
3. SPATIAL PROCESSING TECHNIQUES

Outline

1. Blind channel estimation

2. Blind symbol estimation
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Data model

Let us consider the general single-user model (see introduction)
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The model for multiple users can then be written as
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Blind estimation

The starting point of our blind estimation methods is the SVD of X :

X = UΣVH
= UsΣsVH

s +UnΣnVH
n

where Σn is only non-zero if there is some noise.

Un describes the subspace orthogonal to the columns of X and Vn describes the

subspace orthogonal to the rows of X :

UH
n X = 0 XVn = 0

Because the columns of X are linear combinations of the columns of H, we have

UH
n X = 0 ⇔ UH

n H = 0

Because the rows of X are linear combinations of the rows of S, we have

XVn = 0 ⇔ SVn = 0

The blind methods are now obtained by exploiting the structure in H and S.
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Blind channel estimation

For a single user, we can transform UH
n H= 0 into

[

UH
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n,m
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This can be solved by finding the right null-space of Un,T (through the SVD).

If the null-space has dimension one, there is a solution up to a scalar ambiguity.

If the null-space has a larger dimension, there are too many solutions.
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Blind symbol estimation

For a single user, we can transform SVn = 0 into
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This can be solved by finding the left null-space of Vn,T (through the SVD).

If the null-space has dimension one, there is a solution up to a scalar ambiguity.

If the null-space has a larger dimension, there are too many solutions.
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Blind estimation for multiple users

If we have multiple users, then the blind methods will become

Un,T








H0

...

HL−1







= 0

[

s
−L−m+2 · · · sN−1
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where Hl (MP ×d) and sn (d×1) stack the channels and symbols of the d users.

If Un,T has a d-dimensional right null-space, then we find a solution for Hl up to a

d×d transformation matrix T: Ĥl = HlT.

If Vn,T has a d-dimensional left null-space, then we find a solution for sn up to a

d×d transformation matrix T: ŝn = Tsn.

This transformation matrix T has to be resolved using for instance the finite al-

phabet property of the data symbols.
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