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ABSTRACT
Providing detailed appliance level energy consumption in-
formation may lead consumers to understand their usage
behavior and encourage them to optimize the energy usage.
Non-intrusive load monitoring (NILM) or energy disaggre-
gation aims to estimate appliance level energy consumption
from the aggregate consumption data of households. NILM
algorithms, proposed hitherto, are either centralized or do
require high performance systems to derive appliance level
data, owing to the computational complexity associated.
This approach raises several issues related to scalability and
privacy of consumer’s data. In this paper, we present the
Location-aware Energy Disaggregation Framework (LocED)
that utilizes occupancy of users to derive accurate appli-
ance level usage information. LocED framework limits the
appliances considered for disaggregation based on the cur-
rent location of occupants. Thus, LocED can provide real-
time feedback on appliance level energy consumption and
run on an embedded system locally at the household. We
propose several accuracy metrics to study the performance
of LocED. To test the robustness of LocED, we empiri-
cally evaluated it across multiple publicly available datasets.
LocED has significantly high energy disaggregation accuracy
while exponentially reducing the computational complexity.
We also release our comprehensive dataset DRED (Dutch
Residential Energy Dataset) for public use, which measures
electricity, occupancy and ambient parameters of the house-
hold.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.5 [Pattern Recognition]: Applications

General Terms
Measurement, Performance Analysis, Algorithms

Keywords
NILM; energy disaggregation; localization; public dataset;
smart metering
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1. INTRODUCTION
Worldwide total energy consumption in residential and

commercial buildings is estimated to be 30-40% of genera-
tion [1] and is expected to rise due to increased use of ap-
pliances and electronic devices. A significant part of this
could be reduced with better real-time information of ap-
pliance level consumption statistics. With this information,
users can be encouraged to change their behavior to save
5-15% of electricity usage [2, 3]. Several home automation
systems are now available for providing feedback on energy
usage. Such systems lack the ability to provide appliance
level consumption feedback and personalized recommenda-
tions in real-time to the occupants. One of the most impor-
tant benefits of appliance level usage information is provid-
ing automated personalized recommendations by identifying
which appliances could most effectively reduce energy usage
in a household. The recommendation system will be able to
inform the occupants on potential savings by deferring us-
age of an appliance to the time of a day when the electricity
price is lesser. Furthermore, fine-grained information can
also be used to identify faulty or malfunctioning appliances
that consume more energy than they should. Consequently,
occupants know where the energy is being wasted. Several
utility companies (or utilities) are now interested in pro-
viding appliance level consumption feedback as a service to
their customers.

The most common way of obtaining appliance level infor-
mation is by deploying sensors for each appliance. Such a de-
ployment is intrusive, cumbersome to maintain and has high
cost. Alternatively, recent home energy monitoring tech-
niques have utilized non-intrusive load monitoring (NILM)
algorithms that aim to break down a household’s aggregate
energy consumption into individual appliances [5]. NILM
techniques are gaining popularity due to low cost sensors
for measuring energy usage, large-scale smart meter deploy-
ments to obtain household’s aggregate energy consumption
and inference algorithms proposed for energy disaggrega-
tion [4, 5, 6].

There still exist several challenges preventing NILM tech-
niques to be widely adopted in households: (i) Most of the
proposed mechanisms consider only a subset of appliances
– a few high energy consuming appliances – for disaggrega-
tion. This is due to the exponential computation complexity
associated with the number of appliances, hence tractable
only for a small number of appliances [7]. (ii) Several ap-
pliances with similar energy consumption profiles may ex-
ist and moreover, each appliance may have multiple states.
Thus modeling and inferring accurately the states of appli-
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ances is not trivial. (iii) NILM is often performed in a cen-
tralized manner with third-party services or utilities having
privacy-sensitive information of consumers. Commercially
available NILM systems are required to send smart meter
data to a cloud service for energy disaggregation (for exam-
ple, Bidgely, PlotWatt). This approach raises several issues
related to scalability and privacy. (iv) Lastly, only a few
NILM systems manage to provide near real-time energy dis-
aggregation. The ones that do provide, require detailed in-
formation of the household and its occupants, and generally
utilize cloud services.

To this end, this paper presents Location-aware energy
disaggregation framework (LocED) that utilizes user occu-
pancy information and aggregated energy data to derive ac-
curate appliance level information. The motivation for using
location information is threefold. First, by utilizing location
information of occupants, the NILM algorithms can reduce
the number of potential appliances considered for energy
disaggregation. Second, by reducing the state explosion, the
processing power and storage capacity required for disaggre-
gation are also reduced, making NILM algorithms tractable
and implementable. Third, with the large-scale proliferation
of smartphones and wearables, it is now possible to monitor
location of the occupants (indoor room-level localization) in
a non-intrusive and cost-effective manner. LocED performs
energy disaggregation at the household on a low-cost embed-
ded system such as Raspberry Pi, due to which consumers’
privacy-sensitive data is stored and processed locally. This
approach further is highly scalable and avoids sharing of
privacy-sensitive information to the utilities.

