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Course outline

1. Introduction, applications

2. Data models, linear algebra

3. Beamforming and filtering concepts

4. Wiener filter, adaptive filtering

5. Direction finding and delay estimation using ESPRIT

6. Constant-modulus algorithm

7. Applications to CDMA



1. THE WIRELESS CHANNEL

Outline

1. Introduction, motivation

2. Antenna arrays

3. Multipath channel models

4. Signal modulation

5. Macroscopic channel model

6. Applications
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Introduction

Applications of wireless technology

Personal Communications Syst. (PCS)

Mobile communications

Cordless phones

Messaging systems

Hand pagers

Satellite

Mobile Satellite Services

GPS

VSAT

Cellular communications

Wireless Data

Wireless local-area networks

Wide-area networks

Dual-Use Applications

Direction-finding radar

Commercial spread-spectrum

RF Identifications (RFID)

Inventory control and tracking

Personnel and plant security

Automatic vehicle identification

Debit/credit systems

Automotive

Collision-avoidance/warning

In-vehicle navigation systems

Intelligent-vehicle highway syst.
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Introduction

The cellular network concept

user

ACI

CCI ISI

desired

Sources of interference:

ACI: adjacent channel interference

CCI: cochannel interference

ISI: intersymbol interference (time dispersion)
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Introduction — applications

Space-time processing

Use multiple antennas and space-time processing to enhance performance.

Can provide diversity and interference reduction

MTSO

PSTN

Multi Element Array
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Introduction — applications

Why Space-Time processing?

Enhance signal (increase average power and reduce effect of fades)

Reduce adjecent channel, co-channel, and intersymbol interference

S-T
Signal

ACI

CCI

+ ISI

Conclusion: S-T processing promises significant improvements in coverage, ca-

pacity, data rate and quality of wireless networks
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Introduction — objectives

Signal processing tries to extract information from measured signals

signal processing for communications :

– Detection

– Signal enhancement/noise suppression

• coherent addition

• spatial-temporal filtering

– Source/channel characterizations:

• number of sources

• location

• waveforms (information from the sources)

– Localization and tracking of moving users
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Introduction — array processing

Coherent adding

y(t)

+x3x2x1x2(t) x3(t)x1(t)

� �� y(t)

y(t)

u(t) u(t) u(t)

With an array of sensors (m = 1, · · · ,M ):

xm(t) = u(t)+nm(t) ; noise variance: σ2

If the noise on the antennas is uncorrelated, then

y(t) =
1

M

M

∑
1

xm(t) = u(t)+
1

M

M

∑
1

nm(t) = u(t)+n(t) ; noise variance:
1

M
σ2
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Introduction — array processing

Null-steering

y(t)w1
w2

�

u(t) u(t� � )
y(t) = w1u(t)+w2u(t− τ)

Y (ω) = U(ω)
(

w1 +w2e
−jωτ

)

The signal is nulled out, U(ω) = 0, at a certain frequency ω0 if

w2 = −w1e
jω0τ
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Introduction — array processing

w2w1

τ

y(t)

x2(t)x1(t)

w2w1

s(t)

x1(t) x2(t)

s(t)

τ

ττ

y(t)

τ τ
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Data model

Baseband signal

An antenna receives a real-valued bandpass signal with center frequency fc

u(t) = real{s(t)ej2πfct} = x(t)cos2πfct − y(t)sin2πfct

The baseband signal or complex envelope is

s(t) = x(t)+ jy(t)

s(t) is recovered from u(t) by demodulation:

multiply u(t) with cos2πfct and sin2πfct and low-pass filter the resulting signals

Wf
�f
 0
S(f)

�2f
 0
Lowpass s(t)U(f)

e�j2�f
tu(t)
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Data model

Small delays of narrow band signals

We are interested in the effect of small delays of u(t) on the baseband signal s(t)

uτ (t) := u(t− τ) = real{s(t− τ)e−j2πfcτej2πfct}

The complex envelope of the delayed signal is

sτ (t) = s(t− τ)e−j2πfcτ

Let W be the bandwidth of s(t). If exp(j2πfτ) ≈ 1 for all frequencies |f | ≤ W
2 , then

s(t− τ) =
Z W/2

−W/2
S(f)ej2πf(t−τ)df ≈

Z W/2

−W/2
S(f)ej2πftdf = s(t)

