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Aims: Automated detection of atrial fibrillation (AF) in continuous rhythm registrations is essential in order to
prevent complications and optimize treatment of AF. Many algorithms have been developed to detect AF in
surface electrocardiograms (ECGs) during the past few years. The aim of this systematic review is to gain more

Telen‘fﬂry . insight into these available classification methods by discussing previously used digital biomarkers and algo-
Machine learning . .

. rithms and make recommendations for future research.
Algorithms

Methods: On the 14™ of September 2020, the PubMed database was searched for articles focusing on algorithms
for AF detection in ECGs using the MeSH terms Atrial Fibrillation, Electrocardiography and Algorithms. Articles
which solely focused on differentiation of types of rhythm disorders or prediction of AF termination were
excluded.

Results: The search resulted in 451 articles, of which 130 remained after full-text screening. Not only did the
amount of research on methods for AF detection increase over the past years, but a trend towards more complex
classification methods is observed. Furthermore, three different types of features can be distinguished: atrial
features, ventricular features, and signal features. Although AF is an atrial disease, only 22% of the described
methods use atrial features.

Conclusion: More and more studies focus on improving accuracy of classification methods for AF in ECGs. As a
result, algorithms become increasingly complex and less well interpretable. Only a few studies focus on detecting
atrial activity in the ECG. Developing innovative methods focusing on detection of atrial activity might provide
accurate classifiers without compromising on transparency.

Classification

1. Introduction standing persistent or permanent AF. [1] As stated by Chen et al., more

comprehensive information might be obtained by describing AF burden

Accurate detection of atrial fibrillation (AF) episodes in continuous
rhythm registrations is essential in order to prevent complications and
optimize treatment of AF. However, manual analysis of continuous
rhythm registrations is time-consuming. For this reason, the amount of
research focused on automated AF detection has increased over the past
years.

Automated analysis of continuous rhythm registrations not only
helps in detecting AF for treatment considerations, but also provides
insightful data for research on the still not entirely unraveled mecha-
nisms underlying AF. Available research mainly focusses on the presence
or absence of AF in patients. Most often, differentiations in AF burden
are made using the classification between paroxysmal, persistent, long-

in terms of duration, number of episodes and/or proportion of time an
individual is in AF during a monitoring period. [2] Accurate automated
AF detection in continuous rhythm registrations is essential to acquire
these measures from long-term electrocardiogram (ECG) readings.

Already numerous methods for optimal automated AF detection in
ECGs have been proposed, making it more and more difficult to see the
wood for the trees. Instead of proposing yet another new algorithm, with
this review we aimed to provide an in-depth overview of the previously
used algorithms and identify methodological gaps which potentially can
be used to develop novel innovative AF detection algorithms.
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2. Search strategy

On the 14™ of September 2020, the PubMed database was searched
for articles focusing on algorithms for AF detection in ECG readings
using the MeSH terms Atrial Fibrillation, Electrocardiography and Algo-
rithms. Not all articles were indexed using MeSH terms, hence articles
were also included if any of these terms or their synonyms were
mentioned in the title or abstract. Additionally, title and abstract were
screened for the terms (‘detect™’ or ‘classifi*’ or ‘predict*’) and (‘accuracy’
or ‘performance’ or ‘F1’ or ‘sensitivity’ or ‘specificity’ or ‘positive predictive
value’ or ‘negative predictive value’). Full search strategy is provided in
Supplementary Appendix A. Only articles focusing on AF detection in
humans were included. Articles which solely focused on differentiation
of types of rhythm disorders or prediction of AF termination were
excluded. Additional exclusion criteria are listed in Table 1.

The search resulted in 451 articles, of which 263 were excluded
based on title and abstract. An additional 10 articles were not available
in English and of 3 records no full-text was available. As summarized in
Fig. 1, the remaining 175 full-text articles were screened for eligibility
using the inclusion and exclusion criteria. A total of 130 articles
remained after selection.

