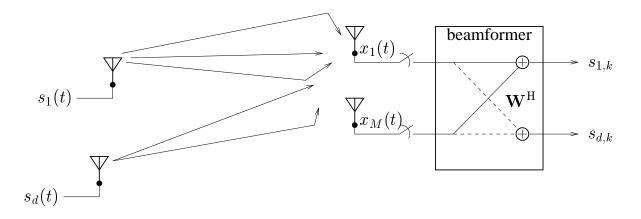
3. SPATIAL PROCESSING TECHNIQUES

Outline

- 1. Matched and Wiener filters deterministic approach
- 2. Matched and Wiener filters stochastic approach
- 3. Direction estimation
- 4. Spatio-temporal generalizations

Data model



Assume we receive *d* signals on an antenna array, narrow-band case:

$$\mathbf{x}_k := \mathbf{x}(k) = \sum_{i=1}^d \mathbf{a}_i s_i(k) + \mathbf{n}(k) := \sum_{i=1}^d \mathbf{a}_i s_{i,k} + \mathbf{n}_k = \mathbf{A}\mathbf{s}_k + \mathbf{n}_k$$

• Objective:

• Construct a receiver weight vector \mathbf{w}_i such that

$$\mathbf{W}_i^{\mathrm{H}} \mathbf{X}_k = \hat{s}_{i,k}$$

• Construct a receiver weight matrix **W** such that

$$\mathbf{W}^{\mathrm{H}}\mathbf{X}_{k} = \hat{\mathbf{S}}_{k}$$

Noiseless case $\mathbf{x}_k = \mathbf{A}\mathbf{s}_k \qquad \Leftrightarrow \qquad \mathbf{X} = \mathbf{A}\mathbf{S}$

• Objective: find **W** such that $\mathbf{W}^{H}\mathbf{X} = \mathbf{S}$

With A known (e.g. after channel estimation):

$$\mathbf{X} = \mathbf{AS} \Rightarrow \mathbf{S} = \mathbf{A}^{\dagger}\mathbf{X} = (\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{H}}\mathbf{X}$$

Hence we set

$$\mathbf{W}^{\mathrm{H}} = \mathbf{A}^{\dagger}$$

■ With **S** known (e.g. after synchronization and training):

$$\mathbf{W}^{\mathrm{H}}\mathbf{X} = \mathbf{S} \Rightarrow \mathbf{W}^{\mathrm{H}} = \mathbf{S}\mathbf{X}^{\dagger} = \mathbf{S}\mathbf{X}^{\mathrm{H}}(\mathbf{X}\mathbf{X}^{\mathrm{H}})^{-1}$$

Further, we have that

$$\mathbf{A} = (\mathbf{W}^{\mathrm{H}})^{\dagger}$$

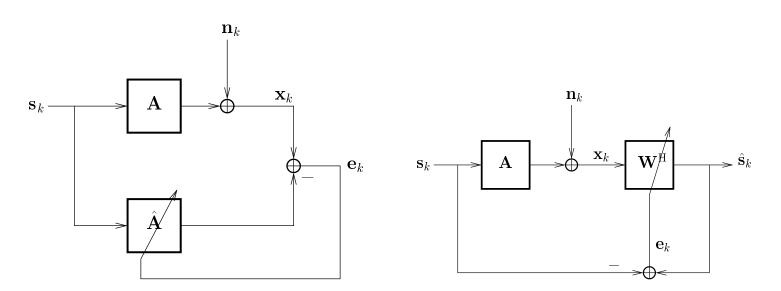
In both cases: $\mathbf{W}^{H}\mathbf{A} = \mathbf{I}$: all interference is cancelled.

Noisy case: X = AS + N

Model matching: minimize residual

$$\min_{\mathbf{S}} \|\mathbf{X} - \mathbf{AS}\|_{\mathrm{F}}^2, \quad \text{or} \quad \min_{\mathbf{A}} \|\mathbf{X} - \mathbf{AS}\|_{\mathrm{F}}^2$$

• Output error minimization:



$$\min_{\mathbf{W}} \| \mathbf{W}^{\scriptscriptstyle \mathrm{H}} \mathbf{X} - \mathbf{S} \|_{\mathrm{F}}^2,$$

Model matching

With **A** known:

$$\hat{\mathbf{S}} = \arg\min_{\mathbf{S}} \|\mathbf{X} - \mathbf{AS}\|_{\mathrm{F}}^2 \quad \Rightarrow \quad \hat{\mathbf{S}} = \mathbf{A}^{\dagger}\mathbf{X} \quad \Rightarrow \quad \mathbf{W}^{\mathrm{H}} = \mathbf{A}^{\dagger}$$

This is the Zero-Forcing (ZF) receiver.

