
3. ADAPTIVE TECHNIQUES

Outline

1. Wiener filters – revisited

2. Steepest gradient descent algorithm

3. The LMS algorithm

4. Normalized LMS

5. The RLS algorithm

6. Applications

1

Data model

xM(t)

beamformer ^skx1(t)s(t) wH

We receive 1 signal with noise (plus interference)

xk = ask +nk

The source has unit power: E(|sk|
2) = 1.

The received data covariance matrix is Rx = E(xkxH

k).

The correlation between the received data and the symbols is rxs = E(xks̄k).

Objective: construct a receiver weight vector w such that

yk = wHxk = ŝk

2

Wiener receiver

The output error is ek = yk −sk where yk = wHxk

The output error cost function is

J(w) = E(|ek|
2) = E(|wHxk −sk|

2)

= E[(wHxk −sk)(x
H

kw− s̄k)]

= wHRxw−wHrxs− rH

xsw +1 .

The gradient of J(w) is

∇J(w) = Rxw− rxs

Denote the optimum of J(w) by w0. At the optimum, ∇J(w0) = 0, so that

Rxw0 = rxs ⇒ w0 = R−1
x rxs

∇J(w) = 0 ⇒ E(xkxH

k w−xk s̄k) = 0 ⇒ E(xkēk) = 0

At the optimum, the output error ek is uncorrelated to the input vector:

the orthogonality principle.

3

Wiener receiver

At the optimum w0 = R−1
x rxs, the remaining cost is

J(w0) = wH

0 Rxw0−wH

0 rxs− rH

xsw0 +1 = 1− rH

xsR
−1
x rxs =: J0

For any other w,

J(w) = J0 +(w−w0)
HRx(w−w0)

Hence J(w) is a quadratic function of w, and w0 is really the minimizer.

With finite data, all expectations are estimated from the available data:

R̂x = 1
N

N

∑
k=1

xkxH

k = 1
N XXH

r̂xs = 1
N

N

∑
k=1

xk s̄k = 1
N XsH

The finite-sample cost function is

Ĵ(w) = 1
N

N

∑
k=1

|wHxk −sk|
2 = 1

N ‖wHX−s‖2

The optimal finite-sample solution is ŵ0 = R̂−1
x r̂xs.

4

Steepest gradient descent algorithm

Optimal Wiener involves R−1
x . To avoid inversion, estimate the optimum iteratively.

Steepest Gradient descent technique to find minf(x):

– Take initial point x(1) with gradient ∇f (1)

– For another point x(2) close to x(1), we can write

∇f (1) ≈
f (2)−f (1)

x(2)−x(1)
⇒ f (2) ≈ f (1) + (x(2)−x(1))∇f (1)

– If we choose x(2) = x(1)−µ∇f (1) with µ a small number (the step size), then

f (2) ≈ f (1)−µ(∇f (1))2 < f (1)

– At the minimum, ∇f (1) = 0 and x(2) = x(1).

In our application, we have J(w) with ∇J(w) = Rxw− rxs:

w(k+1) = w(k) − µ(Rxw(k)− rxs)

Initialized usually by w(0) = 0.

5

Steepest gradient descent algorithm

µ=0.2

µ=2.5

0 5 10 15 20 25 30 35 40
0

1

2

3

4
convergence of output error cost function

time [updates]

J

µ=0.005
µ=0.05

µ=0.5

µ=0.7
eig = [2.9, 0.58]
µ

max
 = 0.69

6

Steepest gradient descent algorithm

Stability

Let w0 denote the optimum, and define the weight error c(k) = w(k)−w0 .

w(k+1) = w(k) − µ(Rxw(k)− rxs)

w0 = w0 − µ(Rxw0− rxs)

c(k+1) = c(k) − µRxc(k)

Hence

c(k+1) = (I−µRx)c(k) = · · · = (I−µRx)k+1c(0)

The recursion is stable iff (I−µRx)k converges to zero.

Introduce the eigenvalue decomposition

I−µRx =: UΛµUH ⇒ (I−µRx)k = U(Λµ)kUH

Change of variables: v(k) := UHc(k), so that v(k) = (Λµ)kv(0).