3. Study characteristics

Supplementary Appendix B lists all included studies with the used
categories of classification methods and features and the classifier ac-
curacy. As visualized in the upper panel of Fig. 2, research on methods
for AF detection has increased over the past ten years from 20 studies up
until 2009 to 108 studies up until 2019. In 2018, results from the
PhysioNet/Computing in Cardiology (CinC) Challenge 2017 caused a
strong increase in the number of studies (n = 30). [3] Most used data-
bases for development and testing of AF detection algorithms are the
Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH)
Arrhythmia Database [4,5], MIT-BIH Atrial Fibrillation Database [5,6],
MIT-BIH Normal Sinus Rhythm Database [5], and the database used in
the PhysioNet/CinC Challenge 2017 [5].

4. Classification methods for atrial fibrillation

Over the past years, not only more research has been conducted on the
development of automated detection algorithms for AF in ECGs, but also
new strategies have been applied. As visualized in the lower panel of
Fig. 2, used classification methods can be grouped into six main cate-
gories: rule-based classification, decision tree(s), k-nearest neighbor (k-
NN) classification, regression analysis, support vector machines (SVMs),
and neural networks (NNs). Whereas older studies use more straight-
forward rule-based approaches, newer studies increasingly use NNs and
SVMs, providing new ways of describing ECGs and improving the clas-
sification accuracy. In contrast to rule-based classifiers, which can be
easily interpreted, these more complex methods appear more as a ‘black
box’, hence decisions made by these classifiers are difficult to compre-
hend. Therefore, transparency and accuracy of the classifier should be
carefully balanced.

Table 1
Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Focus on automated AF detection in
human using ECG

(Clear) description of used algorithms

Reporting performance measures

Focus on differentiation of types of atrial
arrhythmias

Focus on prediction of AF termination
(Systematic) reviews

Non-English articles

AF indicates atrial fibrillation; ECG indicates electrocardiogram.
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4.1. Classification performance

A commonly used measure for accuracy of AF detection is the F1-
score, which is calculated as the harmonic mean of the recall (i.e.
sensitivity) and precision (i.e. positive predictive value). [3] The median
Fl-score of all studies was 94.0% [interquartile range (IQR): 93.1%-
97.7%]. As can be seen from several studies testing their classifier on
multiple databases, the chosen database has major influence on the
achieved performance measures. Zhou. et al. showed a positive predic-
tive value (PPV) of 92.3% for testing on the combination of the MIT-BIH
Normal Sinus Rhythm Database and MIT-BIH Atrial Fibrillation Data-
base, but a PPV of only 55.3% when testing on the MIT-BIH Arrhythmia
Database. [7] Multiple other studies show similar variations in perfor-
mance measures depending on the used testing database. [8-12]

5. Features of ECGs with AF

In general, classification methods require an input vector which
contains features describing the ECG signal. Some features are derived
from standard clinical protocols for ECG interpretation, for example P-
wave presence, regularity of QRS-complexes, QRS-width and QT-time.
Whilst these features are easy to interpret, more complex features can
be used to further analyze and describe the ECG signal. NNs do not
necessarily require preprocessing to extract features, since this method
also allows raw ECG input. [13-26]

In total, 131 feature sets were described in 130 studies, where one
study trained and validated a classifier with two different feature sets.
On the ECG, AF is visually characterized by absence of P-waves or
presence of f-waves, combined with irregular time intervals between
QRS-complexes as a result of disorganized irregular atrial impulses
activating the atrioventricular node. [1] Many studies use these char-
acteristics in their classification method. As visualized in Fig. 3, features
can be categorized into atrial features, ventricular features, and signal
features.

For the AF classifiers, atrial features mainly focus on P-wave disap-
pearance or f-wave appearance, ventricular features include mainly fea-
tures describing irregularity of intervals between subsequent R-peaks
(RR-intervals), and signal features describe further characteristics of the
signal which cannot easily be related to cardiac electrophysiological
characteristics and the clinical presentation and pathophysiology of AF
(e.g. signal quality and frequency components).

Although AF is an atrial rhythm disorder, only 29 methods (22%)
focus on atrial features while almost two third of the studies use ven-
tricular features (86 methods, 66%), as shown in Fig. 3. Also, more than
half of the studies use signal features (67 methods, 51%). More specif-
ically, 19 methods (15%) used a combination of two categories of fea-
tures; mostly ventricular features with either atrial or signal features (11
methods, 8%, and 7 methods, 5%, respectively). Only 1 method (1%)
used a combination of atrial and signal features, without including
ventricular features. A combined approach using all three categories of
features was used in 16 methods (12%). As presented in Table 2, median
F1-score was highest for classifiers focusing on ventricular features only
(96.9% [IQR: 92.9%-98.1%]).