The primary objective of this work is to develop a location-
aware energy disaggregation framework that can: (i) provide
real-time feedback on appliance level energy consumption;
and (ii) lower the complexity of disaggregation algorithms
and run on an embedded system locally at the household.
We have also released our collected dataset – DRED (Dutch
Residential Energy Dataset) – that can be used to test the
performance of disaggregation algorithms, derive appliance
usage behavior and analyze demand response algorithms.
Our deployment is currently live and the dataset will be
constantly updated. The DRED dataset and the LocED
framework is made publicly available1 for the community to
support additional analysis. The main contributions of this
paper are:

• We propose a novel real-time location-aware energy
disaggregation framework (LocED) to derive appliance
level information with lesser computation complexity
(Section 3).

• We provide our data set – DRED (Dutch Residential
Energy Dataset) – that contains appliance level and
aggregated energy data from a household. To the best
of our knowledge, this is the first open-access, publicly
available dataset from the Netherlands. The dataset
also includes occupancy information and several ambi-
ent parameters (Section 4).

• We propose several accuracy metrics to determine the
efficacy of LocED both at house level and at appliance
level. LocED was empirically evaluated across several
publicly available datasets (Section 5 & 6).

1http://www.st.ewi.tudelft.nl/~akshay/dred/

2. RELATED WORK
Several NILM algorithms have been proposed in the lit-

erature to derive fine-grained appliance level information.
These algorithms rely on various techniques (supervised,
semi-supervised or unsupervised) and also additional data [8].
We first provide details of the existing algorithms and then
describe how our approach enhances the current state-of-
the-art NILM algorithms.

NILM Techniques
Unsupervised NILM techniques use no prior knowledge
of the appliances but often require appliances to be man-
ually labeled and work on low frequency (i.e., 1 Hz) data.
These techniques typically rely on accurate detection and
modeling of the state change in the aggregate consumption
data [5, 9, 10]. Several variants of factorial hidden markov
models (FHMMs) to model the states of the appliances are
proposed in [5, 9]. Furthermore, other machine learning
approaches such as artificial neural networks (ANNs) and
genetic algorithms are also used [10]. These approaches are
computationally intensive and exact inference from models
with large number of HMMs is intractable.

Supervised NILM techniques assume that ground truth
appliance level data is available to train and develop ap-
pliance models prior to performing disaggregation. Hart’s
algorithm identifies step changes in the aggregate electricity
consumption and matches them with the appliance signature
database to learn the states of the appliance [4]. Other ap-
proaches employ both real and reactive power measurements
for energy disaggregation [11]. These algorithms require ex-
tensive training on appliance level data to model the states
accurately.

Semi-supervised NILM techniques avoid the need to in-
trusively install sensors for deriving appliance signatures [6,
12]. Nambi et al. [6] propose a semi-intrusive approach to
determine the most optimal number of appliances to be mon-
itored for accurate energy disaggregation. Parson et al. [12]
utilize prior models of general appliance types, which are
tuned to specific appliance instances using signatures ex-
tracted from the aggregate load. In general, due to compu-
tational complexity involved in training and inference, these
algorithms require systems with high processing power for
energy disaggregation and hence are not suitable for low
power embedded systems.

Additional data considered in NILM
NILM algorithms also use different additional information
(either energy related or contextual data) to simplify energy
disaggregation and enhance its accuracy. Some algorithms
rely only on real power consumption of the household [5,
4]. However, other algorithms require both real and reac-
tive power for energy disaggregation [11]. Recent algorithms
use information on how loads are distributed across different
phases in a household [11, 13] or use transient and harmonic
information with very high frequency sampling [14]. How-
ever, sampling at high frequency requires expensive hard-
ware and determining appliance distribution across different
phases is not trivial. Algorithms described in [15, 16] employ
information provided by other sensors as additional input
for energy disaggregation. Rowe et al. [15] propose an event
detector to determine the state change by sensing the elec-
tromagnetic field (EMF) in the surrounding. Kim et al. [16]
utilize ambient signals from inexpensive sensors placed near
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Figure 1: Location-aware energy disaggregation.

appliances to estimate power consumption. While the afore-
mentioned approaches improve NILM accuracy, they also re-
quire additional deployment and maintenance of these sen-
sors. Moreover, algorithms developed by using these addi-
tional data are generally constrained to a particular dataset
or a household; consequently, making it nearly impossible to
employ the algorithm with other publicly available datasets.

One of the major roadblocks in large-scale adoption of
NILM algorithms is its scalability [8]. The proposed LocED
framework utilizes a modified combinatorial optimization
(CO) algorithm to reduce the computation complexity and
accurately infer the states of the appliances. Our frame-
work can be used with any dataset containing occupants
room level location information, for example, Smart* [19]
and iAWE [20] datasets collect occupants room-level loca-
tion information using PIR sensors. Unlike the existing ap-
proaches [19, 20, 21], we do not deploy any additional sensors
for deriving location information in our DRED dataset, but
rather utilize WiFi/Bluetooth(BT) received signal strength
(RSS) data from occupants smartphone/wearable to derive
room-level location information. We show the efficacy of the
proposed LocED framework by evaluating it across several
publicly available datasets and our own dataset. The frame-
work and the dataset is made open for the community for
further analysis. To best of our knowledge (apart from Non-
Intrusive Load Monitoring Toolkit (NILMTK) [7]), we are
one of the firsts to validate and compare NILM algorithms
across multiple datasets.

