3. ADAPTIVE TECHNIQUES

Outline

1. Wiener filters — revisited

2. Steepest gradient descent algorithm
3. The LMS algorithm

4. Normalized LMS

5. The RLS algorithm

6. Applications
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Data model

/\ beamformer
Y T (t)>f

- — @D S
s<t>j\/ Y (t) / |

m We receive 1 signal with noise (plus interference)
X = asg +Ng

m The source has unit power: E(|s;|?) = 1.
m The received data covariance matrix is R, = E(xyX},).

m The correlation between the received data and the symbols is r,s = E(X;Sk).
Objective: construct a receiver weight vector w such that

H ~
Y =W X = Sk
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Wiener receiver

m The output erroris e = yj, — s, where Y = WX},

The output error cost function is

Jw)=E(lex]?) = B(w"X—si[*)
= E[(W"Xg —s) (XW — 5)]

= W'RW—-W'rgs—ro w+1.

The gradient of J(w) is
VJ(W) =R;W — 14

m Denote the optimum of J(w) by wq. At the optimum, V.J(wg) = 0, so that
RxWo =T = Wo =R Ty

VJ(w)=0 = E(XgXpW — X1,5,) =0 = E(xzex) =0

At the optimum, the output error e, is uncorrelated to the input vector:

the orthogonality principle.
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Wiener receiver

m At the optimum wy = R r,,, the remaining cost is
J(Wg) = WoR,Wg —Wglus—rowo+1 =1—-r0 R 'r., = Jy
For any other w,
J(W) = Jo+ (W —wq)" R (W —wpq)
Hence J(w) is a quadratic function of w, and wy, is really the minimizer.

m With finite data, all expectations are estimated from the available data:

N

= 1 H 1 H
k=1
N

- 1 = 1 H
k=1

m The finite-sample cost function is

A

N
Jw) =& S [Wixe—sif? = & wX —s|?
k=1

~

The optimal finite-sample solution is W = R, 1T .
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Steepest gradient descent algorithm

Optimal Wiener involves R 1. To avoid inversion, estimate the optimum iteratively.
m Steepest Gradient descent technique  to find min f(z):

— Take initial point (! with gradient Vv f(1)

— For another point 22 close to (!, we can write

2 1
v & LD e L0 (0 g )
2@ (D)

— If we choose 2 = z(1) — ;v (1) with 1 a small number (the step size), then
@~ fO vy <y
— At the minimum, Vf) =0 and z? = z(1),
m In our application, we have J(w) with VJ(w) = R,W — !
wtH = W)~ (Rw ) — 1)

Initialized usually by w(® = 0.
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Steepest gradient descent algorithm

“Th=0.

convergence of output error cost function

4
3r eig =[2.9, 0.58]
Hmax =0.69 p=0.7
m 2"
1t il\ 1=0.005
. e k=0.05 _ .
0 5 10 15 20 25 30 35 40

time [updates]
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Steepest gradient descent algorithm

Stability

m Let w, denote the optimum, and define the weight error ¢(®) = w(*) —w, .

WD = W~ pRw®) )
Wo = Wo — p(ReWo—Trgs)
cthtl) = ¢k  _ , R,ck)
Hence
ch D) — (1— R, )™ = ... = (1—uR,)F 1

The recursion is stable iff (- R,)* converges to zero.
m Introduce the eigenvalue decomposition
| - uR, =: UA,U" = (I—pR.)" = U(A,)FU"
Change of variables: v(*) := U"c(*), so that v(k) = (A,,)kv(0).
m Condition for stability of the recursion:

le®h=IvPI - 0 e Pul<l i=1- M
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Steepest gradient descent algorithm — Stability

m Eigenvalue decomposition of R.:
R, := UAU"
then
| — R, = UU" — pUAU" = U(I—pA)U". = Ay =1—pA
The recursion is stable if and only if
11— <1, i=1,---,M = 0 < puX; <2, i=1,---,M =
The steepest gradient descent algorithm is stable if

0 < p<

)\max
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Steepest gradient descent algorithm

Convergence rate
v = (A )WV = (1 - pA)Ev(©@

m Each entry of v(¥) converges with a rate determined by |1 — )]

If 1 — uAmax > 0, then the slowest mode is determined by Anin.

