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ABSTRACT

Enhancement algorithms are widely used to overcome the degra-

dation of noisy speech signals. Most enhancement algorithms re-

quire an estimate of the noise and noisy speech power spectra in

order to compute the gain function used for the noise suppression.

The variance of these power spectral estimates degrades the qual-

ity of the enhanced signal and smoothing techniques are therefore

often used to decrease the variance. In this paper we present a

method to determine the noisy speech power spectrum based on

an adaptive time segmentation. More specifically, the proposed al-

gorithm determines for each noisy frame which of the surrounding

frames should contribute to the corresponding noisy power spec-

tral estimate. Objective and subjective experiments show that an

adaptive time segmentation leads to significant performance im-

provements, particularly in transitional speech regions.

1. INTRODUCTION

The need for single-channel enhancement of speech signals de-

graded by noise arises frequently in mobile communication ap-

plications. Within single-channel speech enhancement the noise is

often assumed additive, i.e. y = x+n, with y the noisy speech sig-

nal, x the clean speech signal and n the noise realization. Recently,

the class of frequency domain enhancement methods have received

significant interest partly due to their relatively good performance

and low computational complexity. These methods transform the

noisy speech signal frame by frame to the spectral domain, e.g.

using a Discrete Fourier Transform (DFT). Here, complex-valued

DFT coefficients of the clean signal are estimated by applying a

gain function (e.g. the Wiener [1] or LSA gain [2]) to the noisy

DFT coefficients. Subsequently enhanced time domain frames are

generated using the inverse DFT and the enhanced waveform is

constructed by overlap-adding the enhanced frames.

Gain functions are typically computed from two quantities,

namely an estimate of the noise power spectrum and of the noisy

speech power spectrum. While the problem of estimating and

tracking the noise power spectrum in speech presence has received

significant interest recently [3], methods for accurate estimation

of the noisy speech power spectrum appear to have been less ex-

plored. Classical methods for estimating the noisy speech power

spectrum include the periodogram, computed as 1
N
|Y (f)|2, where
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Fig. 1. Noisy speech signal with frame to be enhanced. In this
example a segment consists of 5 consecutive frames.

Y (f) is the Fourier transform of the noisy speech sequence y(n).

However, this estimator suffers from a variance of var[P̂yy(f)] ∝
P 2

yy(f) [4] with Pyy the power spectrum of the noisy speech and

P̂yy its estimate. To decrease the variance of the estimated noisy

speech power spectrum, smoothing methods like Bartlett’s method

can be used [4]. These methods offer an estimated (smoothed)

power spectrum by averaging periodograms of, say K consecutive

frames, hereby decreasing the variance of the power spectrum es-

timate by a factor K [4]. However, the decrease in variance comes

with a side effect: the frequency resolution is decreased as well.

In order to apply smoothing based methods for estimation of

Pyy , smoothing must be performed within stationary segments.

Each segment may consist of a number of frames including the

frame to be enhanced, as shown in Fig. 1. In Boll’s work on spec-

tral subtraction [5], smoothing was performed across segments

consisting of 3 frames located symmetrically around the frame to

be enhanced. However, ideally, segments should vary with speech

sounds: some vowel sounds may be considered stationary up to

40-50 ms, while stop consonants may be stationary for less than 5

ms [6]. In existing enhancement systems the length of segments

is typically fixed and reflects the average stationary duration of

speech sounds, typically 20 ms. Using a fixed segment size has

two potential drawbacks. First, in signal regions which can be

considered stationary for longer time than the segment used, the

variance of the spectral estimator is unnecessarily large. Secondly,

if stationarity of the speech sound is shorter than this fixed seg-

ment size, smoothing is applied across stationarity boundaries re-

sulting in blurring of transients and of rapidly-varying speech com-

ponents [7], leading to a degradation of the speech intelligibility.

In [7] a method was presented to overcome the two described

problems using an adaptive exponential smoother. Here the amount

of smoothing was adapted to the underlying speech process by us-
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ing a measure reflecting the degree of stationarity based on spec-

tral derivatives. In this paper, we propose a different approach to

overcome the two above mentioned problems, namely by using an

adaptive time segmentation for speech enhancement. To be more

specific, the proposed method determines which noisy speech data

should contribute in the estimation of the noisy speech power spec-

trum for a given frame. The proposed algorithm is very general.

