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Definitions

Vector norm

Let x ∈ |C
N be an N -dimensional complex vector.

The Euclidean norm (2-norm) of x is

‖x ‖ :=
( N

∑
i=1

|xi|2
)1/2

=
( N

∑
i=1

x̄ixi

)1/2
= (xHx)1/2

Matrix norms

Let A ∈ |C
M×N be an M ×N complex matrix.

The induced matrix 2-norm (spectral norm, operator norm) is

‖A ‖ := max
x

‖Ax‖
‖x‖ or ‖A ‖2 =max

x

xHAHAx
xHx

The Frobenius norm of A is

‖A ‖F =
(M

∑
i=1

N

∑
j=1

|aij |2
)1/2
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Definitions

Linear independence

A collection of vectors {xi} is called linear independent if

α1x1+ · · ·+αNxN = 0 ⇔ α1 = · · ·= αN = 0 .

Subspaces

The space H spanned by a collection of vectors {xi}

H := {α1x1+ · · ·+αNxN | αi ∈ |C , ∀i}

is called a linear subspace

Example subspaces:

Range (column span) of A: ran(A) = {Ax : x ∈ |C
N}

Kernel (row nullspace) of A: ker(A) = {x ∈ |C
N : Ax = 0}
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Definitions

Basis

An independent collection of vectors {xi} that together span a subspace is called

a basis for that subspace.

If the vectors are orthogonal (xH

i xj = 0, i 6= j) ➠ orthogonal basis.

If the vectors are orthonormal (xH

i xj =0, i 6= j and ‖xi‖=1) ➠ orthonormal basis.

Rank

The rank of a matrix A is the max. nr. of independent columns (or rows) of A.

Prototype rank-1 matrix: A = abH

Prototype rank-2 matrix: A = abH+cdH
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Definitions

Unitary matrix

A square matrix U is called unitary if UHU = I and UUH = I.

Properties:

• A unitary matrix looks like a rotation and/or a reflection.

• Its norm is ‖U‖= 1.

• Its columns and rows are orthonormal.

Isometry

A tall rectangular matrix Û is called an isometry if ÛHÛ = I.

• Its columns are orthonormal basis of a subspace (not the complete space).

• Its norm is ‖ Û‖= 1.

• There is an orthogonal complement Û⊥ of Û such that U = [Û Û⊥] is unitary.
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Definitions

Projection

A square matrix P is a projection if PP = P.

It is an orthogonal projection if also PH = P.

• The norm of an orthogonal projection is ‖P‖= 1.

• For an isometry Û, the matrix P = ÛÛH is an orthogonal projection (onto the

space spanned by the columns of Û). This is the general form of a projection.

Suppose U = [ Û
︸︷︷︸

d

Û⊥
︸︷︷︸

M−d

] is unitary. Then, from UUH = IM :

ÛÛH

+ Û⊥(Û⊥)
H

= IM , ÛÛH

= P , Û⊥(Û⊥)
H

= P⊥ = IM −P

Any vector x ∈ |C
M can be decomposed into x = x̂+ x̂⊥, where x̂ ⊥ x̂⊥,

x̂ = Px ∈ ran(Û) , x̂⊥ = P⊥x ∈ ran(Û⊥)
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Definitions

Projection onto the column span of A

Suppose A is tall and AHA is invertible. Then

PA := A(AHA)−1AH

, P⊥
A := I − A(AHA)−1AH

are orthogonal projections, onto the range of A and kernel of AH, resp.

Proof:

Verify that PP = P and PH = P, hence P is an orthogonal projection.

If b ∈ ran(A), then b = Ax for some x.

Hence

PAb = A(AHA)−1AHAx = b

so that b is invariant under PA .

If b ⊥ ran(A), then b ∈ ker(AH), or AHb = 0. Hence PAb = 0.
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Linear least squares problem

Given A, b, find

x̂ = argmin
x

‖ Ax −b ‖2

Solution:

Write b = b1+b2, where b1 ∈ ran(A), b2 ⊥ ran(A).

Then

b1 = PAb = A(AHA)−1AHb

Ax −b = A
{

x− (AHA)−1AHb
}
− b2

Note that the two terms are orthogonal. Thus

‖ Ax −b ‖2 = ‖ A
{

x− (AHA)−1AHb
}
‖2 + ‖ b2 ‖2

To minimize the error, set x̂ = (AHA)−1AHb.
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QR factorization

Let A be an N ×N square full rank matrix.

