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A B S T R A C T   

Impaired electrical conduction has been shown to play an important role in the development of heart rhythm 
disorders. Being able to determine the conductivity is important to localize the arrhythmogenic substrate that 
causes abnormalities in atrial tissue. In this work, we present an algorithm to estimate the conductivity from 
epicardial electrograms (EGMs) using a high-resolution electrode array. With these arrays, it is possible to 
measure the propagation of the extracellular potential of the cardiac tissue at multiple positions simultaneously. 
Given this data, it is in principle possible to estimate the tissue conductivity. However, this is an ill-posed 
problem due to the large number of unknown parameters in the electrophysiological data model. In this 
paper, we make use of an effective method called confirmatory factor analysis (CFA), which we apply to the cross 
correlation matrix of the data to estimate the tissue conductivity. CFA comes with identifiability conditions that 
need to be satisfied to solve the problem, which is, in this case, estimation of the tissue conductivity. These 
identifiability conditions can be used to find the relationship between the desired resolution and the required 
amount of data. Numerical experiments on the simulated data demonstrate that the proposed method can 
localize the conduction blocks in the tissue and can also estimate the smoother variation in the conductivities. 
The conductivity values estimated from the clinical data are in line with the values reported in literature and the 
EGMs reconstructed based on the estimated parameters match well with the clinical EGMs.   

1. Introduction 

The electrical conductivity of cardiac tissue plays an important role 
in the origin of heart rhythm disorders. It has been shown that impaired 
electrical conduction and damage of atrial tissue are related to the 
development and progression of cardiac tachyarrhythmias [1–4]. For 
example, reduced conductivity facilitates development of atrial fibril
lation, which comes with a high risk of strokes [1,2,5]. Being able to 
infer the conductivity, is important to localize the arrhythmogenic 
substrate that causes atrial fibrillation. In this paper we focus in 
particular on estimating the conductivity for atrial tissue based on epi
cardiac electrograms (EGMs). 

Tissue conductivity determines the ability of the tissue to transport 
electrical charge [6] and is related to the propagation of transmembrane 
current through the cardiac tissue. Previous research has proposed fully 
experimental methods or mathematical models to determine the con
ductivity from data, and the interested reader is referred to the reviews 
for more details [7–9]. One of the classic approaches is based on the 
cable theory, which relates the changes in the transmembrane potential 

to changes in the total ionic current and the conductivity of the tissue 
[6]. Based on this theory, bidomain models and monodomain models 
have been proposed to estimate tissue conductivity. The monodomain is 
a special case of the bidomain models which needs less model parame
ters and has been used extensively to simulate myocardiac cells [10–12] 
and nerve cells [13]. 

With the development of high resolution electrode arrays, it is 
possible to measure the transmembrane potential of the tissue at mul
tiple locations in a parallel manner [14–16]. With these high resolution 
spatial-temporal measurements, we can obtain a deeper understanding 
on the underlying structure of the tissue. In this work, we use the 
epicardial electrogram data measured using a high resolution mapping 
approach presented in [16]. However, inferring the conductivity pa
rameters from such large amount of high dimensional data by inverse 
techniques is highly challenging. It is due to many unknown model 
parameters that need to be estimated first [17] and also due to the high 
dimensionality, nonlinearity, and stochasticity of the ill-posed inverse 
problems [12]. The work in [12] proposed a forward model using a 
monodomain approach and estimated tissue conductivity from 
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measurements obtained by microelectrode arrays by solving a complex 
inverse problem. It is computationally intensive since ionic currents for 
all cells are needed to calculate the action potentials for conductivity 
estimation. To solve this problem, the authors in [18] proposed a 
compact model based on the work in [12,19] to reduce the cost for 
computing the ionic currents of all cells and used the model to estimate 
the tissue conductivity from epicardial electrograms measured by high 
resolution mapping arrays. It is based on the assumption that all cells 
generate the same stereotype action potential once activated. This 
assumption was also used in [20] to reduce the computational intensity 
in the ECG forward model. However, the work in [18] assumes that the 
anisotropy ratio is fixed everywhere in the tissue and known before 
estimating the conductivity parameters. Also, it does not explicitly make 
use of the spatial structure of the data. In this work, we do not use the 
fixed and known anisotropy ratio assumption, but estimate the anisot
ropy ratio and conductivity parameters for all cell positions jointly 
opposed to [18]. We also make use of the spatial structure of the 
multi-electrode data to improve conductivity estimation. To do so, we 
exploit the cross power spectral density matrix (CPSDM) of the EGMs 
and estimate the conductivity parameters using the CPSDM in combi
nation with confirmatory factor analysis [21] (CFA). 

CFA is a type of structural equation modelling that deals with the 
relationships between observed measurements and latent variables or 
factors [21]. With CFA, the observed measurements are intercorrelated 
and the variables or factors influence the correlations among the ob
servations. In practice, CFA is usually confined to analyze 
variance-covariance structures and the parameters in the CFA model 
(such as factor loadings, factor variances and covariances), are esti
mated to reproduce the input variance-covariance matrix. Therefore, 
estimating the parameters from the CPSDM model (such as the power 
spectral densities of the sources) can be regarded as a CFA problem. For 
earlier works using CFA to estimate the parameters of a CPSDM model, 
one can refer to [22–25]. 

To estimate the parameters in the CPSDM model, the measurement 
model must first be identified. By analyzing the identifiability conditions 
in the CFA problem, we can verify whether the solution can be obtained 
with the given amount of data. In the current application this helps to 
analyze the relationship between the resolution that can be obtained for 
conductivity estimation and the required number of electrodes. 

In order to easier satisfy the identifiability conditions in the CFA 
problem, we further propose simultaneous CFA across multiple temporal 
frequencies to estimate the tissue conductivity. This is based on the fact 
that the conductivity parameters are shared among multiple fre
quencies, which can increase the ratio between the number of equations 
and the number of unknown parameters. The proposed method also uses 
non-linear constraints to reduce the feasibility set of the parameter space 
with the prior knowledge of the parameters and thus increases the 
robustness of the estimation. The method also makes it possible to 
include constraints related to the mathematical properties of the prob
lem at hand, e.g., to guarantee the positive semidefinite property of the 
CPSDMs. 

The rest of the paper is organized as follows. In Sec. II, we introduce 
the notation used in this paper and introduce the EGM models. In Sec. 
III, we review the basic CFA theory and propose the simultaneous CFA 
for conductivity estimation and take some practical problems into ac
count to increase the robustness of the proposed method. In Sec. IV, we 
conduct conductivity estimation experiments on the simulated data and 
discuss the results. In Sec. V we apply the estimation algorithm to the 
clinical data and evaluate its performance. We draw the conclusions in 
Sec. VI. 

