Subspace intersection tracking using GSVD and the Signed

URYV algorithm
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m Part I: Application

1. AIS ship transponder signal separation

2. Algorithm based on Generalized SVD (GSVD)

m Part Il: Subspace tracking

1. Signed (hyperbolic) URV to approximate the GSVD

2. Updating the SURV
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AIS signal separation

Automatic Idenfication of Ships (AIS)

m Short data packets in a TDMA system, only partial synchronization
m On surface: ~ 50 km range; from satellite: ~ 500 km range

m Many partially overlapping signals, need blind source separation
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AIS signal separation

ISIS AIS satellite prototype (Triton-1 mission)

Launched 2013
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AIS signal separation

TU Delft AIS 4-channel receiver
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AIS signal separation

AIS overlapping signals

Example of a measurement

107 4-antenna measurements
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Data model

Received signal

Assume M antennas, stack received signals x;[k] into column x[k]:
X[k] = hysi[k] + - - - + hgsg[k] + n[k] = Hs[k] + n[K]
H = [hy, - .-, hy]: tall, full column rank; columns normalized to ||h;|| = 1

_v/_ X,

- targets Ss

- interference S«

Analysis window
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Data model

Covariance model

Ri = H;RsHY + HFRf1HE + 621
R = Hs;RoHY + HeRppHYE + 021

The distinction between target signals and interfering signals is defined by
Rs1 > Rs2, Rr1 <R

l.e., target signals are stronger (more samples present) in the first data block than

in the second data block.

Objective
Compute a separating beamforming matrix W of size m x ds, such that
W7H;=M;,  W"Hf=0

where Mg is any ds x ds full rank matrix.
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Tools from linear algebra

Generalized SVD
For two matrices Y1, Y, (both m x n, 'wide’), the GSVD is

Y; = FCuU”
GSVD(Yl, Y2) =
Y, = FSv”
m F: mx mis an invertible matrix, C and S are square positive diagonal matrices,

m U, V are semi-unitary matrices of size n x m.

m Columns of F are scaled to norm 1.

(This definition is ‘transposed’ compared to the Matlab definition. Also scaling is

different.)
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Tools from linear algebra

Generalized SVD (cont’d)

Y; = FCU", Y, = FSV". Given some tolerance ¢ > 0, partition C and S as

Cy C; > el S S; > el

c_ C, C2>el, S_ S, S, < el
Cs Cs <l S3 S3 > el

Cs Cy < el S, S, < el

and F correspondinglyas F =[F; F> F3 F4]

m ran(F;) contains the common column span, i.e., ran(Y1) Nran(Y>3)
m ran(F,) is the subspace of columns that are in ran(Y1) but not in ran(Y5),
m ran(F3) is the subspace of columns that are in ran(Y>) but not in ran(Yy),

m ran(F,4) is a common left null space.
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Tools from linear algebra

Generalized Eigenvalue Decomposition (GEV)
Squaring the GSVD, we obtain (for positive definite matrices R, Ry)

R;, = FDF”

GEV(Rl,RQ) =
R, = FKF”

where F is invertible and D, K are diagonal and positive.

m Unclear if the decomposition exists if R; and R, indefinite (D and K may become

complex).

m Can partition D, K, F in the same way as for the GSVD.
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Tools from linear algebra

Oblique projections

A square matrix E is an oblique projection if E> = E. Let H = [Hs H¢] be of full

column rank, then

I t
EHsle =H 0 H

is an oblique projection. It is such that EH; = H; and EHf =0

Beamforming

A “zero-forcing” beamformer W is a full-rank factor of an oblique projection:
W7H; =M invertible,  W"H;=0

Example: WX =[I O]HT.
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Source separation

Noise-free case

m Model:
R.: HY R.> HY
Rl — [Hs Hf] ’ 7—/ R2 — [Hs Hf] ’ 7_,
Rfl Hf ng Hf
Rs1 > Rso Rr1 < Rypo

m The GEV of (R,R») is
R, = FDF”
R. = FKF"

For a given threshold € > 0, partition F, D, K as

D1 D1 > el Kl
F=[F,F,,F3], D= D, , K= K> K> > el
D3 D; < el K3 Kz <l

and moreover D; > K;, D> < K>
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Source separation

Then

ran(F1) = ran(Hs), ran(F2) = ran(Hy).

Using F, we can construct the oblique projector to cancel the interference:

E=F 0 F!

whereas a separating beamformeris W7 =1 0 O]F ! .

White noise with known covariance o2l

F from GEV(R, Ry) changes (unlike EVD of a single matrix in white noise which

will shift eigenvalues but not change the eigenvectors).

Could compute GEV(R; — ¢°l, R, — ¢?1); but risk that matrices become indefinite.

First need to remove the noise subspace.

5
14 TUDelft



Source separation

Algorithm using SVD and GEV

1. Preprocessing: compute the SVD:

Y1 Y] =[U; Uj] :
2, VS’ 2, <ol

Then apply a rank and dimension reduction: Y; = uiyy, Y, = Uy,
2. Compute the rank-reduced covariance matrices Ry = Y1Y!, Ry = YY)

3. Compute the GEV of the noise-shifted rank-reduced covariance matrices,
. R, — o2l = FDF"
GEV(Rl —0°lLRy— 0 |) ~ ~
R, — 021 = FKF"
4. Sort the entries of D, K and correspondingly partition F = [F1, F5].

The term F3 should be absent as the noise subspace has been removed.

5. The separating beamformer is W =[I 0][F; F,] ‘U

1
15 TUDelft