⇒ sτ (t) ≈ s(t)e−j2πfcτ for Wτ ≪ 1

Conclusion: for narrowband signals, time delays shorter than the inverse band-

width amount to phase shifts of the complex envelope.
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Data model

Antenna array response
x2(t) xM (t)x1(t)

�
xM�1(t)

s0(t)

�2 �M�1�M
Far field assumption: planar waves

θ is the direction of arrival

A is the attenuation

Ti is propagation time to i-th element

xi(t) = a(θ)As0(t−Ti)e
−j2πfcTi

Define s(t) = s0(t−T1), τi = Ti−T1, and β = Ae−j2πfcT1 , then

xi(t) = a(θ)βs(t− τi)e
−j2πfcτi
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Data model

Antenna array response

τi can be expressed as a function of θ and ∆i (distance in wavelengths)

2πfcτi = −2πfc
δi sin(θ)

c
= −2π

δi

λ
sin(θ) = −2π∆i sin(θ)

If τi is small compared to the inverse bandwidth of s(t), then

sτi(t) = s(t)e−j2πfcτi = s(t)ej2π∆i sin(θ)

Collect the received signals into a vector x(t):

x(t) =

















x1(t)

x2(t)
...

xM (t)

















=

















1

ej2π∆2 sin(θ)

...

ej2π∆M sin(θ)

















a(θ)βs(t) =: a(θ)βs(t)
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Data model

Antenna array response

x(t) =

















1

ej2π∆2 sin(θ)

...

ej2π∆M sin(θ)

















a(θ)βs(t) =: a(θ)βs(t)

a(θ) is the array response vector

For a uniform linear array, ∆i = (i−1)∆, we obtain

a(θ) =

















1

ej2π∆sin(θ)

...

ej2π(M−1)∆sin(θ)

















a(θ) =

















1

φ
...

φM−1

















a(θ), φ = ej2π∆sin(θ)

The factor a(θ) is often ommitted (omnidirectional and normalized antennas)
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Data model

Array manifold

The array manifold is the curve that the vector a(θ) describes when θ is varied:

A = {a(θ) : 0 ≤ θ < 2π}

one source

x(t) = a(θ)βs(t)

For varying s(t), the vector x(t) is confined to a line

➠ θ can be estimated from x(t) (direction finding)

two sources

x(t) = a(θ1)β1s1(t) + a(θ2)β2s2(t) = [a(θ1) a(θ2)]





β1

β2









s1(t)

s2(t)





For varying s(t), the vector x(t) is now confined to a plane

➠ θ1 and θ2 can be estimated from x(t) (direction finding)
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Data model

Principle of direction finding

2 signals1 signal

a(θ)a(θ)

x(t)

x(t)
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Data model

Multipath

x2(t)

s(t)

θ1 θ2

x1(t)

x(t) = a(θ1)β1s(t) + a(θ2)β2s(t)

= {β1a(θ1) + β2a(θ2)}s(t) = as(t)

In this case, the combined vector a is not on the array manifold

➠ direction finding gets much more complicated

At any rate, x(t) contains an instantaneous multiple of s(t)
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Data model

Instantaneous mixtures

s1(t)
s2(t)

x1(t)
x2(t) ^s1(t)

^s2(t)W

For narrowband signals, a delay translates into a phase shift

➠ the received data is an instantaneous linear mixture :

x(t) = As(t)

Collect N samples: X = [x(0), · · · ,x(N −1)] and S = [s(0), · · · ,s(N −1)]

X = AS

We look for a beamformer such that

WHx(t) = s(t) ⇔ WHA = I
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Array response vector

Array response graph

Suppose we choose a beamforming vector w, e.g., w =







1
...
1






:

y(t) = wHx(t) = wHa(θ)βs(t)

The response of the array to a unit-amplitude signal, |βs(t)| = 1, from direction θ is

|y(t)| = |wHa(θ)|

−50 0 50
0

0.5

1

1.5

2

angle [deg]

spatial response for fixed w

M = 2

Delta = 0.5

20



Array response vector

Sidelobes

With a larger number of antennas, resolution improves but sidelobes occur:

−50 0 50
0

0.5

1

1.5

2

2.5

3

angle [deg]

spatial response for fixed w

M = 3

Delta = 0.5

−50 0 50
0

1

2

3

4

5

6

7

angle [deg]

spatial response for fixed w

M = 7

Delta = 0.5

21



Array response vector

Ambiguity

a(θ) =

















1

φ
...

