
ALGORITHMIC STATEMENT OF RESULTS

An Algebraic Solution of the
GPS Equations

Let x and {si: 1 ' i ' n} denote user and satellite
position coordinates in any convenient Earth-centered
cartesian coordinate system. Let {ti: 1 < i < n} denote
the pseudorange measurements taken by the user from
each of the n satellites:

ti = d(x,si) + b (2)
where d(x,y) is the distance from x to y and b is clock
offset. Define the 1 x 4 column data vectorsSTEPHEN BANCROFT

King Radio
ai = (ST t1)T, 1 i.n

The global positioning system (GPS) equations are usually solved

with an application of Newton's method or a variant thereof:

Xn+l = x,, + H -(t - f(x,)). (1)

Here x is a vector comprising the user position coordinates together
with clock offset, t is a vector of tour pseudorange measurements,

and H is a measurement matrix of partial derivatives H = f. In

fact the first fix of a Kalman filter provides a solution of this type.

If more than four pseudoranges are available for extended batch

processing, H`' may be replaced by a generalized inverse

(HTWH)-IHTW, where W is a positive definite weighting matrix

(usually taken to be the inverse of the measurement covariance

matrix). This paper introduces a new method of solution that is

algebraic and noniterative in nature, computationally efficient and

numerically stable, admits extended batch processing, improves
accuracy in bad geometric dilution of precision (GDOP) situations,
and allows a "cold start" in deep space applications.

(3)
where T denotes the transpose. Define the Minkowski
functional for 4-space by

(a,b) = alb1 + a2b2 + a3b3 - a4b4.

Define
A = (a, a2 a3 ... a,)T
io = (1 1 1 ... I)T

r= (rl r2 r3 ... rn)T
where ri, 1 < i ' n, is computed from

ri= (ai,ai)12.
Compute the generalized inverse

B = (ATWA)- lATW

(4)

(5)

(6)

(7)

(8)

(9)
where W is a symmetric positive definite weighting
matrix. (The identity matrix will do. The matrix AB is an
orthogonal projection operator in this case. For other
choices of W oblique projections are obtained.) Compute
the 1 x 4 column vectors u and v from

u = Bio

v = Br

(10)

(1 1)

together with the scalar coefficients E, F, G defined by

E = (u, u)

F= (u,v) - 1

G = (v,v).

Solve the quadratic

E x2 + 2F X + G = 0

for the pair of roots X1 2. Compute the 1 X 4 column
vectors Y1,2 defined by

Y1,2 = X1,2 u + v.

Then with the identification
yT = (XT - b)T
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either the pair xl,bl or the pair x2,b2 will solve the GPS
problem for user position and clock offset. To distinguish
the actual solution, substitute back into the equations
defining the original pseudoranges. There will be
agreement in only one case.
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(12)

(13)

(14)

(15)

(16)

(17)
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SAMPLE COMPUTATION

Computations by hand are not very attractive without
first making some gross simplifications. We assume a
"one-dimensional" world with just two satellites present.
Nonetheless the computations are illuminating. In
particular a graphical interpretation of the "extraneous
solution" is provided. Let satellite sl be placed at
position -4 (Earth radius units) and satellite s2 at
position 4. Suppose pseudoranges 4 and 2 are observed.
Then the user position x and clock offset b satisfy the
pseudorange equations

ix + 41 + b = 4

|x - 41 + b = 2. (18)

Recalling that lxi = square root (x2), we see that the
equations are nonlinear, despite present appearances. The
absolute value signs must be removed by a "squaring"
process. This squaring process is responsible for the
introduction of the extraneous solution. The situation has
the simple graphical representation shown in Fig. 1.

Therefore u = Bio and v = Br are given by

u = (1/12 1/3)T

v = ( 1 l)T.

(23)
(24)

The scalars E = (u, u), F = (u, v) - 1, and G = (v, v)
are given by

E= 5/48

F = -5/4

G = 0.

(25)
(26)

(27)
The roots X1,2 of EX2 + 2FX + G = 0 are given by

1,2 = °, -24.

Therefore y1,2 = X1 2 u + v are given by

yl = 0 (1/12 1/3)T + (1 1)T

Y2 = -24 (1/12 1/3)T + (1 1)T

(28)

(29)

(30)
Through the identification y = (xT - b)T this provides
the two solution candidates

(xl bl)T = ( 1 -1)T
EXTRANEOUS
SOLUTION

Q\ '£
, N

\

N,

lx+41 4 *

/E
-4

(X2 b2)T = (-1 7)T. (32)

By returning to the original pseudorange equations, the
second of these is readily eliminated.

DISCUSSION OF RESULTS
'/

Suppose xo, bo are solutions to the pseudorange
equations. ~~1

4 4-Ix-41 =2

CORRECT
SOWTION

Fig. 1.

We follow our algorithm by constructing A = (a,
a2)T.

ti = d(x,si) + b, 1 'i'n. (33)

If we perturb these equations, we find that the
perturbation variables 6t, 5x, bb satisfy

St = (NT - i0) (-b) (34)

where N = (nT n T ... nT), with ni a unit vector pointing
from the ith satellite si toward the position xo (the
gradient vector for d(x,si)). We can write this more
compactly as

(19) 6t = H by.