Condition for stability of the recursion:

‖c(k)‖ = ‖v(k)‖ → 0 ⇔ |λµ,i| < 1 i = 1, · · · ,M

7

Steepest gradient descent algorithm – Stability

Eigenvalue decomposition of Rx:

Rx := UΛUH

then

I−µRx = UUH −µUΛUH

= U(I−µΛ)UH

. ⇒ Λµ = I−µΛ

The recursion is stable if and only if

|1−µλi|< 1 , i=1, · · · ,M ⇔ 0 < µλi < 2 , i=1, · · · ,M ⇔

The steepest gradient descent algorithm is stable if

0 < µ <
2

λmax

8

Steepest gradient descent algorithm

Convergence rate

v(k) = (Λµ)kv(0) = (I−µΛ)kv(0)

Each entry of v(k) converges with a rate determined by |1−µλi|.

If 1−µλmax > 0, then the slowest mode is determined by λmin.

Define a time constant τ such that

‖v(τ)‖ = ‖v(0)‖/e ⇔ (1−µλmin)
τ =

1

e

For sufficiently small µ,

τ =
−1

ln(1−µλmin)
≈

1

µλmin
.

If µ = 1
λmax

, then

τ ≈
λmax

λmin
=: cond(Rx) .

If the eigenvalues of Rx are widely spread then convergence will be slow.

9

The LMS algorithm

Until now, ∇J(w) = Rxw− rxs with Rx and vector rxs perfectly known,

Rx = E(xkxH

k) , rxs = E(xks̄k)

These quantities have to be estimated from the data.

The Least-Mean-Square algorithm (LMS; Widrow 1975) makes simple estimates:

R̂x = xkxH

k , r̂xs = xks̄k

The resulting instantaneous gradient estimate is

∇̂J(w) = xkxH

k w−xks̄k = xk(x
H

k w− s̄k) = xkēk

LMS algorithm:

yk := ŵ(k)Hxk

ek := yk −sk

ŵ(k+1) := ŵ(k) − µxkēk

Initialized usually by ŵ(0) = 0.

10

The LMS algorithm

µ=0.05

µ=0.5

11

The LMS algorithm

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
convergence of output error cost function

time [samples]

J

µ=0.2

µ=0.005

LMS
SGD

For small µ, the LMS stays close to the Steepest Gradient Descent algorithm.

12

The LMS algorithm

Convergence in the mean

Compare the error in the LMS weight vector to the Wiener weight, w0 = R−1
x rxs,

ǫk = w(k) − w0

Convergence of E(w(k)) (the ensemble-averaged weight vector):

ŵ(k+1) = ŵ(k) − µ[xkxH

k ŵ(k) − xks̄k]

w0 = w0 − µ[E(xkxH

k)w0 − E(xks̄k)]

ǫk+1 = ǫk − µ[xkxH

k ŵ(k)−E(xkxH

k)w0 − (xks̄k −E(xks̄k))]

E(ǫk+1) = E(ǫk) − µ[E(xkxH

k)E(ǫk) − 0]

= E(ǫk) − µRxE(ǫk) (independence)

= (I−µRx)E(ǫk)

Average convergence of LMS is the same for SGD. Require 0 < µ < 2
λmax

13

The LMS algorithm

Convergence in the mean-square

Ensemble-average value of the LMS mean-square error:

Jk := E(ekēk)

= E([ŵ(k)Hxk −sk]
H[ŵ(k)Hxk −sk]) (ŵ(k) = w0 + ǫk)

= E{[wH

0 xk −sk]
H[wH

0 xk −sk]+ ǫH

k xkxH

k ǫk + ǫH

k xk(w
H

0 xk −sk)+(wH

0 xk −sk)
HxH

k ǫk}

= Jmin︸︷︷︸
Wiener error

+ E(ǫ
H

k xkxH

k ǫk)︸ ︷︷ ︸
excess error

Jex(k) := E(ǫH

k xkxH

k ǫk) = E(tr[ǫH

k xkxH

k ǫk]) = E(tr[xkxH

k ǫkǫ
H

k])