It can work as a front-end for most existing speech enhancement

systems and is independent of the particular suppression rule (e.g.

Wiener, LSA, etc.) that is used in the enhancement algorithm.

2. ADAPTIVE TIME SEGMENTATION

The segmentation algorithm we propose here is based on a proba-

bilistic framework, where segments are formed based on the out-

come of a hypothesis test. We test the hypotheses whether two

consecutive sequences of time-samples should be merged to form

one segment or not. Here we regard sequences of time samples

as an outcome of random processes and search for sequences that

are stationary to a certain degree. In particular, we will use a test

statistic based on a necessary condition for stationarity, namely

that zero-lag correlation coefficients of the random process must

remain invariant over time. This means that R[0] = E
{|y(n)|2} ,

with R[0] the energy or correlation coefficient with lag 0 should

be constant over time. Let s1 and s2 be union of speech samples

from frames i = n, ..., n + n0 − 1 and i = n + n0, ..., n + N − 1
respectively. The two hypotheses then are:

H0 : R[0] in s1 and R[0] in s2 are drawn from

the same distribution

H1 : R[0] in s1 and R[0] in s2 are drawn from different

distributions.

The decision between the two hypotheses is made based on

the following likelihood ratio test (LRT) [8],

Reject H0 if
p(R[0]|H1)

p(R[0]|H0)
> γ, (1)

with γ a decision threshold, and p(R[0]|H0) and p(R[0]|H1) the

pdf of R[0] under hypothesis H0 and H1 respectively. For a given

choice of γ, (1) is known as the Neyman-Pearson test, which max-

imizes the detection probability P (H1|H1) for a given false alarm

probability P (H1|H0). In order to apply Eq. (1), pdfs p(R[0]|H1)
and p(R[0]|H0) must be determined. We will argue that under

certain assumptions the type of those pdfs is Gaussian and use the

standard procedure of the Generalized LRT [8] and substitute un-

known pdf parameters with their maximum likelihood estimates.

2.1. Distribution of R[0]

The central limit theorem states that the normalized sum of a large

number of mutually independent random variables X1, ...,XN with

zero means and finite variances σ2
1 , ..., σ2

N tends to the normal

probability distribution provided that the individual variances σ2
n,

n = 1, ..., N are small compared to
∑N

n=1 σ2
n [9]. To determine

the distribution type of R[0] we assume that the time samples are

independent random variables (as is commonly done in speech en-

hancement [2]). Because R[0] can be estimated as

R̂[0] =
1

N

N∑

k=1

y2(n),
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Fig. 2. Segmentation algorithm based on hypothesis.

R[0] is a sum of independent random variables and it follows then

that R[0] is Gaussian distributed.

2.2. Segmentation Procedure

Knowing the distribution of R[0], we are now in a position to com-

pute the likelihood ratio given sequences s1 and s2,

p(R[0]|s1, s2, H1)

p(R[0]|s1, s2, H0)
=

p(R[0]|s1, H1)p(R[0]|s2, H1)

p(R[0]|s1, s2, H0)
.

In principle, to find for a given frame a corresponding segment, we

should perform an exhaustive search over all possible segments.

To avoid this computationally demanding full-search approach, we

propose instead a computationally simpler algorithm which simu-

lation experiments have shown to lead to the same performance

as the full search algorithm. In Fig. 2 this simplified algorithm is

described. Start with a minimum segment s1, which is assumed to

be stationary and contains the frame under consideration (shaded

area in Fig. 2). Then extend this minimum segment with one frame

at a time in an iterative process. Whether the segment should be

extended with a neighboring frame is decided using the hypothesis

test over sequence s1 and a neighboring sequence s2. We continue

this process until on both sides of s1 H0 is rejected. The final se-

quence s1 is considered as the stationary segment that can be used

for smoothing of the noisy speech power spectrum.

This segmentation algorithm can be generalized by dividing

the frequency range in sub-bands and determine a segmentation

for each band independently. However, in this case less informa-

tion is present per band to do a maximum likelihood estimation of

the mean and variance. This, in turn, means that the variance of

these estimates will be larger than in the full-band case. We ex-

pect that increasing the number of bands may be beneficial for a

small number of bands, but for larger number of bands the advan-

tage of having many bands may be overshadowed by the increased

variance of the spectral estimate in each band.

