2. LINEAR ALGEBRA

Outline

1. Definitions

2. Linear least squares problem

3. OR factorization

4. Singular value decomposition (SVD)
5. Pseudo-inverse

6. Eigenvalue decomposition (EVD)

%
1 TUDelft



Vector norm

m Let x e C"V be an N-dimensional complex vector.

m The Euclidean norm (2-norm) of x is

x| = (gllxi!z)lﬂ: (glxixi)lmz (XHX)l/Q

Matrix norms
m Let A c CM™*YN be an M x N complex matrix.

m The induced matrix 2-norm (spectral norm, operator norm) is

AX x"AYAX
|A || ;= max IAX] or |A]]? = max ~————
SN T

m The Frobenius norm of A is

A= (3 3 lag?)"”

1=19=1

Ju—t
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Linear independence

m A collection of vectors {x;} is called linear independent if

aiX1+---+anXy=0 & a=---=any=0.

Subspaces
m The space H spanned by a collection of vectors {x;}
H:={a X1+ - +anXy |a; €C, Vi}
Is called a linear subspace
m Example subspaces:

Range (column span) of A: ran(A) = {Ax : x eC}
Kernel (row nullspace) of A: ker(A) = {x cC" : Ax =0}
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Basis

m An independent collection of vectors {x;} that together span a subspace is called

a basis for that subspace.
m If the vectors are orthogonal (x;'x; =0, i # j) [J orthogonal basis.

m If the vectors are orthonormal (x;'x,; =0, i # j and ||x;|| = 1) O orthonormal basis.

Rank

m The rank of a matrix A is the max. nr. of independent columns (or rows) of A.

Prototype rank-1 matrix: A = ab"

Prototype rank-2 matrix: A =ab" +cd"
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Unitary matrix

m A square matrix U is called unitary if U"U =1 and UU" = 1.
m Properties:

e A unitary matrix looks like a rotation and/or a reflection.
e ltsnormis ||U|| = 1.

e Its columns and rows are orthonormal.

Isometry

m A tall rectangular matrix U is called an isometry if U"U = I.
e Its columns are orthonormal basis of a subspace (not the complete space).
e Itsnormis [|[U| =1.

e There is an orthogonal complement U+ of U such that U = [U U™] is unitary.
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Projection

m A square matrix P is a projection if PP = P.
m It is an orthogonal projection if also P" = P.

e The norm of an orthogonal projection is |P || = 1.

e For anisometry U, the matrix P = UU" is an orthogonal projection (onto the

space spanned by the columns of U). This is the general form of a projection.

~— =

m Suppose U=[ U U ]is unitary. Then, from UU" = I,;:
i M-d

m Any vector x € CM can be decomposed into x = X +x*, where x L x*,

x=Px cran(U), xt=Ptxeran(Uh)
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Projection onto the column span of A

m Suppose A is tall and A"A is invertible. Then
Pa := AA"A)IAT, Py =1 — AA"A)IA"

are orthogonal projections, onto the range of A and kernel of A", resp.

m Proof:
Verify that PP = P and P" = P, hence P is an orthogonal projection.
If b € ran(A), then b = Ax for some x.
Hence
Pab =A(A"A)'A"Ax =D
so that b is invariant under P4.

If b L ran(A), then b € ker(A"), or A"b = 0. Hence Ppb = 0.
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Linear least squares problem

m Given A, b, find

A

X = argmxin | Ax —b |2

m Solution:
Write b = by + b, where by e ran(A), be L ran(A).
Then
b; = Pab = AA"A) A"

AX —b = A{x—(A"A)'A"b} — by
Note that the two terms are orthogonal. Thus

| Ax =b ||* = [[A{x—(A"A)T'A"D} || + | b2 |

To minimize the error, set X = (A"A)~1A"Db.
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QR factorization

Then there is a decomposition

Here, Q is a unitary matrix, R is upper triangular and square.

m Interpretation:

e (; is a normalized vector with the same direction as a;.

aN} = [Ch gz ---

m Let A be an N x N square full rank matrix.

aqn

1N

2N

NN

e [ Qo] IS an isometry spanning the same space as [a; as].

e [J1 g2 Q3] is an isometry spanning the same space as [a; as as].

e EtC.
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QR factorization

mLet Abean M x N tall (M > N) matrix.