3. LOCATION-AWARE ENERGY DISAGGRE-
GATION

In this section, we describe the usage of occupancy in-
formation to derive accurate appliance state information.
Fig. 1 shows the block diagram of location-aware energy dis-
aggregation.

3.1 User occupancy modeling
Occupancy information is generally used to develop ef-

ficient energy management systems for smart homes [23].
For example, occupancy information can be used to control
the HVAC system efficiently or turn off appliances (lights)
when user has left the room. We employ user occupancy in-
formation to improve NILM algorithms by considering only
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Figure 2: Indoor localization using WiFi/BT RSSI.

those appliances that are in the current user location for
disaggregation. Several direct and indirect approaches have
been proposed in the literature to derive user occupancy in-
formation [23]. Direct approaches employ low cost sensors
such as passive infrared (PIR), reed switches, RFID tags to
determine room-level occupancy information. Even-though
these approaches are cost-effective, they are cumbersome to
maintain and intrusive in residential settings.

In this work, we employ an indirect approach for deriving
occupancy information with the help of smartphones/ wear-
ables. Indirect approaches does not use additional hardware
deployment, but rely on existing infrastructure for localiza-
tion. Smartphones and wearables enable collection of re-
ceived signal strength (RSS) from WiFi and/or Bluetooth
(BT) radios in an indoor environment. In our DRED dataset
(see Section. 4), we collected both Bluetooth (BT) and WiFi
RSS information using occupants mobile phone to infer user
location. To save battery and also to derive accurate lo-
cation, a radio scan is performed only upon detection of a
user movement (i.e., change in accelerometer data or step
detection).

The data stream from a radio scan includes the list of
all visible access points (APs) and their RSS values along
with the timestamp information. In case of a WiFi scan,
the list of APs indicate the access points from the neigh-
boring houses, whereas the BT scan indicates the Bluetooth
beacons available in the house. Currently there exist several
Bluetooth enabled devices in a household such as laptops,
mobile phones, speakers, etc. Furthermore, in the near-
future most of the household appliances will be Bluetooth
enabled 2. Bluetooth enabled devices can now determine ac-
curately indoor location information of the occupants. Clas-
sification techniques such as Bayesian, Support Vector Ma-
chines, K-nearest neighbor, decision trees, etc., have been
proposed in the literature to derive room-level occupancy
using RSS information. Our localization algorithm is based
on Bayesian classification technique and has two phases viz.,
training and testing phase as shown in Fig. 2. During the
training phase, data is collected at each room to build a
classifier model. In testing phase, a new data from the scan
is evaluated using the classifier model built to obtain the
room-level occupancy information.

For more details on our WiFi and BT localization algo-
rithms see Sec.4 of [18]. The LocED framework is indepen-
dent of the approaches used in obtaining location informa-
tion.

2http://www.bluetooth.com/Pages/Smart-Home-
Market.aspx
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3.2 Aggregate energy consumption modeling
We provide a brief description of the CO algorithm for

energy disaggregation [4] and then, propose a modified CO
algorithm used in our LocED framework.

Combinatorial Optimization (CO): The goal of an
energy disaggregation algorithm is to provide estimates of
actual energy consumed by each appliance from the aggre-

gate energy consumption data. Let ŷ
(n)
t be the estimated

energy consumed and y
(n)
t be the actual energy demand of

each appliance n at time t. yt represent the aggregate energy
reading of the household. The ground truth state of an appli-

ance is represented by x
(n)
t ∈ Z ≥ 0 and x̂

(n)
t represents the

appliance state estimated by the disaggregation algorithm.
CO finds the optimal combination of appliance states, which
minimizes the difference between the sum of predicted ap-
pliance power and the observed aggregate power. It is given
by,

x̂
(n)
t = arg min

x̂
(n)
t

∣∣∣∣∣yt −
N∑

n=1

ŷ
(n)
t

∣∣∣∣∣ (1)

where N is the set of all appliances in the household and t is
the current time period. The predicted energy consumption

of an appliance ŷ
(n)
t is then mapped to the closest appli-

ance state x
(n)
t . This approach requires an appliance model,

which includes power consumption details for each state of
the appliance. This is further used during inference to pre-
dict the current state of the appliance. The computational
complexity of disaggregation for T time periods is O(TSN ),
where S is the number of appliance states and N is the set
of all appliances.

CO algorithm has several drawbacks. Firstly, this opti-
mization problem resembles subset sum problem and is NP-
complete. Furthermore, the computation complexity in CO
increases exponentially with the number of appliances. Sec-
ondly, this algorithm does not differentiate between appli-
ances with similar power consumption and appliances with
similar states. Third, this algorithm assumes all the ap-
pliances in the household are being monitored and assigns
some portion of energy to appliances even if they are not
currently used, resulting in low disaggregation accuracy.

3.3 LocED Framework
LocED framework includes preprocessing techniques that

can simplify the NILM computation and improve energy dis-
aggregation accuracy. LocED framework utilize aggregated
energy data and occupants location information to derive
accurate appliance level information.