Fig. 3 shows a block scheme of the proposed segmentation al-

gorithm in combination with an enhancement algorithm. First a

noisy frame yi is divided into L frequency bands. Then for each

frequency band a segmentation is determined that is used to esti-

mate the noisy power spectrum in that band. Then a gain function

(e.g. Wiener, LSA, etc.) is calculated based on this noisy power

spectral estimate, and an estimate of the noise power spectrum,

which we assume is available. Finally, the FFT of the noisy speech
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Fig. 3. Block diagram of flexible segmented speech enhancement
system.
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Fig. 4. Example Segmentation. Thick horizontal lines: Duration
of frames. Thin horizontal lines: Corresponding segments.

frame yi is scaled by the gain function, and the enhanced frame x̂i

is computed using an IFFT.

In Fig. 4 we show the result of the above described hypoth-

esis based segmentation algorithm applied to a speech signal de-

graded by white noise at an SNR of 15 dB. In the figure the original

clean speech signal is shown together with the resulting segmen-

tation. The thick lines mark the frames in which the signal is di-

vided for enhancement. The thin lines represent for each frame the

corresponding segment that is found by the hypothesis based algo-

rithm. In this example we used a full-band version of the above

described algorithm. The speech signal under consideration con-

sists of four parts. An initial silence part, a transient, some ringing

after the transient and a voiced part. We see that frames in the si-

lence and voiced part have long segments associated which cover

respectively the whole silence and voiced part. Frames in the tran-

sient part have rather short segments. This prevents smearing of

the transient. Further the beginning of the voiced part is resolved,

preventing it from smearing into the ringing of the transient.

3. IDEAL SEGMENTATION

In order to obtain a bound of the performance of our segmenta-

tion algorithm presented in Section 2 we consider in this section

an idealized situation, where optimal segments are found using

knowledge of the clean signal. Clearly, in practical situations such

an approach is not possible. The ideal segmentation is found by

min
sεS

E[D(x, x̂(s))], (2)

where s is a segmentation from the set S of all allowed segmen-

tations, x the clean speech signal, x̂ the estimated clean speech

signal, D a distance measure between the clean speech signal x
and the estimated clean speech signal and E the expectation oper-

ator. The expectation operator is used to eliminate the influence of

the noise realization on the distortion measure. By doing so, the

distortion is not optimized for a particular realization of the noise

but for its statistical properties. We assume that distortions across

frames are additive and independent. We can then write (2) as

∑

i

min
siεSi

E[D(xi, x̂i(si))], (3)

where i is the frame index, xi is the clean speech frame, x̂i the

estimated clean speech frame and si a certain segment from the

set of all allowed segments for frame with index i. The purpose of

(3) is to find for each frame a corresponding segment such that D
is minimized. The distortion measure we minimize here is the l2
difference between the clean and the estimated signal;

D = ‖Xi − GiYi‖2, (4)

where Xi ∈ C
M and Yi ∈ C

M are in the Fourier domain, Gi ∈
R

M×M is a linear filter matrix, and M the FFT order. Like the

hypothesis based segmentation described in Section 2, the ideal

segmentation can also be generalized by dividing the frequency

range in sub-bands. In contrast to the hypothesis based segmenta-

tion, increasing the number of bands for the ideal case will result

in a better segmentations always.

4. SUBJECTIVE AND OBJECTIVE RESULTS

We evaluate the presented segmentation algorithms by means of

objective and subjective experiments. We use the segmentation

algorithms as front-ends for Wiener filter based enhancement al-

gorithms with a gain function G = (Ryy − Rnn)R−1
yy , with Ryy

and Rnn the autocorrelation function of the noisy speech and noise

respectively. In Fig. 5 the impact of our flexible hypothesis based

segmentation algorithm is demonstrated on a female speech sig-

nal and compared with a fixed segmentation. The duration of the

segments for the fixed segmentation was 53.8 ms and the thresh-

old for the hypothesis based segmentation was γ = 106.9, both

based on an optimal segmental SNR of simulation experiments

over 30 different speech sentences. Segmental SNR is defined as
1
N

∑N−1
i=0 10 log10

‖xi‖2

‖xi−x̂i‖2 , with N the number of frames [6].