φM−1

















, φ = ej2π∆sin(θ) .

sin(θ) ∈ [−1,1] ⇒ 2π∆sin(θ) ∈ [−2π∆,2π∆]

θ determines φ uniquely iff ∆ ≤ 1
2 wavelengths

For ∆ > 1
2 there is spatial aliasing, and grating lobes occur

We can still estimate A and do e.g., nullsteering
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Array response vector
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23



Array response vector

w can be used to steer the beam in other directions

Choose e.g., w = a(30◦) and look at |y(t)| = |wHa(θ)|

−50 0 50
0

1

2

3

4

5

6

7

angle [deg]

spatial response for fixed w

M = 7

Delta = 0.5

24



Array response vector

To estimate directions of sources, we can scan w

Simple scan would be {w = a(θ); −π/2 ≤ θ ≤ π/2} and look at |y(t)| = |wHx(t)|.

For a single source, this produces precisely the same plots as before

If two sources are well separated, they can be resolved

−50 0 50
0
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2

3

4

5

6

7

8

angle [deg]

response for scanning w

M = 7

Delta = 0.5

alpha = [0 30]

−50 0 50
0

1

2

3

4

5

6

7

8

angle [deg]

response for scanning w

M = 7

Delta = 0.5

alpha = [0 12]
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Multipath channel

Jakes’ model

g(t) x1(t)xM(t)

path i

s(t) (�i; �i; �i)
scatterers local to mobile

remote scatterers

scatteres local to base
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Multipath channel

Jakes’ model

x(t) =

[

r

∑
i=1

a(θi)βig(t− τi)

]

∗s(t)

We bring out the temporal effects g(t) (previously included in s(t))

We only consider scattering local to mobile

– Each ray has a (small) angular and delay spread

– These spreads are usually but not always ignored

– Creates major effects on the gains βi ➠ fading

27



Multipath channel

Fading

(1 to 2 ft)

General trend

Slow fading

Fast fading

Distance

S
ig

na
l L

ev
el

(10 to 1000 feet)

General trend: ≈ 35 - 50 dB / decade (path loss)

Slow fading: caused by shadowing; typically log-normal distributed

Fast fading: caused by scatterers near mobile; typically Rayleigh distributed
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Multipath channel

Derivation of Rayleigh fading

Gain for single mini-ray is Ae−j2πfcT ; A: attenuation; T : propagation delay

Gain β is the result of many such mini-rays:

β =
N

∑
n=1

Ane−j2πfcTn

An and Tn are attenuation and delay related to the n-th mini-ray

If relative delays are independent and uniformly distributed over their range, then

φn = 2πfcTn mod2π are independent and uniformly distributed over [0,2π)

The An’s are usually assumed to be i.i.d. as well

For large N , the central limit theorem gives

β ∼ CN (0,σ2
β) ⇔ p(β) =

1√
2πσβ

e
−

|β|2
σ2

β

σ2
β = E[|β|2] = NE[|An|2]
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Multipath channel

Rayleigh fading (cont’d)

• β has a complex normal distribution with zero mean

• |β| is Rayleigh distributed

• |β|2 is Chi-square distributed

−20 −15 −10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x [dB]

P
(p

ow
er

<
x)

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

p(
x)

Rayleigh

Gaussian

σh = 1

(a) (b)

χ2(1/
√

2,2)
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Multipath channel

Fading

Frequency-selective fading (long delay)

Space-selective fading (large angle)

Time-selective fading (Doppler)

x(t)
x1(t)x2(t)

frequency 2:

frequency 1:
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Multipath channel

