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Data model

xM(t)

beamformer ^skx1(t)s(t) wH

We receive 1 signal with noise (plus interference)

xk = ask +nk

The source has unit power: E(|sk|
2) = 1.

The received data covariance matrix is Rx = E(xkxH

k ).

The correlation between the received data and the symbols is rxs = E(xks̄k).

Objective: construct a receiver weight vector w such that

yk = wHxk = ŝk
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Wiener receiver

The output error is ek = yk −sk where yk = wHxk

The output error cost function is

J(w) = E(|ek|
2) = E(|wHxk −sk|

2)

= E[(wHxk −sk)(x
H

kw− s̄k)]

= wHRxw−wHrxs− rH

xsw +1 .

The gradient of J(w) is

∇J(w) = Rxw− rxs

Denote the optimum of J(w) by w0. At the optimum, ∇J(w0) = 0, so that

Rxw0 = rxs ⇒ w0 = R−1
x rxs

∇J(w) = 0 ⇒ E(xkxH

k w−xk s̄k) = 0 ⇒ E(xkēk) = 0

At the optimum, the output error ek is uncorrelated to the input vector:

the orthogonality principle.

3



Wiener receiver

At the optimum w0 = R−1
x rxs, the remaining cost is

J(w0) = wH

0 Rxw0−wH

0 rxs− rH

xsw0 +1 = 1− rH

xsR
−1
x rxs =: J0

For any other w,

J(w) = J0 +(w−w0)
HRx(w−w0)

Hence J(w) is a quadratic function of w, and w0 is really the minimizer.

With finite data, all expectations are estimated from the available data:

R̂x = 1
N

N

∑
k=1

xkxH

k = 1
N XXH

r̂xs = 1
N

N

∑
k=1

xk s̄k = 1
N XsH

The finite-sample cost function is

Ĵ(w) = 1
N

N

∑
k=1

|wHxk −sk|
2 = 1

N ‖wHX−s‖2

The optimal finite-sample solution is ŵ0 = R̂−1
x r̂xs.
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Steepest gradient descent algorithm

Optimal Wiener involves R−1
x . To avoid inversion, estimate the optimum iteratively.

Steepest Gradient descent technique to find minf(x):

– Take initial point x(1) with gradient ∇f (1)

– For another point x(2) close to x(1), we can write

∇f (1) ≈
f (2)−f (1)

x(2)−x(1)
⇒ f (2) ≈ f (1) + (x(2)−x(1))∇f (1)

– If we choose x(2) = x(1)−µ∇f (1) with µ a small number (the step size), then

f (2) ≈ f (1)−µ(∇f (1))2 < f (1)

– At the minimum, ∇f (1) = 0 and x(2) = x(1).

In our application, we have J(w) with ∇J(w) = Rxw− rxs:

w(k+1) = w(k) − µ(Rxw(k)− rxs)

Initialized usually by w(0) = 0.
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Steepest gradient descent algorithm

µ=0.2

µ=2.5

0 5 10 15 20 25 30 35 40
0

1

2

3

4
convergence of output error cost function

time [updates]

J

µ=0.005
µ=0.05

µ=0.5

µ=0.7
eig = [2.9, 0.58]
µ

max
 = 0.69

6



Steepest gradient descent algorithm

Stability

Let w0 denote the optimum, and define the weight error c(k) = w(k)−w0 .

w(k+1) = w(k) − µ(Rxw(k)− rxs)

w0 = w0 − µ(Rxw0− rxs)

c(k+1) = c(k) − µRxc(k)

Hence

c(k+1) = (I−µRx)c(k) = · · · = (I−µRx)k+1c(0)

The recursion is stable iff (I−µRx)k converges to zero.

Introduce the eigenvalue decomposition

I−µRx =: UΛµUH ⇒ (I−µRx)k = U(Λµ)kUH

Change of variables: v(k) := UHc(k), so that v(k) = (Λµ)kv(0).