Then there is a decomposition

A =
[

a1 a2 · · · aN

]

=
[

q1 q2 · · · qN

]











r11 r12 · · · r1N

0 r22 · · · r2N

0 0
. . .

...

0 0 0 rNN











= QR

Here, Q is a unitary matrix, R is upper triangular and square.

Interpretation:

• q1 is a normalized vector with the same direction as a1.

• [q1 q2] is an isometry spanning the same space as [a1 a2].

• [q1 q2 q3] is an isometry spanning the same space as [a1 a2 a3].

• Etc.
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QR factorization

Let A be an M ×N tall (M ≥N ) matrix.

Then there is a decomposition

A = QR = [Q̂ Q̂⊥]




R̂

0



= Q̂R̂

Here, Q is a unitary matrix, R̂ is upper triangular and square.

Properties:

• R is upper triangular with M −N zero rows added.

• A = Q̂R̂ is an “economy-size” QR-decomposition.

• If R̂ is full rank, the columns of Q̂ span the range of A.

• If R̂ is not full rank, the column span of Q̂ is too large.
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Singular value decomposition

For any matrix X, there is a decomposition

X = UΣVH

Here, U and V are unitary, and Σ is diagonal, with positive real entries.

Properties:

• The columns ui of U are called the left singular vectors.

• The columns vi of V are called the right singular vectors.

• The diagonal entries σi of Σ are called the singular values.

• They are positive and real, and usually sorted such that

σ1 ≥ σ2 ≥ ·· · ≥ 0
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Singular value decomposition

More specifically, for an M ×N tall (M ≥N ) matrix X:

X = UΣVH

= [Û Û⊥]

















σ1

σd

0

0

0 · · · · · · 0

0 · · · · · · 0




















V̂H

(V̂⊥)H





U :M ×M, Σ :M ×N, V :N ×N

σ1 ≥ σ2 ≥ ·· · ≥ σd > σd+1 = · · ·= σN = 0

‘Economy size’ SVD: X = ÛΣ̂V̂H, where Σ̂ : d×d, containing σ1, · · · ,σd.
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Singular value decomposition

Some SVD facts

The rank of X is d, the number of nonzero singular values.

X = UΣVH ⇔ XH = VΣUH ⇔ XV = UΣ ⇔ XHU = VΣ

⇒ The columns of Û (Û⊥) are orthonormal basis for range of X (kernel of XH).

⇒ The columns of V̂ (V̂⊥) are orthonormal basis for range of XH (kernel of X).

The norm of X or XH is ‖X‖= ‖XH ‖= σ1, the largest singular value.

The norm is attained on the corresponding singular vectors u1 and v1:

Xv1 = u1σ1 XHu1 = v1σ1
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Singular value decomposition

Geometrical interpretation

x1

u1σ1

√
2

u2σ2

√
2

x2

Construction of the left singular vectors and values of the matrix X = [x1 x2], where

x1 and x2 have equal length.

The largest singular vector u1 is in the direction of the sum of x1 and x2:

the ‘common’ direction of the two vectors.

Singular value: σ1 = ‖x1+x2 ‖/
√
2.

The smallest singular vector u2 depends on the difference x2−x1.

Singular value: σ2 = ‖x2−x1 ‖/
√
2.
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Singular value decomposition

Connections between the SVD and QR factorizations

The QR factorization of a tall (M ≥N ) matrix X is

X = QR = [Q̂ Q̂⊥]




R̂

0





The QR factorization can be used as a starting point for the SVD of X:

First compute the SVD of R̂

R̂ = ÛRΣ̂RV̂H

R

so that the SVD of X is

X = (Q̂ÛR)Σ̂RV̂H

R

X and R have the same Σ and V.
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Pseudo-inverse

Full rank pseudo-inverse

X :M ×N , tall (M ≥N ), full rank.

The pseudo-inverse of X is X† = (XHX)−1XH.

It satisfies X†X = IN (i.e., X† is an inverse on the “short space”).

Also, XX† = P: a projection onto the column span of X.

Rank-deficient pseudo-inverse

X :M ×N , tall (M ≥N ), rank-d, with ‘economy size’ SVD X = ÛΣ̂V̂H.

The pseudo-inverse of X is X† = V̂Σ̂−1ÛH.

It satisfies XX† = ÛÛH = Pc , X†X = V̂V̂H = Pr.

• The norm of X† is ‖X† ‖= σ−1

d .

• The condition number of X is c(X) := σ1

σd
.

If it is large, then X is hard to invert (X† is sensitive to small changes).
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Pseudo-inverse

Interpretation of condition number

The condition number gives the relative sensitivity of the solution of linear sys-

tems of equations.

