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Introduction

Many communication signals have the constant modulus (CM) property:

FM, PM, FSK, PSK, ...

If these are corrupted by noise/interference, the CM property is lost

Can we find a filter w to restore this property, without knowing the sources?

The answer is yes. It is obtained by the constant modulus algorithm (CMA)
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Data model
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We receive 1 signal with noise (plus interference)

xk = ask +nk

The source is unknown but has constant modulus: |sk| = 1 for all k.

Objective: construct a receiver weight vector w such that

yk = wHxk = ŝk

Possible solution: look for a w such that |yk| = 1 for all k.
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Cost function

Possible optimization problem:

min
w

J(w) where J(w) = E
[

(|yk|
2−1)2

]

The CMA cost function as a function of y (for simplicity, y is taken real here):
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There is no unique minimum:

if yk = wHxk is CM, then another beamformer is αw, for any scalar |α| = 1
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Cost function

Cost function for 2 real sources and 2 antennas:

µ=0.05

µ=0.05
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Constant modulus algorithm

Cost function:

J(w) = E
[

(|yk|
2−1)2

]

, yk = wHxk

Stochastic gradient method:

wk+1 = wk − µ∇J(wk) , µ > 0 is the step size

Computation of gradient (use |yk|
2 = ykȳk = wHxk xH

k w):

∇J(w) = 2E{(|yk|
2−1) ·∇(wHxkxH

k w)}

= 2E {(|yk|
2−1) ·xkxH

k w}

= 2E {(|yk|
2−1) ȳk xk}

Replace expectation by instantaneous value and absorbe the factor 2 in µ:

CMA(2,2):







yk = w(k)Hxk

w(k+1) = w(k) − µxk (|yk|
2−1)ȳk

Similar to LMS, but with update error (|yk|
2−1)yk.
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Constant modulus algorithm

Advantages

• The algorithm is extremely simple to implement

• Adaptive tracking of sources

• Converges to minima close to the Wiener beamformers (for each source)

Disadvantages

• Noisy and slow

• Step size µ should be small, else instable

• Only one source is recovered (which one?)

• Possible misconvergence to local minimum (with finite data)
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Simulations
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Simulations
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As with LMS, a larger step size makes the convergence faster but also more noisy.
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Other CMAs
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Alternative cost function: CMA(1,2)

J(w) = E(|yk|−1)2 = E(|wHxk|−1)2

Corresponding CMA iteration






yk := w(k)Hxk

w(k+1) := w(k)−µxk(ȳk −
ȳk

|yk|
)

Similar to LMS, but with update error yk −
yk

|yk|
.

The desired signal is estimated by ŝk = yk

|yk|
.
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Other CMAs

Normalized CMA (NCMA): µ becomes scaling independent

w(k+1) := w(k)−
µ

‖xk‖2
xk (ȳk −

ȳk

|yk|
)

Orthogonal CMA (OCMA): whiten using data covariance R

w(k+1) := w(k)−µR−1
k xk (ȳk −

ȳk

|yk|
)

Least Squares CMA: block update, we iteratively solve

min
w

‖ŝ−wHX‖

where ŝ is the best blind estimate of the complete source vector based on w


















yi = w(k)Hxi for i = 1,2, . . . ,N

ŝ(k) := [ y1

|y1|
, y2

|y2|
, · · · , yN

|yN | ]

w(k+1) := (ŝ(k) X†)H
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The CM Array

Try to find all sources...
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CMA gives estimate of source 1: ŝ1,k

This is used as reference signal for LMS model matching:

â(k+1)
1 = â(k)

1 − µlms[â
(k)
1 ŝ1,k −xk]¯̂s1,k

We can then remove this source and continue to find other sources:

x1,k = xk − â(k)
1 ŝ1,k
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