2. LINEAR ALGEBRA

Outline

1. Definitions
2. Linear least squares problem
3. QR factorization
4. Singular value decomposition (SVD)
5. Pseudo-inverse
6. Eigenvalue decomposition (EVD)

Definitions

Vector norm

■ Let $\mathbf{x} \in \mathbb{C}^{N}$ be an N-dimensional complex vector.
■ The Euclidean norm (2-norm) of \mathbf{x} is

$$
\|\mathbf{x}\|:=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{1 / 2}=\left(\sum_{i=1}^{N} \bar{x}_{i} x_{i}\right)^{1 / 2}=\left(\mathbf{x}^{\mathrm{H}} \mathbf{x}\right)^{1 / 2}
$$

Matrix norms

■ Let $\mathbf{A} \in \mathbb{C}^{M \times N}$ be an $M \times N$ complex matrix.
■ The induced matrix 2-norm (spectral norm, operator norm) is

$$
\|\mathbf{A}\|:=\max _{\mathbf{x}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \quad \text { or } \quad\|\mathbf{A}\|^{2}=\max _{\mathbf{x}} \frac{\mathbf{x}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{H}} \mathbf{X}}
$$

■ The Frobenius norm of \mathbf{A} is

$$
\|\mathbf{A}\|_{\mathrm{F}}=\left(\sum_{i=1}^{M} \sum_{j=1}^{N}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

Definitions

Linear independence

- A collection of vectors $\left\{\mathbf{x}_{i}\right\}$ is called linear independent if

$$
\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{N} \mathbf{x}_{N}=0 \quad \Leftrightarrow \quad \alpha_{1}=\cdots=\alpha_{N}=0 .
$$

Subspaces

■ The space \mathcal{H} spanned by a collection of vectors $\left\{\mathbf{x}_{i}\right\}$

$$
\mathcal{H}:=\left\{\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{N} \mathbf{x}_{N} \mid \alpha_{i} \in \mathbb{C}, \forall i\right\}
$$

is called a linear subspace
■ Example subspaces:

$$
\begin{array}{ll}
\text { Range (column span) of } \mathbf{A}: & \operatorname{ran}(\mathbf{A})=\left\{\mathbf{A} \mathbf{x}: \mathbf{x} \in \mathbb{C}^{N}\right\} \\
\text { Kernel (row nullspace) of } \mathbf{A}: & \operatorname{ker}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{C}^{N}: \mathbf{A} \mathbf{x}=0\right\}
\end{array}
$$

Definitions

Basis

■ An independent collection of vectors $\left\{\mathbf{x}_{i}\right\}$ that together span a subspace is called a basis for that subspace.

■ If the vectors are orthogonal $\left(\mathbf{x}_{i}^{\mathrm{H}} \mathbf{x}_{j}=0, i \neq j\right)$ orthogonal basis.
■ If the vectors are orthonormal $\left(\mathbf{x}_{i}^{\mathrm{H}} \mathbf{x}_{j}=0, i \neq j\right.$ and $\left.\left\|\mathbf{x}_{i}\right\|=1\right)$) orthonormal basis.

Rank

■ The rank of a matrix \mathbf{A} is the max. nr. of independent columns (or rows) of \mathbf{A}.
$\begin{array}{ll}\text { Prototype rank-1 matrix: } & \mathbf{A}=\mathbf{a b}^{\mathrm{H}} \\ \text { Prototype rank-2 matrix: } & \mathbf{A}=\mathbf{a b}^{\mathrm{H}}+\mathbf{c d}^{\mathrm{H}}\end{array}$

Definitions

Unitary matrix

■ A square matrix \mathbf{U} is called unitary if $\mathbf{U}^{\mathrm{H}} \mathbf{U}=\mathbf{I}$ and $\mathbf{U} \mathbf{U}^{\mathrm{H}}=\mathbf{I}$.
■ Properties:

- A unitary matrix looks like a rotation and/or a reflection.
- Its norm is $\|\mathbf{U}\|=1$.
- Its columns and rows are orthonormal.

