteration, which makes it 
especially interesting for us, because we can test whether 
GCGME indeed performs better in case Eq. (36) holds. This 
work is not meant to evaluate the performance of IRLS as 
a solver for Eq. (37), and we do not compare it with other 
methods. For completeness, however, we do mention that 
we could also have chosen to evaluate both approaches as 
a building block of the split Bregman method [12] for the 
�1-regularized problem, for example. In [4], Chan and Liang 
use CG as a building block for their half-quadratic algo-
rithm that solves Eq. (37) as well. A comparison between 
GCGLS and GCGME could be carried out in this context too.

(33)� = � , � =
1

�
��

−1
�

H

(34)

��min(�)�max(�)

��min(�)�min(�) + �max(�)
2
≤ �2(

1

�
��

−1
�

H + �)

≤ ��min(�)�max(�) + �max(�)
2

��min(�)�min(�)

(35)
𝜆max(�)𝜆min(�) ≫ 𝜆max(�)𝜆min(�) ⇔ 𝜅2(�) ≫ 𝜅2(�),

(36)𝜅2(�) ≫ 𝜅2(�),

(37)min
�

1

2
||�� − �||2

2
+

1

2
�||��||p

p
.

IRLS is an iterative method that can solve an �p-regular-
ized minimization problem by reducing it to a sequence 
of �2-regularized minimization problems. Note that for a 
vector � of length N,

so

Furthermore, � is some regularizing matrix. Note that 
Eq. (37) can be rewritten as:

where

and |��| is the element-wise modulus of �� . This is sim-
ply another instance of minimization problem (17), with 
� = �H�� . However, now � depends on � . So, when the 
kth iterate �k is known, �k+1 is found as follows:

where

This is repeated until convergence. Furthermore, in 
Eq. (43), � is a small number that is added to the denu-
merator to prevent division by zero. We will use � = 10−6 . 
We observe that in each IRLS iteration, we simply encoun-
ter an instance of minimization problem (17) again with 
�k = �H�k� , which can be solved using either GCGLS or 
GCGME. When carrying out calculations with �−1

k
 , we will 

use

Due to the sparsity-inducing property of the �p pen-
alty when p ≤ 1 (see for example [8]), �−1

k
= diag

(|��k|
)
 

will contain an increasing number of entries nearly 
equal to zero. In cases where � is an invertible matrix, 
�

−1
k

= �−1�
−1
k
(�H)−1 . When GCGME is used, we can take 

advantage of this structure, instead of calculating �k 
and working with its inverse. Moreover, when � is an 

(38)||�||p =
(

N∑
i=1

|mi|p
)1∕p

(39)||�||p
p
=

N∑
i=1

|mi|p.

(40)min
�

1

2
||�� − �||2

2
+

1

2
�||�||2

�H��
,

(41)� ∶= diag

(
1

|��|2−p
)
,

(42)�k+1 = argmin
�

1

2
||�� − �||2

2
+

1

2
�||�||2

�H�k�
,

(43)�k = diag

(
1

|��k|2−p + �

)
.

(44)�
−1
k

= diag
(|��k|2−p

)
.
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orthogonal matrix, no additional computations are nec-
essary to compute inverses.

The regularization matrix � = �H�k� will become ill-
conditioned when elements of ��k become small. There-
fore, we expect that, when combined with IRLS, GCGME 
will perform better than GCGLS for p ≤ 1 . Numerical exper-
iments are carried out to investigate this further.

2.5.1 � Different choices for p

We will minimize the following �1-regularized least-squares 
problem and the �1∕2-regularized least-squares problem 
to obtain approximations to the optimal solution � . For a 
general � , this results in the following two minimization 
problems:

and

We note that in the latter case, the objective function is 
not convex which means that the obtained solution does 
not necessarily correspond to a global minimum, see for 
example [5]. For each of these two minimization problems, 
we will consider two different regularization operators.

(45)min
�

1

2
||�� − �||2

2
+

1

2
�||��||1.

(46)min
�

1

2
||�� − �||2

2
+

1

2
�||��||1∕2

1∕2
.