2. Electrogram model 

In this section, we first introduce the notation used in this paper. 
Secondly, we introduce the background knowledge of electrical propa
gation in heart tissue and the EGM model that we use. After that, we 

introduce the time-domain impulse response model for the atrial EGM 
proposed in [18] and finally propose the CPSDM model, based on the 
impulse response model for conductivity estimation. 

2.1. Notation 

We use lower-case letters for scalars, bold-face lower-case letters for 
vectors, and bold-face upper-case letters for matrices. For example, a 
matrix A can be written as A = [a1, …, am], where ai represents its ith 
column and aij represents an element of matrix A at position (i, j). The 
vector formed from the diagonal of the matrix A ∈ Cm×m is denoted as 
Diag(A) = [a11,…, amm]

T. A Hermitian positive semi-definite matrix is 
denoted as A⪰0. The Frobenius norm of a matrix is denoted as ‖ ⋅‖F. 

2.2. Electrical propagation & electrogram model 

Pacemaker cells in heart tissue can initiate and conduct impulses to 
excite neighbouring cells. These atrial cells can conduct the impulses, 
generating a spread of excitation. When a cell is excited, its trans
membrane potential increases until a threshold is reached and an action 
potential pulse is generated. 

To describe the electrical propagation in a computational model, the 
tissue is discretized into a two-dimensional grid with N regular elements 
to model N cells. We model the electrical propagation in heart tissue 
using the cable theory and the monodomain approach, which assumes 
that the intracellular and extracellular domains have equal anisotropy 
ratios. Previous research has shown that the monodomain model can be 
a good approximation for its biodomain counterpart, even if the equal 
anisotropy assumption does not hold [26–28]. Electrical propagation in 
monodomain cardiac tissue at time t is governed by the 
reaction-diffusion equation [6]: 

C
∂vn(t)

∂t
= Itm,n(t) + Ist,n(t) − Iion,n(t, vn(t)) (1)  

where vn(t) is the transmembrane potential of the nth cell, C is the 
membrane capacitance, Ist,n(t) is the stimulus current, Iion,n(t, v(t)) is the 
ionic current, and Itm,n(t) is the cell-to-cell transmembrane current per 
unit area that accounts for the spatial evolution of the action potential. 

We consider M electrodes indexed by m ∈{1, 2, …, M} that are 
positioned on the atrial area. An atrial EGM measures the changes in the 
action potential of a group of cells close to the electrode. We use rm,n to 
denote the distance between the mth electrode and the nth cell and let 

rm =

[
1

rm,0
, 1

rm,1
,…, 1

rm,N− 1

]T
. Stacking all cell potentials in a vector v(t) =

[v0(t), v1(t),…, vN− 1(t)]T , the atrial EGM at the mth electrode can be 
modelled as [18,19]. 

ym(t) =
aS− 1

v

4πσe
rT

mDσv(t), (2)  

with a the area of each grid element, σe the constant extracellular con
ductivity, Sv the cellular surface to volume ratio, and Dσ a double dif
ferentiation operator defined by [18]. 

Dσ = DxDiag(σxx)Dx + DxDiag(σxy)Dy
+DyDiag(σyx)Dx + DyDiag(σyy)Dy.

(3) 

Here, Dx and Dy are the first derivative operators. The conductivity 
vectors σxx, σyy, σxy and σyx stack the conductivity of all cells in the x- 
direction, the y-direction, and the two diagonal directions, respectively. 
For example, σxx = [σxx,0, σxx,1,…, σxx,N− 1]

T. If the tissue is homogeneous 
and isotropic, Dσ is a scaled Laplacian operator. 

Let Q =
aS− 1

v
4πσe

. Eq. (2) can then be simplified as 

ym(t) = QrT
mDσv(t). (4) 

To model the EGM with the model in (4), the action potentials of all 
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cells are needed. The reaction-diffusion equation in (1) is often used to 
calculate the action potential of the cells, but it is complicated and time- 
consuming to solve. To solve this problem, it was proposed in [18] to 
assume that all cells generate the same stereotype action potential once 
activated and used a simplified model - the impulse response model - to 
calculate the EGM. Next, we briefly introduce this model. 

2.3. Impulse response model 

Taking the cell with action potential v0(t) as reference, the action 
potential of the cell with index n is modelled as 

vn(t) = v0(t − τn) = δ(t − τn) ∗ v0(t) (5)  

where * is the convolution operator, δ(⋅) is the Dirac delta function, and 
τn is the time delay of the nth cell with respect to the reference cell. This 
implies that the action potential at cell n is modelled by a stereotype 
action potential that is only delayed compared to the reference cell. With 
τ0 for the reference cell set to τ0 = 0, the action potential of all cells can 
then be calculated as 

v(t) = δ(t) ∗ v0(t), (6)  

where 

δ(t) = [δ(t − τ0), δ(t − τ1),…, δ(t − τN− 1)]
T
. (7) 

Therefore, the atrial EGM measured by the mth electrode [ref. (4)] 
can be remodelled as 

ym(t) = QrT
mDσδ(t) ∗ v0(t). (8)  

This can be further simplified as 

ym(t) = am(t) ∗ v0(t), (9)  

with am(t) = QrT
mDσδ(t) the impulse response from all cells to the sensor 

at position m. We can see that the parameters of interest, i.e., the con
ductivities, are included in am(t). 

In addition to the atrial activity, the electrodes at the atrial area also 
measure the action potential of the ventricular cells and some noises. In 
this paper, we are only interested in the parameters of the atrial tissue 
and aim to estimate the parameters when atrial activity is present. To 
simplify the problem, the ventricular activity is not taken into account in 
the model. Uncorrelated sensor noise is always present and reflects the 
limited accuracy of a sensor. The sensor self noise of the mth electrode is 
denoted by um(t). Finally, the atrial EGM measured by the mth electrode 
is modelled as 

ym(t) = am(t) ∗ v0(t) + um(t). (10)  

Due to the convolution operator in (10), it would be more convenient to 
estimate the parameters in the frequency domain via the short-time 
Fourier transform (STFT). 

Fig. 1. Discretization of tissue. There are Mx × My electrodes placed on the 
tissue. Dividing the tissue into Mx × My areas with Zx × Zy cell groups for each 
area. Each electrode is assumed to be at the center of the area. 

Table 1 
Summary of parameters used in the experiments.  