m Define a time constant = such that
VO =[vOl e < (1= pAmin)" =

For sufficiently small p,

mIf y =, then

max

If the eigenvalues of R, are widely spread then convergence will be slow.
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The LMS algorithm

m Until now, VJ(w) = R,w —r,, with R, and vector r,, perfectly known,
R, = E(XkXI];I), s = E(ngk;)
These quantities have to be estimated from the data.

m The Least-Mean-Square algorithm (LMS; Widrow 1975) makes simple estimates:
R, = XX}, , Fos = XpSk
The resulting instantaneous gradient estimate is

VJI(W) = XpX[W — Xp8r = Xp(XPW —85) = Xpéx

m LMS algorithm:

yp = WEHy,
€k ‘= Yk — Sk
wkt .= wk) — (X1 €L

Initialized usually by w(© = 0.
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The LMS algorithm

%
11 TUDelft



The LMS algorithm

convergence of output error cost function

0 50 100 150 200
time [samples]

For small i, the LMS stays close to the Steepest Gradient Descent algorithm.
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The LMS algorithm

Convergence in the mean

m Compare the error in the LMS weight vector to the Wiener weight, wo = R 'r .,
€ — W(k) — Wp

m Convergence of E(w(*)) (the ensemble-averaged weight vector):

k)

WD = Wk xex Wl —  Xp5g
Wo = Wy — p[E(XgX,)wo —  BE(Xg5)]
i1 = & — pXppWE —BExxWe = (X8 — B(Xg5k))]

E(ext1) = E(e) — p[EXpxp)E(ex) — 0]
= E(ex) — uRE(ex) (independence)

= (I—uRz)E(eg)

2

>\max

m Average convergence of LMS is the same for SGD. Require 0 < p <

i3
13 TUDelft



The LMS algorithm

Convergence in the mean-square

m Ensemble-average value of the LMS mean-square error:
Jp = E(ekék)
= E([W(k)HXk —Sk]H[W(k)HXk —Sk]) (V,V(k) :Wo—l—ek)
= E{[wyXp —sg]" [WoXp — si] + € XpXp € + €, Xp (Wo X — s1) + (Wo X — 55) "X €5}

= @B + E(ep XXy ex)

Wiener error excess efrror

Jex(k) = E(exiXper) = E(trle XX ex]) = E(tr[xpX, exep])
= tl’(Rka), Ki:= E(Ekeg)

m Can show that if i, satisfies

M
<1

- PN
& 21N

then the mean-squared error of the LMS algorithm converges and
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The LMS algorithm

m Suppose that p\; < 1,7=1,---, M, then
M
Jew(oo) ~ Jmin/y ~  Jmin %,LL 2 i

Note: S \; = E(||x||?): average input power

m In summary, the LMS converges in the mean-square if and only if

2
0 < pt < =———se
E([[xk[[?)

and the MSE is given by

J(00) & Jmin[1 + HE([[Xx[*)]
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Normalized LMS

m In LMS, the value of i depends on the scaling of the data:
WUC_H) = V’V(k) — UXgeg , € = W(k)HXk — Sk
If x;, is scaled by « then e, also scales with «, and . has to be scaled by o 2.

Normalized LMS

m Scaling-invariant recursion:

WD — W) — e
Effective step size is u;, = fi/||X%||*: time-varying step.
To avoid division by zero, one often adds a small positive number to ||x;||?.
m The NLMS converges in the mean-square if and only if
0 < <2

and the MSE is given by
Lﬂm)%bhmﬂ+%m
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Normalized LMS

convergence of output error cost function

0 20 40 60 80 100
time [samples]

O 1 1 1
0 20 40 60 80 100

time [samples]
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Matrix inversion lemma

(A-B"C'B)' = At 4+ AlBYC-BA'BY)"'BA L.