5.1. Atrial features

The underrepresentation of atrial features can be partially attributed
to the challenging detection of atrial activity in the ECG due to relatively
low amplitudes, diversity of waveforms and signal artefacts. [27]
Therefore, especially in noisy signals, atrial activity detection is com-
plex. Still, some methods incorporate atrial features to describe P-wave
disappearance and f-wave appearance, or to describe the atrial wave
morphology in general.

5.1.1. P-wave disappearance and f-wave appearance
Being among the most prominent features of an ECG during AF,
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Fig. 1. Flowchart demonstrating selection of studies aiming to develop automated detection algorithms for atrial fibrillation (AF) in electrocardiograms (ECGs).

absence of P-waves and presence of f-waves are described by multiple
methods. In the time-domain, the number of fluctuations in the TQ-
interval is used to detect a pattern of quick changes in the atrial
signal. [28,29] In the frequency domain, f-waves mainly result in peaks
in the 4-10Hz frequency band, hence the area under the power spectral
density curve within this frequency band is compared to the total area
under the power spectral density curve as a measure of f-wave appear-
ance. [30]

5.1.2. Atrial wave morphology

Amplitude of P-waves and P-wave duration directly reflect the
electrophysiological characteristics of the atria. Furthermore, the time
interval between atrial and ventricular activity, and the number of P-
waves relative to the number of QRS-complexes provide information on
the conduction from atria to ventricles. [31] Also, the time between
P-waves is calculated as a measure of the atrial rate. [32]

Since P-waves are absent or have transformed into f-waves during
AF, extracting basic morphological features is not always straightfor-
ward. Using computer algorithms, more complex morphological fea-
tures are extracted, describing the statistics of the signal in terms of
statistical measures like root mean square (RMS)-value, variance,
skewness and kurtosis. [33,34]

5.2. Ventricular features

In contrast to the detection of atrial activity, automated detection of
ventricular activity is more straightforward due to the more pronounced
QRS-complexes in the ECG signal. Already in 1985, Pan and Tompkins
proposed a QRS detection algorithm, which is still widely used in
research. [35] In 2018, Liu et al. published a comparison between ten
common automated QRS-detectors using more than 2 million beats. [36]
From each detector, the accuracy was estimated in terms of an F1-score.
Using a dataset containing high-quality ECG signals, all algorithms
resulted in F1-scores larger than 99%. However, algorithms were highly
dependent on the signal quality, as F1-scores decreased more than 25%

when using ECG signals with the least optimal signal quality. Since
ventricular features are dependent on the detection of ventricular ac-
tivity, this relation between signal quality and detection rate has a direct
effect on the accuracy of classifiers using these features.

Common features during manual analysis of ECGs are statistics of
peak intervals, which reflect the propagation speed of cardiac activity.
Furthermore, ventricular wave morphology is described in terms of
durations and amplitudes of the QRS-complexes and T-waves. Addi-
tionally, computer algorithms are capable of processing more complex
morphological features, focusing for example on the ratio between the
amplitude of ventricular activity and atrial activity, statistical features of
QRS-complexes, and correlation between beats. [31,34] Although these
features are useful to describe the average ventricular activation in
general, methods implementing ventricular characteristics for AF
detection mainly focus on irregularity of RR-intervals, since this is an
evident feature of AF and one of the main features used in clinical
practice. Various methods to describe the variability in RR-intervals are
used, ranging from calculation of common statistics (e.g. standard de-
viation (SD)) to more complex statistics (e.g. entropy).