We propose a modified CO algorithm to overcome some of
the drawbacks of original CO. Our modified CO algorithm,
constrains the number of appliances considered for disaggre-
gation based on the current location of the occupants. This
results in exponential reduction in state space for disaggre-
gation. Furthermore, we employ a crowd-sourced generic
appliance model from the power consumption database. For
example, the power consumption database provides crowd-
sourced information on maximum and idle power for a wide
range of loads indexed by type, manufacturer, and model
number3. This information can be obtained a priori based
on the appliances in the household from the manufacturers

3The Power consumption database. [Online]
http://www.tpcdb.com/
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Figure 3: An overview of LocED Framework.

datasheet or crowd-sourced data, thus eliminating appliance
level energy modeling. Furthermore, our modified CO algo-
rithm requires to know the number of appliances and their
location in the household. This metadata information is col-
lected once during the deployment and, except from a few
appliances like vacuum cleaner, hair dryer, the location of
the appliances is generally static. Fig. 3 shows an overview
of the proposed LocED framework.

Data preprocessing and downsampling: Our frame-
work can handle various data sampling rates and is designed
to work with several datasets. In general, during data col-
lection there might be gaps in the data due to sensor mal-
function, network connectivity, etc. Hence, it is important
to preprocess these gaps either by removing them or using
statistical models such as smoothing, interpolation, forward
filling, etc. Furthermore, different datasets include differ-
ent sampling intervals typically from 1 second to 15 min-
utes. LocED applies a downsampling mechanism similar to
NILMTK, to filter transients that occur due to high starting
current of an appliance.

Priority combination: In original CO, at each time pe-
riod the algorithm tries to find the set of appliances, which
are closest to the current aggregated energy consumption.
This may result in different set of appliances being used
in each time period. For example, at time period ‘t’, CO
may determine appliance TV and microwave are being cur-
rently used and at time period ‘t+ 1’ it may select fan and
microwave. This is due to the fact that TV and fan may
have similar energy consumption profiles. This result would
mean TV is switched ON in one minute and switched OFF
the next minute and so on. Hence, it is necessary to pre-
serve consistency in selection of appliances during consec-
utive state estimations. LocED defines a priority combi-
nation that is the set of appliances which are assumed to
be currently running. This information can be retrieved
from the last iteration of NILM algorithm. At each time
period, LocED first evaluates the priority combination to
check whether the sum of all appliances in the priority com-
bination matches the current aggregated value. If the dif-
ference between the sum of priority combination and the
aggregated energy is within a threshold δ, then the current
priority combination is retained as the predicted set. LocED
evaluates the following equation to determine whether the
current priority combination of appliances are still valid or
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not, [|yt −
K∑

n=1

ŷ
(n)
t | ≤ δ], where K is the set of appliances

present in the priority combination and δ is the variation
threshold. The variation threshold parameter ensures small
fluctuations in aggregate power has minimal effect. Since
these fluctuations vary for different appliances based on their
power rating, the δ value needs to be adaptive. The δ value
can be obtained by analyzing the energy consumption pro-
files of the appliances. However, when the difference between
current priority combination and aggregate consumption is
greater than δ, LocED finds the new set of appliances that
are used.

Occupancy based appliance selection: When the cur-
rent priority combination does not match the aggregate en-
ergy consumption, LocED estimates the set of appliances
that could be currently used. This stage identifies the set
of appliances which are present in the current user location.
For example, if the current location information of all oc-
cupants includes Kitchen and Living room, only appliances
present in these locations are considered valid during that
time period for energy disaggregation. In general, the appli-
ances considered for evaluation at a particular time period
include, (i) appliances present in the current location of the
occupants; (ii) appliances that are already “ON”; (iii) ap-
pliances that are always “ON”, these are autonomous ap-
pliances such as Refrigerator; and (iv) appliances that can
be remotely controlled such as lights and other smart ap-
pliances. We refer to these appliances as “constrained set
of appliances”. LocED uses this constrained set for energy
disaggregation rather than the complete set of appliances
present in the household. If for a time period, there is no
occupancy information available all appliances present in the
household are considered for evaluation.

CO based NILM algorithm: In this work, we employ
modified CO algorithm to find the optimal combination of
appliance states. We calculate the sum of all possible state
combinations from the constrained set and select the closest
combination of appliances that match the aggregated energy
consumption. The computational complexity of disaggrega-
tion for T time periods in LocED is O(TSNc), where S is
the number of appliance states, Nc is the constrained set of
appliances and Nc ≤ N . This reduced computational com-
plexity enables LocED to determine the state of appliances
in real-time. As mentioned earlier, other NILM algorithms
can be used at this stage to infer the state of the appliances
from the constrained set. For example, in case of FHMMs
the constrained list of appliances can be used during decod-
ing the HMM state sequence.

Validation: We now validate the set of appliances pre-
dicted in the previous stage. Using occupancy based ap-
pliance selection, LocED ensures we do not turn “ON” an
appliance when user is not present in that location. How-
ever, validation stage ensures not to turn “OFF” an already
“ON”appliance when the appliance location is different than
the current user location (except remotely controllable appli-
ances). Moreover, this depends on the type of the appliance.
In this work, we broadly classify the set of appliances into:
(i) User dependent appliances – appliances that require user
interaction to turn “OFF”, for example, TV, fan, etc., and
(ii) User independent appliances – appliances that can turn
“OFF” themselves and require no user interaction, for exam-
ple, microwave, washing machine, dishwasher, etc. If the set
of appliances selected in the previous stage involves one or
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Figure 4: Deployment setup in DRED.

more user dependent appliances being turned “OFF” when
the occupants location differs from the appliance location,
validation stage eliminates this combination of appliances.
LocED then selects the second closest combination from the
previous stage and re-validates.