PROOF

A B"
B C

A B"

A BY

1 o] (a—BicB)t o0 | —BUC!
~-CB | 0 c! 0 |

1 _A-B | | A2 0
0o I (C—BA-1B¥)! | | —BAL |

* *

A1+ A-IBY(C—BA'B")IBA! « ]
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The RLS algorithm

m Suppose at time k we know Xg = [X1, -, Xg], Sk :=[s1, " ,Sk]

The solution to min ||w"X —sy [|? is
W = XTs) = (XX Xs)y = ®.16,

where
k

k
H H H —
P, = kak — ZXka, 0, = stk; — ZXkSk

m Update of &, "
By X1 X By

H —1
L% 1@ Xk

H —1 H —1 —1
Ppr1 = Pp A Xpt1 X1 = R = (®r+Xk+1Xp1) = B —

m Recursive Least Squares (RLS) algorithm:

H
Pri = Py - PrXi+1X) 1Pk
T H
L+X 1 PrXg41
Okt1 = Ok + Xpp15k41
~ (k1) .
WD = P04

Initialization: o = 0 and Py = § I, where ¢ is a very small positive constant.
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The RLS algorithm

Finite horizon
For adaptive purposes, we want an effective window of data.
1. Sliding window: @, and 6;. based on only the last n samples:
D11 = D + Xpr1Xpp1 — XkonXp_p
Ort1 = Ok + Xkt15k41 — Xk—nSp_n
Doubles complexity, and we have to keep n previous data samples in memory.
2. Exponential window: scale down ®;. and 6, by a factor A ~ 1:
D1 = Ay + Xpr1Xppy
Ort1 = AN + Xpg15k41
Corresponds to
Xprr = Xeer M2 M A% -]

Sk4+1 = [Sk+ﬂ_ A1/2Sk ,XSk_J_ A3/23k—2 ...]
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The RLS algorithm

Exponentially weighted RLS algorithm:

PeXk+1Xpy 1Pk
Per1 = APy — A 2———
1+ A Xk_|_1Pka_|_1
Orkt1 = Mg + Xpq1Sk41
WD = Py 6

convergence of output error cost function

0.6 (%
' —— RLS
e e LMS
N SGD
0.5 :

0 50 100 150
time [samples]

%
21 TUDelft



Adaptive model matching
Nk

Sk a

-

m Objective: estimate the channel by minimizing the model error e, = X, — asy:

N
|\J
D
N

J(@) = E(|lexl*) = E(|xx—ask|?)
= E([Xk—ésk]H[Xk—ésk])

= B(||xz]|?) — &"rps — ri.a + a"ra, rs = B(s15;) = B(|s1|?)

The gradient is

VJ@) = rsa —rys = rg(d — a)
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Adaptive model matching

Steepest gradient algorithm

Conververgence
T = b—|—agjk_1 — b—|—ba—|—a2xk_2 S — b—|—ba_|_..._|_bak3_1_|_ak3x0
1—aF &
= b + a”xg.
1—a

In our case, we obtain similarly

Convergence to a if |1 — prs| < 1,0, 0 <pu < 2.

LMS algorithm

gkt — z(k) _ ,u(é(k)skEk _Xk§k> — 3k + eSSk
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Adaptive Model matching

Application to interference cancellation in radio astrono my

Signals of interest

|
Interference
s(t) ></ .

<7cus(t)

2|~
™M

= qQ

ao

2|~
™M

—— Qp

Y B ol E—c
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Adaptive equalization

n(t)
/\L r(k+ %) /
S ss(t h*s
i pia |50 h(t) S wf/ | P n
P
€k
2 —0
X0 X1 XN-1
X_-1 X0 XN—-2
_X—m+1 X—m+2 XN—m__
H 0 S0 S1 SN—1
H S_1 S0 SN—2
_ + N =HS+N
0 H || [S—L-m+1 S—L-m+2 SN—L—m_
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Adaptive equalization

m A general linear equalizer is:
y=w'X=w"(HS+N)
m If H is tall, then there are L +m — 1 valid ZF equalizers
w'H=1[1,0,0,---,0] or [0,1,0,---,0] or [0,0,1,---,0] or

Desired delay ¢: usually the ‘center tap’: 6 = %(L—I—m —1).
m For an adaptive filter, the reference signal is the original signal at delay §.

m We can apply LMS, NLMS and RLS algorithms.

i3
26 TUDelft



Adaptive equalization

Decision directed

n(t)
r(k+3) y
Sk ss(t) hxs jy/ Yk —
DIA h(t) S wif L P Sh_s
P

fan)
U

€k

m After training, we switch to use estimated symbols as reference signal

m Slowly varying channels can be tracked using decision directed updating
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Application

Echo cancellation on telephone channels

near end talker : :
n(t) =0 wt) g el ; 20 ;
h(t) I Z
7 | | =
s(t) 0 O far end talker
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