Isometry

■ A tall rectangular matrix $\hat{\mathbf{U}}$ is called an isometry if $\hat{\mathbf{U}}^{\mathrm{H}} \hat{\mathbf{U}}=\mathbf{I}$.

- Its columns are orthonormal basis of a subspace (not the complete space).
- Its norm is $\|\hat{\mathbf{U}}\|=1$.
- There is an orthogonal complement $\hat{\mathbf{U}}^{\perp}$ of $\hat{\mathbf{U}}$ such that $\mathbf{U}=\left[\hat{\mathbf{U}} \hat{\mathbf{U}}^{\perp}\right]$ is unitary.

Definitions

Projection

- A square matrix \mathbf{P} is a projection if $\mathbf{P P}=\mathbf{P}$.

■ It is an orthogonal projection if also $\mathbf{P}^{\mathrm{H}}=\mathbf{P}$.

- The norm of an orthogonal projection is $\|\mathbf{P}\|=1$.
- For an isometry $\hat{\mathbf{U}}$, the matrix $\mathbf{P}=\hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}$ is an orthogonal projection (onto the space spanned by the columns of Û). This is the general form of a projection.

■ Suppose $\mathbf{U}=[\underbrace{\hat{\mathbf{U}}}_{d} \underbrace{\hat{U}^{\perp}}_{M-d}]$ is unitary. Then, from $\mathbf{U U}^{\mathrm{H}}=\mathbf{I}_{M}$:

$$
\hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}+\hat{\mathbf{U}}^{\perp}\left(\hat{\mathbf{U}}^{\perp}\right)^{\mathrm{H}}=\mathbf{I}_{M}, \quad \hat{\mathbf{U}} \hat{\mathbf{U}}^{\mathrm{H}}=\mathbf{P}, \quad \hat{\mathbf{U}}^{\perp}\left(\hat{\mathbf{U}}^{\perp}\right)^{\mathrm{H}}=\mathbf{P}^{\perp}=\mathbf{I}_{M}-\mathbf{P}
$$

■ Any vector $\mathbf{x} \in \mathbb{C}^{M}$ can be decomposed into $\mathbf{x}=\hat{\mathbf{x}}+\hat{\mathbf{x}}^{\perp}$, where $\hat{\mathbf{x}} \perp \hat{\mathbf{x}}^{\perp}$,

$$
\hat{\mathbf{x}}=\mathbf{P x} \in \operatorname{ran}(\hat{\mathbf{U}}), \quad \hat{\mathbf{x}}^{\perp}=\mathbf{P}^{\perp} \mathbf{x} \in \operatorname{ran}\left(\hat{\mathbf{U}}^{\perp}\right)
$$

Definitions

Projection onto the column span of A

■ Suppose \mathbf{A} is tall and $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ is invertible. Then

$$
\mathbf{P}_{\mathbf{A}}:=\mathbf{A}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}}, \quad \mathbf{P}_{\mathbf{A}}^{\perp}:=\mathbf{I}-\mathbf{A}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}}
$$

are orthogonal projections, onto the range of \mathbf{A} and kernel of \mathbf{A}^{H}, resp.

- Proof:

Verify that $\mathbf{P P}=\mathbf{P}$ and $\mathbf{P}^{\mathrm{H}}=\mathbf{P}$, hence \mathbf{P} is an orthogonal projection.
If $\mathbf{b} \in \operatorname{ran}(\mathbf{A})$, then $\mathbf{b}=\mathbf{A x}$ for some \mathbf{x}.
Hence

$$
\mathbf{P}_{\mathbf{A}} \mathbf{b}=\mathbf{A}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{A} \mathbf{x}=\mathbf{b}
$$

so that \mathbf{b} is invariant under $\mathbf{P}_{\mathbf{A}}$.
If $\mathbf{b} \perp \operatorname{ran}(\mathbf{A})$, then $\mathbf{b} \in \operatorname{ker}\left(\mathbf{A}^{\mathrm{H}}\right)$, or $\mathbf{A}^{\mathrm{H}} \mathbf{b}=\mathbf{0}$. Hence $\mathbf{P}_{\mathbf{A}} \mathbf{b}=\mathbf{0}$.

