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Outline 

• Underwater communications 

• The UCAC project 

• OFDM for underwater communications 

• Channel equalization 

• Channel estimation 

• Extensions 

• Application of OFDM to UCAC 

 

 

  

 

 



Underwater Communications 

• Lots of applications 

• Equipment monitoring 

• Patrolling of port/harbor/ship 

• Unmanned vehical coordination 

• Different requirements 

• Periodic/bursty data 

• “Real-time” traffic 

• Reliability/disposability 

• Energy efficiency 
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Underwater Communications 

• Radio communications 

• Tend to fade rapidly in underwater environments 

• To cover large distances, huge antennas are required 

• Optical communications 

• Very high bit rate over short distances 

• High dispersion and attenuation 

• Need for alignment 

 

• Technology of choice today 

• Supports all required transmission ranges 

 

 

Acoustic communications 
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Acoustic Communications 

• Low propagation speed (1500 m/s) w.r.t. radio waves 

• Severe delay and Doppler spread (especially horizontal) 

• Anisotropic propagation in contrast to radio waves 

• Frequency-dependent attenuation and noise 

• Limited (frequency- and distance-dependent) bandwidth 



Acoustic versus Radio 

• High bandwidth (MHz) 

• Short prop. delays (μs) 

• Well-understood propagation 

• Isotropic propagation 

• Distance-independent BW 

• Typically white noise 

• Small and cheap nodes 

• Lots of research done 

• Accepted channel models 

• Several simulation tools used 

• Easy to experiment 
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• Low bandwidth (kHz) 

• Long prop. delays (s) 

• Complicated propagation 

• Anisotropic propagation 

• Distance-dependent BW 

• Frequency-dependent noise 

• Bulky and expensive nodes 

• Less research done 

• No comprehensive models 

• Lack of simulation tools 

• Hard to experiment 

 

Radio Acoustic 
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The UCAC Project 
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UCAC Goals 

• Identification and demonstration of adequate methods 
for covert underwater communications to and from a 
UUV/AUV at large distances from the mother ship 

• 3.6 kHz BW, center frequency 3.3 kHz and 5 kHz 

• Tested modulation formats: 

• Spread spectrum – CDMA (Sweden) 

• Multi-carrier modulation – OFDM (The Netherlands) 

• Covert chirp modulation (Italy) 

• Channel modeling 

• Low-frequency transducer design 
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UCAC Sea Trials 

• Sea trial 1: channel probing 

• Sea trial 2: testing different modulation formats 

• Sea trial 3: final demonstration of best modulation 
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Multi-Carrier Modulation   

• Different data streams are sent on orthogonal carriers 

• Due to time variations, the orthogonality between the 
carriers is lost and inter-carrier interference (ICI)  

• To solve this problem, one can decrease the data rate 

• We look for improved low-complexity receivers that 

- do not require a decrease of the data rate 

- can even exploit the extra Doppler diversity 

• Focus is on one-shot receivers, that could be used to 
initialize an iterative receiver architecture 
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OFDM as Multi-Carrier Modulation 

• Input-output relation 

 
nln
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l lnn vxhy   0 ,

xHy   v
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• Using a cyclic prefix, we get a circular convolution 
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OFDM as Multi-Carrier Modulation 
• How does this circular convolution look like? 

H

time-invariant channels 

H

time-varying channels 

y xH  v
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OFDM as Multi-Carrier Modulation 

• We take IDFT and DFT at transmitter and receiver: 
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OFDM as Multi-Carrier Modulation 

• We assume edge effects are not present: 

 

A

time-invariant channels 

A

time-varying channels 
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OFDM Equalization 

Block 

equalizers 

Serial 

equalizers 
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banded 

Non-banded equalizers Banded equalizers 

[Choi et al, 
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[Cai-Giannakis, 
TCOM ’03] 

block MMSE 

non-banded 

serial MMSE 

non-banded 

block MMSE 

banded 

[Rugini et al,  
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Receiver Windowing 

• We use windowing to improve the banded assumption 
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Receiver Windowing 
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Simulation Results 

N = 128  subcarriers 

NA = 96  active subcarriers 

L = 8  channel taps 

fD / Δf = 0.15 Doppler spread 
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Channel Estimation 