- It maximizes the output Signal-to-Interference Ratio (SIR).
- It might boost the noise:

Since $\hat{\mathbf{S}} = \mathbf{W}^{H}\mathbf{X} = \mathbf{S} + \mathbf{A}^{\dagger}\mathbf{N}$, the output noise depends on \mathbf{A}^{\dagger}

$$\mathbf{A} = \mathbf{U}_A \mathbf{\Sigma}_A \mathbf{V}_A^{\mathrm{H}} \qquad \rightarrow \qquad \mathbf{A}^{\dagger} = \mathbf{V}_A \mathbf{\Sigma}_A^{-1} \mathbf{U}_A^{\mathrm{H}},$$

If Σ_A^{-1} is large (i.e., **A** is ill conditioned), the output noise is large.

With **S** known:

$$\hat{\mathbf{A}} = \arg\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{AS}\|_{\mathrm{F}}^{2} \qquad \Rightarrow \qquad \hat{\mathbf{A}} = \mathbf{XS}^{\dagger} = \mathbf{XS}^{\mathrm{H}} (\mathbf{SS}^{\mathrm{H}})^{-1}$$

This does not specify the beamformer, but it is natural to set $\mathbf{W}^{\mathrm{H}} = \hat{\mathbf{A}}^{\dagger}$.

Output error minimization

With **S** known:

$$\begin{split} \mathbf{W}^{\mathrm{H}} &= \arg\min_{\mathbf{W}} \| \mathbf{W}^{\mathrm{H}} \mathbf{X} - \mathbf{S} \|_{\mathrm{F}}^{2} = \mathbf{S} \mathbf{X}^{\dagger} = \mathbf{S} \mathbf{X}^{\mathrm{H}} (\mathbf{X} \mathbf{X}^{\mathrm{H}})^{-1} = \mathbf{\hat{R}}_{xs}^{\mathrm{H}} \mathbf{\hat{R}}_{x}^{-1}, \quad \mathbf{W} = \mathbf{\hat{R}}_{x}^{-1} \mathbf{\hat{R}}_{xs} \\ \mathbf{\hat{R}}_{x} &= \frac{1}{N} (\mathbf{X} \mathbf{S}^{\mathrm{H}}) \text{: sample data covariance matrix} \\ \mathbf{\hat{R}}_{xs} &= \frac{1}{N} (\mathbf{X} \mathbf{S}^{\mathrm{H}}) \text{: sample correlation between the sources and the received data} \\ With \mathbf{A} \text{ known, and assuming } \frac{1}{N} \mathbf{S} \mathbf{S}^{\mathrm{H}} \rightarrow \mathbf{I}, \ \frac{1}{N} \mathbf{N} \mathbf{N}^{\mathrm{H}} \rightarrow \sigma^{2} \mathbf{I}, \ \text{and } \frac{1}{N} \mathbf{S} \mathbf{N}^{\mathrm{H}} \rightarrow \mathbf{0} \text{:} \\ \mathbf{\hat{R}}_{x} &= \frac{1}{N} \mathbf{X} \mathbf{X}^{\mathrm{H}} = \frac{1}{N} \mathbf{A} \mathbf{S} \mathbf{S}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} + \frac{1}{N} \mathbf{N} \mathbf{N}^{\mathrm{H}} + \frac{1}{N} \mathbf{N} \mathbf{S}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \rightarrow \mathbf{A} \mathbf{A}^{\mathrm{H}} + \sigma^{2} \mathbf{I} \\ \mathbf{\hat{R}}_{xs} &= \frac{1}{N} \mathbf{X} \mathbf{S}^{\mathrm{H}} = \frac{1}{N} \mathbf{A} \mathbf{S} \mathbf{S}^{\mathrm{H}} + \frac{1}{N} \mathbf{N} \mathbf{S}^{\mathrm{H}} \rightarrow \mathbf{A} \\ \mathbf{W} &= (\mathbf{A} \mathbf{A}^{\mathrm{H}} + \sigma^{2} \mathbf{I})^{-1} \mathbf{A} \end{split}$$

This is the Linear Minimum Mean Square Error (LMMSE) or Wiener receiver.

- It makes a compromise between interference and noise cancellation.
- It maximizes the output Signal-to-Interference-plus-Noise Ratio (SINR).