In Fig. 5 we show the clean speech signal together with the SNR

per frame after enhancement of a noisy speech signal for both the

fixed segmentation and the hypothesis based algorithm with four

sub-bands. Here clean speech was degraded by white noise at an

SNR of 15 dB. Especially at the locations where the speech sig-

nal changes abruptly, the presented hypothesis based segmenta-

tion improves performance in terms of output SNR. The local im-

provements of 10 dB around the beginnings and endings of speech

sounds are due to less smearing of the speech sound.

As a second objective evaluation we compared fixed segmen-

tation, ideal flexible segmentation and the hypothesis based seg-

mentation algorithm in terms of segmental SNR. The fragments

were sampled at 8 kHz. Frame sizes of 120 samples with 50 per-

cent overlap were used. The results are averaged over 6 different

speakers, 3 male and 3 female speakers and are shown in Fig. 6a

and 6b for input SNRs of 5 and 15 dB, respectively. Both figures

show the segmental SNR versus the average segment length for

the fixed segmentation, the hypothesis based segmentation with 4

equal width sub-bands and the ideal segmentation with 1, 2, 4, 8

and 16 equal width sub-bands. The segment length for the fixed

segmentation and the threshold γ for the hypothesis based segmen-

tation were again based on optimal segmental SNR of simulation

experiments over 30 different speech sentences. For the hypothe-

sis based segmentation we used 4 sub-bands, because that led to an
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optimal segmental SNR. Comparing Fig. 6a and 6b it can be seen

that for lower input SNR, all methods have longer segment lengths.

The segmental SNR of the hypothesis based segmentation with 4

sub-bands is 0.82 dB and 0.73 dB higher than the segmental SNR

of the fixed segmentation for respectively an input SNR of 5 and

15 dB. Further it can be seen that hypothesis based segmentation

with 4 sub-bands has approximately the same segmental SNR as

the full-band version of the ideal segmentation. From Fig. 6 it is

clear that the segmental SNR for the ideal segmentation increases

with the number of sub-bands that is used.

In the experiments reported so far we used the same value of

the threshold γ for each frame and for each frequency band. We

would, however, expect a performance gain if we allow different

γ-values for different frames or frequency bands dependent on the

SNR. However, by experiments over 30 different speech signals, it

was observed that the optimal γ is fairly insensitive to the SNR.

For subjective evaluation an OAB listening test was performed

with nine participants, the authors not included. Here, O is the

original signal and A and B are two enhanced signals. We imple-

mented a Wiener filter combined with a fixed segmentation and

a Wiener filter combined with the hypothesis based segmentation

algorithm with 4 sub-bands. Six speech signals were used, 3 male

and 3 female speakers, all degraded by white noise at an SNR of 5

and 15 dB. We presented the listeners first the original signal fol-

lowed by two versions enhanced with a fixed or hypothesis based

segmentation. Each series was repeated 4 times with the enhanced

versions played in random order. The results for all signals are

shown in Table 1. The percentages represent the relative prefer-

ence of the hypothesis based segmentation, with the standard de-

viation between brackets. A student’s t-test confirmed that at an

SNR of 5 dB the preference of the proposed algorithm was statis-

tically significant, except for signal number 5. At 15 dB SNR the

difference was significant for all signals except number 4 and 5.

signal input SNR sign. input SNR sign.

no. 5 dB 5% 15 dB 5%

1 86.1% (28.6) yes 88.9% (18.2) yes

2 83.3% (17.7) yes 80.6% (32.5) yes

3 75.0% (21.7) yes 77.8% (29.2) yes

4 77.8% (23.2) yes 63.9% (28.6) no

5 52.8% (42.3) no 58.3% (46.8) no

6 88.9% (18.2) yes 75.0% (21.7) yes

Table 1. Listening test results for 5 and 15 db input SNR.

5. CONCLUSIONS

We presented an adaptive time segmentation for speech enhance-

ment to improve the estimation of the noisy speech power spec-

trum. The segmentation algorithm only needs knowledge of the

noisy speech signal to determine for each frame which segment of

data should be used to estimate the noisy speech power spectrum.

The segments are formed based on the outcome of a sequence of

hypothesis tests. Objective experiments showed that usage of the

adaptive time segmentation leads to a better quality in terms of

SNR and that the performance of hypothesis based segmentation

is close to that obtained with ideal segmentation. Furthermore,

subjective listening tests showed that in terms of perceptual qual-

ity the adaptive segmentation algorithm is preferred over the usage

of a fixed segmentation.
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