Condition for stability of the recursion:

‖c(k)‖ = ‖v(k)‖ → 0 ⇔ |λµ,i| < 1 i = 1, · · · ,M
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Steepest gradient descent algorithm – Stability

Eigenvalue decomposition of Rx:

Rx := UΛUH

then

I−µRx = UUH −µUΛUH

= U(I−µΛ)UH

. ⇒ Λµ = I−µΛ

The recursion is stable if and only if

|1−µλi|< 1 , i=1, · · · ,M ⇔ 0 < µλi < 2 , i=1, · · · ,M ⇔

The steepest gradient descent algorithm is stable if

0 < µ <
2

λmax
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Steepest gradient descent algorithm

Convergence rate

v(k) = (Λµ)kv(0) = (I−µΛ)kv(0)

Each entry of v(k) converges with a rate determined by |1−µλi|.

If 1−µλmax > 0, then the slowest mode is determined by λmin.

Define a time constant τ such that

‖v(τ)‖ = ‖v(0)‖/e ⇔ (1−µλmin)
τ =

1

e

For sufficiently small µ,

τ =
−1

ln(1−µλmin)
≈

1

µλmin
.

If µ = 1
λmax

, then

τ ≈
λmax

λmin
=: cond(Rx) .

If the eigenvalues of Rx are widely spread then convergence will be slow.
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The LMS algorithm

Until now, ∇J(w) = Rxw− rxs with Rx and vector rxs perfectly known,

Rx = E(xkxH

k ) , rxs = E(xks̄k)

These quantities have to be estimated from the data.

The Least-Mean-Square algorithm (LMS; Widrow 1975) makes simple estimates:

R̂x = xkxH

k , r̂xs = xks̄k

The resulting instantaneous gradient estimate is

∇̂J(w) = xkxH

k w−xks̄k = xk(x
H

k w− s̄k) = xkēk

LMS algorithm:

yk := ŵ(k)Hxk

ek := yk −sk

ŵ(k+1) := ŵ(k) − µxkēk

Initialized usually by ŵ(0) = 0.
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The LMS algorithm
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The LMS algorithm
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For small µ, the LMS stays close to the Steepest Gradient Descent algorithm.
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The LMS algorithm

Convergence in the mean

Compare the error in the LMS weight vector to the Wiener weight, w0 = R−1
x rxs,

ǫk = w(k) − w0

Convergence of E(w(k)) (the ensemble-averaged weight vector):

ŵ(k+1) = ŵ(k) − µ[xkxH

k ŵ(k) − xks̄k]

w0 = w0 − µ[E(xkxH

k )w0 − E(xks̄k)]

ǫk+1 = ǫk − µ[xkxH

k ŵ(k)−E(xkxH

k )w0 − (xks̄k −E(xks̄k))]

E(ǫk+1) = E(ǫk) − µ[E(xkxH

k )E(ǫk) − 0]

= E(ǫk) − µRxE(ǫk) (independence)

= (I−µRx)E(ǫk)

Average convergence of LMS is the same for SGD. Require 0 < µ < 2
λmax
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The LMS algorithm

Convergence in the mean-square

Ensemble-average value of the LMS mean-square error:

Jk := E(ekēk)

= E([ŵ(k)Hxk −sk]
H[ŵ(k)Hxk −sk]) (ŵ(k) = w0 + ǫk)

= E{[wH

0 xk −sk]
H[wH

0 xk −sk]+ ǫH

k xkxH

k ǫk + ǫH

k xk(w
H

0 xk −sk)+(wH

0 xk −sk)
HxH

k ǫk}

= Jmin︸︷︷︸
Wiener error

+ E(ǫ
H

k xkxH

k ǫk)︸ ︷︷ ︸
excess error

Jex(k) := E(ǫH

k xkxH

k ǫk) = E(tr[ǫH

k xkxH

k ǫk]) = E(tr[xkxH

k ǫkǫ
H

k ])