Delay, Angle and Doppler Spreads

Local and remote scattering, and mobile motion spreads the signal

Delay Angle Doppler

Po
w

er

Po
w

er

Po
w

er

Delay spread ranges from 0.1 to 20 microsecs

Angle spread ranges from 1 to 360 degrees

Doppler spread ranges from 5 to 190 Hz.
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Multipath channel

Typical parameter values

Environment delay spread angle spread Doppler spread

Flat rural (macro) 0.5 µs 1◦ 190 Hz

Urban (macro) 5 µs 20◦ 120 Hz

Hilly (macro) 20 µs 30◦ 190 Hz

Mall (micro) 0.3 µs 120◦ 10 Hz

Indoors (pico) 0.1 µs 360◦ 5 Hz
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Signal modulation

coding
modulation

ej2�f
tp(t) or q(t) realbkf0; 1g sk s(t) u(t)

Digital alphabets

Modulation

– Linear modulation

– Phase modulation
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Signal modulation

Digital constellations

jBPSK
(a) (b) (
)

QPSK

1

8-PSK

bk ∈ {0,1} → sk chosen from (up to a possible scaling):

BPSK {1,−1}
QPSK {1, j,−1,−j}
m-PSK {1,ej2π/m,ej2π2/m, . . . ,ej2π(m−1)/m}
m-PAM {±1,±3, . . . ,±(m−1)}
m-QAM {±1± j,±1±3j, . . . ,±1± (

√
m−1)j,±3± j, . . . ,±(

√
m−1)± (

√
m−1)j}
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Signal modulation

Linear modulation

Amplitude is modulated:

sδ(t) =
∞

∑
k=−∞

skδ(t−k) s(t) = p(t)∗sδ(t) =
∞

∑
k=−∞

skp(t−k)

Optimum waveform is both localized in time and frequency (does not exist)

One possible choice: sinc pulse shape

p(t) =
sinπt

πt
, P (f) =







1 , |f | < 1
2

0 , otherwise

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.2

0

0.2

0.4

0.6

0.8

1

time [T]
−1.5 −1 −0.5 0 0.5 1 1.5

frequency
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Signal modulation

Linear modulation

Modification: raised-cosine pulse shape

p(t) =
sinπt

πt
· cosαπt

1−4α2t2
P (f) =



















1 , |f | < 1
2 (1−α)

1
2 − 1

2 sin(π
α (|f |− 1

2 )) , 1
2 (1−α) < |f | < 1

2 (1+α)

0 , otherwise

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.2

0

0.2

0.4

0.6

0.8

1

time [T]
−1.5 −1 −0.5 0 0.5 1 1.5

frequency f

α = 0

0.25
0.5

0.75
1

0.25

α = 0

(b)

0.5
0.75

1

(a)

α: excess bandwidth (or rolloff) parameter; common choice is α = 0.35
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Signal modulation

Linear modulation

Sampling raised-cosine pulses at integer time instants k: s(k) 6= 0 only for k = 0

As a result, sk = s(k), which means we can recover sk from s(t) (if synchronized)

Sometimes p(t) is considered part of the filter g(t):

x(t) =

[

r

∑
i=1

a(θi)βig(t− τi)

]

∗sδ(t)

=
∞

∑
k=−∞

[

r

∑
i=1

a(θi)βig(t−k− τi)

]

sk
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Signal modulation

Phase modulation

Phase is modulated:

s(t) = ejφ(t) φ(t) = q(t)∗sδ(t) =
∞

∑
k=−∞

skq(t−k)

A simple choice for q(t), used for BPSK, is

q(t) =



















0 t < 0 ,

πt 0 ≤ t < 1 ,

π t ≥ 1

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

time [T]

π

Abrupt changes in phase can also be avoided
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Macroscopic channel model

FIR channel model h1(t)
hM(t)

sÆ(t) 1Px1(t)
1PxM(t)

h(t) x1(k + nP )
xM(k + nP )

We collect all temporal effects in h(t)

• Filtering effects at transmitter and receiver

• propagation channel

• pulse shape for linear modulation

We obtain the data model

x(t) = h(t)∗sδ(t) x(t) =











x1(t)
...

xM (t)











, h(t) =











h1(t)
...

hM (t)











40



Macroscopic channel model

We sample x(t) at a rate of P samples per symbol (P is the oversampling factor):

x(k + n
P ) =

[

h( n
P ) h(1+ n

P ) . . . h(L−1+ n
P )

]

















sk

sk−1

...

sk−L+1

















, n = 0,1, . . . ,P −1

xk :=

















x(k)

x(k + 1
P )

...

x(k + P−1
P )

















=

















h(0) h(1) · · · h(L−1)

h( 1
P ) h(1+ 1

P ) · · · h(L−1+ 1
P )

...
...