Then there is a decomposition

RN
A=QR=1Q Q"] |-QR

Here, Q is a unitary matrix, R is upper triangular and square.

m Properties:

e R is upper triangular with M — N zero rows added.
e A =QR is an “economy-size” QR-decomposition.
e If R is full rank, the columns of Q span the range of A.

e If R is not full rank, the column span of Q is too large.

10
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Singular value decomposition

m For any matrix X, there is a decomposition

X =UxV"
Here, U and V are unitary, and X is diagonal, with positive real entries.
m Properties:

e The columns u; of U are called the left singular vectors.
e The columns v, of V are called the right singular vectors.

e The diagonal entries o; of X are called the singular values.

They are positive and real, and usually sorted such that

0'120'2>"'>0
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Singular value decomposition

m More specifically, for an M x N tall (M > N) matrix X:

L _
0d
X=UxV'=[U U} ! VH
0 (VJ_)H
0 A ()
| 0 ol 0]

U:MxM, X:MxN, V:NxN

012092203 > 0g41=-=0on=0

m ‘Economy size’ SVD: X = UV, where ¥ : d x d, containing oy, - ,0y.
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Singular value decomposition

Some SVD facts

m The rank of X is d, the number of nonzero singular values.

EX=UXV' & X'=VIU'" & XVv=UY < X'U=VE
= The columns of U (U1) are orthonormal basis for range of X (kernel of X™).

— The columns of V (V1) are orthonormal basis for range of X" (kernel of X).

m The norm of X or X" is || X|| = || X" || = o1, the largest singular value.

The norm is attained on the corresponding singular vectors u; and v;:

XVi =Uj0q XHU1 =Vi01
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Singular value decomposition

Geometrical interpretation

Construction of the left singular vectors and values of the matrix X = [x; Xo|, where

X1 and x5 have equal length.

m The largest singular vector u; is in the direction of the sum of x; and Xs:

the ‘common’ direction of the two vectors.

Singular value: o1 = || X1 +X2|/v/2.

m The smallest singular vector u, depends on the difference x5 — X;.

Singular value: o5 = || X2 — X1 [|/Vv/2.
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Singular value decomposition

Connections between the SVD and QR factorizations

m The QR factorization of a tall (M > N) matrix X is

.. | R
X=QR=[Q Q]

m The QR factorization can be used as a starting point for the SVD of X:

First compute the SVD of R

~

R=U0zXipV%
so that the SVD of X is
X = (QUR)ERVE

X and R have the same X and V.

15
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Pseudo-inverse

Full rank pseudo-inverse

m X: M x N, tall (M > N), full rank.
The pseudo-inverse of X is XT = (X"X)~1X",

m It satisfies XTX = Iy (i.e., X is an inverse on the “short space”).
m Also, XXT = P: a projection onto the column span of X.

Rank-deficient pseudo-inverse

m X: M x N, tall (M > N), rank-d, with ‘economy size’ SVD X = USV".
The pseudo-inverse of X is Xt = VE-10",
m It satisfies XXt = 00" =P,, XIX=WwW"=P,.
e The norm of XTis || X' || =o'
e The condition number of X'is ¢(X) := L.

If it is large, then X is hard to invert (X' is sensitive to small changes).
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Pseudo-inverse

Interpretation of condition number

m The condition number gives the relative sensitivity of the solution of linear sys-

tems of equations.

m lllustration;
AX =b = x=A"1b
bl=b+e = xI=x+Ale
Define o1 =||A|, oy =|[A7'|.  Use ||Ax]|| < |All[x]].
Then
IA~te| < oy'lel
bl < op]x]
Ix* —x]| el 1 |le]
— < oy — < ONn O] T——
[1X[] NI ]| N b
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Pseudo-inverse

Rank approximation

m X: M x N, with SVD X = UXV",

m To improve the condition number of X, we can set the small o; equal to zero.