= tr(RxKk) , Kk := E(ǫkǫ
H

k )

Can show that if µ satisfies

γ :=
M

∑
i=1

µλi

2−µλi
< 1

then the mean-squared error of the LMS algorithm converges and

Jex(∞) = Jmin ·
γ

1−γ
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The LMS algorithm

Suppose that µλi ≪ 1, i = 1, · · · ,M , then

Jex(∞) ≈ Jmin γ ≈ Jmin
1
2µ

M

∑
i=1

λi

Note: ∑λi = E(‖xk‖
2): average input power

In summary, the LMS converges in the mean-square if and only if

0 < µ <
2

E(‖xk‖2)

and the MSE is given by

J(∞) ≈ Jmin[1+ 1
2µE(‖xk‖

2)]
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Normalized LMS

In LMS, the value of µ depends on the scaling of the data:

ŵ(k+1) = ŵ(k) − µxkēk , ek = w(k)Hxk − sk

If xk is scaled by α then ek also scales with α, and µ has to be scaled by α−2.

Normalized LMS

Scaling-invariant recursion:

ŵ(k+1) = ŵ(k) −
µ̃

‖xk‖2
xkēk

Effective step size is µk = µ̃/‖xk‖
2: time-varying step.

To avoid division by zero, one often adds a small positive number to ‖xk‖
2.

The NLMS converges in the mean-square if and only if

0 < µ̃ < 2

and the MSE is given by

J(∞) ≈ Jmin[1+ 1
2 µ̃]
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Normalized LMS
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Matrix inversion lemma

(A−BHC−1B )−1 = A−1 + A−1BH

(C−BA−1BH

)−1BA−1 .

PROOF

 A BH

B C


 =


 I BHC−1

0 I





 A−BHC−1B

C





 I 0

C−1B I




=


 I 0

BA−1 I





 A

C−BA−1BH





 I A−1BH

0 I





 A BH

B C



−1

=


 I 0

−C−1B I





 (A−BHC−1B )−1 0

0 C−1





 I −BHC−1

0 I





 A BH

B C



−1

=


 I −A−1BH

0 I





 A−1

(C−BA−1BH)−1





 I 0

−BA−1 I




=


 A−1 +A−1BH(C−BA−1BH)−1BA−1 ∗

∗ ∗
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The RLS algorithm

Suppose at time k we know Xk := [x1, · · · ,xk] , sk := [s1, · · · ,sk]

The solution to min ‖wHXk −sk ‖
2 is

ŵ(k) = X†
ksH

k = (XkXH

k )−1XksH

k =: Φ
−1
k θk

where

Φk := XkXH

k =
k

∑
i=1

xkxH

k , θk := XksH

k =
k

∑
i=1

xks̄k

Update of Φ
−1
k :

Φk+1 = Φk +xk+1xH

k+1 ⇒ Φ
−1
k+1 = (Φk +xk+1xH

k+1)
−1 = Φ

−1
k −

Φ
−1
k xk+1xH

k+1Φ
−1
k

1+xH

k+1Φ
−1
k xk+1

Recursive Least Squares (RLS) algorithm:

Pk+1 := Pk −
Pkxk+1xH

k+1Pk

1+xH

k+1Pkxk+1

θk+1 := θk + xk+1s̄k+1

ŵ(k+1) := Pk+1θk+1

Initialization: θ0 = 0 and P0 = δ−1I, where δ is a very small positive constant.

19



The RLS algorithm

Finite horizon

For adaptive purposes, we want an effective window of data.

1. Sliding window: Φk and θk based on only the last n samples:

Φk+1 = Φk + xk+1xH

k+1 − xk−nxH

k−n

θk+1 = θk + xk+1s̄k+1 − xk−ns̄
H

k−n

Doubles complexity, and we have to keep n previous data samples in memory.