Linear least squares problem

- Given A, b, find

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\|\mathbf{A x}-\mathbf{b}\|^{2}
$$

- Solution:

Write $\mathbf{b}=\mathbf{b}_{1}+\mathbf{b}_{2}$, where $\mathbf{b}_{1} \in \operatorname{ran}(\mathbf{A}), \mathbf{b}_{2} \perp \operatorname{ran}(\mathbf{A})$.
Then

$$
\begin{aligned}
\mathbf{b}_{1} & =\mathbf{P}_{\mathbf{A}} \mathbf{b}=\mathbf{A}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{b} \\
\mathbf{A} \mathbf{x}-\mathbf{b} & =\mathbf{A}\left\{\mathbf{x}-\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{b}\right\}-\mathbf{b}_{2}
\end{aligned}
$$

Note that the two terms are orthogonal. Thus

$$
\|\mathbf{A x}-\mathbf{b}\|^{2}=\left\|\mathbf{A}\left\{\mathbf{x}-\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{b}\right\}\right\|^{2}+\left\|\mathbf{b}_{2}\right\|^{2}
$$

To minimize the error, set $\hat{\mathbf{x}}=\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{b}$.

QR factorization

■ Let A be an $N \times N$ square full rank matrix.
Then there is a decomposition

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{N}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{N}
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 N} \\
0 & r_{22} & \cdots & r_{2 N} \\
0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & r_{N N}
\end{array}\right]=\mathbf{Q R}
$$

Here, \mathbf{Q} is a unitary matrix, \mathbf{R} is upper triangular and square.

- Interpretation:
- \mathbf{q}_{1} is a normalized vector with the same direction as \mathbf{a}_{1}.
- $\left[\begin{array}{ll}\mathbf{q}_{1} & \mathbf{q}_{2}\end{array}\right]$ is an isometry spanning the same space as $\left[\mathbf{a}_{1} \mathbf{a}_{2}\right]$.
- $\left[\begin{array}{lll}\mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{3}\end{array}\right]$ is an isometry spanning the same space as $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$.
- Etc.

QR factorization

■ Let A be an $M \times N$ tall $(M \geq N)$ matrix.
Then there is a decomposition

$$
\mathbf{A}=\mathbf{Q} \mathbf{R}=\left[\begin{array}{ll}
\hat{\mathbf{Q}} & \hat{\mathbf{Q}}^{\perp}
\end{array}\right]\left[\begin{array}{l}
\hat{\mathbf{R}} \\
\mathbf{0}
\end{array}\right]=\hat{\mathbf{Q}} \hat{\mathbf{R}}
$$

Here, \mathbf{Q} is a unitary matrix, $\hat{\mathbf{R}}$ is upper triangular and square.
■ Properties:

- \mathbf{R} is upper triangular with $M-N$ zero rows added.
- $\mathbf{A}=\hat{\mathbf{Q}} \hat{\mathbf{R}}$ is an "economy-size" QR-decomposition.
- If $\hat{\mathbf{R}}$ is full rank, the columns of $\hat{\mathbf{Q}}$ span the range of \mathbf{A}.
- If $\hat{\mathbf{R}}$ is not full rank, the column span of $\hat{\mathbf{Q}}$ is too large.

Singular value decomposition

\square For any matrix \mathbf{X}, there is a decomposition

$$
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}}
$$

Here, \mathbf{U} and \mathbf{V} are unitary, and $\mathbf{\Sigma}$ is diagonal, with positive real entries.
■ Properties:

- The columns \mathbf{u}_{i} of \mathbf{U} are called the left singular vectors.
- The columns \mathbf{v}_{i} of \mathbf{V} are called the right singular vectors.
- The diagonal entries σ_{i} of Σ are called the singular values.
- They are positive and real, and usually sorted such that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0
$$

