ET4 147: SIGNAL PROCESSING FOR COMMUNICATIONS

Alle-Jan van der Veen and Geert Leus

Course outline

1. Introduction, applications

N

Data models, linear algebra

Beamforming and filtering concepts

> W

Wiener filter, adaptive filtering
5. Direction finding and delay estimation using ESPRIT
6. Constant-modulus algorithm

7. Applications to CDMA

3
TUDelft



1. THE WIRELESS CHANNEL

Outline

1. Introduction, motivation

2. Antenna arrays

3. Multipath channel models
4. Signal modulation

5. Macroscopic channel model

6. Applications
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Introduction

Applications of wireless technology

Personal Communications Syst. (PCS) Satellite
Mobile communications Mobile Satellite Services
Cordless phones GPS
Messaging systems VSAT
Hand pagers Cellular communications
Wireless Data Dual-Use Applications
Wireless local-area networks Direction-finding radar
Wide-area networks Commercial spread-spectrum
RF Identifications (RFID) Automotive
Inventory control and tracking Collision-avoidance/warning
Personnel and plant security In-vehicle navigation systems
Automatic vehicle identification Intelligent-vehicle highway syst.
Debit/credit systems
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Introduction

The cellular network concept

Sources of interference:

m ACI: adjacent channel interference
m CCI: cochannel interference

m ISI: intersymbol interference (time dispersion)
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Introduction — applications

Space-time processing

m Use multiple antennas and space-time processing to enhance performance.

m Can provide diversity and interference reduction

Multi Element Array
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Introduction — applications

Why Space-Time processing?

m Enhance signal (increase average power and reduce effect of fades)

m Reduce adjecent channel, co-channel, and intersymbol interference

ST —

i

Conclusion: S-T processing promises significant improvements in coverage, ca-

pacity, data rate and quality of wireless networks
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Introduction — objectives

m Signal processing tries to extract information from measured signals
m signal processing for communications
— Detection

— Signal enhancement/noise suppression

e coherent addition
e spatial-temporal filtering

— Source/channel characterizations:

e number of sources
e location
e waveforms (information from the sources)

— Localization and tracking of moving users

%
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Introduction — array processing

Coherent adding

/

xs3

%
(1)

Y

With an array of sensors (m=1,---, M):
T (t) = u(t)+n,(t);  noise variance: o*
If the noise on the antennas is uncorrelated, then

1M 1M . . 1,
y(t) = Mz,rm(t) = u(t)+—an(t) = u(t) +n(t); noise variance: -—-o
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Introduction — array processing

Null-steering

y(t) = wiu(t)+wou(t—r7)
V(w) = Uw)(w+wee 7¥7)
|l>w2
Wé—> y(t)

The signal is nulled out, U(w) = 0, at a certain frequency wy if

wo = —wyel07
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Introduction — array processing

w1 w9
-
z1(1) (1)
<7w1 W,

10
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Data model

Baseband signal

An antenna receives a real-valued bandpass signal with center frequency f.
u(t) = real{s(t)e’?™ '} = z(t)cos2mfat — y(t)sin2n fot
The baseband signal or complex envelope is
s(t) = x(t)+y(t)

s(t) is recovered from u(t) by demodulation:
multiply u(¢) with cos 27 f.t and sin 27 f.t and low-pass filter the resulting signals

U(f)
u(t) H(%F Lowpass|— s(t)
|

! ! 1
—f. 0 f. e—i2rfet

—2f. 0
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Data model

Small delays of narrow band signals

We are interested in the effect of small delays of «(¢) on the baseband signal s(¢)
ur(t) = u(t—7) = real{s(t —r)e I2m/cTei2m/cty
The complex envelope of the delayed signal is
sr(t) =s(t— T)e_j%f”
Let W be the bandwidth of s(t). If exp(j2r f7) ~ 1 for all frequencies | f| < 17, then

W2
s(t—7) = / S(f)eP? DS ~ / (Fe?taf = s(t)
—W/2 W/2

= s.(t) ~ s(t)e T for Wr <1

Conclusion: for narrowband signals, time delays shorter than the inverse band-

width amount to phase shifts of the complex envelope.
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Data model

Antenna array response

So(t)
S

/ J m Far field assumption: planar waves
/ L m ¢ is the direction of arrival
0
TN | .
m A is the attenuation
I |
| | 1
1) OEM0

m 7} is propagation time to i-th element

I
.’I:l(f,) (1;2( zar 1(E) Tas(t

Ay

Ap—1

A

:L‘Z(t) = G(Q)ASO (t — ﬂ)e_jQchTi
Define s(t) = so(t —T1), 7; = T; — T, and 8 = Ae727/<Ti then
zi(t) = a(0)Bs(t —1;)e I3 SeTi
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Data model