2.5.2 � Regularizing using the identity matrix

First, we set � = � . In case the �1 penalty is used, the mini-
mization problem reduces to

This is known as least absolute shrinkage and selection 
operator (LASSO) regularization which was first introduced 
by Tibshirani in [35]. If the regularization parameter is set 
to a sufficiently high value, the resulting solution will be 
sparse. The same holds for the �1∕2-regularized minimiza-
tion problem:

The rationale behind choosing this type of regularization 
is the fact that the intensity of many pixels in MRI images 
is equal to 0. In both cases ( p = 1 and p = 1∕2 ), the regu-

larization matrix reduces to �k = �k = diag
(

1

|�k |2−p
)

 and 

its inverse is simply �−1
k

= �
−1
k

= diag
(|�k|2−p

)
 . This is 

especially useful for GCGME, because calculating the prod-
uct of �−1 and a vector is trivial in this case.

2.5.3 � Regularizing using first‑order differences

Additionally, we consider the case where � is a first-order 
difference matrix � that calculates the values of the jumps 
between each pair of neighboring pixels. Suppose our 

(47)min
�

1

2
||�� − �||2

2
+

1

2
�||�||1.

(48)min
�

1

2
||�� − �||2

2
+

1

2
�||�||1∕2

1∕2
.

Table 2   Overview of the 
four different minimization 
problems considered in this 
work
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Fig. 1   Low-field MRI prototype 
and numerical phantom

yyy

xxxzzz

(a) The Halbach cylinder

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Numerical phantom



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1736 | https://doi.org/10.1007/s42452-019-1670-2	 Research Article

image consists of n × n pixels. If we define the 1D first-
order difference operator �1D ∈ ℝ

n×n

the 2D first-order difference matrix is given by:

where ⊗ denotes the Kronecker product. This type of reg-
ularization is known as anisotropic total variation regu-
larization. A reason for choosing � = � is that neighbor-
ing pixels are very likely to have the same values in MR 
images. This is due to the fact that neighboring pixels tend 
to represent the same tissue. However, � is not a square 
matrix, which means that, in the �1 case, �k has to be cal-
culated explicitly and then inverted when GCGME is used. 
Although this makes regularization with first-order differ-
ences in combination with GCGME less attractive than with 
GCGLS, we do include this technique to investigate the 
relative reconstruction quality of this widely used regu-
larization method. The resulting minimization problems 
are equal to Eqs. (45) and (46) with � = �:

and

(49)�1D =

⎛
⎜⎜⎜⎜⎜⎝

1 − 1 0

0 1 − 1 0

⋱ ⋱ ⋱

0 1 − 1

0 1

⎞⎟⎟⎟⎟⎟⎠

,

(50)� =

(
�n×n ⊗ �1D

�1D ⊗ �n×n

)
∈ ℝ

2n2×n2 ,

(51)min
�

1

2
||�� − �||2

2
+

1

2
�||��||1.

(52)min
�

1

2
||�� − �||2

2
+

1

2
�||��||1∕2

1∕2
.

2.5.4 � Four different minimization problems

We will investigate all four minimization problems (47), 
(48), (51) and (52). Since the least-squares term is the same 
in all four minimization problems, the difference between 
them lies in the penalty term used, as summarized in 
Table 2. In each of the four cases, we will use both GCGLS 
and GCGME to compare their rate of convergence.

2.6 � Numerical simulations

For our simulations, we use a simulated magnetic field as 
shown in Fig. 1a. (We also have access to a measured field 
map, but it is measured on a very coarse grid, making it 
unsuitable for our purposes.) The magnetic field within 
the FoV of 14 cm by 14 cm is clearly inhomogeneous, as 
shown in Fig. 2. The magnetic field has an approximately 
quadrupolar profile. This is because the Halbach cylinder 
is designed to generate a field that is as uniform as possi-
ble. However, due to practical limitations, such as the finite 
length of the cylinder, this uniformity cannot be attained, 
leading to a quadratic residual field profile. See for exam-
ple [6, 18]. We do not use a switched linear gradient coil, 
as is done in conventional MRI. Instead, the inhomogene-
ous background field is used for readout encoding. For a 
thorough exploration of the use of non-bijective encoding 
maps in MRI, we refer to [13, 18, 31–33].