...

h(P−1
P ) h(1+ P−1

P ) · · · h(L−1+ P−1
P )

































sk

sk−1

...

sk−L+1

















###zz1P x(k + nP )sÆ(t) xkh(t)
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Macroscopic channel model

Construct a data matrix X as

X = [x0 · · · xN−1] :=

















x(0) x(1) · · · x(N −1)

x( 1
P ) x(1+ 1

P ) · · · x(N −1+ 1
P )

...
...

...

x(P−1
P ) x(1+ P−1

P ) · · · x(N −1+ P−1
P )

















: MP ×N

X has a factorization

X = HSL

:=

















h(0) h(1) · · · h(L−1)

h( 1
P ) h(1+ 1

P ) · · · h(L−1+ 1
P )

...
...

...

h(P−1
P ) h(1+ P−1

P ) · · · h(L−1+ P−1
P )

































s0 s1 . . . sN−1

s−1 s0 . . . sN−2

...
...

. . .
...

s−L+1 s−L+2 . . . sN−L

















H : MP ×L SL : L×N
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Macroscopic channel model

For space-time equalization over m symbol intervals, construct

Xm =













x0 x1 . . . xN−1

x−1 x0 . . . xN−2...
...

. . .
...

x−m+1 x−m+2 . . . xN−m













: mMP ×N

Xm has a factorization

Xm = HmSL+m−1

:=

















H 0

H
. . .

0 H

































s0 s1 . . . sN−1

s−1 s0 . . . sN−2

...
...

. . .
...

s−L−m+2 s−L−m+3 . . . sN−L−m+1

















Hm : mMP × (L+m−1) SL+m−1 : (L+m−1)×N
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Macroscopic channel model

A space-time equalizer is a vector w which combines the rows of Xm:

wHXm = [ŝ−k0 ŝ1−k0 · · · ŝN−1−k0 ]

###
###

###
zz

zz
1P zzsÆ(t) h(t) xk

xk�1
xk�m+1 w�mMP

w�1w�2

^sk�k0

If we increase m by 1: 1 new row in SL+m−1 BUT MP new rows in Xm

44



Macroscopic channel model

Connection to the multiray model

The multiray propagation model is (for specular multipath)

h(t) =







h1(t)...
hM (t)






=

r

∑
i=1

a(θi)βi g(t− τi)

g(t): temporal effects (filtering + raised-cosine pulse shape)

θi: direction-of-arrival

τi: propagation delay

βi ∈ |C : complex path attenuation (fading)

x(t)
h(t)sÆ(t)

f�ig; f�ig; f�ig

g(t)
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Macroscopic channel model

Connection to multiray model

Collect samples of hi(t) into a row vector

hi = [hi(0) hi(
1
P ) · · · hi(L− 1

P )]

Similarly, collect the samples of g(t− τ) into a row vector

g(τ) = [g(−τ) g( 1
P − τ) · · · g(L− 1

P − τ)]

The channel model can be written as

H′ =







—h1—
...

—hM—






=







| |
a(θ1) · · · a(θr)

| |













β1
. . .

βr













—g(τ1)—...
—g(τr)—






=: ABG

H and H′ are “the same”, but reorganized: H is MP ×L and H′ is M ×LP .
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Macroscopic channel model

Summary of properties

X = HS H′ = ABG

0
0

0

0

Properties H S

macro matrix block Toeplitz Toeplitz

col(H) = col(X ) row(S) = row(X )

modulation FA, CM, non-Gaussian, · · ·
temporal cyclostationarity independence

parametric temporal known g(τ) training: known {sk}
spatial known a(θ)
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