Stochastic model matching

$$\mathbf{x}_k = \mathbf{A}\mathbf{s}_k + \mathbf{n}_k \qquad \Leftrightarrow \qquad \mathbf{X} = \mathbf{A}\mathbf{S} + \mathbf{N}$$

■ A and S assumed to be deterministic (known or unknown).

Noise spatially white and jointly complex Gaussian distributed:

$$\mathbf{n}_k \sim \mathcal{CN}(0, \sigma^2 \mathbf{I}) \qquad \Leftrightarrow \qquad p(\mathbf{n}_k) = \frac{1}{\sqrt{\pi\sigma}} e^{-\frac{\|\mathbf{n}_k\|^2}{\sigma^2}}$$

n_k = $\mathbf{x}_k - \mathbf{As}_k$, so the probability to receive a certain vector \mathbf{x}_k given **A** and \mathbf{s}_k is

$$p(\mathbf{x}_k | \mathbf{A}, \mathbf{S}_k) = \frac{1}{\sqrt{\pi\sigma}} e^{-\frac{\|\mathbf{x}_k - \mathbf{A}\mathbf{S}_k\|^2}{\sigma^2}}$$

If noise is temporally white, we obtain

$$p(\mathbf{X}|\mathbf{A},\mathbf{S}) = \prod_{k=1}^{N} \frac{1}{\sqrt{\pi}\sigma} e^{-\frac{\|\mathbf{x}_k - \mathbf{A}\mathbf{s}_k\|^2}{\sigma^2}} = \left(\frac{1}{\sqrt{\pi}\sigma}\right)^N e^{-\frac{\|\mathbf{X} - \mathbf{A}\mathbf{S}\|_F^2}{\sigma^2}}$$

Making abstraction of the constant term, we obtain

$$p(\mathbf{X}|\mathbf{A},\mathbf{S}) = \operatorname{const} \cdot e^{-\frac{\|\mathbf{X}-\mathbf{AS}\|_{F}^{2}}{\sigma^{2}}}$$

 \square p(X|A,S) is the *likelihood* of receiving a data matrix X, for a given A and S.

Deterministic Maximum Likelihood (DML):

Estimate A and/or S as maximizing the likelihood of the actual received X

$$\begin{aligned} (\hat{\mathbf{A}}, \hat{\mathbf{S}}) &= \arg \max_{\mathbf{A}, \mathbf{S}} e^{-\frac{\|\mathbf{X} - \mathbf{AS}\|_{F}^{2}}{\sigma^{2}}} \\ &= \arg \min_{\mathbf{A}, \mathbf{S}} \|\mathbf{X} - \mathbf{AS}\|_{F}^{2} \end{aligned}$$

For white Gaussian noise, DML is equivalent to deterministic model matching

Stochastic approach

Stochastic output error minimization

Minimize the Linear Minimum Mean Square Error cost:

$$\min_{\mathbf{w}_i} J(\mathbf{w}_i) = \min_{\mathbf{w}_i} E[|\mathbf{w}_i^{\mathrm{H}} \mathbf{x}_k - s_{i,k}|^2].$$

The solution for W is then obtained by stacking the solutions for \mathbf{w}_i

It can be worked out as follows:

$$J(\mathbf{w}_{i}) = \mathbf{E} \left[|\mathbf{w}_{i}^{\mathrm{H}} \mathbf{x}_{k} - s_{i,k}|^{2} \right]$$

$$= \mathbf{w}_{i}^{\mathrm{H}} \mathbf{E} [\mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{H}}] \mathbf{w}_{i} - \mathbf{w}_{i}^{\mathrm{H}} \mathbf{E} [\mathbf{x}_{k} \bar{s}_{i,k}] - \mathbf{E} [s_{i,k} \mathbf{x}_{k}^{\mathrm{H}}] \mathbf{w} + \mathbf{E} [|s_{i,k}|^{2}]$$

$$= \mathbf{w}_{i}^{\mathrm{H}} \mathbf{R}_{x} \mathbf{w}_{i} - \mathbf{w}_{i}^{\mathrm{H}} \mathbf{r}_{xs,i} - \mathbf{r}_{xs,i}^{\mathrm{H}} \mathbf{w}_{i} + 1$$

Note that $\mathbf{r}_{xs,i} = \mathrm{E}[\mathbf{x}_k \bar{s}_{i,k}]$ is the *i*-th column of $\mathbf{R}_{xs} = \mathrm{E}[\mathbf{x}_k \mathbf{s}^{\mathrm{H}}]$.