Parameters Definition Value 

T time-frame length 1000 samples 
ovT overlapping of time-frame 50% 
fs sampling frequency 1 kHz 
C membrane capacity 1 μF/cm2 

Sv cellular surface to volume ratio 0.24 μm− 1 
σupper maximum conductivity of a cell 2 mS/cm 
σe extracellular conductivity 1.1 mS/cm  

Fig. 2. (a) Tissue with original resolution (Nx × Ny = 45 × 45); (b) Tissue with lower resolution (Nx × Ny = 15 × 15).  
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2.4. CPSDM model 

To estimate the conductivity, we first deconvolve the time domain 
model in the STFT domain. In the STFT domain, the EGM model from 
(10) can be expressed as 

ỹm(l, k) = ãm(l, k)ṽ0(l, k) + ũm(l, k) (11)  

where l is the time frame index, k is the frequency bin index, and ̃ym(l,k), 
ãm(l,k), ̃v0(l,k), and ̃um(l, k) are the STFT coefficients of ym(t), am(t), v0(t), 
and um(t), respectively. 

Stacking all electrodes in a vector, the EGM model in the STFT 
domain using vector notation is given by 

ỹ(l, k) = ã(l, k)̃v0(l, k) + ũ(l, k), (12)  

where 

ỹ(l, k) = [̃y1(l, k),…, ỹM(l, k)]T , (13)  

ũ(l, k) = [ũ1(l, k),…, ũM(l, k)]T , (14)  

and 

ã(l, k) = [QrT
1 Dσ δ̃(l, k),…,QrT

MDσ δ̃(l, k)]
T

(15)  

with 

δ̃(l, k) =
[

exp
(

− j
2πfsk

K
τ0(l)

)

,…, exp
(

− j
2πfsk

K
τN− 1(l)

)]T

. (16)  

where τn(l) represents the time delay of the nth cell with respect to the 
reference cell in the lth frame. 

The CPSDM of the EGM in the lth frame and the kth frequency is then 
given by 

Φy(l, k) = E[ỹ(l, k)ỹ(l, k)H
]

= φ(l, k)ã(l, k)ã(l, k)H
+ Φu(l, k),

(17)  

where φ(l, k) = E[̃v2
0(l, k)] is the PSD of the reference cell, and Φu(l, k) =

Diag([q1,…, qM]
T
) with the mth diagonal element qm = E[ũ2

m(l, k)] the 
PSD of the sensor self noise of the mth sensor, which is assumed to be 
uncorrelated across sensors, across time and across frequency bins. 

The unknown parameters of interest, i.e., conductivity vectors, are 
included in the spatial operator Dσ in ã(l, k) [ref. (3)]. We assume that 

Fig. 3. (a) Conductivity map; (b) Activation time 
map; (c) Examples of cell action potential; (d) Spec
tral amplitude of the reference cell; (e) Generated 
EGMs; (f) Spectral amplitudes of the EGMs. In (e), E1 
represents the EGM generated based on the reaction- 
diffusion model. E2 and E3 represent the EGM 
generated based on the impulse response model using 
the original resolution (45 × 45) and the low reso
lution (15 × 15), respectively. In (f), A1, A2 and A3 
represent the spectral amplitude of E1, E2, and E3, 
respectively.   
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the conductivity tensor is aligned along the axes and the propagation 
direction of the action potential is decomposed in the x-direction and y- 
direction. Therefore, σxy and σyx in (3) are zero vectors and Dσ is given by 

Dσ = DxDiag(σxx)Dx + DyDiag(σyy)Dy. (18)  

The ratio of the conductivity in the y-direction and the conductivity in 
the x-direction is called the anisotropy ratio. We denote the anisotropy 
ratio at the nth cell position as αn and stack the anisotropy ratios at all 
cell positions as a vector α = [α0,α1,…, αn− 1]

T. Let σxx = σ, then the 
operator Dσ now can be calculated as 

Dσ = DxDiag(σ)Dx + DyDiag(α)Diag(σ)Dy. (19) 

For isotropic tissue, the anisotropy ratio is fixed to α = 1. 

2.5. Problem formulation 

The goal of this paper is to estimate the parameters σ and α, using 
only the noisy CPSDMs Φy(l, k) estimated from the EGMs and possibly 
having an initial estimates of φ(l, k), the activation time τn, and/or Φu(l, 
k). 

To solve the problem, the number of knowns should be larger than 
the number of unknowns. The number of knowns depends on the 
number of electrodes. Given a certain number of electrodes, the number 
of unknowns depends on the chosen spatial resolution. In addition to 
estimating the conductivity, we also like to analyze the relation between 
the number of electrodes and the resolution that we can obtain. This can 
be achieved with the help of CFA, which we will introduce in the next 
section. To simplify the notation, we will neglect the indices of time 
samples, frequency bins and time-frames wherever possible. 

3. Confirmatory factor analysis 

In this section, we first review the CFA problem for parameter 

estimation and the identifiability conditions. Then, we adapt the CFA 
formulation to our problem and introduce the parameter estimation 
problem in the CPSDM model. To easier satisfy the identifiability con
ditions, we further propose simultaneous CFA, which estimates the pa
rameters across multiple temporal frequencies. Practical considerations 
are also discussed at the end of this section. 

3.1. The general CFA problem 

CFA methods have been proposed to estimate the parameters of the 
following model [21–24]: 

Φy = AΦAH + Φu ∈ CM×M (20)  

where Φy is an M × M variance-covariance matrix of the measurements, 
A is an M × r matrix of unknown factor loadings, Φ is an r × r variance- 
covariance matrix of the r common factors, and Φu is an M × M variance- 
covariance matrix of the residuals. The factors and the residues are 
assumed to be uncorrelated. The residues are also assumed to be 
mutually uncorrelated, i.e., Φu = Diag([q1,…, qM]

T
). As an example, in 

[25], CFA is used to jointly estimate the parameters in the 
multi-microphone signal model, and the matrices Φy, Φ, and Φu are 
interpreted as the CPSDMs of the noisy signals of M microphones, the r 
sources, and the noises, respectively, while A was used in [25] to model 
the early relative acoustic transfer functions of the sources with respect 
to the microphones. In the current work, we assume a single source, i.e., 
the action potential v0 of the reference cell as introduced in (5), and 
therefore, r = 1 and Φ = φ [ref. (17)]. The matrices Φy and Φu are the 
CPSDMs of the EGMs and the sensor self noises, respectively, and A 
models the transfer function of the source, which describes the propa
gation from a source (reference) cell to the electrode. 

CFA can be used to calculate the parameters in (20) using the 
following constrained optimization problem  

Fig. 4. Estimation errors of conductivity parameters when fmax = 1, 10, …, 100 for different resolutions for different types of tissue, respectively. (a) The anisotropy 
ratio α is known. (b) The anisotropy ratio α is unknown and both σ and α are estimated. For the anisotropic tissue examples (iii), (iv), and (v), we calculate the 
average estimation errors in the longitudinal and the transverse directions and then plot the average values in the figures. 