Performing slice selection in the presence of a non-
homogeneous background field is nontrivial, but this 
complication is ignored here. We assume that the entire 
measured signal originates from one slice. We simulate 
the signal generation inside the Halbach cylinder using 
Eqs. (11) and (12). The dwell time is set to �t = 5 × 10−6 , 
and the readout window is 0.5 ms, leading to 101 data 
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points per measurement. Additionally, the field is rotated 
by 5° after each individual measurement, so in order to 
cover a full circle, 72 different angles are considered. We 
note that this is similar to a radial frequency-domain tra-
jectory dataset in conventional MRI. In [18], quadrupolar 
fields are used to generate such a dataset. However, the 
field we are using is only approximately quadrupolar, so 
it is not a true radial frequency-domain trajectory experi-
ment. The system consists of 72 × 101 = 7272 equations. 
The numerical phantom of 64 × 64 pixels is shown in 
Fig. 1b, resulting in a matrix � of size 7272 × 4096 . We 
assume that the repetition time TR is long enough for 
the magnetization vector to relax back to its equilibrium. 
Also, the echo time is assumed to be so short as to make 
T2-weighting negligible.

Since the background field is almost homogeneous 
in the center, as shown in Fig. 2, we decided to place the 
object of interest in the numerical phantom off-center. 
Within a homogeneous region in the field, distinguishing 
between the different pixels is impossible. Another obsta-
cle in the reconstruction process is the fact that the back-
ground field is almost symmetrical in both the x- and the 
y-axis, potentially leading to aliasing artifacts in the lower 
half of the image (because the object of interest is placed 
in the upper half of the image). We could reconstruct by 
leaving out all the columns in matrix � corresponding to 
the pixels in the lower half of the image. Another way of 
circumventing this problem is by using several receiver 
coils with different sensitivity maps to break the symmetry 
of the problem [18, 33]. However, we choose not to take 
these approaches, so we can see how severe these artifacts 
are for the different objective functions.

The coil sensitivity c is assumed to be constant, so it is 
left out of the calculations. White Gaussian noise is added, 
so the covariance matrix � is simply the identity matrix. 
We assume an SNR of 20. The numerical experiments 
are carried out using MATLAB version 2015a. Often, CG 
is stopped once the residual is small enough. However, 

GCGLS and GCGME are solving different normal equations, 
so the residuals are different for both methods. Therefore, 
a comparison using such a stopping criterion would not 
be fair. Instead, a fixed number of CG iterations is used per 
IRLS iteration. The value of the regularization parameter � 
is chosen heuristically. The number of IRLS iterations is set 
to 10. We consider both 10 and 1000 CG iterations per IRLS 
iteration. The initial guess �0 in GCGLS (and �0 in GCGME) is 
the zero vector. During the first IRLS iteration, we set � = � , 
which means that � = �∗� . After the first IRLS iteration, we 
calculate the weight matrix � according to Eq. (43). We use 
warm starts, i.e., we use the final value of our iterate �k (or 
�k for GCGME) of the previous IRLS iteration as an initial 
guess for the next IRLS iteration.

3 � Results and discussion

Table 3 shows the parameters that were chosen for all 
four different minimization problems. The regularization 
parameter was chosen heuristically in each case.

All resulting images are shown in Fig. 3. We note that in 
all cases (except perhaps the ‖�‖1∕2

1∕2
 one), GCGME yields a 

result that resembles the original more than GCGLS does. 
GCGLS tends to yield aliasing artifacts in the lower half of 
the image. This effect is less pronounced for the GCGME 
results, especially when ‖��‖1∕2

1∕2
 is used as the penalty 

term. The objective function value is plotted as a function 
of the iteration number in Fig.  4. We see that GCGME 
attains a lower objective function value in all cases. How-
ever, both methods should in theory converge to the same 
value for the ‖�‖1 - and ‖��‖1-penalty terms. Evidently, 
GCGLS has not converged yet. If we increase the number 
of CG iterations to 1000, GCGLS and GCGME converge to 
the same result, as can be seen in Appendix B. The GCGME 
result is the same, whether 10 or 1000 CG iterations are 
carried out, which means that GCGME has already con-
verged in the first case. However, GCGLS needs a 

Table 3   Overview of the 
choice of parameters for the 
four different minimization 
problems considered in this 
work
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Fig. 3   Reconstruction results 
for the four different penalty 
terms. In all four cases, the 
GCGLS and the GCGME results 
are shown
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significantly larger number of iterations to converge. In 
case � = � , GCGLS and GCGME both need 0.069 s per itera-
tion. When � = � , GCGME needs slightly more time per 
iteration than GCGLS: 0.072 versus 0.069 s. 