Stochastic approach

$$J(\mathbf{w}_i) = \mathbf{w}_i^{\mathrm{H}} \mathbf{R}_x \mathbf{w}_i - \mathbf{w}_i^{\mathrm{H}} \mathbf{r}_{xs,i} - \mathbf{r}_{xs,i}^{\mathrm{H}} \mathbf{w}_i + r_{s,i}$$

Differentiate with respect to \mathbf{w}_i :

Let $\mathbf{w}_i = \mathbf{u} + j\mathbf{v}$ with \mathbf{u} and \mathbf{v} real-valued, then the gradient is *defined* as

$$\nabla_{\mathbf{w}_i} J = \frac{1}{2} (\nabla_{\mathbf{u}} J - j \nabla_{\mathbf{v}} J), \quad \nabla_{\bar{\mathbf{w}}_i} J = \frac{1}{2} (\nabla_{\mathbf{u}} J + j \nabla_{\mathbf{v}} J) \quad \text{with} \quad \nabla_{\mathbf{x} \in \mathbb{R}^N} J = \begin{bmatrix} \frac{\partial}{\partial x_1} J \\ \vdots \\ \frac{\partial}{\partial x_M} J \end{bmatrix},$$
 with properties

$$\nabla_{\bar{\mathbf{w}}_{i}} \mathbf{w}_{i}^{\mathrm{H}} \mathbf{r}_{xs,i} = \mathbf{r}_{xs,i}, \quad \nabla_{\bar{\mathbf{w}}_{i}} \mathbf{r}_{xs,i}^{\mathrm{H}} \mathbf{w}_{i} = \mathbf{0}, \quad \nabla_{\bar{\mathbf{w}}_{i}} \mathbf{w}_{i}^{\mathrm{H}} \mathbf{R}_{x} \mathbf{w}_{i} = \mathbf{R}_{x} \mathbf{w}_{i}$$

The minimum of $J(\mathbf{w}_i)$ is attained for

$$\nabla_{\bar{\mathbf{w}}_i} J = \mathbf{R}_x \mathbf{w}_i - \mathbf{r}_{xs,i} = 0 \qquad \Rightarrow \qquad \mathbf{w}_i = \mathbf{R}_x^{-1} \mathbf{r}_{xs,i}$$

For the total beamforming matrix **W**, we get

$$\mathbf{W} = [\mathbf{w}_1 \cdots \mathbf{w}_d] = \mathbf{R}_x^{-1} [\mathbf{r}_{xs,1} \cdots \mathbf{r}_{xs,d}] = \mathbf{R}_x^{-1} \mathbf{R}_{xs}$$

We thus obtain the Wiener receiver.

Stochastic approach

Colored noise

Assume noise has a *known* variance $E[\mathbf{n}_k \mathbf{n}_k^{H}] = \mathbf{R}_n$.

Prewhiten the data with a square-root factor $\mathbf{R}_n^{-1/2}$:

$$\mathbf{x}_{k} = \mathbf{A}\mathbf{s}_{k} + \mathbf{n}_{k} \qquad \Rightarrow \qquad \underbrace{\mathbf{R}_{n}^{-1/2}\mathbf{x}_{k}}_{\mathbf{X}_{k}} = \underbrace{\mathbf{R}_{n}^{-1/2}\mathbf{A}}_{\mathbf{A}}\mathbf{s}_{k} + \underbrace{\mathbf{R}_{n}^{-1/2}\mathbf{n}_{k}}_{\mathbf{N}_{k}}$$

 $\underline{\mathbf{R}}_n = \mathrm{E}[\underline{\mathbf{n}}_k \underline{\mathbf{n}}_k^{\mathrm{H}}] = \mathbf{R}_n^{-1/2} \mathbf{R}_n \mathbf{R}_n^{-1/2} = \mathbf{I} \quad \Rightarrow \quad \underline{\mathbf{n}}_k \text{ is white}$

The ZF receiver becomes

$$\mathbf{s}_{k} = \underline{\mathbf{A}}^{\dagger} \underline{\mathbf{x}}_{k} = (\underline{\mathbf{A}}^{\mathrm{H}} \underline{\mathbf{A}})^{-1} \underline{\mathbf{A}}^{\mathrm{H}} \underline{\mathbf{x}}_{k} = (\mathbf{A}^{\mathrm{H}} \mathbf{R}_{n}^{-1} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{R}_{n}^{-1} \mathbf{x}_{k}$$
$$\Rightarrow \quad \mathbf{W} = \mathbf{R}_{n}^{-1} \mathbf{A} (\mathbf{A}^{\mathrm{H}} \mathbf{R}_{n}^{-1} \mathbf{A})^{-1}$$