Singular value decomposition

■ More specifically, for an $M \times N$ tall $(M \geq N)$ matrix \mathbf{X} :

$$
\left.\begin{array}{l}
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}}=\left[\begin{array}{ll}
\mathbf{U} & \hat{\mathbf{U}}^{\perp}
\end{array}\right]\left[\begin{array}{cc|c}
\sigma_{1} & & \\
& & \\
& \sigma_{d} & \\
\hline & & 0 \\
\\
& & \\
0 & \cdots & \cdots \\
0 & \cdots & \cdots
\end{array}\right]
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{V}}^{\mathrm{H}} \\
\left(\hat{\mathbf{V}}^{\perp}\right)^{\mathrm{H}}
\end{array}\right] .
$$

■ 'Economy size' SVD: $\mathbf{X}=\hat{\mathbf{U}} \hat{\Sigma} \hat{\mathbf{V}}^{\mathrm{H}}$, where $\hat{\boldsymbol{\Sigma}}: d \times d$, containing $\sigma_{1}, \cdots, \sigma_{d}$.

Singular value decomposition

Some SVD facts

- The rank of \mathbf{X} is d, the number of nonzero singular values.

■ $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}} \quad \Leftrightarrow \quad \mathbf{X}^{\mathrm{H}}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathrm{H}} \quad \Leftrightarrow \quad \mathbf{X V}=\mathbf{U} \boldsymbol{\Sigma} \quad \Leftrightarrow \quad \mathbf{X}^{\mathrm{H}} \mathbf{U}=\mathbf{V} \boldsymbol{\Sigma}$
\Rightarrow The columns of $\hat{\mathbf{U}}\left(\hat{\mathbf{U}}^{\perp}\right)$ are orthonormal basis for range of \mathbf{X} (kernel of $\left.\mathbf{X}^{\mathrm{H}}\right)$.
\Rightarrow The columns of $\hat{\mathbf{V}}\left(\hat{\mathbf{V}}^{\perp}\right)$ are orthonormal basis for range of \mathbf{X}^{H} (kernel of \mathbf{X}).

■ The norm of \mathbf{X} or \mathbf{X}^{H} is $\|\mathbf{X}\|=\left\|\mathbf{X}^{\mathrm{H}}\right\|=\sigma_{1}$, the largest singular value.
The norm is attained on the corresponding singular vectors \mathbf{u}_{1} and \mathbf{v}_{1} :

$$
\mathbf{X} \mathbf{v}_{1}=\mathbf{u}_{1} \sigma_{1} \quad \mathbf{X}^{\mathrm{H}} \mathbf{u}_{1}=\mathbf{v}_{1} \sigma_{1}
$$

Singular value decomposition

Geometrical interpretation

Construction of the left singular vectors and values of the matrix $\mathbf{X}=\left[\begin{array}{ll}\mathbf{x}_{1} & \mathbf{x}_{2}\end{array}\right]$, where \mathbf{x}_{1} and \mathbf{x}_{2} have equal length.

■ The largest singular vector \mathbf{u}_{1} is in the direction of the sum of \mathbf{x}_{1} and \mathbf{x}_{2} :
the 'common' direction of the two vectors.
Singular value: $\sigma_{1}=\left\|\mathbf{x}_{1}+\mathbf{x}_{2}\right\| / \sqrt{2}$.
$■$ The smallest singular vector \mathbf{u}_{2} depends on the difference $\mathbf{x}_{2}-\mathbf{x}_{1}$.
Singular value: $\sigma_{2}=\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\| / \sqrt{2}$.