3.1 � Discussion of the results

GCGLS needs a large number of CG iterations to converge, 
while for GCGME, this number is low (typically, 10 is suf-
ficient). This can be explained by the observation that as 
we get closer to the solution, many elements of the vector 
|��k|2−p will converge to zero, due to the sparsity-enforc-
ing properties of the �p penalty when p ≤ 1 . Therefore, 
�

−1
k

= diag
(|��k|2−p

)
 will contain an increasing num-

ber of very small entries, which means that the matrix 
�k = �H�k� will become more and more ill-conditioned 
as the number of IRLS iterations grows. That means that, 
after a few IRLS iterations, 𝜅2(�k) ≫ 𝜅2(�) will hold, in 
which case GCGME performs better than GCGLS, which is 
consistent with our results.

It is interesting to note that when the number of CG 
iterations for GCGLS is set to 10, GCGLS appears to have 
reached convergence after 4–5 IRLS iterations, yielding an 
image with aliasing artifacts in the form of an additional 
shape in the lower half of the image, as well as regions 
of intensity in the corners of the image. However, conver-
gence is not actually attained yet. The number of CG itera-
tions needs to be increased to a 1000 before convergence 
is reached.

We observe that the ‖��‖1∕2
1∕2

 penalty is best at repress-
ing the aliasing artifacts in the lower half of the image.

4 � Conclusion

We formulated a general MRI signal model describing the 
relationship between measured signal and image which is 
more suitable for low-field MRI because the assumptions 
that are usually made in high-field MRI do not hold here. 
The discretized version yields a linear system of equations 

Fig. 4   Objective function value 
as a function of the iteration 
number for the four different 
penalty terms. The vertical 
black lines indicate the start of 
a new IRLS iteration
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that is very ill-posed. Regularization is needed to obtain 
a reasonable solution. We considered the weighted and 
regularized least-squares problem. A second set of nor-
mal equations was derived, which allowed us to generalize 
the conjugate gradient minimal error (CGME) method to 
include nontrivial weighting and regularization matrices.

We compared our GCGME method to the classical 
GCGLS method by applying both to data simulated using 
our signal model. Different regularization operators were 
considered: the identity matrix and the anisotropic total 
variation operator that determines the size of the jumps 
between neighboring pixels. The regularization term was 
measured in the �1-norm and the � 1

2

-norm, and iterative 

reweighted least squares (IRLS) was used to solve the 
resulting minimization problems. In each IRLS iteration, an 
�2-regularized minimization problem was solved using 
GCGLS or GCGME.

GCGME converges much faster than GCGLS, due to 
the regularization matrix becoming increasingly ill-con-
ditioned as the number of IRLS iterations increases. This 
makes GCGME the preferred algorithm for our application.

Acknowledgements  We gratefully acknowledge the anonymous 
referees for their detailed comments which helped us improve our 
manuscript. We would like to express our gratitude to Peter Sonn-
eveld for useful discussions regarding Krylov methods. We also thank 
the low-field MRI team members of the Leiden University Medical 
Center, the Electronic and Mechanical Support Division (DEMO) in 
Delft, Pennsylvania State University and Mbarara University of Sci-
ence and Technology for their insight and expertise.

Funding  This research is supported by NWO-WOTRO (Netherlands 
Organization for Scientific Research) under Grant W07.303.101 
and by the TU Delft | Global Initiative, a program of the Delft Uni-
versity of Technology to boost Science and Technology for Global 
Development.

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​
iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 

appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons license, and indicate if changes were 
made.

Appendix 1: Optimality property of GCGLS 
and GCGME

Suppose we have a linear system of equations �� = � 
with solution �∗ . � is a hermitian positive definite (HPD) 
matrix. Then, at iteration k, the conjugate gradient method 
finds �k such that ||�k − �∗||

�
 , the error induced by the 

system matrix � , is minimized over the Krylov subspace 
�0 +Kk(�, � ) ∶= �0 + span{� ,�� ,�2� ,… ,�k−1�} .  T h i s 
means that, in every iteration, GCGLS minimizes

for �k − �0 ∈ Kk(�
H�−1� + ��,�H�−1�0 + ���0) .  For 

every iteration of GCGME, the following holds:

with �k − �0 ∈ Kk(�0,
1

�
��−1�H + �) . Note that GCGLS and 

GCGME minimize the same weighted combination of the 
errors in the residual and in the solution, but over different 
subspaces and under different constraints.

Appendix 2: Increasing the number of CG 
iterations per IRLS iteration

Appendix 2.1: �
1
‑penalty with � = �

See Fig. 5. 
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Appendix 2.2: �
1
‑penalty with � = �

See Fig. 6. 
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