Antenna array response

7; can be expressed as a function of # and A, (distance in wavelengths)

disin(0) _27r% sin(f) = —2mw A, sin(6)

2w feri = =27 f,
If 7, is small compared to the inverse bandwidth of s(¢), then
57 (1) = s(t)e 92 FeTi = () 2rAisin(6)

Collect the received signals into a vector x():

I (t) 1
To (t) eJ2mAz sin(6)
X(t) = = a(0)Bs(t) =: a(0)0s(t)
_SEM(t)_ _ejZﬂ'AM sin(@)_
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Data model

Antenna array response

a(0) is the array response vector

1

eJ2mAgsin(0)

eJ2m Ay sin(6)

For a uniform linear array, A; = (i — 1)A, we obtain

1

€j27rA sin(0)

ejQW(M—l)Asin(G)

— | a(e)’ b= ej27rAsin((9)

The factor a(0) is often ommitted (omnidirectional and normalized antennas)
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Data model

Array manifold
The array manifold is the curve that the vector a(#) describes when 6 is varied:
A={a(0):0<0<2r}
B Oone source
x(t) = a(f)Bs(t)

For varying s(t), the vector x(t¢) is confined to a line

[J 6 can be estimated from x(¢) (direction finding)

m {wo sources

X(t) = a0 )Brsi(t) + al6a)hsa(t) = [a(0)  al6) F 1 ”81“)]
Bal |sa2(t)

For varying s(t), the vector x(¢) is now confined to a plane

[J 6, and 6, can be estimated from x(¢) (direction finding)
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Data model

Principle of direction finding

1 signal 2 signals
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Data model

Multipath

s(t)

X(t) = a(@l)ﬁls(t) + 3(02)628(15)
= {51a(91) + 5261(62)}8(?5) = as(t)
In this case, the combined vector a is not on the array manifold

[ direction finding gets much more complicated

At any rate, x(¢) contains an instantaneous multiple of s(t)
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Data model

Instantaneous mixtures

//”f;'q7 | ::><i: 51(t)
/// /// To(t
sa(t) O\\ | ® 3(t)

A%

m For narrowband signals, a delay translates into a phase shift

[ the received data is an instantaneous linear mixture
X(t) =As(t)
m Collect N samples: X = [x(0),---,x(N —1)]and S =[s(0),---,S(N —1)]
X=AS
m We look for a beamformer such that
W'x(t) = s(t) & WUA = |
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Array response vector

Array response graph

Suppose we choose a beamforming vector w, e.g., w =

y(t) = wx(t) = w'a(0)ss(t)

The response of the array to a unit-amplitude signal,

Bs(t)| =1, from direction 6 is

[y(8)] = w"a(o)

spatial response for fixed w

M=2

Delta=0.5
1.5

0.5

-50 0 50
angle [deg]
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Array response vector

Sidelobes

With a larger number of antennas, resolution improves but sidelobes occur:

spatial response for fixed w spatial response for fixed w
3 7
M=3 5 M=7
2.51 Delta = 0.5 Delta = 0.5
5 L
2 -
4+
15¢
3 L
1
2 -
0.5 1
0 : : : 0 : : :
-50 0 50 -50 0 50
angle [deq] angle [deq]
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Array response vector

Ambiguity

a(@) — : b= ejQWAsin(G) .

sin(f) € [-1,1] = 27Asin(0) € [-271A,27A]

m ¢ determines ¢ uniquely iff A < % wavelengths
m For A > % there is spatial aliasing, and grating lobes occur

m We can still estimate A and do e.g., nullsteering
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Array response vector

spatial response for fixed w

M=7
Delta = 0.25

-50 0 50
angle [deg]

spatial response for fixed w

7 | ﬂ
M=7

-50 0 50
angle [deq]

23

spatial response for fixed w

M=7
Delta=0.5

-50 0 50
angle [deg]

spatial response for fixed w

1T

Delta =2

-50 0 50
angle [deq]

i3
TUDelft



Array response vector

m W can be used to steer the beam in other directions

m Choose e.g., w = a(30°) and look at |y(t)| = |w"a(d)]

spatial response for fixed w

M=7
Delta=0.5

angle [deg]
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Array response vector

m To estimate directions of sources, we can scan w
m Simple scan would be {w = a(§); —7/2 <0 <7 /2} and look at |y(t)| = |[w"x()].
m For a single source, this produces precisely the same plots as before

m If two sources are well separated, they can be resolved

response for scanning w response for scanning w

M=7 M=7

Delta=0.5 Delta = 0.5

alpha =[0 30] alpha =10 12]