This leads to a low rank approximation of X.

m lllustration:

e Choose a threshold ¢, and suppose d singular values are larger than e.

e U: first d columns of U, V: first d columns of V, 3: top-left d x d block of X.

~

e Then X = UXV" is a rank-d approximant of X, with error

IX=X|I = oar

HXf—XH% — 0§+1+~-~+0%
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Eigenvalue decomposition

Definition

m The eigenvalue problem isAx =X << (A—-A)x=0.
m Any ) that makes A — Al singular is called an eigenvalue
m The corresponding x is the eigenvector (invariant vector).

m Stacking the results gives

Akt Xo ] = [ixel|

& AT = TA

m A “regular” matrix A has an eigenvalue decomposition:
A=TAT !,  where Tis invertible and A is diagonal.

This decomposition might not exist if eigenvalues are repeated.
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Eigenvalue decomposition

Schur decomposition

m Suppose T has QR factorizaton T=QR;y = T != R;lQH. Hence

A = QR7AR'Q" = QRQ"
m A = QRQ", with Q unitary and R upper triangular, is a Schur decomposition

m Properties:
¢ R has the eigenvalues of A on the diagonal.

e This decomposition always exists.

e Q gives information about “eigen-subspaces” (invariant subspaces).

But Q does not contain the eigenvectors.
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Eigenvalue decomposition

Connection of the eigenvalue decomposition with the SVD

m Starting from the SVD we obtain
X =UxVv" = XX = uxv'vzu®
= Ux?2U"
= UAU"

m Hence, we can state

e The eigenvalues of XX" are the singular values of X, squared

[1 The eigenvalues of XX" are real

e The eigenvectors of XX" are the left singular vectors of X

[1 U is a unitary matrix

e The SVD always exists

[0 The eigenvalue decomposition of XX" always exists
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Eigenvalue decomposition

Noise covariance matrix

m Suppose we have M antennas, and receive only noise:

e(k) =

enr ()

elgk)

m Collect the samplesinamatrixE=[e; ey ---en]: MxN

m The noise covariance matrix is

N

R.:=E(ee") ~ R.:=y Yere, = yEE"

e R. is hermitian: R, =R..

e If noise is independent among sensors (spatially white), then R, is diagonal.

e If noise is independent identically distributed (i.i.d.), then R, = ¢?I.

e Hence, all eigenvalues of R, are

equal to o2 (the noise power).
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Eigenvalue decomposition

EVD of a data matrix

m Suppose we collect a data matrix X = AS and compute its correlation matrix
R=£XX"=A(£SS"A" = AR,A"

m Eigenvalue decomposition: R = UAU"

m Rank property:
If the number of sources d is smaller than the number of antennas M

[1 A has d eigenvalues unequal to O and M — d equal to zero.
m Add i.i.d. noise: X=AS +E.

R=1LXX" ~ ARA" + R,
~ UAU" + &7l
= U(A+c%)U"

All eigenvalues are raised by o2, but the eigenvectors stay the same.
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Eigenvalue decomposition

SVD of a data matrix

singular value

Singular values of X for d = 2 sources, M =5 antennas, N = 10 samples.
(a) Well separated case: large gap between signal and noise singular values,

(b) signals from close directions results in a small signal singular value,

well separated

" SNR=20dB
sep=60deg

+

gap

t ot 4

1 2 3 45
index

10

X=AS +E,

closely spaced

more noise

10

*  SNR=20dB " SNR=0dB
sep=5bdeg + sep=60deg
8.
6.
+
4.
+
+
2.
+® +
Tt o+ o+ A
1 23 45 1 2 3 45
index index
A=la(th) a(bs)]

(c) increased noise level increases noise singular values.
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