Â, Φ̂, Φ̂u = arg min
A,Φ,Φv

F(Φ̂y ,Φy)s.t. Φy = AΦAH + Φu ∈ CM×M ,Φu = Diag([q1,…, qM ]
T
), qm ≥ 0,m = 1,…,M,Φ⪰0, aij = âij,∀(i, j) ∈ 𝒯 ,φi′ j′

= φ̂i′ j′ ,∀(i
′

, j
′

) ∈ 𝒦. (21)   
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Fig. 5. The subfigures in each row from the first to the sixth represent the real conductivity map, the estimated conductivity map when R = 1.8 with fmax = 1, R = 1.8 
with fmax = 100, R = 2.25 with fmax = 100, R = 3 with fmax = 100, R = 4.5 with fmax = 100 assuming the anisotropy ratio is known, and the last subfigure shows the 
conductivity map estimated without knowing the anisotropy ratio when R = 4.5 with fmax = 100, respectively. (a) Conductivity maps for tissue types (i)/(ii)/(iii). (b) 
Longitudinal (L) and transversal (T) conductivity maps for tissue types (iv)/(v). 
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where F(Φ̂y ,Φy) is a cost function such as the maximum likelihood, least 
square, or generalized least square, and where the constraints are used 
to incorporate model knowledge, for example the a priori knowledge 
from (20) and incorporating the knowledge that Φ is positive definite, 
and Φu is diagonal and positive definite. In addition, constraints can be 
put on the elements of A and Φ. This is expressed by the last two con
straints in (21). In these constraints 𝒯 and 𝒦 are the sets of the selected 
row-column index-pairs of the matrices A and Φ, respectively, with their 
elements aij and φi′ j′ fixed to some known constants âij and φ̂i′ j′ . Note 
that the problem in (21) is not convex and may have multiple local 
minima. 

There are two necessary conditions for the parameters of the CPSDM 
model to be uniquely identifiable. The first identifiability condition is that 
the number of equations should be larger than the number of unknowns. 
Therefore, some of the elements in A and Φ are often fixed to make the 
remaining variables uniquely identifiable. 

For guaranteeing unique identifiability, the first identifiability condi
tion is not enough and the second identifiability condition is needed. For 
any arbitrary non-singular matrix T ∈ Cr×r, we have Φy(A, Φ, Φu) =
Φy(AT− 1, TΦTH, Φu) so that 

F(Φ̂y,A,Φ,Φu) = F(Φ̂y,AT− 1,TΦTH ,Φu). (22)  

Therefore, there are infinite optimal solutions to the CFA problem in 
(21). Because there are r2 variables in T, the second identifiability condi
tion of the CPSDM model in (20) is that we need to fix at least r2 pa
rameters in A and Φ, i.e. 

|𝒯 | + |𝒦| ≥ r2. (23)  

This condition is necessary but not sufficient. Because we need to fix the 
proper parameters and not just any r2 parameters such that the only 
possible matrix T is T = I. 

By analyzing the identifiability conditions in the CFA problem, we 
can determine the resolution that we can obtain with a given number of 
electrodes. In the following we will formulate the CFA problem for 
conductivity estimation and propose the simultaneous CFA for the 
robust estimation of the conductivity with some practical 
considerations. 

3.2. CFA problem for conductivity estimation 

Estimating parameters from the EGM CPSDM model in (17) from 
Section II-D can be regarded as a special case of the general CFA prob
lem. To simplify the problem, we fix the PSD of the reference cell φ by a 
known constant φ̂, based on the action potential model of a cell. For the 
reference cell we set τ0 = 0. We estimate the activation times τn of the 
cells using the steepest descent approach [29]. With this approach, the 
activation time of the cells under the electrodes are determined using the 
steepest descent method followed by interpolation of the activation time 
for other cells. With this prior knowledge, we propose the following CFA 
problem formulation for the conductivity estimation at a particular 
frequency band (For ease of notation the frequency index is left out): 

min
σ,α,Φu

F
(

Φ̂y,Φy

)

s.t. Φy = ãφãH
+ Φu ∈ ℂM×M ,

ã =
[
QrT

1 Dσ δ̃,…,QrT
MDσ δ̃

]T
∈ ℂM×1,

Dσ = DxDiag(σ)Dx + DyDiag(α)Diag(σ)Dy ∈ ℝN×N ,

δ̃(k) =
[

exp
(

−
j2πfsk

K
τ0

)

,…,

​ exp
(

−
j2πfsk

K
τN− 1

)]T

, ∀k ∈ Sf ,∈ ℂN×1,

Φu = Diag[q1, q2,…, qM ] ∈ ℝM×M ,

qm ≥ 0,m = 1, 2,…,M,

φ = φ̂,

α = α̂,

τ0 = 0.

(24) 

The loss function in (24) is defined using the least square cost 
function as 

F(Φ̂y,Φy)=
1
2
‖Φ̂y − Φy‖

2
F . (25)  

where ‖ ⋅‖F represents the Frobenius norm. 
Prior to solving the problem in (24), we need to analyze the number 

of knowns and unknowns in (24). We start the analysis by taking one 
frequency bin into account. Since the estimated noisy CPSDM Φ̂y is 
Hermitian symmetric, there are M(M+1)

2 known values, while there are 2 N 
unknowns due to σ and α in Dσ and M unknowns due to Φu. Therefore, 
the first identifiability condition is given by 

M(M + 1)
2

≥ M + 2N. (26) 

This means that the number of cells N for which we can determine 
the conductivity is constrained by M as N ≤ M

4 (M − 1). 
In our problem, the number of sources r = 1. According to the second 

identifiability condition, we need to impose r2 = 1 independent re
strictions on ã and φ. Since we already fixed φ, the second identifiability 
condition is satisfied. 

3.3. Simultaneous CFA in multiple frequencies 

In the previous section we considered estimation of the conductivity 
parameters σ and the anisotropy ratio parameters α observing the EGMs 
in only a single frequency band. However, note that we can assume that 
σ and α are roughly constant across different frequencies within a certain 
range. By using multiple frequency bands, we can increase the ratio of 
known-to-unknown variables, when estimating the conductivity using 
the CPSDM. This allows to estimate the conductivity of more cells using 
the same number of electrodes. This can be done by solving the 

Table 2 
Comparison of estimation error with different methods.  