5.2.1. Standard deviation, coefficient of variation and RMSSD of RR-
intervals

A basic measure for variation is SD, but as pointed out by Sacha et al.
in their review concerning the interaction between heart rate and heart
rate variability, higher heart rates are associated with lower variance in
RR-intervals. [37] With increasing heart rate, RR-intervals become
smaller, hence variation in heart rate will have less effect on variation in
RR-intervals. Therefore, the SD of RR-intervals should be divided by the
average RR-interval to correct for differences in heart rate, resulting in
the coefficient of variance. [38]

Another commonly used measure for variability in RR-intervals is the
root mean square of successive differences (RMSSD). Instead of globally
analyzing the RR-intervals, this method describes the average change in
successive RR-intervals, hence this method is less prone to slowly
changing RR-intervals, which would result in a higher overall SD of RR-
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Fig. 2. A. The number of published articles on
detection of atrial fibrillation per year. The bar
chart indicates the number of published articles in a

© 95 140 o, L .
8 ¢ specific year, and the line chart shows the cumula-
> 30 120 g tive number of published articles. A steady increase
H S in the number of published articles is observed. The
% 25 100 i sudden increase in 2018 is most probably caused by
g 20 80 g_ the PhysioNet/Computing in Cardiology Challenge
S « (CinC) 2017.
S 15 60 2 B. Bar chart per period of five years demonstrating
S 10 40 g the percentage of published articles using neural
3— € networks (NN), support vector machines (SVM),
° 5 20 g rule-based classifiers, decision tree(s), regression
o - = analysis, k-nearest neighbors (k-NN) classifiers, and
'g 0 0 '© other methods. A shift in used classification
F] S & 8 8 8 8 &8 8 8§ @ &8 ¥ g @ 9 F  methods towards neural networks and support
z S o 9 9 &9 @ 9 9 8 8 8 8§ 8§ 38 g vector machines is observed. Articles published
Year before 2001 were excluded from the chart due to
the low amount of studies (n = 3).
Publications (per year) = Publications (total)
100%
: r =
& 90% e
>
g 80%
[« 8
g 70%
2
B 60%
-
3 50% -
=
- .
w 40%
o
g 30% =
$ .
(= 20% |
(]
L
o 10%
o
0%
2001-2005 2006-2010 2011-2015 2016-2020
Rule-based Decision Tree ®k-NN Regression W SVM B NN m Other

intervals. [39]

Additionally, the percentage of successive differences between RR-
intervals which differ more than a certain amount of time is used to
describe the RR-interval variability. [40] Commonly used thresholds are
5 ms, 10 ms and 50 ms, but any arbitrary threshold can be chosen.

5.2.2. Poincaré or Lorenz plots of RR-intervals

Similar to RMSSD, Poincaré or Lorenz plots are used to analyze
successive RR-intervals. [41-48] However, instead of directly calculating
a measure, the variability is visualized by plotting RR-intervals in a
two-dimensional plane where the x-axis represents an RR-interval (RR;)
and the y-axis represents the subsequent RR-interval (RR;;1), as visu-
alized in Fig. 4. During AF, when variation of successive RR-intervals is
higher compared to sinus rhythm (SR), data points are dispersed across a
larger area around the average RR-interval. Furthermore, Park et al.
show that patterns in Poincaré plots might be a useful feature to
discriminate between AF and other arrhythmias resulting in irregular
RR-intervals (e.g. premature ventricular beats). [47] Commonly used
features from this graphical representation are the SD of distances from
data points to the line perpendicular to the regression line where RR;
equals RR;;; and the SD of distances from data points to the regression
line itself.

5.2.3. Entropy measures of RR-intervals

The entropy of an RR-intervals series is another measure for the RR-
interval irregularity. We describe two common definitions of entropy:
the sample entropy and the Shannon entropy. [49] The sample entropy
is used to describe the complexity of a time series, while the Shannon
entropy expresses the amount of information or uncertainty.

The sample entropy of an RR-intervals series is defined as the
probability that two matching RR-interval series will continue to match
at the next RR-interval. [50] A match is defined as two RR-interval
segments having corresponding data points within a certain small
range, described by the tolerance factor r, as schematically visualized in
Fig. 5. When two matching RR-interval series do not continue to match
for the next RR-interval, the sample entropy increases, hence a higher
sample entropy reflects that the next RR-interval is less predictable, i.e.
indicates a higher variability of the signal.

The sample entropy is highly dependent on the tolerance factor,
since the probability of two segments of RR-intervals matching increases
with increasing tolerance factors. Therefore, Lake et al. proposed to
correct the sample entropy by subtractingln(2r). [50] Furthermore, they
observed that heart rate and sample entropy add independent infor-
mation to detect AF, hence proposed an optimization of the sample
entropy for AF detection by subtracting the natural logarithm of the
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Ventricular features (66%)
Clinical protocol features, heart rate variability, ventricular wave morphology

Atrial Fibrillation Surrogate markers

Fig. 3. Overview of the three feature categories which are used to detect atrial fibrillation in electrocardiograms. Yellow indicates ventricular features; blue indicates
atrial features; red indicates signal features. Values in the white circle represent the number of studies using features from (a combination of) feature categories.