2. Exponential window: scale down Φk and θk by a factor λ ≈ 1:

Φk+1 = λΦk + xk+1xH

k+1

θk+1 = λθk + xk+1s̄k+1

Corresponds to

Xk+1 = [xk+1 λ1/2xk λxk−1 λ3/2xk−2 · · · ]

sk+1 = [sk+1 λ1/2sk λsk−1 λ3/2sk−2 · · · ]
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The RLS algorithm

Exponentially weighted RLS algorithm:

Pk+1 := λ−1Pk − λ−2
Pkxk+1xH

k+1Pk

1+λ−1xH

k+1Pkxk+1

θk+1 := λθk + xk+1s̄k+1

ŵ(k+1) := Pk+1θk+1
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Adaptive model matching

−

sk

nk

xk

ek

a

â

Objective: estimate the channel by minimizing the model error ek = xk − âsk:

J(â) := E(‖ek‖
2) = E(‖xk − âsk‖

2)

= E([xk − âsk]
H[xk − âsk])

= E(‖xk‖
2) − âHrxs − rH

xsâ + âHrsâ, rs = E(sks̄k) = E(|sk|
2)

The gradient is

∇J(â) = rsâ − rxs = rs(â − a)
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Adaptive model matching

Steepest gradient algorithm

â(k+1) = â(k) − µ∇J(â(k)) = â(k) − µrs(â(k)−a) = µrsa + (1−µrs) â(k)

Conververgence

xk = b+axk−1 = b+ ba+a2xk−2 = · · · = b+ ba+ · · ·+ bak−1 +akx0

= b
1−ak

1−a
+ akx0 .

In our case, we obtain similarly

â(k) = aµrs
1− (1−µrs)

k

1− (1−µrs)
+ (1−µrs)

kâ(0) = a[1− (1−µrs)
k] + (1−µrs)

kâ(0)

Convergence to a if |1−µrs| < 1, i.e., 0 < µ < 2
rs

.

LMS algorithm

â(k+1) = â(k) − µ(â(k)sks̄k −xks̄k) = â(k) + µeks̄k
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Adaptive Model matching

Application to interference cancellation in radio astrono my

1

N ∑

1

N ∑

s(t)

Interference

Signals of interest

α2

aMs(t)

a1s(t)

αs(t)

apα

a1α

aα

1

N ∑ | · |2
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Adaptive equalization n(t)
h(t)

zÆ
h � s P

� ek
x(k + nP ) # Psk yksÆ(t) wHD/A

X =




x0 x1 . . . xN−1

x−1 x0 . . . xN−2...
...

. . .
...

x−m+1 x−m+2 . . . xN−m




:=




H 0

H
. . .

0 H







s0 s1 . . . sN−1

s−1 s0 . . . sN−2

...
...

. . .
...

s−L−m+1 s−L−m+2 . . . sN−L−m




+N = HS +N
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Adaptive equalization

A general linear equalizer is:

y = wHX = wH

(HS +N )

If H is tall, then there are L+m−1 valid ZF equalizers

wHH = [1, 0, 0, · · · , 0] or [0, 1, 0, · · · , 0] or [0, 0, 1, · · · , 0] or · · ·

Desired delay δ: usually the ‘center tap’: δ = 1
2(L+m−1).

For an adaptive filter, the reference signal is the original signal at delay δ.

We can apply LMS, NLMS and RLS algorithms.
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Adaptive equalization

Decision directed

n(t)

sk�Æh(t)
zÆ

h � s P
x(k + nP ) # Psk sÆ(t) yk

�ek
wHD/A

After training, we switch to use estimated symbols as reference signal

Slowly varying channels can be tracked using decision directed updating
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Application

Echo cancellation on telephone channels

ĥ(t)

h(t)

e(t)

−

x(t)

s(t)

near end talker
n(t)

zδ

zδ

far end talker
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