Singular value decomposition

Connections between the SVD and QR factorizations

- The QR factorization of a tall $(M \geq N)$ matrix \mathbf{X} is

$$
\mathbf{X}=\mathbf{Q R}=\left[\begin{array}{ll}
\hat{\mathbf{Q}} & \hat{\mathbf{Q}}^{\perp}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{R}} \\
0
\end{array}\right]
$$

■ The QR factorization can be used as a starting point for the SVD of \mathbf{X} :
First compute the SVD of $\hat{\mathbf{R}}$

$$
\hat{\mathbf{R}}=\hat{\mathbf{U}}_{R} \hat{\boldsymbol{\Sigma}}_{R} \hat{\mathbf{V}}_{R}^{\mathrm{H}}
$$

so that the SVD of \mathbf{X} is

$$
\mathbf{X}=\left(\hat{\mathbf{Q}} \hat{\mathbf{U}}_{R}\right) \hat{\boldsymbol{\Sigma}}_{R} \hat{\mathbf{V}}_{R}^{\mathrm{H}}
$$

\mathbf{X} and \mathbf{R} have the same $\boldsymbol{\Sigma}$ and \mathbf{V}.

Pseudo-inverse

Full rank pseudo-inverse

■ X: $M \times N$, tall $(M \geq N)$, full rank.
The pseudo-inverse of \mathbf{X} is $\mathbf{X}^{\dagger}=\left(\mathbf{X}^{\mathrm{H}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{H}}$.
■ It satisfies $\mathbf{X}^{\dagger} \mathbf{X}=\mathbf{I}_{N}$ (i.e., \mathbf{X}^{\dagger} is an inverse on the "short space").
■ Also, $\mathbf{X X}^{\dagger}=\mathbf{P}$: a projection onto the column span of \mathbf{X}.

Rank-deficient pseudo-inverse

■ X : $M \times N$, tall $(M \geq N)$, rank- d, with 'economy size' SVD $\mathbf{X}=\hat{\mathbf{U}} \hat{\Sigma} \hat{\mathbf{V}}^{\mathrm{H}}$. The pseudo-inverse of \mathbf{X} is $\mathbf{X}^{\dagger}=\hat{\mathbf{V}} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mathbf{U}}^{\mathrm{H}}$.

■ It satisfies $\mathbf{X X} \mathbf{X}^{\dagger}=\hat{\mathbf{U}} \hat{U}^{\mathrm{H}}=\mathbf{P}_{c}, \quad \mathbf{X}^{\dagger} \mathbf{X}=\hat{\mathbf{V}} \hat{\mathbf{V}}^{\mathrm{H}}=\mathbf{P}_{r}$.

- The norm of \mathbf{X}^{\dagger} is $\left\|\mathbf{X}^{\dagger}\right\|=\sigma_{d}^{-1}$.
- The condition number of \mathbf{X} is $c(\mathbf{X}):=\frac{\sigma_{1}}{\sigma_{d}}$.

If it is large, then \mathbf{X} is hard to invert (\mathbf{X}^{\dagger} is sensitive to small changes).

Pseudo-inverse

Interpretation of condition number

■ The condition number gives the relative sensitivity of the solution of linear systems of equations.

■ Illustration:

$$
\begin{array}{lll}
\mathbf{A} \mathbf{x}=\mathbf{b} & \Rightarrow & \mathbf{x}=\mathbf{A}^{-1} \mathbf{b} \\
\mathbf{b}^{1}=\mathbf{b}+\mathbf{e} & \Rightarrow & \mathbf{x}^{1}=\mathbf{x}+\mathbf{A}^{-1} \mathbf{e}
\end{array}
$$

Define $\sigma_{1}=\|\mathbf{A}\|, \quad \sigma_{N}^{-1}=\left\|\mathbf{A}^{-1}\right\| . \quad$ Use $\|\mathbf{A} \mathbf{x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|$.

Then

$$
\begin{aligned}
\left\|\mathbf{A}^{-1} \mathbf{e}\right\| & \leq \sigma_{N}^{-1}\|\mathbf{e}\| \\
\|\mathbf{b}\| & \leq \sigma_{1}\|\mathbf{x}\| \\
\frac{\left\|\mathbf{x}^{1}-\mathbf{x}\right\|}{\|\mathbf{x}\|} & \leq \sigma_{N}^{-1} \frac{\|\mathbf{e}\|}{\|\mathbf{x}\|} \leq \sigma_{N}^{-1} \sigma_{1} \frac{\|\mathbf{e}\|}{\|\mathbf{b}\|}
\end{aligned}
$$

Pseudo-inverse

Rank approximation

■ X: $M \times N$, with $\operatorname{SVD} \mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{H}}$.