Tissue type With/Without noise CMM (α is known) SCFA (α is known) SCFA (α is estimated)   

R = 1.8 R = 2.25 R = 3 R = 4.5 R = 1.8 R = 2.25 R = 3 R = 4.5 R = 1.8 R = 2.25 R = 3 R = 4.5 

type (iii) without noise 0.0862 0.0710 0.0752 0.0691 0.0402 0.0487 0.0433 0.0452 0.0483 0.0477 0.0336 0.0502  
with noise 0.0862 0.0711 0.0752 0.0691 0.0402 0.0487 0.0435 0.0452 0.0483 0.0477 0.0336 0.0502 

type (iv) without noise 0.0472 0.0461 0.0343 0.0526 0.0303 0.0173 0.0209 0.0175 0.0416 0.0299 0.0274 0.0287  
with noise 0.0472 0.0461 0.0344 0.0526 0.0303 0.0174 0.0209 0.0175 0.0421 0.0300 0.0274 0.0290 

type (v) without noise 0.1322 0.1135 0.1191 0.1172 0.0695 0.0614 0.0661 0.0631 0.1111 0.0824 0.0795 0.0791  
with noise 0.1322 0.1136 0.1192 0.1173 0.0696 0.0614 0.0661 0.0633 0.1115 0.0825 0.0795 0.0791  
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following simultaneous CFA (SCFA) problem: 

min
σ,α,{Φu(k)}

∑

∀k∈Sf

F
(

Φ̂y(k),Φy(k)
)

s.t. Φy(k) = ã(k)φ(k)ã(k)H
+ Φu(k), ∀k ∈ Sf ,

ã(k) =
[
QrT

1 Dσ δ̃(k),…,QrT
MDσ δ̃(k)

]T
, ∀k ∈ Sf ,

Dσ = DxDiag(σ)Dx + DyDiag(α)Diag(σ)Dy,

δ̃(k) =
[

exp
(

−
j2πfsk

K
τ0

)

,…,

​ exp
(

−
j2πfsk

K
τN− 1

)]T

,∀k ∈ Sf ,

Φu(k) = Diag[q1(k), q2(k),…, qM(k)],∀k ∈ Sf ,

qm(k) ≥ 0,m = 1, 2,…,M, ∀k ∈ Sf ,

φ(k) = φ̃(k), ∀k ∈ Sf ,

α = α̃,

τ0 = 0,

(27)  

where Sf = {k1, …, kN} is the set of the frequency indices for conductivity 
estimation. Using the noisy CPSDM in |Sf| frequency bands, the total 
number of knowns is |Sf |×M×(M+1)

2 and the total number of unknowns is 2 
N + |Sf| × M. The first identifiability condition is thus given by 

|Sf | × M × (M + 1)
2

≥ 2N + |Sf | × M. (28)  

Without sensor self noise, the first identifiability condition becomes 

|Sf | × M × (M + 1)
2

≥ 2N. (29) 

Comparing (28) to (26), we can see that the SCFA problem needs less 
sensors than the CFA problem to satisfy the first identifiability condition 
when |Sf| > 1. The second identifiability condition in the SCFA problem is 
also always satisfied since r = 1 and we have fixed φ(k) for all k. 

3.4. Practical considerations 

3.4.1. Over-determined & model-mismatch problem 
Increasing the ratio of the number of equations over the number of 

unknowns makes the model fit better to the measurements when 
assuming the CPSDM model is accurate enough. The number of knowns 
are determined by the number of measurement positions, i.e., the sen
sors, while the number of unknowns is determined by the resolution at 
which we would like to estimate the conductivity. At the highest reso
lution this means the number of unknowns is determined by the number 
of cells. One way to increase this ratio is by reducing the resolution at 
which we estimate the conductivity. 

Since the number of cells is large, estimating the conductivity at the 
finest resolution results in an unsolvable problem, i.e., the first identi
fiability condition in Eqs. (26) or (28) is unsatisfied. Therefore, instead 
of considering individual cells, we consider groups of cells and use the 
position of the center cell of the group to denote the position of the 
group. From now on we use the symbol N to denote the number of cell 
groups. The array that is used to measure the EGMs has electrode di
mensions Mx × My. The inter-electrode distance is constant and is 
denoted by d. The total number of electrodes is M = Mx × My. The tissue 
is first discretized into Mx × My equal square areas and each electrode is 
assumed to be at the center of the square area. Then each area is dis
cretized into Zx × Zy regular grid points. One grid point models one cell 
group. Let Nx = Zx × Mx and Ny = Zy × My, which means the total 

number of cell groups is N = Nx × Ny = Zx × Mx × Zy × My. We define the 
spatial resolution of the cells as the number of cell groups in a given 
tissue area. Then the spatial resolution of the cells for which the con
ductivity is to be obtained, i.e., the number of unknowns to be estimated, 
is equal to Nx × Ny. Let R denote the resolution scale compared to the 
number of electrodes, then R = Zx × Zy. Fig. 1 shows an example. 

Rewriting the first identifiability criterion now in terms of R, the first 
identifiability condition in (28) becomes 

|Sf | × M × (M + 1)
2

≥ 2(R×M) + |Sf | × M. (30) 

Decreasing R decreases the resolution N (increases the number of 
cells per group) and reduces the number of unknowns. However, it also 
reduces the model accuracy and increases the model-mismatch error 
compared to the conductivity of the actual cells. 

We can also increase the ratio of knowns-to-unknowns by exploiting 
the fact that the conductivity is constant over frequency and estimate the 
conductivity simultaneously over multiple frequencies as proposed in 
Section III-C. As the impact of model-mismatch problem can be different 
at different frequencies, we propose to use the frequencies that are less 
influenced by the decrease of the resolution. The measurements of the 
EGM can be regarded as the output of a low-pass filter on the heart 
tissue. Therefore, the high-frequency components of the EGM are less 
accurate than the low-frequency components and it is better to use low 
frequency components to estimate the parameters. This will be further 
investigated in Section V. 

The presented framework depends on the estimated noisy CPSDM 
Φ̂y, which we obtain using the maximum likelihood estimate Φ̂y = ỹỹH. 
Note that as this is an estimate, it also increases the model-mismatch 
error. 

3.4.2. Box constraints on the parameters 
To overcome CPSDM estimation errors and model-mismatch errors, 

we propose additional constraints on the parameters. Extra robustness 
can be achieved if the conductivities and the anisotropy ratios are box- 
constrained as σlow ≤ σ ≤ σupper and 0 < α ≤ 1, where σlow and σupper are 
real valued upper and lower bounds of conductivity, respectively. Since 
the conductivity is non-negative, we can simply set σlow = 0. For σupper, 
we select proper values based on the previous research on the conduc
tivity of atrial tissue. 

3.4.3. Solver 
The CFA problem that we propose is a non-convex optimization 

problem, which can be solved with various solvers. We used the MAT
LAB optimization toolbox and the ‘interior-point’ algorithm to solve the 
problem, which is based on a combination of the methods in [30–32]. 

4. Numerical experiments on the simulated data 

To verify the performance of the proposed method, we need the 
ground truth on the conductivity. As for clinical data, the true values of 
the physiological parameters are unknown, we perform numerical ex
periments on simulated data in this section, after which we perform 
experiments with clinical data in Sec. V. 