Table 2

Fl1-score for AF detection for each set of features.
Feature groups Number of studies with F1-score Median F1-score [IQR]

(reported or calculated) [%]

Atrial features 1 [100%] 83.8%*
Ventricular features 38 [73%] 96.9% [92.9%-98.1%)]
Signal features 34 [79%] 95.2% [83.6%-98.9%]
Atrial + ventricular features 10 [91%] 85.6% [79.8%-95.5%]
Atrial + signal features 1 [100%] 88.9%*
Ventricular + signal features 6 [86%] 91.1% [77.7%-97.7%]
Atrial + ventricular + signal features 13 [81%] 81.0% [78.3%-86.7%]
Overall 103 [79%] 94.0% [83.1%-97.7%]

F1-score is calculated as the harmonic mean of recall and precision. IQR indicates interquartile range. *Only one
study, hence no IQR could be calculated.



F.J. Wesselius et al.

RR, | RR, | RR,

- »
< » H
7

- o
< L
L 8
-~

o o

—p

Computers in Biology and Medicine 133 (2021) 104404

RR; |RR,

—p || >

RR, |RR;

<>

H/—/W
® © ®

(RR;, RR)) (RR;, RR;) (RR;, RR,) (RR4, RR;) (RR;, RRg) (RR¢, RR;)

s’
S
A
N4

N

&

RR, >

Fig. 4. Schematic visualization of Poincaré or Lorenz plot of RR-intervals. RR; indicates the interval between the i-th R-peak and the subsequent R-peak.

mean RR-interval. The coefficient of the sample entropy (CoSEn) is then
defined as:

CoSEn = SampEn — In (2r> ~In (ﬁ) )]

where SampEn is the sample entropy, r is the tolerance factor, and RR is
the mean RR-interval.

Alternatively, the Shannon entropy expresses the information or
uncertainty of RR-intervals by describing the histogram of already
observed RR-intervals in a single metric. [51] When all RR-intervals are
similar (i.e. the histogram consists of one single bar), the Shannon en-
tropy equals zero. In contrast, when the variation of RR-intervals is
higher, the Shannon entropy increases, hence a higher Shannon entropy
— like the sample entropy - indicates that the next RR-interval is less
predictable, which is the case during AF.

5.2.4. Turning point ratio (TPR) of RR-intervals

A turning point (TP) of an RR-intervals series is defined as an RR-
interval which is larger or smaller than both the preceding and suc-
ceeding RR-intervals (i.e. a local maximum or minimum). The turning
point ratio (TPR) is given by dividing the total number of TP by the total
length of the RR-interval series. [11] An ECG during SR, even in seg-
ments with an increasing or decreasing heart rate, will show relatively
few turning points since RR-intervals are regular or steadily increasing

or decreasing. During AF, however, RR-intervals are irregular, hence the
TPR is expected to be higher.

5.2.5. Lyapunov exponent of RR-intervals

Lyapunov exponents describe the divergence of a system for two near
equal inputs. Starting with multiple RR-intervals within a narrow range
of values at different time points, the Lyapunov exponent is a measure
for the variation between trajectories from those points, which is
described as the mean distance between the trajectories. [40] For ECGs
during SR, the trajectories are not expected to diverge significantly,
whereas during AF, since RR-intervals are irregular, the trajectories will
show more variation, hence the Lyapunov exponent is larger.

5.3. Signal features

In addition to these easily interpretable features, more abstract signal
features describe the signal characteristics in terms of statistical mea-
sures, wavelet analysis, phase space analysis, Lyapunov exponents,
bispectral analysis, and signal quality. These features are not specifically
related to cardiac electrophysiology, but describe the signal more
fundamentally. Furthermore, NNs allow the user to input an entire fixed-
length ECG recording, after which the NN is trained to detect the most
distinctive features, which are mostly abstract and difficult to interpret.
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Fig. 5. Schematic visualization of matching used in sample entropy. Segment i is used as a template to compare with segments j, k and p. When setting the prior
window length to one RR-interval, hence comparing only the first RR-interval of the segments, all three segments match the template. However, only segments j and k
match for the next RR-interval, since RR,,; is below the tolerance range. Increasing the prior window length from one to two RR-intervals results in segment p not

matching the template, hence only segments j and k will be tested to match the next RR-interval. In this case, only segment j meets this requirement, as RRy..» is below

the tolerance range.