■ To improve the condition number of \mathbf{X}, we can set the small σ_{i} equal to zero.
This leads to a low rank approximation of \mathbf{X}.

■ Illustration:

- Choose a threshold ϵ, and suppose d singular values are larger than ϵ.
- $\hat{\mathbf{U}}$: first d columns of $\mathbf{U}, \hat{\mathbf{V}}$: first d columns of $\mathbf{V}, \hat{\boldsymbol{\Sigma}}$: top-left $d \times d$ block of $\boldsymbol{\Sigma}$.
- Then $\hat{\mathbf{X}}=\hat{\mathbf{U}} \hat{\mathbf{\Sigma}} \hat{\mathbf{V}}^{\mathrm{H}}$ is a rank- d approximant of \mathbf{X}, with error

$$
\begin{aligned}
\|\mathbf{X}-\hat{\mathbf{X}}\| & =\sigma_{d+1} \\
\|\mathbf{X}-\hat{\mathbf{X}}\|_{\mathrm{F}}^{2} & =\sigma_{d+1}^{2}+\cdots+\sigma_{N}^{2}
\end{aligned}
$$

Eigenvalue decomposition

Definition

■ The eigenvalue problem is $\mathbf{A} \mathbf{x}=\lambda \mathbf{x} \quad \Leftrightarrow \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0$.
■ Any λ that makes $\mathbf{A}-\lambda \mathbf{I}$ singular is called an eigenvalue

■ The corresponding \mathbf{x} is the eigenvector (invariant vector).
■ Stacking the results gives

$$
\begin{aligned}
\mathbf{A}\left[\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots
\end{array}\right] & =\left[\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & \\
& & \ddots
\end{array}\right] \\
& \Leftrightarrow \quad \mathbf{A T}
\end{aligned}=\mathbf{T} \mathbf{\Lambda} \text {. }
$$

■ A "regular" matrix A has an eigenvalue decomposition:

$$
\mathbf{A}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{-1}, \quad \text { where } \mathbf{T} \text { is invertible and } \boldsymbol{\Lambda} \text { is diagonal. }
$$

This decomposition might not exist if eigenvalues are repeated.

Eigenvalue decomposition

Schur decomposition

$■$ Suppose \mathbf{T} has QR factorization $\mathbf{T}=\mathbf{Q} \mathbf{R}_{T} \quad \Rightarrow \quad \mathbf{T}^{-1}=\mathbf{R}_{T}^{-1} \mathbf{Q}^{\mathrm{H}}$. Hence

$$
\mathbf{A}=\mathbf{Q R}_{T} \boldsymbol{\Lambda} \mathbf{R}_{T}^{-1} \mathbf{Q}^{\mathrm{H}}=\mathbf{Q} \mathbf{R} \mathbf{Q}^{\mathrm{H}}
$$

■ $\mathbf{A}=\mathbf{Q R Q}^{\mathrm{H}}$, with \mathbf{Q} unitary and \mathbf{R} upper triangular, is a Schur decomposition.
■ Properties:

- \mathbf{R} has the eigenvalues of \mathbf{A} on the diagonal.
- This decomposition always exists.
- Q gives information about "eigen-subspaces" (invariant subspaces).

But \mathbf{Q} does not contain the eigenvectors.