4. THE DRED DATASET
In this section, we describe the details of our live deploy-

ment and the sensor data collected from a household in the
Netherlands. The dataset includes both appliance level and
mains level energy consumption data. We currently release
over 2 months of data to the research community. We re-
fer to this dataset as DRED (Dutch Residential Energy
Dataset). Fig. 4 shows the layout of our deployment along
with location of the sensors and appliances in the household.

4.1 Sensing infrastructure and data collection
Our live deployment consists of several sensors measuring

electricity, occupancy and ambient parameters in a house-
hold. The objective of collecting the data was to test the
performance of energy disaggregation algorithms, derive ap-
pliance usage behavior and analyze demand response algo-
rithms. Similar to Smart* and iAWE, we decided to measure
all possible parameters. The sensors were carefully installed
to avoid any inconvenience for the occupants.

Electricity monitoring: We used off-the-shelf sensors
to monitor energy consumption at 1 Hz sampling frequency.

(i) Mains level : We installed a smart electricity meter
from Landis+Gyr E350 to measure the aggregate energy
consumption information of a household. The data from
the smart meter was retrieved using Plugwise Smile4.

(ii) Appliance level : We used off-the-shelf smart plugs
from Plugwise circle5 to collect appliance level energy con-
sumption data. 12 smart plugs were installed to monitor
the appliances across the household, viz., (1) Refrigerator,
(2) Washing Machine, (3) Central Heating, (4) Microwave,
(5) Oven, (6) Cooker, (7) Blender, (8) Toaster, (9) TV, (10)
Fan, (11) Living room outlets, and (12) Laptop.
The plugs installed in the household communicate via Zigbee
protocol by forming a mesh network. We use an open source
library python-plugwise to query the data from the plugs at

4Smile:https://www.plugwise.com/smile-p1
5Circle:https://www.plugwise.com/circle
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Figure 5: Histograms of appliance load profiles in DRED.

1 Hz frequency. A Raspberry Pi was deployed locally to gen-
erate periodic queries and to store the data. Furthermore,
this data is also sent to a server for making it available for the
research community. Fig. 5 shows the histograms of appli-
ance power demand in our dataset. It can be seen that some
appliances have multiple states (washing machine, oven) and
others have only two states of operation (fridge, cooker).

Ambient monitoring: Apart from collecting energy re-
lated data, in our deployment we also collected room level
indoor temperature, outside temperature, wind speed, pre-
cipitation and humidity. We deployed low-cost Bluetooth
beacons from Gimbal6 with in-built temperature sensor for
each room and also one outside the house. These beacons
have a battery lifetime of 4 to 5 months. A smartphone
and smartwatch application in Android was developed to
read the data from these beacons every 1 minute. The wind
speed, precipitation and humidity data was collected from
the publicly available Royal Netherlands Meteorological In-
stitute (KNMI) website every hour7.

Occupancy monitoring: In our deployment, we scan
both visible WiFi access points and the Bluetooth beacons
present in the household for indoor localization every 1 minute.
This data is further used with different machine learning
algorithms to determine the indoor room level location of
occupants. The room level location inferred from the local-
ization algorithm is also made available. For WiFi based
localization, no additional infrastructure is deployed, how-
ever, for BT based localization we deployed the BT beacons,
which could be further replaced by the smart Bluetooth en-
abled devices.

Household metadata: Our dataset also includes house-
hold metadata such as number of occupants, house layout,
mapping between appliance and location. This metadata is
generally useful for NILM algorithms. Further details on the
metadata can be found in [17].

4.2 Dataset characteristics and comparison with
existing datasets

It is important to compare and evaluate energy manage-
ment algorithms across datasets from different countries,

6https://store.gimbal.com/collections/beacons/products/s10
7KNMI:http://www.knmi.nl/climatology/daily_data/
selection.cgi

due to change in usage behavior of appliances. The Refer-
ence Energy Disaggregation Dataset (REDD) was the first
publicly available dataset to test NILM algorithms [22]. This
was followed by other datasets such as BLUED [24], SMART*
[19], AMPds [25], iAWE [20], ECO [21], UK-Dale [26] and
Pecan Street [27]. We describe how our DRED dataset ex-
tends the current publicly available datasets:

(i) In DRED, almost all appliances are monitored and has
very constant baseline consumption. Baseline consumption
includes appliances which are occasionally used (guest de-
vices) or not monitored. Popular datasets such as REDD,
Smart*, iAWE and ECO has very high and varying baseline
consumption. This variation significantly hinders the per-
formance of NILM algorithms.
(ii) DRED dataset has less than 5% dropout rate in energy
data. Dropout rate indicates the missing data due to com-
munication issue or sensor faults. Most of the other datasets
have around 10-20% dropout rate apart from Smart*.
(iii) Our deployment is still live. The dataset released con-
tains over 2 months of data and will be updated every month.
Only ECO and UK-Dale have data greater than 100 days.
(iv) Even though ECO, Smart*, iAWE datasets include oc-
cupancy data, they have large gaps and missing data. How-
ever, DRED uses an indirect sensing approach for obtaining
room-level occupancy information and has high data avail-
ability rate.