4.1. Data generation 

In order to generate simulation data, we need to model individual 
cells, as well as cells integrated in larger tissue. In this work, we use the 
Courtemanche model proposed in [33] to model the atrial cells and 
calculate the total ionic current. Once the cell model is implemented, we 
can couple the cells together to form the tissue. We define the tissue to be 
two-dimensional and discretized into 90 × 90 regular grid points to 
model cells with 0.02 cm cell-to-cell distance. Notice that these cells are 
actually larger than real cells, which is done to reduce the computational 
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complexity and memory requirements. To demonstrate the proposed 
algorithm under various conditions, we generate several isotropic and 
anisotropic tissues with different settings for conduction blocks, 
including:  

(i) homogeneous and isotropic tissue without areas of conduction 
block (conductivity is σn = 1.1 mS/cm for all n and α = 1);  

(ii) inhomogeneous tissue with one area of conduction block and the 
area outside the conduction block is homogeneous and isotropic 
as in (i);  

(iii) inhomogeneous tissue with two areas of conduction block and the 
area outside the conduction block is homogeneous and isotropic 
as in (i);  

(iv) inhomogeneous tissue with one area of conduction block and the 
area outside the conduction block has a smooth variation in 
conductivity, varying from 0.77 mS/cm to 1.1 mS/cm and has a 
constant anisotropic ratio αn = 0.4;  

(v) inhomogeneous tissue with two areas of conduction block and the 
area outside the conduction block has a higher variation than (iv) 
in conductivity which varies from 0.75 mS/cm to 1.3 mS/cm and 
its anisotropic ratio αn changes from 0.7 to 0.5 from left to right. 

Before the tissue is activated by a stimulus, all the cells are at the 
initial conditions specified by the Courtemanche model. Then, we apply 
an external stimulus current Ist = 200 μA to some source cells at the 
upper left corner of the tissue with duration of 0.5 ms, which triggers the 
propagation of the action potential through the tissue. By solving the 
reaction-diffusion equation in (1) using the forward Euler’s method with 
a time step of 0.05 ms, we can calculate the action potential at every 
point of the tissue. The moment when a cell’s potential reaches the 
threshold of − 40 mV is considered as the cell’s activation time. Since the 
electrical wave should not propagate further than the tissue boundaries, 
we take here into account the no-flux boundary conditions. The values of 
the other parameters that we used for the experiments are summarized 
in Table 1. 

Fig. 2(a) plots the central area of 45 × 45 cells and a 5 × 5 electrode 
array with inner-electrode distance 0.18 cm on top of this area. The 
EGMs are generated using (2). In the simulation experiments, we start 
with the case without noise added to the atrial EGM. Then, we generate 
noisy EGMs by adding Gaussian noise at 50 dB signal-to-noise ratio 
(SNR) to simulate sensor self noise. We also estimate the conductivity at 
different resolutions. As a reference, the proposed method is compared 
to the conductivity estimation method from [18]. 

4.2. Model testing 

To reduce the number of unknowns in the estimation problem, we 
consider groups of cells as we introduced in Section III-D. For example, 
we take a block of 3 × 3 initial cells as a cell (group) in our model, as 
shown in Fig. 2(b). Then we use the conductivity of the central cell of the 
block to replace the conductivity of the cell group in the low-resolution 
model. The spatial resolution of the cells to be estimated reduces from 
Nx × Ny = 45 × 45 to Nx × Ny = 15 × 15. 

As we discussed in Section III-D, a reduced spatial resolution will 
increase the model-mismatch error. For comparison, we further 

generate the atrial EGMs using the impulse response model with 
different spatial resolutions and compare the generated EGMs. Fig. 3(a) 
shows the conductivity map of the tissue, Fig. 3(b) shows the activation 
time map of the tissue, and Fig. 3(c) gives examples of the cell action 
potential v(t) and Fig. 3(d) plots the spectral amplitude of the reference 
cell, respectively. The spectral amplitude of the reference cell is used to 
calculate parameter φ in the CPSDM model. Fig. 3(e) shows the EGMs 
generated using different models and different resolutions, including 
‘E1’: the EGM generated based on the reaction diffusion model in (2) 
using the original resolution (45 × 45), ‘E2’: the EGM generated based 
on the impulse response model in (8) using the original resolution (45 ×
45), and ‘E3’: the EGM generated based on the impulse response model 
in (8) using the lower resolution (15 × 15), respectively. Fig. 3(f) shows 
the spectral amplitudes of the EGMs in Fig. 3(e). We observed that the 
generated EGMs have small differences in the morphology and 
decreasing the resolution increases the difference, as shown in Fig. 3(e). 
From Fig. 3(f) we also see that the model-mismatch error increases when 
the spatial resolution decreases, and the high frequency components are 
more affected than the low frequency components. Motivated by this, 
we use the lower frequency components rather than the higher fre
quency components as long as the identifiability conditions are satisfied. 
This can reduce the negative effect of the model-mismatch problem, 
which is unavoidable in practice. Some experiments are done as a 
function of the number of frequency components involved in the esti
mation algorithm. In that case, the number of frequency bands involved 
is increased by adding frequency bands towards the higher frequencies. 

From Fig. 3(f), we observe that the model-mismatch error is rela
tively large at 0 Hz. This is due to the assumption made in the impulse 
response model that all cells generate the same stereotype action po
tential once activated, which ignores the very small change in the 
waveform from cell-to-cell. In the experiments, we do not use the 0 Hz 
frequency component when estimating the parameters. 

4.3. Evaluation 

We estimate the conductivity at a lower resolution than what was 
used for data generation. In this way we can study the effect of the 
model-mismatch as well. We consider the resolution is R times the 
number of electrodes and set R = 1.8, R = 2.25, R = 3, and R = 4.5 by 
taking 5 × 5 cells, 4 × 4 cells, 3 × 3 cells, and 2 × 2 cells per block, 
respectively. The larger R represents the higher resolution, which im
plies a smaller model-mismatch. However, having a higher resolution 
also makes it harder to satisfy the identifiability conditions. 

We calculate the normalized mean square error (NMSE) to quantify 
the estimation performance. When the tissue is isotropic, that is, the 
longitudinal conductivity is equal to the transverse conductivity, the 
estimation error is equal in the two directions. In this case, the NMSE is 
calculated as 

Table 3 
Reconstruction errors of clinical EGMs using different methods.  