= tr(RxKk) , Kk := E(ǫkǫ
H

k)

Can show that if µ satisfies

γ :=
M

∑
i=1

µλi

2−µλi
< 1

then the mean-squared error of the LMS algorithm converges and

Jex(∞) = Jmin ·
γ

1−γ

14

The LMS algorithm

Suppose that µλi ≪ 1, i = 1, · · · ,M , then

Jex(∞) ≈ Jmin γ ≈ Jmin
1
2µ

M

∑
i=1

λi

Note: ∑λi = E(‖xk‖
2): average input power

In summary, the LMS converges in the mean-square if and only if

0 < µ <
2

E(‖xk‖2)

and the MSE is given by

J(∞) ≈ Jmin[1+ 1
2µE(‖xk‖

2)]

15

Normalized LMS

In LMS, the value of µ depends on the scaling of the data:

ŵ(k+1) = ŵ(k) − µxkēk , ek = w(k)Hxk − sk

If xk is scaled by α then ek also scales with α, and µ has to be scaled by α−2.

Normalized LMS

Scaling-invariant recursion:

ŵ(k+1) = ŵ(k) −
µ̃

‖xk‖2
xkēk

Effective step size is µk = µ̃/‖xk‖
2: time-varying step.

To avoid division by zero, one often adds a small positive number to ‖xk‖
2.

The NLMS converges in the mean-square if and only if

0 < µ̃ < 2

and the MSE is given by

J(∞) ≈ Jmin[1+ 1
2 µ̃]

16

Normalized LMS

0 20 40 60 80 100
0

0.5

1

convergence of output error cost function

time [samples]

J

µ=0.2
µ=0.05

0 20 40 60 80 100
0

0.5

1

time [samples]

J

µ=1

17

Matrix inversion lemma

(A−BHC−1B)−1 = A−1 + A−1BH

(C−BA−1BH

)−1BA−1 .

PROOF

 A BH

B C


 =


 I BHC−1

0 I





 A−BHC−1B

C





 I 0

C−1B I




=


 I 0

BA−1 I





 A

C−BA−1BH





 I A−1BH

0 I





 A BH

B C



−1

=


 I 0

−C−1B I





 (A−BHC−1B)−1 0

0 C−1





 I −BHC−1

0 I





 A BH

B C



−1

=


 I −A−1BH

0 I





 A−1

(C−BA−1BH)−1





 I 0

−BA−1 I




=


 A−1 +A−1BH(C−BA−1BH)−1BA−1 ∗

∗ ∗




18

The RLS algorithm

Suppose at time k we know Xk := [x1, · · · ,xk] , sk := [s1, · · · ,sk]

The solution to min ‖wHXk −sk ‖
2 is

ŵ(k) = X†
ksH

k = (XkXH

k)−1XksH

k =: Φ
−1
k θk

where

Φk := XkXH

k =
k

∑
i=1

xkxH

k , θk := XksH

k =
k

∑
i=1

xks̄k

Update of Φ
−1
k :

Φk+1 = Φk +xk+1xH

k+1 ⇒ Φ
−1
k+1 = (Φk +xk+1xH

k+1)
−1 = Φ

−1
k −

Φ
−1
k xk+1xH

k+1Φ
−1
k

1+xH

k+1Φ
−1
k xk+1

Recursive Least Squares (RLS) algorithm:

Pk+1 := Pk −
Pkxk+1xH

k+1Pk

1+xH

k+1Pkxk+1

θk+1 := θk + xk+1s̄k+1

ŵ(k+1) := Pk+1θk+1

Initialization: θ0 = 0 and P0 = δ−1I, where δ is a very small positive constant.

19

The RLS algorithm

Finite horizon

For adaptive purposes, we want an effective window of data.

1. Sliding window: Φk and θk based on only the last n samples:

Φk+1 = Φk + xk+1xH

k+1 − xk−nxH

k−n

θk+1 = θk + xk+1s̄k+1 − xk−ns̄
H

k−n

Doubles complexity, and we have to keep n previous data samples in memory.