The Wiener receiver will be the same, since \mathbf{R}_n is not used in the derivation:

$$\underline{\mathbf{W}} = \underline{\mathbf{R}}_{x}^{-1} \underline{\mathbf{R}}_{xs} = (\mathbf{R}_{n}^{-1/2} \mathbf{R}_{x} \mathbf{R}_{n}^{-1/2})^{-1} \mathbf{R}_{n}^{-1/2} \mathbf{R}_{xs} = \mathbf{R}_{n}^{1/2} \mathbf{R}_{x}^{-1} \mathbf{R}_{xs}$$
$$\Rightarrow \quad \mathbf{W} = \mathbf{R}_{n}^{-1/2} \underline{\mathbf{W}} = \mathbf{R}_{x}^{-1} \mathbf{R}_{xs}$$

Maximum Ratio Combining

Single signal in white noise: $\mathbf{x}_k = \mathbf{a}s_k + \mathbf{n}_k$, $\mathrm{E}[\mathbf{n}_k \mathbf{n}_k^{\mathrm{H}}] = \sigma^2 \mathbf{I}$

The ZF beamformer is given by

$$\mathbf{w} = \mathbf{a}(\mathbf{a}^{\scriptscriptstyle \mathrm{H}}\mathbf{a})^{-1} = \gamma_1 \mathbf{a}$$

Single signal in colored noise: $\mathbf{x}_k = \mathbf{a}s_k + \mathbf{n}_k$, $\mathrm{E}[\mathbf{n}_k \mathbf{n}_k^{\mathrm{H}}] = \mathbf{R}_n$

The ZF beamformer is given by

$$\mathbf{w} \,=\, \mathbf{R}_n^{-1} \mathbf{a} (\mathbf{a}^{\scriptscriptstyle \mathrm{H}} \mathbf{R}_n^{-1} \mathbf{a})^{-1} \,=\, \gamma_2 \mathbf{R}_n^{-1} \mathbf{a}$$

Note: a scalar multiplication does not change the output SNR.

• $\mathbf{w} = \mathbf{a}$ (white noise) and $\mathbf{w} = \mathbf{R}_n^{-1}\mathbf{a}$ (non-white noise) are known as: matched filter, classical beamformer, or Maximum Ratio Combining (MRC)

Maximum Ratio Combining

- Also the Wiener filter will lead to MRC
 - Wiener receiver in white noise

$$\mathbf{w} = \mathbf{R}_x^{-1} \mathbf{r}_{xs} = (\mathbf{a} \mathbf{a}^{H} + \sigma^2 \mathbf{I})^{-1} \mathbf{a} = \mathbf{a} (\mathbf{a}^{H} \mathbf{a} + \sigma^2)^{-1} \sim \mathbf{a}$$

• Wiener receiver in colored noise

$$\mathbf{w} = \mathbf{R}_x^{-1}\mathbf{r}_{xs} = (\mathbf{a}\mathbf{a}^{H} + \mathbf{R}_n)^{-1}\mathbf{a} = \mathbf{R}_n^{-1}\mathbf{a}(\mathbf{a}^{H}\mathbf{R}_n^{-1}\mathbf{a} + 1)^{-1} \sim \mathbf{R}_n^{-1}\mathbf{a}$$

The colored noise case is relevant also for the following reason: with more than one signal, we can write the model as

$$\mathbf{x}_k = \mathbf{A}\mathbf{s}_k + \mathbf{n}_k = \mathbf{a}_1 s_{1,k} + (\mathbf{A}'\mathbf{s}'_k + \mathbf{n}_k)$$

This is of the form

$$\mathbf{x}_k = \mathbf{a}s_k + \mathbf{n}_k, \qquad \mathbf{R}_n = \mathbf{A}'\mathbf{A}'^H + \sigma^2 \mathbf{I}$$

where the "noise" is colored due to the contribution of the interfering sources.

Matched filtering

Maximizing the output SNR

The matched filter $\mathbf{w} = \mathbf{R}_n^{-1} \mathbf{a}$ maximizes the output SNR.