We believe that DRED dataset with the above-mentioned
extensions compared to other datasets will be useful to the
research community to validate NILM algorithms and ana-
lyze energy management algorithms. Furthermore, we pro-
vide HDF5 version of the DRED dataset for direct usage
with NILMTK toolkit [17].

5. EVALUATION
5.1 Datasets

We provide performance evaluation results of the pro-
posed framework across multiple datasets to support wide-
adoption and also to validate our work. Our framework
imports data from DRED dataset and also other popular
publicly available datasets such as REDD (House 1), Smart*
and iAWE. Hence, we show the performance results across
four datasets collected in different countries.

Dataset Statistics: Each dataset includes data from dif-
ferent set of appliances and for varying time duration. In
order to evaluate the performance of LocED across multi-
ple datasets, it is necessary to understand the characteris-
tics of each dataset. Fig. 6 shows the characteristics of the
datasets. NILMTK already provides some basic functions
such as mains availability, percentage of energy sub-metered
and top-k appliance to analyze the dataset, however we fur-
ther extend these functions in LocED.

Fig. 6(a) shows the percentage of total energy measured
at the appliance level for all days in the dataset. Most of
the datasets do not monitor all the appliances in the house-
hold, leading to large (sometimes more than 50%) unac-
counted energy in the aggregated consumption data. Fur-
thermore, the variation of this unaccounted energy data sig-
nificantly reduces the accuracy of disaggregation algorithms.
DRED has around 75% of energy sub metered and all other
datasets have around 45% of energy measured at the appli-
ance level. It is clear from the figure that DRED captures
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Figure 6: Data characteristics across different datasets.
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Figure 7: Energy consumed by top-5 appliances.

significant proportion of the energy consumed in the house-
hold, whereas, iAWE dataset has the lowest percentage of
energy captured at the appliance level.

Another important statistic to be considered is the per-
centage of aggregated data available in the dataset. This
is the ratio of the number of data points recorded over the
total number of data points that can be collected in a day.
Fig. 6(b) shows histogram of average aggregated data avail-
able throughout the dataset. The y-axis indicates the per-
centage of days and x-axis indicates the data availability
rate. DRED has more than 90% of the aggregated data
available throughout the data collection period (Fig. 6(b-
1)). Other datasets have much lower data availability. This
may be due to communication issues or malfunctioning of
sensors deployed.

Similar to the previous statistic, Fig. 6(c) shows the av-
erage percentage of data availability at mains level across
datasets. DRED dataset has around 95% data availabil-
ity rate for all the appliances being monitored. The other
datasets have 90%, 86% and 50% mains data availability
rates for all the days. REDD has only 50% of aggregated
data availability this is due to long gaps in data collection
(can also be seen in Fig. 6(b-4)).

In general, only a few appliances constitute the majority
of power consumed in a household. Hence, it is necessary
to derive accurate information of these high power consum-
ing appliances during energy disaggregation. Fig. 7 shows
the proportion of energy consumed by top-5 appliances and
other appliances present in the household across datasets. It
is interesting to see the variation of top-5 appliances across

datasets, indicating the varying preference of appliance us-
age in different countries. The top-5 appliances in DRED
cover around 60% of total energy consumed.

Finally, since LocED relies on the occupancy information
collected, it is important to find the occupancy data avail-
ability rate. The occupancy availability rate is the ratio of
total number of occupancy data recorded over the total num-
ber of expected occupancy data. DRED, iAWE and Smart*
has occupancy rate of 81%, 76% and 36% respectively. We
further determine the relevant occupancy information that
corresponds to the usage of appliances at that time period.
For example, if an appliance currently being used is in liv-
ing room and the occupancy data includes living room as
one of the occupant’s location, then, this occupancy data is
considered as relevant. DRED and iAWE has 68% and 53%
of valid occupancy information, whereas, Smart* has only
about 10%.

5.2 Accuracy Metrics
Several accuracy metrics both at house level and at appli-

ance level are considered for evaluation of LocED. Different
metrics at house level are described below:

Fraction of total energy assigned correctly (FTE):
It measures the fraction of energy correctly assigned to an
appliance and is one of the common accuracy metrics for
NILM algorithms [22, 7]. FTE is the overlap between the
actual fraction of energy consumed by each appliance and
the fraction of energy assigned to each appliance. It is de-
fined as,

FTE =
∑
n

min


∑
n

y
(n)
t∑

n,t

y
(n)
t

,

∑
n

ŷ
(n)
t∑

n,t

ŷ
(n)
t

 , (2)

where n ∈ {1, .., N} and N is the total number of appliances.
Also t ∈ {1, .., T} and T is the total time period considered.

Total disaggregation error (Te): Total disaggregation
error is the difference between the total energy consumed
by all appliances and the actual energy consumed by the
appliances, normalized by the total energy consumed. It is
given by,

Te =

∑
n,t

|y(n)
t − ŷ(n)

t |∑
n,t

y
(n)
t

(3)

We employed the functions provided in NILMTK for calcu-
lating FTE and Te metrics.
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Figure 8: Location inference from REDD dataset.