2. Exponential window: scale down Φk and θk by a factor λ ≈ 1:

Φk+1 = λΦk + xk+1xH

k+1

θk+1 = λθk + xk+1s̄k+1

Corresponds to

Xk+1 = [xk+1 λ1/2xk λxk−1 λ3/2xk−2 · · ·]

sk+1 = [sk+1 λ1/2sk λsk−1 λ3/2sk−2 · · ·]

20

The RLS algorithm

Exponentially weighted RLS algorithm:

Pk+1 := λ−1Pk − λ−2
Pkxk+1xH

k+1Pk

1+λ−1xH

k+1Pkxk+1

θk+1 := λθk + xk+1s̄k+1

ŵ(k+1) := Pk+1θk+1

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6
convergence of output error cost function

time [samples]

J

µ=0.088 λ=0.7

λ=1

RLS
LMS
SGD

21

Adaptive model matching

−

sk

nk

xk

ek

a

â

Objective: estimate the channel by minimizing the model error ek = xk − âsk:

J(â) := E(‖ek‖
2) = E(‖xk − âsk‖

2)

= E([xk − âsk]
H[xk − âsk])

= E(‖xk‖
2) − âHrxs − rH

xsâ + âHrsâ, rs = E(sks̄k) = E(|sk|
2)

The gradient is

∇J(â) = rsâ − rxs = rs(â − a)

22

Adaptive model matching

Steepest gradient algorithm

â(k+1) = â(k) − µ∇J(â(k)) = â(k) − µrs(â(k)−a) = µrsa + (1−µrs) â(k)

Conververgence

xk = b+axk−1 = b+ ba+a2xk−2 = · · · = b+ ba+ · · ·+ bak−1 +akx0

= b
1−ak

1−a
+ akx0 .

In our case, we obtain similarly

â(k) = aµrs
1− (1−µrs)

k

1− (1−µrs)
+ (1−µrs)

kâ(0) = a[1− (1−µrs)
k] + (1−µrs)

kâ(0)

Convergence to a if |1−µrs| < 1, i.e., 0 < µ < 2
rs

.

LMS algorithm

â(k+1) = â(k) − µ(â(k)sks̄k −xks̄k) = â(k) + µeks̄k

23

Adaptive Model matching

Application to interference cancellation in radio astrono my

1

N ∑

1

N ∑

s(t)

Interference

Signals of interest

α2

aMs(t)

a1s(t)

αs(t)

apα

a1α

aα

1

N ∑ | · |2

24

Adaptive equalization n(t)
h(t)

zÆ
h � s P

� ek
x(k + nP) # Psk yksÆ(t) wHD/A

X =




x0 x1 . . . xN−1

x−1 x0 . . . xN−2...
...

. . .
...

x−m+1 x−m+2 . . . xN−m




:=




H 0

H
. . .

0 H







s0 s1 . . . sN−1

s−1 s0 . . . sN−2

...
...

. . .
...

s−L−m+1 s−L−m+2 . . . sN−L−m




+N = HS +N

25

Adaptive equalization

A general linear equalizer is:

y = wHX = wH

(HS +N)

If H is tall, then there are L+m−1 valid ZF equalizers

wHH = [1, 0, 0, · · · , 0] or [0, 1, 0, · · · , 0] or [0, 0, 1, · · · , 0] or · · ·

Desired delay δ: usually the ‘center tap’: δ = 1
2(L+m−1).

For an adaptive filter, the reference signal is the original signal at delay δ.

We can apply LMS, NLMS and RLS algorithms.

26

Adaptive equalization

Decision directed

n(t)

sk�Æh(t)
zÆ

h � s P
x(k + nP) # Psk sÆ(t) yk

�ek
wHD/A

After training, we switch to use estimated symbols as reference signal

Slowly varying channels can be tracked using decision directed updating

27

Application

Echo cancellation on telephone channels

ĥ(t)

h(t)

e(t)

−

x(t)

s(t)

near end talker
n(t)

zδ

zδ

far end talker

28