Proof:

We can write $\mathbf{R}_x = \mathbf{R}_a + \mathbf{R}_n$, with $\mathbf{R}_a = \mathbf{a}\mathbf{a}^{\mathrm{H}}$ and $\mathbf{R}_n = \mathrm{E}[\mathbf{n}\mathbf{n}^{\mathrm{H}}]$.

$$SNR_{out}(\mathbf{w}) = \frac{\mathbf{w}^{\mathrm{H}} \mathbf{R}_{a} \mathbf{w}}{\mathbf{w}^{\mathrm{H}} \mathbf{R}_{n} \mathbf{w}}$$
$$\mathbf{w} = \arg \max_{\mathbf{w}} \frac{\mathbf{w}^{\mathrm{H}} \mathbf{R}_{a} \mathbf{w}}{\mathbf{w}^{\mathrm{H}} \mathbf{R}_{n} \mathbf{w}}$$

This is a *Rayleigh quotient*.

The solution is known to follow from the eigenvalue equation

$$\mathbf{R}_n^{-1}\mathbf{R}_a\mathbf{w} = \lambda_{\max}\mathbf{w}$$

Easy to see if $\mathbf{R}_n = \mathbf{I}$, otherwise prewhiten.

Maximizing the output SNR

$$\mathbf{R}_n^{-1}\mathbf{R}_a\mathbf{w} = \lambda_{\max}\mathbf{w}$$

Closed form solution: insert $\mathbf{R}_a = \mathbf{a}\mathbf{a}^{\mathrm{H}}$:

$$\Rightarrow \qquad \mathbf{R}_{n}^{-1}\mathbf{a}\mathbf{a}^{\mathsf{H}}\mathbf{W} = \lambda_{\max}\mathbf{W}$$

$$\Rightarrow \qquad (\mathbf{R}_{n}^{-1/2}\mathbf{a})(\mathbf{a}^{\mathsf{H}}\mathbf{R}_{n}^{-1/2})(\mathbf{R}_{n}^{1/2}\mathbf{w}) = \lambda_{\max}(\mathbf{R}_{n}^{1/2}\mathbf{w})$$

$$\Rightarrow \qquad \underline{\mathbf{a}}\mathbf{a}^{\mathsf{H}}\underline{\mathbf{w}} = \lambda_{\max}\underline{\mathbf{w}}$$

$$\Rightarrow \qquad \underline{\mathbf{w}} = \underline{\mathbf{a}}, \quad \lambda_{\max} = \underline{\mathbf{a}}^{\mathsf{H}}\underline{\mathbf{a}}$$

$$\Rightarrow \qquad \mathbf{w} = \mathbf{R}_{n}^{-1}\mathbf{a}$$

Linearly constrained Minimum Variance (LCMV) (MVDR)

Linearly constrained Minimum Variance / Minimum Variance Distortionless Response

If **a** is known, then we can constrain the beamformer **w** to

$$\mathbf{w}^{\mathrm{H}}\mathbf{a} = 1$$

in order to have a fixed response towards the source.

The remaining freedom is used to minimize the total output power ("response" or "variance") after beamforming:

$$\min_{\mathbf{w}} \mathbf{w}^{\mathrm{H}} \mathbf{R}_{x} \mathbf{w} \qquad \text{such that} \quad \mathbf{w}^{\mathrm{H}} \mathbf{a} = 1$$

■ Via Lagrange multipliers:

$$\mathbf{w} = \mathbf{R}_x^{-1} \mathbf{a} (\mathbf{a}^{\mathrm{H}} \mathbf{R}_x^{-1} \mathbf{a})^{-1}$$

Thus, **w** is a scalar multiple of the Wiener receiver.

Linearly constrained Minimum Variance (LCMV) (MVDR)

Generalization

- Introduce a constraint matrix \mathbf{C} : $M \times L$ (M > L) and an L-dimensional vector \mathbf{f}
- The general LCMV or MVDR problem can then be written as

 $\min_{\mathbf{w}} \mathbf{w}^{\mathrm{H}} \mathbf{R}_{x} \mathbf{w} \qquad \text{such that} \quad \mathbf{C}^{\mathrm{H}} \mathbf{w} = \mathbf{f}$

Solution:

$$\mathbf{w} = \mathbf{R}_x^{-1} \mathbf{C} (\mathbf{C}^{\mathrm{H}} \mathbf{R}_x^{-1} \mathbf{C})^{-1} \mathbf{f}$$

Generalized Sidelobe Canceler

Decompose

 $\mathbf{w} = \mathbf{w}_0 - \mathbf{v},$ with $\mathbf{w}_0 \in \operatorname{ran}(\mathbf{C}) \perp \mathbf{v} \in \ker(\mathbf{C}^{\mathrm{H}})$