Number of appliances identified correctly (Ja): Jac-
card similarity coefficient is used to measure the similarity
between the predicted set of appliances (Jp

a ) and the actual
set of appliances (Ja

a ) used over a time period. Ja measures
the percentage of appliances correctly identified by the dis-
aggregation algorithm. It is given by,

Ja =
|Jp

a ∩ Ja
a |

|Jp
a ∪ Ja

a |
(4)

Number of appliance states identified correctly (Js):
It measures the similarity between the predicted set of appli-
ance states (Jp

s ) and the actual set of appliance states (Ja
s ).

It is given by,

Js =
|Jp

s ∩ Ja
s |

|Jp
s ∪ Ja

s |
(5)

We now describe the set of metrics considered at the ap-
pliance level for evaluation.
Proportion error per appliance (Pe): It measures the
difference between the proportion of the energy assigned to
an appliance and the actual energy consumed by the same
appliance. It is defined as,

Pe =

∣∣∣∣∣∑
t

y
(n)
t −

∑
t

ŷ
(n)
t

∣∣∣∣∣ (6)

Normalized error per appliance (Ne): It measures
the sum of the differences between the assigned energy and
the actual energy consumed by the appliance, normalized by
the total energy consumed by the appliance. It is given by,

Ne =

∑
t

|y(n)
t − ŷ(n)

t |∑
t

y
(n)
t

(7)

6. RESULTS
We compare LocED disaggregation results across various

datasets. REDD dataset from MIT does not include occu-
pancy data. To this end, we developed a module to infer
user location information from the ground truth appliance
level data in the REDD dataset.

Location inference from REDD dataset: To enable
fair comparison across popular datasets, we infer user loca-
tion with the help of appliance level data in REDD. LocED

differentiates between user dependent and user independent
appliances to accurately infer occupancy information. Fig. 8
shows the locations inferred based on the appliance energy
consumption information. For a user dependent appliance,
a user is present in that location when an appliance is be-
ing turned “ON” or “OFF” (see Fig. 8(a)). Similarly, for
a user independent appliance, a user is present during the
“ON”event but may or may not be present during the“OFF”
event. Hence we label this as an invalid location as shown
in Fig. 8(b). Furthermore, special consideration needs to be
given for appliances such as Refrigerator, where occupancy
information is valid only when a user opens/closes the door
(Fig. 8(c)). We eliminate the compressor energy consump-
tion and infer locations only when the refrigerator door is
opened/closed. Please note that location information only
when an appliance is being used will be available with the
above mentioned inference procedure. For further details
see Sec.6 of [18].

We now show the performance of LocED and original CO
algorithm. To ensure fair comparison, both LocED and CO
utilize the same appliance model from the crowd-sourced
database as described in Section 3.3. Since the model and
make of an appliance varies from one dataset to another
due to the geo-location of data collected in these datasets,
applying a generic model across all datasets is challeng-
ing. LocED uses a crowd-sourced appliance model from
the power consumption database based on the manufacturer
and model number of an appliance. In our evaluation, we
used data obtained using direct sensing (PIR sensors) in
Smart*, iAWE datasets and also data from indirect sens-
ing in DRED dataset. Furthermore, we used an adaptive δ
value for determining the priority combination. The values
of δ was determined based on the appliance type. From our
experimentation, we found that appliances with low power
consumption have lower noise and smaller variation in their
energy consumption and appliances with high power con-
sumption have large variation due to the noise associated.
Furthermore, the δ value can be also used to account for un-
monitored appliances or guest appliances by modeling the
historic household energy consumption.

Fig. 9 shows the disaggregation performance of CO and
LocED across the house level accuracy metrics. We consid-
ered one week of data (the week with highest data avail-
ability rate) across all the four datasets. In general, FTE,
Ja and Js can vary between 0 and 1, and Te can take any
non-negative value. It can be seen that, LocED performs
significantly better across all the datasets for all the met-
rics. LocED performs better than CO mainly due to two
reasons, (i) LocED ensures that the predicted set of appli-
ances does not vary significantly for consecutive time peri-
ods, thanks to priority combination. (ii) LocED constrains
the number of appliances considered to disaggregate based
on occupancy information ensuring similar appliances from
a different location are not selected.

Fig. 9(a) shows that in DRED, LocED correctly assigns
up to 80% of energy to all appliances, which is 40% more
compared to CO. Furthermore, it determines more than 25%
of correct appliances and states than original CO. Fig. 9(c)
shows more than 30% improvement across all metrics for
Smart* dataset and similar trends can be seen in iAWE and
REDD datasets. LocED also has much lower Te across all
datasets compared to CO. Fig. 9(e),(f),(g),(h) show the dis-
aggregation performance of CO and LocED for top-k (k=5)
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Figure 9: Disaggregation performance of CO and LocED across datasets (1 week).
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Figure 10: Original and disaggregated energy profile of re-
frigerator using CO and LocED.

appliances. As mentioned previously, disaggregating accu-
rately top energy consuming appliances would be very bene-
ficial to reduce cost and manage energy efficiently. It can be
seen that LocED correctly assigns upto 89% of energy to the
top-k appliances in iAWE and around 80% in DRED and
Smart* datasets. Furthermore, the number of appliances
and states identified is also higher compared to original CO.
In DRED and Smart* datasets the number of appliances
and states determined is more than 30% compared to origi-
nal CO.