• There are too many unknowns to estimate 

• We need a reduced model that exploits the correlation 
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Channel Estimation 

• Polynomial BEM:  

• Complex Exponential BEM: 
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Channel Estimation 

• Pilot-aided channel estimation 

• Pilots are inserted in the frequency domain 

 

z nA s

pilots selected received samples 
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Channel Estimation 

• Grouping the parts related to pilots and data 

 

 

 

 

 

• The channel matrices      and      linearly depend on 
the                    BEM coefficients  
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Simulation Results 

N = 256  subcarriers 

NA = N-2Q  active subcarriers 

L = 4  channel taps 

fD / Δf = 0.256 Doppler spread 
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Extensions 

• Banded block decision feedback equalizers 

- Also linear complexity in the block size 

- Can be carried out with and without windowing 

• Soft equalizers in combination with channel code 

- Soft versions based on quality of estimates 

- Can run iteratively: turbo equalization 

• Channel estimation can be included in the turbo loop 

- Channel estimate improved by soft estimates 

- Pilots can smoothly be incorporated 
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Application of OFDM to UCAC 

• Delay spread < 150 ms       CP length N  T=150 ms 

• OFDM period NT=1.2 s        carrier spacing 0.83 Hz 

• 4320 carriers in 3.6 kHz       N=4320 and N   =540 

• This lead us to the multiband OFDM approach 

 

 

• Split large band into J=16 smaller subbands 

• Use OFDM with N=256 and N   =32 in every subband 

• Use guard of 14 carriers in between subbands 

• This reduces receiver complexity by a factor J =16 
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Channel Estimation and Equalization 

• Training-based channel estimation 

• 160 pilots out of 256 carriers 

• 32 clusters of length 5 

 

 

 

• We use joint equalization and despreading 
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Low and High Data Rate 

• Low data rate (LDR) – 4.2 bit/s 

• Rate-1/3 turbo code: 125 bits -> 384 coded bits 

• 384 coded bits -> 192 QPSK symbols 

• 192 QPSK symbols -> 2 OFDM vectors 

• 1 block repeated in I=21 slots and J=16 subbands 

• High data rate (HDR) – 78 bit/s: 

• Rate-1/3 turbo code: 637 bits -> 1920 coded bits 

• 1920 coded bits -> 960 QPSK symbols 

• 960 QPSK symbols -> 10 OFDM symbols 

• 3 blocks repeated in I=17 slots and J=16 subbands 
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Sea Trial 2 
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Sea Trial 2 

Case B: 
North Sea 
f = 5kHz 
TX @ 60m 
RX @ 90m 
TX towed  
at 2.5 m/s 
with fixed  
source level 
from 8 to 38km 

Case A: 
Baltic Sea 
f =3.3kHz 
TX @ 40m 
RX @ 50m 
TX fixed with 
source level 
changing in 
steps of 2dB 
at 8 and 52km 

c 

c 
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Sea Trial 2 Channels 
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Sea Trial 2 Results 

• BER for LDR (below curve) and HDR (above curve) 

Case A Case B 

52km 

8km 
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Sea Trial 3 
Nøkken 

Hugin 
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Sea Trial 3 

Hugin circling with centres at

6.3 and 5.5 nmi from Nøkken

Nøkken

sonobuoys

 

Bjørnafjorden 



Sea Trial 3 

• From Nøkken to Hugin at 5.3 nmi 

• From Hugin to Nøkken at 5.3 nmi 

• Transmitted waveforms: 
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Sea Trial 3 Results 

Bjørnafjorden 

Range = 5.3 nmi  

Nøkken modem (RX): 70 m depth 

Hugin modem (TX): 90 m depth 
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Sea Trial 3 Results 

Bjørnafjorden 

Range = 5.3 nmi  

Nøkken modem (TX): 70 m depth 

Hugin modem (RX): 90 m depth 
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• Multi-carrier modulation has been proven successful 
for acoustic underwater communications:  

• The band assumption leads to low-complexity 
equalization for OFDM in underwater channels 

• Performances can be improved by windowing, 
thereby getting close to the optimal performance 

• Pilot-based channel estimation exploiting the BEM 
has been proposed for accurate channel estimation 

• Extensions to iterative approaches for channel 
equalization and estimation improve performance 

 

 

Conclusions 



Thank You! Questions? 
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