5.3.1. Basic signal properties and statistical measures

Signals can be described using basic signal properties and statistical
measures, including the maximum and minimum amplitude, signal
length, signal power, kurtosis, quartiles, and average value of the first
derivative with respect to time. [42,52-54] It must be noted that clas-
sification based only on these measures is not expected to be feasible,
since these features mainly describe the nature of the signal, and do not
provide information on the source of the actual signal. [54]

5.3.2. Power spectral analysis, bispectral analysis and wavelet transform

Using the Fourier transform, the frequency spectrum of the signal can
be computed by decomposing the signal into sinusoids with different
frequencies, amplitudes, and phase shifts. Whilst ECGs containing reg-
ular SR are expected to produce narrow peaks in the Fourier spectrum at
the fundamental frequency and the harmonics, due to irregularity an
ECG containing AF might show more dispersion in the Fourier spectrum.
[55]

Similar to the Fourier transform, bispectral analysis focusses on
describing the signal in terms of the frequency components. However,
with bispectral analysis the interaction between frequency components
is analyzed. [56] Therefore, an additional layer of complexity is added.
As a result, features extracted from bispectral analysis are not easily
manually interpreted.

Although the Fourier transform is conceptually relatively simple, it
has a bad trade-off between time-frequency localization; being very
localized in the frequency domain, while very non-localized in time. The
wavelet transform uses wavelets instead of sinusoids. Wavelets are
designed to have limited duration, which can be varied. Therefore, they
have an improved joint time-frequency localization. [57] Instead of
transforming the signal to the frequency domain, the signal is trans-
formed to time-frequency domain, which enables extraction of new
signal features from this domain or using the transformed signal as input
for NNs. Similar to the higher dispersion in the Fourier transform, a
higher dispersion in the wavelet power spectrum is expected to be
observed in ECGs during AF, which is mostly described in terms of
increased entropy. [58,59]

5.3.3. Phase space analysis

Instead of analyzing signals in the time and frequency domain, they
can be converted into a phase space, which describes the relation be-
tween the original signal and a delayed version of the signal. [60,61]
Similar to the Poincaré representation of RR-intervals, using a time
delay embedding a plot is generated of the signal amplitude at time t on
the x-axis and signal amplitude at time ¢t + 7 on the y-axis, where 7 is the
chosen time delay. Moreover, using more dimensions with different time
delays, even more complex relations can be described. [62] The density
of data points in the phase space can be described by segmenting the
phase space into smaller regions and counting the number of points in
each region. [60,63] In ECGs during SR, the beat-to-beat trajectories of
data points are expected to be almost similar. Therefore, data points will
be concentrated in a limited number of regions. However, during AF,
more variation might result in a larger dispersion of data points over all
regions.

5.3.4. Lyapunov exponents

Additionally to the Lyapunov exponents from the RR-intervals,
Lyapunov exponents can be calculated from the raw ECG signal. For
analysis of Lyapunov exponents from raw ECGs, the signal is trans-
formed into the phase space. [64] Next, a starting point is chosen and all
points within a set radius are detected. The distance between the tra-
jectories from all these points (“near equal inputs”) is a measure for the
divergence of the trajectories. Again, since the beat-to-beat trajectories
of the ECG signal during SR are expected to be almost similar, low
Lyapunov exponents are expected. Instead, during AF, as a result of
more variation in trajectories, higher Lyapunov exponents are more
likely to be observed.

5.3.5. Signal quality

Lastly, several methods use measures to describe the quality of the
ECG signal. Multiple measures for signal quality have been proposed.
Athif et al. describe signal quality in terms of correlation of each beat
with a template beat. [65] Instead, Shao et al. focus on the amplitudes of
isoelectric level, and Smisek et al. and Oster et al. compare outputs of
multiple QRS-complex detectors. [43,44,66]
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6. Discussion

A variety of features from ECG signals are available to describe both
atrial and ventricular activity, and general signal characteristics. Using
these features, an increasing number of studies focusses on extracting
optimal digital biomarkers for AF detection from ECGs. A trend towards
using more complex classifiers is observed, predominantly using ven-
tricular features and signal features.