Eigenvalue decomposition

Connection of the eigenvalue decomposition with the SVD

- Starting from the SVD we obtain

$$
\begin{aligned}
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}} \quad \Rightarrow \quad \mathbf{X} \mathbf{X}^{\mathrm{H}} & =\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathrm{H}} \\
& =\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\mathrm{H}} \\
& =\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{H}}
\end{aligned}
$$

■ Hence, we can state

- The eigenvalues of $\mathbf{X X} \mathbf{X}^{\mathrm{H}}$ are the singular values of \mathbf{X}, squared
${ }^{1}+\mathbb{L}$ The eigenvalues of $\mathbf{X X} \mathbf{X}^{\mathrm{H}}$ are real
- The eigenvectors of $\mathbf{X X}^{\mathrm{H}}$ are the left singular vectors of \mathbf{X}

Inte \mathbf{U} is a unitary matrix

- The SVD always exists
n"m The eigenvalue decomposition of $\mathbf{X X}^{\mathrm{H}}$ always exists

Eigenvalue decomposition

Noise covariance matrix

■ Suppose we have M antennas, and receive only noise:

$$
\mathbf{e}(k)=\left[\begin{array}{c}
e_{1}(k) \\
\vdots \\
e_{M}(k)
\end{array}\right]=\mathbf{e}_{k}
$$

■ Collect the samples in a matrix $\mathbf{E}=\left[\begin{array}{llll}\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{N}\end{array}\right]: \quad M \times N$
■ The noise covariance matrix is

$$
\mathbf{R}_{e}:=\mathrm{E}\left(\mathbf{e e}^{\mathrm{H}}\right) \simeq \hat{\mathbf{R}}_{e}:=\frac{1}{N} \sum \mathbf{e}_{k} \mathbf{e}_{k}^{\mathrm{H}}=\frac{1}{N} \mathbf{E E}^{\mathrm{H}}
$$

- \mathbf{R}_{e} is hermitian: $\mathbf{R}_{e}^{\mathrm{H}}=\mathbf{R}_{e}$.
- If noise is independent among sensors (spatially white), then \mathbf{R}_{e} is diagonal.
- If noise is independent identically distributed (i.i.d.), then $\mathbf{R}_{e}=\sigma^{2} \mathbf{I}$.
- Hence, all eigenvalues of \mathbf{R}_{e} are equal to σ^{2} (the noise power).

Eigenvalue decomposition

EVD of a data matrix

■ Suppose we collect a data matrix $\mathbf{X}=\mathbf{A S}$ and compute its correlation matrix

$$
\hat{\mathbf{R}}=\frac{1}{N} \mathbf{X X} \mathbf{X}^{\mathrm{H}}=\mathbf{A}\left(\frac{1}{N} \mathbf{S S}^{\mathrm{H}}\right) \mathbf{A}^{\mathrm{H}}=\mathbf{A} \hat{\mathbf{R}}_{s} \mathbf{A}^{\mathrm{H}}
$$

■ Eigenvalue decomposition: $\hat{\mathbf{R}}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{H}}$
■ Rank property:
If the number of sources d is smaller than the number of antennas M
num Λ has d eigenvalues unequal to 0 and $M-d$ equal to zero.
■ Add i.i.d. noise: $\mathbf{X}=\mathbf{A S}+\mathbf{E}$.

$$
\begin{aligned}
\hat{\mathbf{R}}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\mathrm{H}} & \simeq \mathbf{A} \hat{\mathbf{R}}_{s} \mathbf{A}^{\mathrm{H}}+\hat{\mathbf{R}}_{e} \\
& \simeq \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{H}}+\sigma^{2} \mathbf{I} \\
& =\mathbf{U}\left(\boldsymbol{\Lambda}+\sigma^{2} \mathbf{I}\right) \mathbf{U}^{\mathrm{H}}
\end{aligned}
$$

All eigenvalues are raised by σ^{2}, but the eigenvectors stay the same.

Eigenvalue decomposition

SVD of a data matrix

$$
\begin{aligned}
& \mathbf{X}=\mathbf{A S}+\mathbf{E}, \quad \mathbf{A}=\left[\begin{array}{ll}
\mathbf{a}\left(\theta_{1}\right) & \mathbf{a}\left(\theta_{2}\right)
\end{array}\right]
\end{aligned}
$$

Singular values of \mathbf{X} for $d=2$ sources, $M=5$ antennas, $N=10$ samples.
(a) Well separated case: large gap between signal and noise singular values,
(b) signals from close directions results in a small signal singular value,
(c) increased noise level increases noise singular values.