Illustration:
Ax = b ⇒ x = A−1b

b1 = b+e ⇒ x1 = x+A−1e

Define σ1 = ‖A ‖ , σ−1

N = ‖A−1 ‖. Use ‖Ax‖ ≤ ‖A‖‖x‖.

Then
‖A−1e‖ ≤ σ−1

N ‖e‖
‖b ‖ ≤ σ1‖x ‖

‖x1−x‖
‖x‖ ≤ σ−1

N

‖e‖
‖x‖ ≤ σ−1

N σ1
‖e‖
‖b‖
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Pseudo-inverse

Rank approximation

X :M ×N , with SVD X = UΣVH.

To improve the condition number of X, we can set the small σi equal to zero.

This leads to a low rank approximation of X.

Illustration:

• Choose a threshold ǫ, and suppose d singular values are larger than ǫ.

• Û: first d columns of U, V̂: first d columns of V, Σ̂: top-left d×d block of Σ.

• Then X̂ = ÛΣ̂V̂H is a rank-d approximant of X, with error

‖X− X̂‖ = σd+1

‖X− X̂‖2
F

= σ2
d+1

+ · · ·+σ2
N
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Eigenvalue decomposition

Definition

The eigenvalue problem is Ax = λx ⇔ (A−λI)x = 0.

Any λ that makes A−λI singular is called an eigenvalue

The corresponding x is the eigenvector (invariant vector).

Stacking the results gives

A[x1 x2 · · · ] = [x1 x2 · · · ]






λ1

λ2
. . .






⇔ AT = TΛ

A “regular” matrix A has an eigenvalue decomposition:

A = TΛT−1 , where T is invertible and Λ is diagonal.

This decomposition might not exist if eigenvalues are repeated.
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Eigenvalue decomposition

Schur decomposition

Suppose T has QR factorization T = QRT ⇒ T−1 = R−1

T QH. Hence

A = QRTΛR−1

T QH

= QRQH

A = QRQH, with Q unitary and R upper triangular, is a Schur decomposition .

Properties:

• R has the eigenvalues of A on the diagonal.

• This decomposition always exists.

• Q gives information about “eigen-subspaces” (invariant subspaces).

But Q does not contain the eigenvectors.
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Eigenvalue decomposition

Connection of the eigenvalue decomposition with the SVD

Starting from the SVD we obtain

X = UΣVH ⇒ XXH = UΣVHVΣUH

= UΣ
2UH

= UΛUH

Hence, we can state

• The eigenvalues of XXH are the singular values of X, squared

➠ The eigenvalues of XXH are real

• The eigenvectors of XXH are the left singular vectors of X

➠ U is a unitary matrix

• The SVD always exists

➠ The eigenvalue decomposition of XXH always exists
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Eigenvalue decomposition

Noise covariance matrix

Suppose we have M antennas, and receive only noise:

e(k) =






e1(k)...
eM (k)




 = ek

Collect the samples in a matrix E = [e1 e2 · · · eN ] : M ×N

The noise covariance matrix is

Re := E(eeH

) ≃ R̂e :=
1

N ∑ekeH

k = 1

N EEH

• Re is hermitian: RH

e = Re.

• If noise is independent among sensors (spatially white), then Re is diagonal.

• If noise is independent identically distributed (i.i.d.), then Re = σ2I.

• Hence, all eigenvalues of Re are equal to σ2 (the noise power).
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Eigenvalue decomposition

EVD of a data matrix

Suppose we collect a data matrix X = AS and compute its correlation matrix

R̂ = 1

N XXH = A( 1

N SSH)AH = AR̂sA
H

Eigenvalue decomposition: R̂ = UΛUH

Rank property:

If the number of sources d is smaller than the number of antennas M

➠ Λ has d eigenvalues unequal to 0 and M −d equal to zero.

Add i.i.d. noise: X = AS+E.

R̂ = 1

N XXH ≃ AR̂sA
H + R̂e

≃ UΛUH + σ2I

= U(Λ+σ2I)UH

All eigenvalues are raised by σ2, but the eigenvectors stay the same.
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Eigenvalue decomposition

SVD of a data matrix
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gap

X = AS + E , A = [a(θ1) a(θ2)]

Singular values of X for d= 2 sources, M = 5 antennas, N = 10 samples.

(a) Well separated case: large gap between signal and noise singular values,

(b) signals from close directions results in a small signal singular value,

(c) increased noise level increases noise singular values.
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