Fig. 10 shows the original power consumed by the refriger-
ator (top) and the resulting disaggregation output using the
original CO (middle) and LocED (bottom). CO has a inter-
rupted load profile due to its sensitivity to small changes in
aggregated power, however, LocED overcomes this with the
help of priority combination and the δ parameter described
in Section 3.3.

Table. 1 shows the appliance level accuracy metrics for
all appliances across all days. In general, Pe and Ne can
take any non-negative values. It can be seen that across all
the datasets, Pe and Ne values for LocED are lower com-
pared to CO; indicating better energy disaggregation for all
appliances.

Table. 2 shows the percentage increase in disaggregation
accuracy of LocED compared to CO for all the days across

Dataset
CO LocED

Pe Ne Pe Ne

DRED 0.07 5.51 0.04 3.16
iAWE 0.10 12.66 0.09 7.70
Smart* 0.14 22.07 0.12 13.02
REDD 0.06 39.20 0.05 23.01

Table 1: Appliance level accuracy metrics for all appliances
(all days).

Dataset
All Appliances Top-k Appliances

FTE Ja Js Te FTE Ja Js Te

DRED 30.5 28.7 36.6 -37.9 22.4 23.3 36.5 -41.2
iAWE 8.5 3.2 2.2 -7.9 14.8 3.3 4.5 -9.6
Smart* 29.3 28.3 28.6 -14.4 1.9 28.1 30.4 -18.6
REDD 11.4 12.7 27.6 -13.6 -22.1 5.3 27.3 -8.8

Table 2: Percentage increase in performance of LocED over
CO (all days).

the datasets with all appliances and top-k appliances. It
can be seen that FTE improvement of 30%, 9%, 30%, and
12% is obtained for all days considered in DRED, iAWE,
Smart* and REDD datasets respectively. Similarly, number
of appliances correctly identified improves over 30% for all
days considered in DRED and Smart* datasets respectively.
In DRED, FTE improvement of 22% was achieved for top-k
appliances and number of appliances and states identified
improved by 23% and 36% respectively. The negative Te

shows the percentage reduction in total error achieved by
LocED. The FTE for top-k appliances in REDD dataset is
lower for LocED. This is likely due to wrong inference of
locations from appliance ground truth data.

In general, if the occupants are spread out across the
building or if all the appliances are close to one another,
then the benefits of using location information for disag-
gregation is less. However, in residential settings as seen
from the above datasets these cases arise occasionally. In
our evaluation, we showed that even with very less location
information, LocED was still significantly able to improve
the disaggregation accuracy. Furthermore, the framework
proposed can include other contextual information such as
room temperature, number of users, etc. to further improve
energy disaggregation accuracy.
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Finally, we also computed the average number of state
combinations evaluated in each dataset by CO and LocED to
disaggregate. Original CO has a fixed number of state com-
binations depending upon the number of appliances and its
states. However, for LocED the number of appliances con-
sidered varies and is determined based on the constrained
set of appliances. In iAWE and Smart* the average state
combinations to be evaluated for disaggregating a value is
59049 and 8192 for CO and it is 162 and 60 for LocED.
Similarly, in DRED 104976 combinations was evaluated by
CO and LocED evaluated only 10 combinations on average.
It can be seen that across all datasets the average number
of state combinations evaluated by LocED is drastically re-
duced, consequently, decreasing the computation complexity
for real-time disaggregation.

7. CONCLUSIONS AND FUTURE WORK
We proposed a novel location-aware energy disaggrega-

tion framework (LocED) to derive accurate appliance level
data. We employed a modified CO algorithm to infer the
state of the appliances accurately. We also presented a
comprehensive dataset DRED that can be used to test the
performance of energy disaggregation algorithms, derive ap-
pliance usage behavior and analyze demand response algo-
rithms. We evaluated LocED across multiple publicly avail-
able datasets such as DRED, iAWE, Smart* and REDD.
Our evaluation shows that around 80% disaggregation accu-
racy can be achieved for all appliances on DRED and iAWE
datasets. Furthermore, up to 90% accuracy is achieved when
only top-5 appliances are considered for disaggregation in
DRED and iAWE. The number of correctly identified appli-
ances and states are 61% and 68% in DRED using LocED.

Even with additional location information there are er-
rors associated with disaggregation due to several factors.
In most of the datasets, due to lack of knowledge on num-
ber of appliances and lack of monitoring of all appliances
in the household, there exists a significant amount of unac-
counted energy in the aggregate consumption. Only DRED
dataset monitors almost all appliances and has a very low
variation in baseline consumption. Moreover, the percent-
age of occupancy information available plays an important
role in improving the accuracy. Only DRED and iAWE have
more than 70% of occupancy data available. Furthermore,
LocED uses a generic approximate model to find the states
of an appliance. Accurate modeling of appliance states will
further improve the disaggregation performance.
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