Methods Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

CMM 2.7848 2.5707 2.8315 2.9595 3.2666 
SCFA 2.6517 2.4129 2.7994 2.7911 3.0880  

Fig. 6. Examples of real and estimated activation time maps and conductivity maps. In the first row, the subfigures (iii-1)/(iii-2) show the real estimated activation 
time maps with original resolution 45 × 45 and the estimated activation time map with resolution 15 × 15 using the steepest descent method, respectively; the 
subfigure (iii-3) shows the estimated conduction velocity (CV) map; the subfigures (iii-4)/(iii-5)/(iii-6)/(iii-7) show the real conductivity map, the estimated con
ductivity map using the CMM method when the anisotropy ratio α is known, the estimated conductivity map using the proposed SCFA method when α is known, and 
the estimated conductivity map using the proposed SCFA method when α is unknown for tissue type (iii), respectively. The subfigures (iv-1)/(iv-2) and (v-1)/(v-2) 
show the real and estimated activation time maps for tissue type (iv) and (v), respectively. The subfigures (iv-3) and (v-3) show the estimated CV maps for tissue type 
(iv) and (v), respectively. The subfigures (iv-4-L)/(iv-4-T), (iv-5-L)/(iv-5-T), (iv-6-L)/(iv-6-T), and (iv-7-L)/(iv-7-T) are the real and estimated longitudinal/trans
versal conductivity maps for tissue type (iv), and (v-4-L)/(v-4-T), (v-5-L)/(v-5-T), (v-6-L)/(v-6-T), and (v-7-L)/(v-7-T) are the real and estimated longitudinal/ 
transversal conductivity maps for tissue type (v), respectively. 
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Fig. 7. An example of the estimation on clinical data. (a) Estimated activation time map. Five blue points represent five electrodes; (b) and (c) Estimated conductivity 
maps in the longitudinal and the transverse direction by the proposed SCFA method, respectively; (d) Estimated conductivity map by the CMM method; (e) Examples 
of the real (black) and the reconstructed (red/blue) EGMs at the five electrode positions marked in (a). 
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Err =
‖σ − σ̃‖2

Np
, (31)  

where Np represents the number of unknowns, σ represents the real 
conductivity and σ̃ represents its estimation. When the tissue is aniso
tropic, the longitudinal conductivity is unequal to the transverse con
ductivity. In this case, we first calculate the errors in the two different 
directions using (31) and then calculate the averaged error to evaluate 
the performance. 

To focus on the conductivity estimation, we start the evaluation with 
the case where the activation time is known and there is no sensor self 
noise. Then we evaluate the algorithm having inaccuracies in activation 
time. 

4.3.1. Assuming known activation time 
In this evaluation we first assume the anisotropy ratio is known, and 

only estimate the conductivity, and next consider the case when both α 
and σ are unknown and estimated. We use the proposed method to es
timate the parameters given different frequency bands. We denote the 
frequency band for estimation by [1, fmax] Hz and calculate the esti
mation errors when fmax = 1, 10, …, 100 for different resolutions and 
tissue types, respectively. That is, increasing |Sf| [ref. (30)] from 1 to 
100. The iterations in the algorithm stops when the change of the 
objective function is small enough. 

Fig. 4(a) and Fig. 4(b) show the estimation errors for the estimation 
where the anisotropy ratio is known and for the situation where the 
anisotropy ratio is unknown and has to be estimated, respectively. 
Comparing Fig. 4(a) and (b), we see that the algorithm still works well 
without knowing the anisotropy ratio, although its performance de
grades a little bit. We also see that the curves in Fig. 4(a) and (b) show a 
similar trend. From both figures (a) and (b), we see that for all tissue 
types the estimation error first decreases and then tends to stabilize with 
the increase of fmax in most cases. When R increases from 1.8 to 3, the 
resolution increases and the estimation error decreases, because the 
model-mismatch error gets smaller. In most of the cases, we see the 
performance degrades when R increases from 3 to 4.5. Although the 
model is more accurate when R = 4.5, it has more parameters to fit and 
this estimation problem therefore is more challenging. We also see that 
the estimation error increases when increasing the number of areas with 
conduction block, since the underlying structure of the tissue is more 
inhomogeneous and reducing the resolution of the tissue increases the 
error in the model. Moreover, when increasing fmax, the estimation error 
decreases faster for low resolution compared to a high resolution. 

Fig. 5 shows an example of the true simulated conductivity maps and 
the estimated conductivity maps given different number of frequency 
components and different resolutions for the five tissue examples (i)-(v) 
specified earlier in Section IV-A. Fig. 5(a) shows the results for tissue (i), 
(ii), and (iii), where the tissue areas outside the blocks are isotropic, i.e., 
α = 1. Fig. 5(b) shows the results for tissue (iv) and (v), where the tissue 
areas outside the blocks are anisotropic, i.e., α ∕= 1. The anisotropic ratio 
is constant in example (iv) and is spatially-varying in example (v). 
Therefore, we show in Fig. 5(b) both the longitudinal and transverse 
conductivity maps. In Fig. 5, the first column shows the real conductivity 
maps, the second to the sixth columns show the estimated conductivity 
maps for the increasing resolution with the assumption of knowing the 
anisotropy ratio, and the last column shows the conductivity maps 
estimated without knowing the anisotropy ratio. We can observe from 
the second to the sixth columns that the performance is obviously 
improved when increasing the resolution from R = 1.8 to a higher res
olution and increasing fmax from fmax = 1 to fmax = 100. We also find that 
the area of the conduction block is more accurate in the high resolution 
map. From the estimated conductivity maps of tissue type (iv) in Fig. 5 
(b), we find that the algorithm also works well when there is smooth 
variation in the conductivity maps. However, the estimated conductivity 
maps seem less accurate for more heterogeneous simulations (iv-v), 

mainly in case of non-constant anisotropy ratios and when the ratio is 
unknown. This could be a consequence of the fixed stereotype waveform 
for all cells. 

4.3.2. Having inaccuracies on the activation time 
Next, the conductivities are estimated using the activation time 

estimated from the measured EGMs instead of using the true activation 
time. They are estimated using the steepest descent approach [29], 
followed by linear interpolation to obtain a higher resolution activation 
time map for all modelled cells. We now use the proposed method (fixing 
fmax = 100) to estimate the conductivity and use the CMM method from 
[18] as a reference. With the CMM method, the activation time of the 
cells is also estimated by the steepest descent method. Note that the 
CMM method assumes the anisotropy ratio is known and constant, while 
this is not required in the proposed SCFA method. We here calculate the 
estimation error for the CMM method taking known anisotropy ratio 
into account and calculate the estimation error using the proposed 
method taking both known and unknown anisotropy ratio into account. 
We also provide the estimated local conduction velocity (CV) map [34], 
which is commonly used in the literature for analysis of conduction 
block in tissue. Note that CV does not measure the conductivity pa
rameters but only provides an estimation of the local velocity of the 
wave propagation in tissue. 