Since $\mathbf{C}^{\mathrm{H}}\mathbf{v} = \mathbf{0}$, we obtain

$$\mathbf{C}^{\mathrm{H}}\mathbf{w} = \mathbf{f} \qquad \Rightarrow \qquad \mathbf{C}^{\mathrm{H}}\mathbf{w}_{0} = \mathbf{f} \qquad \Rightarrow \qquad \mathbf{w}_{0} = \mathbf{C}(\mathbf{C}^{\mathrm{H}}\mathbf{C})^{-1}\mathbf{f}$$

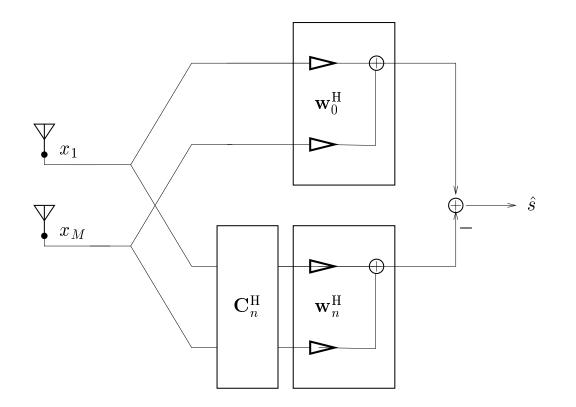
Let \mathbf{C}_n be a basis for ker(\mathbf{C}^{H}), then $\mathbf{v} = \mathbf{C}_n \mathbf{w}_n$ for some \mathbf{w}_n

$$\min_{\mathbf{w}} \mathbf{w}^{\mathrm{H}} \mathbf{R}_{x} \mathbf{w} \quad \text{such that} \quad \mathbf{C}^{\mathrm{H}} \mathbf{w} = \mathbf{f}$$
$$\Rightarrow \quad \min_{\mathbf{w}_{n}} \left[\mathbf{w}_{0} - \mathbf{C}_{n} \mathbf{w}_{n} \right]^{\mathrm{H}} \mathbf{R}_{x} \left[\mathbf{w}_{0} - \mathbf{C}_{n} \mathbf{w}_{n} \right].$$

The solution is

$$\mathbf{w}_n = (\mathbf{C}_n^{\scriptscriptstyle \mathrm{H}} \mathbf{R}_x \mathbf{C}_n)^{-1} \mathbf{C}_n^{\scriptscriptstyle \mathrm{H}} \mathbf{R}_x \mathbf{w}_0.$$

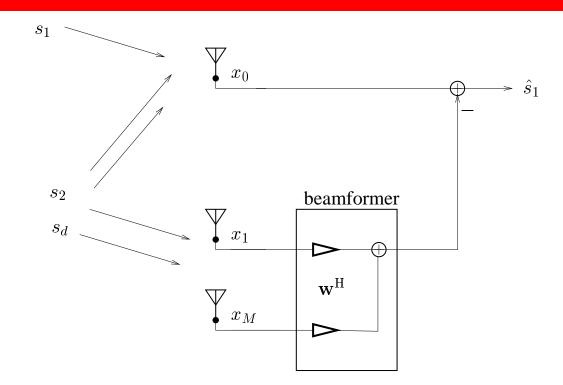
Generalized Sidelobe Canceler



Advantages of this scheme:

- The constraint is always satisfied;
- The size of \mathbf{w}_n is smaller than the size of \mathbf{w} ;
- It is easy to make \mathbf{w}_n adaptive.

Reference channels – Multiple sidelobe canceler



- Interference is first estimated from the reference antenna array.
- It is then subtracted from the primary antenna x_0 .

$$\min_{\mathbf{w}} \mathbf{E} \| x_0 - \mathbf{w}^{\mathsf{H}} \mathbf{x} \|^2 \qquad \Rightarrow \qquad \mathbf{w} = \mathbf{R}_x^{-1} \mathbf{r}, \qquad \mathbf{R}_x := \mathbf{E} [\mathbf{x} \mathbf{x}^{\mathsf{H}}] \quad \mathbf{r} := \mathbf{E} [\mathbf{x} \bar{x}_0]$$

This is a special case of LCMV or MVDR.

