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Outline

Part I: Application

1. AIS ship transponder signal separation

2. Algorithm based on Generalized SVD (GSVD)

Part II: Subspace tracking

1. Signed (hyperbolic) URV to approximate the GSVD

2. Updating the SURV
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AIS signal separation

Automatic Idenfication of Ships (AIS)

Short data packets in a TDMA system, only partial synchronization

On surface: � 50 km range; from satellite: � 500 km range

Many partially overlapping signals, need blind source separation
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AIS signal separation

ISIS AIS satellite prototype (Triton-1 mission)

Launched 2013
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AIS signal separation

TU Delft AIS 4-channel receiver
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AIS signal separation

AIS overlapping signals

Example of a measurement
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4-antenna measurements
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Data model

Received signal

Assume � antennas, stack received signals � � ��� � into column � ��� � :

� ��� �	� 
 �
� � ��� ��� � � �� 
 � � � ��� ��� � ��� �	� � � ��� ��� � ��� �

� � � 
 �� � � � � 
 � � : tall, full column rank; columns normalized to � 
 � � � �

targets � �

� �

� �
interference � �

Analysis window
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Data model

Covariance model

� � � � � � � � � �� � � � � � � � �� � ��� �

� � � � � � �� � �� � � � � �� � �� � ��� �

The distinction between target signals and interfering signals is defined by

� � � 	 � �� � � � �
 � ��

I.e., target signals are stronger (more samples present) in the first data block than

in the second data block.

Objective

Compute a separating beamforming matrix � of size �
 � � , such that

� � � � � � � � � � � � � �
where � � is any � �
 � � full rank matrix.
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Tools from linear algebra

Generalized SVD

For two matrices � � , � � (both � 
 � , ’wide’), the GSVD is

GSVD � � � � � � � �







� � � � � � �

� � � � �	 �

�
 �
 � is an invertible matrix, � and � are square positive diagonal matrices,

� ,	 are semi-unitary matrices of size �
 � .

Columns of � are scaled to norm 1.

(This definition is ‘transposed’ compared to the Matlab definition. Also scaling is

different.)
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Tools from linear algebra

Generalized SVD (cont’d)
� � � � � � � � � � � � �	 � . Given some tolerance � � � , partition � and � as

� �











� �
� �

� �
� �











� � 	 � �

� � 	 � �

� � 
 � �

� � 
 � �
� � �











� �
��

� �
� �











� � 	 � �

�� 
 � �

� � 	 � �

� � 
 � �

and � correspondingly as � � � � � �� � � � � �

� �� � � � � contains the common column span, i.e., � �� � � � �	� � �� � � � �

� �� � �� � is the subspace of columns that are in � �� � � � � but not in � �� � � � � ,

� �� � � � � is the subspace of columns that are in � �� � � � � but not in � �� � � � � ,

� �� � � � � is a common left null space.
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Tools from linear algebra

Generalized Eigenvalue Decomposition (GEV)

Squaring the GSVD, we obtain (for positive definite matrices � � � � � )

GEV � � � � � � � �







� � � �� � �

� � � �� � �

where � is invertible and� ,� are diagonal and positive.

Unclear if the decomposition exists if � � and � � indefinite (� and� may become

complex).

Can partition� � � � � in the same way as for the GSVD.
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Tools from linear algebra

Oblique projections

A square matrix � is an oblique projection if � � � � . Let � � � � � � � � be of full

column rank, then

� � �� � �
 � �





�
�



 � �

is an oblique projection. It is such that � � � � � � and � � � � �

Beamforming

A “zero-forcing” beamformer � is a full-rank factor of an oblique projection:

� � � � � � invertible� � � � � � �

Example: � � � � � � � � � .
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Source separation

Noise-free case

Model:
� � � � � � � � �





� � �
� � �









� ��
� ��



� � � � � � � � � �





� ��
� ��









� ��
� ��





� � � 	 � �� � � � �
 � ��

The GEV of � � � � � � � is






� � � �� � �

� � � �� � �

For a given threshold � � � , partition � ,� ,� as

� � � � � � �� � � � � � � �








� �
� �

� �







� � 	 � �

� � 
 � �
� � �








� �
� �

� �








� � 	 � �

� � 
 � �

and moreover� � 	 � � � � � 
 � �
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Source separation

Then

� �� � � � � � � �� � � � � � � �� � �� � � � �� � � � � �

Using � , we can construct the oblique projector to cancel the interference:

� � �








�
�

�








� � �

whereas a separating beamformer is � � � � � � � � � � �
�

White noise with known covariance �
�

�

� from GEV � � � � � � � changes (unlike EVD of a single matrix in white noise which

will shift eigenvalues but not change the eigenvectors).

Could compute GEV � � � � ��� �� � � � ��� � � ; but risk that matrices become indefinite.

First need to remove the noise subspace.
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Source separation

Algorithm using SVD and GEV

1. Preprocessing: compute the SVD:

� � � � � � � � � � � � �





� �� �
� �� �









	 ��
	 ��



�

� �� � 	 � �

� �� � 
 � �

Then apply a rank and dimension reduction:

�� � � � � � � � �
�� � � � � � � �

2. Compute the rank-reduced covariance matrices

�� � �

�� �
�� �� �
�� � � �� � �� ��

3. Compute the GEV of the noise-shifted rank-reduced covariance matrices,

GEV �
�� � � �� �� �� � � �� � � �







�� � � ��� �� �� � �

�� � � ��� �� �� � �

4. Sort the entries of� � � and correspondingly partition � � � � �� �� � .

The term � � should be absent as the noise subspace has been removed.

5. The separating beamformer is � � � � � � � � � � �� �
� � � � �
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