The vector io is given by

io = (1 l)T (20)

and r = (r1 r2)T with ri = ½/2 (ai,ai), 1 ' i 2, is
given by

r= (0 6)T. (21)

Since A is square (for two satellites, two unknowns), the
generalized inverse B = (ATWA) IATW reduces to A 1,

no matter what the positive definite matrix W:

B (2 4)1 (22)

(35)
If the rank of H is four then we can multiply both sides
through by HTW and invert HTWH to obtain

by = (HTWH)- H1HWt. (36)

The operator H(HTWH)- IHTW is a projection operator
in the n-dimensional space of measurement error

residuals. To see this we note that by inspection the
operator is linear and idempotent, i.e., satisfies PP = P.
The adjustment to y needed to minimize a weighted sum

of error residuals 8ti, 1 i ' n, is indicated by by. If W
is the identity all errors are treated with equal importance.
To gain further geometric insight, we note that the range

of H is a subspace of the measurement space spanned by
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(31)

(-4 4)
4 2J -

t.
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the columns of H. That particular combination of these
columns that constructs the point in that range obtained
by the above-described projection is afforded by by. The
projection is orthogonal if W = In.) the n-dimensional
identity and in this case y + by is the usual "least
squares" solution to the pseudorange equations. Whether
or not we desire an orthogonal projection or an oblique
projection (see Fig. 2) depends on our assessment of the
relative importance of the various satellite pseudorange
errors. Such matters as satellite health status, age of
ephemeris, and signal-to-noise ratio (SNR) will determine
this subjective weighting. If SNR is used as the sole
criterion, we take W to be the inverse of the measurement
covariance matrix.

,6Y4,2 H

Fig. 2.

The covariance of our position/clock fix is described
by the matrix

cov = (HTWH)- 1. (3'

If W is taken to be the identity, then the trace of this
matrix provides the GDOP number often used to
determine the quality of the fix.

If when we collect our measured pseudoranges, we
modify them with the clock offset adjustment

ti: = ti - avg + Rorb (38)

Computer simulation shows that the algebraic solution
performs better than an iterative solution in regions of
poor GDOP. One can understand this result when it is
realized that most iterative techniques improve a solution
by replacing a nonlinear computation with a linear
approximation, more or less using the first order terms in
a Taylor series expansion of the nonlinearities. The
algebraic solution can be regarded as a technique that
uses the higher order terms in the series as well. Since
the first-order terms tend to have degenerate rank in
regions of poor GDOP, the higher order terms become
critical in determining the nature of the singularity.
Computer simulation shows that even with single
precision arithmetic, user position can be determined with
1/4 nm at the surface of the moon. Double precision
arithmetic provides excellent accuracy. The region
obviously has poor GDOP since the line of sight vectors
pointing back toward the GPS constellation all tend to be
collinear.

DEMONSTRATION OF THE RESULT

Through the artifice of introducing a few complex
numbers the derivation of our algorithm can be made
deceptively simple. (The original derivation was much
more involved!)

The distance to the ith satellite is given by

d? = xTx - 2 sTx + sTsi, 1 . i ' n. (40)

The pseudoranges are

7) ti = di + b, 1 '. i' n.

Substituting (41) in (40),

t2 - 2 b ti + b2 = XTX - 2 sTx + sTsi.
Rearranging

sTx - tib = 1/2(XTX - b2) + 12(STSi).
Define

(41)

(42)

(43)

where

avg = -(3)
n i=i

and Rorb is the radius of the GPS satellite configuration
(about 4 Earth radii, (TorbITsch) 2/3 to be exact, where
T,b is the period of a satellite and TsCh is the Schuler
frequency period) then the matrix A in our algorithm will
reduce to the measurement matrix H if the user is
positioned at the center of the Earth. The approximation
is still quite good anywhere within the vicinity of the
surface of the Earth. This can be verified directly by
computer simulation, seen "geometrically" or analyzed
by linear variational techniques. Thus in the vicinity of
the surface of the Earth the matrix (ATWA) ` used in our
algorithm affords a good approximation to the covariance
of the solution provided by the algorithm as discussed
above. This observation tells us to go ahead and pick W
by the "usual" means.

(

0<
1/,

Notice that L = LT and L` = L -T. Also

L2 = L -2 =

( 1

0

Consulting (4) we see that

(a,b) = (La)T(Lb) = (L 'a)T(L- ' b).
Define

Z = (XT b)T

and

X = ½2 (z,z).
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(44)

(45)

(46)

(47)

(48)

1 1

1

L` =

0
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(z,z) = (u,u) K2 + 2 (u,v) X + (v, v)
(ai,z) = K + ri, 1 iSn

where ri is given in (8). From (46) we can write this as

(La, )T(Lz) = K + rl

(La2)T(Lz) = K + r2

(La,)T(Lz) = K + rn

or, consulting the definitions (5), (6), and (7)

(LAT)T(Lz) = Aio + r.

(49) which with definitions (12), (13), (14), and (48) give

E A2 + 2FA + G = 0.

(50)

(51)

Equation (51) can be written in the form (AT,Z) = Aio
+ r, provided that (AT,Z) is defined by the left-hand side
expression of that equation. In any event, we can start
our matrix manipulations directly from (51): AL2z = Aio
+ r, ATWAL2z = ATW(Kio + r), L2z =
(ATWA)-IATW(Kjo + r), Lz = L`1B(Ki0 + r), and
finally

Lz = L`'(Au + v) (52)

where we have made use of definitions (9), (10), and
(11). Substituting (52) into (46) we see that K satisfies

From (52) we also have

z = L-2(u + V).

From (17), (45), and (47) we may write

y = L2z.
This together with (55) produces

y = Ku + v.

This completes the demonstration.
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Then (43) can be written as (53)
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