6.1. Comparing AF detection algorithms

The median F1-score for AF detection was 94.0%. Since all included
studies used their own methods for detecting AF from ECGs, comparing
the performances of the different classifiers might provide useful insight
into the overall performances of classification methods. However, these
results should be interpreted with great care, since, as pointed out by
Ghodrati et al., used databases all focus on a specific group of patients.
[12] This focus results in databases which are not representative of the
entire patient population. Therefore, training a classifier using these
databases might cause the classifier to overfit, hence in clinical practice
the accuracy is lower due to, for example, differences in signal quality
and prevalence of cardiac arrhythmias. Furthermore, the prevalence of
AF in a certain database directly impacts the calculated accuracy mea-
sures, making it complex to compare classifiers which were developed
and tested using different datasets. For example, the PPV is calculated as
the percentage of AF classifications which are correct (i.e. percentage of
times the classifier concludes an ECG segment contains AF and the
reference label is AF). A higher AF prevalence inherently results in a
higher PPV since the a priori probability for an AF classification is
higher. Besides the mathematical difficulty of comparing these classi-
fiers, bias could be introduced as a result of one database containing
signals which are easier to classify (e.g. only high signal quality and only
SR and AF) and the other database containing signals in which the
classification is less straightforward (e.g. varying signal quality and
multiple arrhythmias). As pointed out earlier, multiple studies in this
review showed large variation in performance depending on the used
testing database. This relation was only demonstrated for R-peak
detection, but most likely there is an even stronger relation for detection
of atrial features as a result of the lower amplitude of P-waves. As a
result, classifier performance measures are not easily generalized and
compared when different databases are used. [3] Moreover, variation in
study aim most likely resulted in different trade-offs being made in the
classifier design. For example, detecting whether a patient has AF or
detecting the duration of AF episodes requires different approaches and
studies with these aims will therefore report incomparable performance
measures. Furthermore, not all studies use a hidden test set to determine
the classifier performance measures, and instead report performance
measures from k-fold cross-validation. In contrast to validation using a
hidden testing database, no information about the generalizability of the
classification methods is obtained using this validation method.

In 2017, the PhysioNet/CinC Challenge focused on AF detection
from a single short ECG lead recording. [3] In this challenge, all par-
ticipants used the same labeled dataset for training and validation (8528
recordings) and for testing (3658 recordings). The test set was hidden
during the challenge. Therefore, all AF detection algorithms were tested
on the same set of ECGs, eliminating the variation between datasets used
in different studies. Still, no single optimal classification method was
appointed during the challenge, potentially due to the dataset being too
small to give complex approaches an advantage. [3]

Most optimally, all studies use the same testing dataset which is
representative of a large patient population. Since this is currently not
the case, the results in Table 2, showing the F1-scores per set of feature
groups (atrial/ventricular/signal), should be interpreted with care.
However, in the included studies, classifiers using only ventricular fea-
tures seemed to result in the highest F1-scores. Most likely, this is caused
by the fact that studies on optimal features for AF detection mostly focus
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on ventricular features, hence these are more evolved than atrial
features.

6.2. Challenges in detecting atrial activity

Already in normal ECGs, a major challenge in detecting atrial activity
is the relatively low signal amplitude compared to ventricular activity.
During AF the disorganized atrial impulses do not result in a clear P-
wave, but deterioration to f-waves with an even lower signal amplitude.
Therefore, for intra-cardial mapping a more advanced method for the
detection of atrial activity using QRS-T subtraction has been described
by Salinet et al. [67] First, the QRS-complexes and T-waves are detected
in the surface ECG. Next, the QT-pattern of the intra-cardiac signals is
computed, which is then used subtract the ventricular activity from the
intra-cardiac measurements. Similarly, Rieta et al. propose three
methods to cancel out ventricular activity in intra-cardiac signals using
the surface ECG. [68] Using the first method, template matching is
applied to compute an average pattern, which is then subtracted from
the original signal. Adaptive ventricular cancellation is more complex
and aims to estimate the atrial (a(t)) and ventricular (v(t)) components
of the signal m(t), which is described by m(t) = a(t) + v(t). The surface
ECG is used as a reference for the ventricular activity. Using a filter
based on this reference signal, a(t) is estimated by minimizing the error
signal e(t) = a(t) + v(t) — V(t), where V(¢) is the filter output. Lastly,
independent component analysis aims to separate the signal into an
atrial source and ventricular source based on the assumption that the
sources are mutually independent. Although these methods are applied
to cancel out ventricular activity from intra-cardiac signals, in a similar
way, using a combination of surface ECG leads, QRS-T subtraction could
potentially be applied to improve the accuracy of atrial activity detec-
tion in surface ECGs.