-50 0 50 -50 0 50
angle [deg] angle [deg]
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Multipath channel

Jakes’ model

YL (1)

v

m scatterers local to mobile
B remote scatterers

m Scatteres local to base

7
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Multipath channel

Jakes’ model

m We bring out the temporal effects ¢(¢) (previously included in s(t))
m We only consider scattering local to mobile

— Each ray has a (small) angular and delay spread

— These spreads are usually but not always ignored

— Creates major effects on the gains 5; [ fading

7
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Multipath channel

Fading

Slow fading (10 to 1000 feet)

Fast fading (1 to 2
- ( )

General trend

Signal Level

Distance

m General trend: =~ 35 - 50 dB / decade (path loss)
m Slow fading: caused by shadowing; typically log-normal distributed

m Fast fading: caused by scatterers near mobile; typically Rayleigh distributed

7
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Multipath channel

Derivation of Rayleigh fading
m Gain for single mini-ray is Ae—727/<T"; A: attenuation; T": propagation delay
m Gain g is the result of many such mini-rays:
al 27 f. T,
b= Ape I etn
nzl
A,, and T,, are attenuation and delay related to the n-th mini-ray

m If relative delays are independent and uniformly distributed over their range, then

on = 27 f. T, mod 27 are independent and uniformly distributed over [0, 27)
m The A,’s are usually assumed to be i.i.d. as well

m For large N, the central limit theorem gives

B~CN(0,05) &  p(B)= o 7

o5 =E[|8]*] = NE[| A, |’]

7
29 TUDelft



Multipath channel

Rayleigh fading (cont'd)

e (3 has a complex normal distribution with zero mean
e |(| is Rayleigh distributed

e |3|* is Chi-square distributed

0.7 1
0.6 Rayleigh
0.8t
0.5
X3 (1/v2,2)—— -
0.4r \i 0.61
= Gaussian GEJ
o o
o
0.3 T0.4f
0.2} op =1
0.2}
0.1
0 ‘
-4 -2 0 2 4 -20 -15 -10 -5 0 5 10
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Multipath channel

Fading

Time-selective fading (Doppler)
Frequency-selective fading (long delay)

NN
A

i VAV 7 frequency 1: /\A)

z(t)

frequency 2. N\,

Space-selective fading (large angle)

~
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Multipath channel

Delay, Angle and Doppler Spreads

Local and remote scattering, and mobile motion spreads the signal

2 2 2
o o o
Delay Angle Doppler

m Delay spread ranges from 0.1 to 20 microsecs
m Angle spread ranges from 1 to 360 degrees

m Doppler spread ranges from 5 to 190 Hz.

~
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Multipath channel

Typical parameter values

Environment delay spread | angle spread | Doppler spread
Flat rural (macro) 0.5 us 1° 190 Hz
Urban (macro) 5 us 20° 120 Hz
Hilly (macro) 20 us 30° 190 Hz
Mall (micro) 0.3 us 120° 10 Hz
Indoors (pico) 0.1 us 360° 5Hz
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Signal modulation

b coding

{0,1}

Sk

m Digital alphabets

m Modulation

— Linear modulation

— Phase modulation

modulation
p(t) or q(t)

real

€j27rfct

~
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Signal modulation

Digital constellations

BPSK QPSK 8-PSK
é\,
N

b, € {0,1} — s, chosen from (up to a possible scaling):

BPSK  {1,-1}

m-PSK {17€j27r/m,€j27r2/m7.“,ej27r(m—1)/m}

m-PAM  {+1,£3,....£(m—1)}
m-QAM {147, +143j,..., 41+ (Vm—1)j,£3%j,...,=(/m—1)+ (yVm —1)5}

~
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Signal modulation

Linear modulation

m Amplitude is modulated:

)= 3 sdlt—k) s =p)esst)= 3 seplt—k)

k=—oc0 k=—0c0

m Optimum waveform is both localized in time and frequency (does not exist)

m One possible choice: sinc pulse shape

: 1
p(t) =22, pip=4 - e

e 0,  otherwise

I | . )
-15 -1 -0.5 0 0.5 1 15

~
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Signal modulation

Linear modulation

m Modification: raised-cosine pulse shape

;

N 1, 71< H1-a)
sinwt  cosaT L
PO == T PO=1 -s(E(f1-3).  30-0)<|fl<i(+a)
0, otherwise

