Some Example Graduation topics

Multi-Microphone Noise reduction

Delay and sum beamformer

$$\mathbf{w}(k,l) = \frac{\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)\mathbf{a}(k,l)}$$

MVDR beamformer

$$\mathbf{w}(k,l) = \frac{\mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{x}}^{-1}(k,l)\mathbf{a}(k,l)} = \frac{\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^{H}(k,l)\mathbf{R}_{\mathbf{n}}^{-1}(k,l)\mathbf{a}(k,l)}$$

Multi-Channel Wiener

$$\mathbf{w}(k,l) = \underbrace{\frac{\sigma_s^2(k,l)}{\sigma_s^2(k,l) + (\mathbf{a}^H(k,l)\mathbf{R}_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l))^{-1}}_{\text{Single-channel Wiener}} \underbrace{\frac{\mathbf{R}_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l)}{\mathbf{a}^H(k,l)\mathbf{R}_\mathbf{n}^{-1}(k,l)\mathbf{a}(k,l)}_{MVDR}$$

Multi-Microphone Noise reduction

- ullet All beamformers depend on the ATF ${f a}_k$
- How to estimate the ATF \mathbf{a}_k ?
 - EVD of $\mathbf{R}_X = \mathbf{R}_Y \mathbf{R}_N$, or, GEVD of $(\mathbf{R}_Y, \mathbf{R}_N)$
 - This is accurate when (\mathbf{R}_Y) and \mathbf{R}_N are known. However, estimation errors severely affect results.
- Graduation topic: ATF estimation using Structured machine/deep learning

Can we obtain better estimators for \mathbf{a}_k by combining the GEVD and machine learning approaches to take into account estimation errors in $(\hat{\mathbf{R}}_Y)$ and $\hat{\mathbf{R}}_N$

Graduation topic: ATF estimation using delay doppler domain

Could be advantageous for moving sources/arrays.

Multi-Microphone Noise reduction

- Multi-microphone noise reduction using tensor decompositions.
- Multi-microphone noise reduction combined with EEG based information.
 - EEG can be used to determine the source of interest. Can we use the EEG to extract other relevant information for the beamformer?
- Personalized modification of the acoustic scene.

Acoustic Imaging of the Heart Using Microphones

- Imaging (Xray, MRI, Ultrsound, etc.) techniques are relatively expensive and not always available in developing countries.
- Can we develop a simple imaging technique to visualize the different parts of the human heart using an array of microphones.
- Applications:
 - Imaging on the basis of sound of heart and lungs.
 - Store the recordings, and perform offline beamforming to "zoom" in to certain areas.
 - In developing countries, more advanced imaging techniques are not always available in local medical centers and difficult to maintain. This should become a device which is easy to make and maintain, and give first indications of what can be wrong.

SP/array processing@companies

LifeTec Group: Data analysis for artificially generated heart tissue

• B&O: Sound field generation, beamforming, etc.

TNO: underwater acoustics

• Dopple: Audio processing for wireless earbuds

- SP for understanding atrial fibrillation
- Optimizing the analysis of auditory event-related potentials in EEG:
 Detection of diseases and prognosis of development (Child brain lab)
- UMC: Active noise reduction for MRIs
- Sonion: In ear (with hearing aid) based Biomedical Signal Processing

Some hints for project 2

Constructing the noisy signal:

- For sources s_p and microphone m: $x_m[t] = (s_1 * h_{1,m})[n] + \sum_{p=2}^{P} (s_p * h_{p,m})[t]$
- Processing using STFT (i.e., using short time frames of 20 ms): window and FFT the samples $x_m[\operatorname{overlap}(l-1)+1:\operatorname{overlap}(l-1)+\operatorname{frsize}]$

Estimating Correlation matrices: $\mathbf{R}_{\mathbf{n}}(k,l) = E[\mathbf{n}(k,l)\mathbf{n}^H(k,l)]$ and $\mathbf{R}_{\mathbf{x}}(k,l) = E[\mathbf{x}(k,l)\mathbf{x}^H(k,l)]$

ullet Assuming ergodicity (sources are spatially invariant) you can estimate ${f R_n}(k,l)$ e.g. as

$$\hat{\mathbf{R}}_{\mathbf{n}}(k,l) = \frac{1}{N} \sum_{p=l-M_1}^{l+M_2} \mathbf{n}(k,p) \mathbf{n}^H(k,p)$$

or as

$$\hat{\mathbf{R}}_{\mathbf{n}}(k,l) = \begin{cases}
\hat{\mathbf{R}}_{\mathbf{n}}(k,l-1)\alpha + \mathbf{n}(k,l)\mathbf{n}^{H}(k,l)(1-\alpha) & \text{target not present} \\
\hat{\mathbf{R}}_{\mathbf{n}}(k,l-1) & \text{target is present}
\end{cases}$$

$$\hat{\mathbf{R}}_{\mathbf{x}}(k,l) = \hat{\mathbf{R}}_{\mathbf{x}}(k,l-1)\alpha + \mathbf{x}(k,l)\mathbf{x}^{H}(k,l)(1-\alpha)$$

 How to know whether the target is present or not? Either cheat by using directly the mix of interferers, or build a detector.