Besides atrial activity being characterized by a relatively low signal
amplitude compared to ventricular activity, noise is another obstacle in
detecting atrial activity that also impacts the classification accuracy.
[36] A recent review on ECG filtering techniques to eliminate power line
interference shows that choosing the optimal filter technique is not
straightforward, since each technique has its own advantages and dis-
advantages. [69] Therefore, they propose to use hybrid noise reduction
methods which consist of combinations of multiple filtering techniques.
More research on optimal filtering techniques for atrial activity detec-
tion in ECGs might further improve the detection of atrial activity.

6.3. Limitations

Since algorithm development aims to improve classifier accuracy,
many studies solely report the performance measures of the final opti-
mized classifier, without the various alternative classifiers which were
trained and validated, but which turned out sub-optimal. This potential
publication bias might have impacted the larger picture.

6.4. Future perspectives

AF burden is an emerging risk factor for ischemic stroke. [2] The
2020 ESC Guidelines for diagnosis and management of AF use the
classification of AF with only five classes (first diagnosed, paroxysmal,
persistent, long-standing persistent, and permanent). [1] However, the
AF burden could be more accurately described using the duration,
number of episodes and/or proportion of time an individual is in AF
during a monitoring period. [2] Since manual analysis of continuous
rhythm registrations is unfeasible, new methods should focus on trans-
parent, yet accurate automated AF detection.

The current studies suggest that using only ventricular features gives
the highest accuracy. However, research reporting on atrial activity
during AF is relatively scarce. When more research is done on methods
to optimally describe atrial activity, the transparency might improve
without compromising on classifier accuracy. Although AF is an atrial
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disease, more than 75% of the methods focus on ventricular features,
signal features, or a combination of both. Whilst more complex classi-
fiers are likely to be more accurate, interpretation of the algorithms is
becoming more and more difficult due to complex feature sets and NNs
processing the signal as a ‘black box’. Less than 25% of the methods
include features which are derived directly from atrial signal, since
mainly due to suboptimal signal quality, atrial activity is difficult to
detect. This obstacle might be overcome by using advanced filtering
techniques and/or using multi-lead ECG signals, in contrast to most
methods only using a limited number of ECG leads. More specifically,
using multiple ECG leads in advanced QRS-T subtraction and noise
removal methods might facilitate more accurate detection of atrial ac-
tivity. By using atrial features, AF detection is performed closer to the
source and decisions made by AF detection algorithms might remain
more transparent.

More generally, due to differences between testing protocols of
studies and potential publication bias, comparing performance measures
of studies is not feasible. Therefore, we recommend to use a standard-
ized testing protocol for all trained and validated classifiers with a
standardized hidden testing database which contains different ECGs
with various cardiac arrhythmias and varying signal quality and lead
configurations. Currently available databases are the commonly used
PhysioNet databases. [5] However, these are not the only databases
containing large amounts of ECG data. For example, in 2019, Attia et al.
used a dataset containing 1,000,000 12-lead ECGs of more than 200,000
patients from the Mayo Clinic ECG laboratory to train a classifier to
detect patients with AF during SR. [70]

7. Conclusion

Over the past years, an increasing number of studies on AF detection
have been performed. More and more studies focus on classification
algorithms with complex features sets and non-transparent classifiers.
Although AF is an atrial disease, less than 25% of the methods include
features which are derived directly from atrial signal. Developing new
innovative methods focusing on detection of atrial activity might pro-
vide accurate classifiers without compromising on transparency.
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