1 1 Il Il Il L L Il
1 2 3 4 5 -15 -1 -0.5 0
(b) frequency f

a. excess bandwidth (or rolloff) parameter; common choice is a = 0.35

~
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Signal modulation

Linear modulation

m Sampling raised-cosine pulses at integer time instants k: s(k) # 0 only for k£ =0
m As aresult, s, = s(k), which means we can recover s from s(t) (if synchronized)

m Sometimes p(t) is considered part of the filter g(¢):

X(t) = [i a(@i)ﬁig(t—n)] * S5 (1)

=

-3 [3aommse-eon]n

k=—0c0

~
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Signal modulation

Phase modulation

m Phase is modulated:
s(t) = g(t)=q(t)xss(t) = Y seq(t—k)

m A simple choice for ¢(t), used for BPSK, is

—_
(

0 t<0,
git)=¢ 7t 0<t<l,

s t>1

\

m Abrupt changes in phase can also be avoided

~
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Macroscopic channel model

FIR channel model

nh A nik+3)
wu(t) )§ ry(k+ %)
m We collect all temporal effects in h(¢)
e Filtering effects at transmitter and receiver
e propagation channel
e pulse shape for linear modulation
m We obtain the data model _ _ _ _
z1(?) ha (¢)
x(t)=h()=ss(t)  x()=| : |, h)y=| :
2 () ] | ho (t)

7
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Macroscopic channel model

m We sample x(t¢) at a rate of P samples per symbol (P is the oversampling factor):

Sg (t)

Sk
Sk—1
) ... h(L—=1+4%)
| Sk—L+1 |
h(0) h(1) h(L—1)
h() h(l+p) h(L-1+%)
h(*5) h(1+55%) - h(L—1+%5)
- o
®

41

Sk—1

| Sk—L+1 |

Xk

3
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Macroscopic channel model

m Construct a data matrix X as

X(0) X(1) X(N —1)
X(5) X(1++ X(N—1+3
X = [Xg Xn_1] 1= (7). x(1+7) ( | 2 MP x N
 X(55L) x(1+552) - x(N =1+ 551
m X has a factorization
X =HS,,
 h()  h(1) hL-1) |[ so s SN_1)
B h(%) h(l—i—%) h(L—l#—%) S_1 S0 SN—2
() h(1+ 558 - h(L—1+554) | [sn41 s—r4o SN—L |
H: MP x L S;:LxN
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Macroscopic channel model

m For space-time equalization over m symbol intervals, construct

X0 X1 XN-1
Xm = ?(_1 ?(O ?(N_2 . mMPxN
i X—m4+1 X—m42 ... XNFWL_
m X, has a factorization
A%zzz}an5i+nr4
I H 0 11 S0 S1 SN—-1
H S_1q S0 SN—-2
|0 H || |$—L-m+2 S—L-m+3 SN—L—m+1
Hp :mMP x (L+m—1) Stem-1:(L+m—1)x N

43
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Macroscopic channel model

m A space-time equalizer is a vector w which combines the rows of X, :

WH X =[50 8120~ SN—1—ko)

s5(t) ———=|h(t) le D i
2 2
@
D
N\
["Z] @ Xk—1 Fan)
;
I
5
A\
@ XE—m+1
@ Wy, P

Sk—kq

m If we increase m by 1: 1 new row in S;+,,—1 BUT M P new rows in &,

44
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Macroscopic channel model

Connection to the multiray model

m The multiray propagation model is (for specular multipath)

hit)=| ﬁ 0)B.9(t )
hM(t) =1

g(t): temporal effects (filtering + raised-cosine pulse shape)
0;: direction-of-arrival
T;- propagation delay

B; € C:  complex path attenuation (fading)

{0:},{n:}, {Bi}

9
\/ E = B
s§(t) ——== (1)

%
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Macroscopic channel model

Connection to multiray model

m Collect samples of h;(t) into a row vector
hi=[ri(0) hi(3) - hi(L—3)]
m Similarly, collect the samples of ¢g(t — 7) into a row vector
g(r)=[9(-7) g(p—7) - g(L—p—1)

m The channel model can be written as

51. —0 (_71)—

—h— | |
H = ; = | a(6,) --- ab,)
—hpy— | |

=: ABG

.ﬁr —g (TT)_

m H and H’ are “the same”, but reorganized: His M P x L and H" is M x LP,

7
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Macroscopic channel model

Summary of properties

X =HS H = ABG
. e
Properties H S
macro matrix block Toeplitz Toeplitz
col(H) =col(X) row(S)=row(Xx)

modulation FA, CM, non-Gaussian, ---
temporal cyclostationarity independence

parametric | temporal known g(7) training: known {s;}
spatial known a(6)
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