Three tissue examples (iii)-(v) specified in Section IV-A are used to 
test the estimation performance when there is no sensor self noise and 
with simulated white Gaussian sensor self noise by setting the SNR at 50 
dB. Table 2 lists the estimation error for different types of tissue obtained 
by the proposed SCFA method and the CMM method, respectively. It can 
be seen that SCFA performs better than CMM in all scenarios even when 
CMM uses the true α and SCFA estimates α, which implies that using 
spatial information of the multi-electrode data helps to improve esti
mation of the conductivity. The performance of the methods degrades a 
little bit when the EGMs are disturbed by the noise. Fig. 6 shows the real 
activation time maps, the estimated activation time maps estimated by 
the steepest descent approach followed by linear interpolation, the 
estimated conduction map, the real conductivity maps and the con
ductivity maps estimated by the CMM method with a known α and 
estimated by the SCFA method with known and estimated α when there 
is no noise. Compared to CMM, the proposed method localizes the 
conduction block more accurate and estimates the conductivities of the 
tissue regions outside the conduction blocks better. We also find that the 
higher resolution captures the underlaying structure better, which 
further results in better estimation results. The CV maps only indicate 
the fast and slow conduction areas, which are not accurate compared to 
the other two methods and cannot estimate tissue conductivity and infer 
electropathology in tissue. 

5. Experiments on clinical data 

In this section we evaluate the performance of the proposed method 
on clinical data. The data originate from epicardial EGMs measured 
from human atria during open-heart surgery using a high-resolution 
mapping approach [16]. The study protocol was approved in February 
2010 by the Medical Ethics Committee (2010-054) in the Erasmus 
Medical Center, Rotterdam, The Netherlands. A mapping array of 8 × 24 
electrodes with an inter-electrode distance of 2 mm is used for data 
collection. The array measures epicardial EGMs during sinus rhythm and 
during induced atrial fibrillation at each site. The acquired EGMs are 
amplified, filtered (bandwidth 0.5–400 Hz), sampled (1 kHz), and 
analogue to digital converted (16 bits). For more details on the mapping 
approach and the electrode array we refer to [16]. The far field artefacts 
and ventricular activities in the EGMs are cancelled using the method in 
[35]. 

Before estimating the tissue conductivity, we need to discretize tissue 
into groups of cells as introduced in Section III-D. More concretely, the 
tissue under the mapping array is first discretized into Mx × My = 8 × 24 
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equal square areas of 2 mm by 2 mm each and each area is discretized 
into Zx × Zy = 3 × 3 cell groups. Then the spatial resolution of the tissue 
is Nx × Ny = 24 × 72. Each electrode is assumed to be at the center of the 
square area. To reduce the computation cost, we took a smaller tissue 
area with 5 × 5 electrodes in each estimation and the cell groups to be 
estimated is Nx × Ny = 15 × 15. 

The activation times of the cells are estimated using the steepest 
descent approach with interpolation, similar as done in the simulated 
data. After computing the activation times of the cells, we use the pro
posed method to estimate the tissue conductivity. Since there is no 
ground truth of the tissue conductivity, we compare the estimated 
conductivity parameters to the experimentally determined conductivity 
values reported in the literature [7,36]. However, the experimental re
sults in the literature are inconsistent so far. To further demonstrate the 
performance of the proposed method, we also compare the real EGMs to 
the EGMs reconstructed using the estimated conductivity. The recon
struction error is calculated by 

Errrec =
1
M

∑M

1
‖ym − ŷm‖2, (32)  

where ym and ŷm respectively represent the real and the estimated atrial 
EGM segments during atrial activity, and ‖ ⋅‖2 represents the l2-norm of a 
vector. 

We compare the performance of the proposed method with the CMM 
method proposed in [18]. Since the anisotropy ratio is unknown and 
cannot be estimated by the CMM method, we just fix it to one as which 
has been done in [18]. Table 3 shows the reconstructed errors of the 
EGMs of five patients. We can see that the proposed method achieves 
better performance than the CMM method. We show an example of the 
estimation on the clinical data in Fig. 7. The estimated activation time 
map is plotted in Fig. 7 (a). The estimated conductivity map in the 
longitudinal and the transverse directions which are obtained by the 
proposed method are plotted in Fig. 7 (b) and Fig. 7 (c), and the esti
mated conductivity map obtained by the CMM method is plotted in 
Fig. 7 (d). Examples of the real and the reconstructed EGMs obtained by 
the proposed method and the CMM method are shown in Fig. 7 (e). In 
Fig. 7 (b), (c), and (d), the estimated conductivities outside the con
duction block vary from 0.84 mS/cm to 1.66 mS/cm, 0.38 mS/cm to 
0.95 mS/cm, and 0.48 mS/cm to 0.88 mS/cm, respectively, which are in 
line with the values reported in the literature [7,36]. From Fig. 7 (e) we 
see that the reconstructed EGMs are relatively similar to the original 
EGMs, in particular when only single deflections are present. Compared 
to the CMM method, the reconstructed EGMs fit the original EGMs 
better, which further validates the performance of the proposed method. 

6. Conclusions and discussions 

In this work we proposed to estimate the tissue conductivity using 
the cross power spectrum of the multi-electrode EGMs in combination 
with the confirmatory factor analysis (CFA). Based on the fact that the 
conductivity parameters are shared among multiple frequencies, we 
proposed the simultaneous CFA (SCFA) to estimate the parameters of 
interest in the cross power spectral density matrix model. With SCFA, we 
are able to determine the resolution that we can obtain with a given 
number of electrodes. Compared to traditional CFA, SCFA needs less 
sensors to obtain the same resolution. Experiments on simulated data 
and clinical data demonstrate that SCFA obtains good estimation of the 
tissue conductivity. 

In this work, several assumptions are made to simplify the problem, 
which comes with some limitations. For example, we assume a fixed 
stereotype waveform for all cells although the action potential wave
forms are possibly heterogeneous. For example, in the areas of 
compromised conductivity the upstroke may be slow. Also, we consid
ered two-dimensional tissue which is more appropriate for thin-walled 
tissues, and assumed the conductivity tensors are aligned along the 

axes, which cannot model the curved paths of the fibre and the diseased 
atria with potential dissociation of endo-/epicardial layer. These as
sumptions reduce the accuracy of the EGM model, but they help to 
simplify the problem and reduce the computational cost for the esti
mation. The experiments that account for both isotropic and anisotropic 
propagation also demonstrate the robustness of the proposed method. 
We would like to improve the model in the near future, taking into ac
count more realistic conditions, while reducing the computational cost 
for estimating the parameters. 

Previous research has shown that alterations of atrial conduction is 
related to multiple cardiovascular diseases, such as atrial fibrillation, 
atrial fibrosis, atrial enlargement, etc. The potential applications of this 
model can be automated detection of the areas of impaired conduction 
that possibly need to be ablated in an ablation operation to deal with 
atrial fibrillation, or staging of the abnormalities of the arrhythmias. 
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