Direction estimation

Model: $\mathbf{x}_k = \mathbf{a}(\theta_0)s_k + \mathbf{n}_k$

Objective: estimate θ_0 : *direction finding*

The classical beamformer

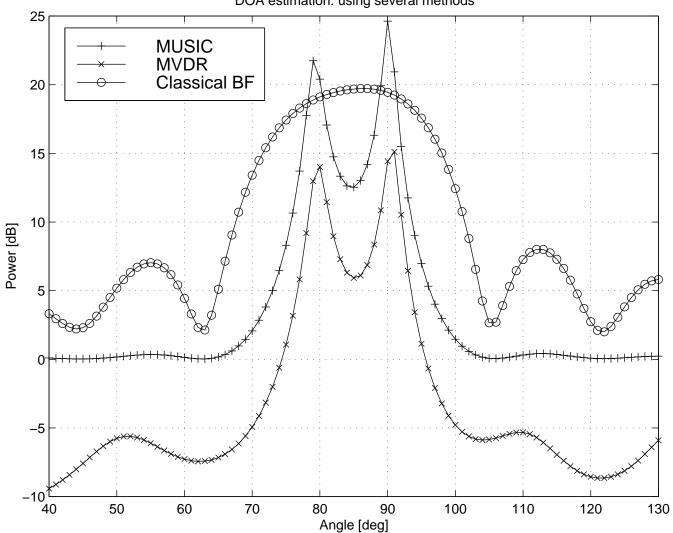
- The classical beamformer (Bartlett beamformer) is $\mathbf{w} = \mathbf{a}(\theta)$.
- This corresponds to the matched filter assuming spatially white noise.
- Find $\mathbf{w} = \mathbf{a}(\theta)$ that maximizes the output power

$$\hat{\theta}_0 = \max_{\theta} \frac{\mathbf{a}(\theta)^{\mathrm{H}} \mathbf{R}_x \mathbf{a}(\theta)}{\mathbf{a}(\theta)^{\mathrm{H}} \mathbf{a}(\theta)}.$$

- For finite data, replace \mathbf{R}_x by the sample covariance matrix $\mathbf{\hat{R}}_x$.
- With known colored noise, replace denominator by $\mathbf{a}(\theta)^{\mathrm{H}}\mathbf{R}_{n}\mathbf{a}(\theta)$.
- For multiple signals, choose the *d* largest local maxima.

Interference and thus noise color generally not known \Rightarrow biased estimates

Direction estimation



DOA estimation: using several methods

MVDR

In MVDR we try to minimize the output power, while constraining the power towards the direction θ :

$$\hat{\theta}_0 = \max_{\theta} \{ \min_{\mathbf{w}} \mathbf{w}^{\mathrm{H}} \hat{\mathbf{R}}_x \mathbf{w} \quad \text{subject to} \quad \mathbf{w}^{\mathrm{H}} \mathbf{a}(\theta) = 1 \}.$$

This yields

$$\mathbf{w} = \frac{\hat{\mathbf{R}}_x^{-1} \mathbf{a}(\theta)}{\mathbf{a}(\theta)^{\mathrm{H}} \hat{\mathbf{R}}_x^{-1} \mathbf{a}(\theta)}$$
$$\hat{\theta}_0 = \max_{\theta} \frac{1}{\mathbf{a}(\theta)^{\mathrm{H}} \hat{\mathbf{R}}_x^{-1} \mathbf{a}(\theta)}$$

• For multiple signals, choose again the d largest local maxima.

Direction estimation

MUSIC (Multiple SIgnal Classification) algorithm

Eigenvalue-based technique (assume d < M):

$$\mathbf{R}_{x} = \mathbf{A}\mathbf{R}_{s}\mathbf{A}^{\mathrm{H}} + \sigma^{2}\mathbf{I}_{M} = \mathbf{U}_{s}(\mathbf{\Lambda}_{s} + \sigma^{2}\mathbf{I}_{d})\mathbf{U}_{s}^{\mathrm{H}} + \mathbf{U}_{n}(\sigma^{2}\mathbf{I}_{M-d})\mathbf{U}_{n}^{\mathrm{H}}$$

 $\operatorname{span}(\mathbf{U}_s) = \operatorname{span}(\mathbf{A}), \qquad \mathbf{U}_n^{\mathrm{H}} \mathbf{A} = 0, \qquad \text{where } \mathbf{A} = [\mathbf{a}(\theta_1), \cdots, \mathbf{a}(\theta_d)].$

• Choose $[\theta_1, \dots, \theta_d]$ to make **A** fit span(**U**_s):

$$\mathbf{U}_n^{\mathrm{H}} \mathbf{a}(\theta_i) = 0, \qquad (1 \le i \le d)$$

Choose the *d* lowest local minima of the cost function

$$J_{MUSIC}(\theta) = \frac{\|\mathbf{\hat{U}}_{n}^{\mathrm{H}}\mathbf{a}(\theta)\|^{2}}{\|\mathbf{a}(\theta)\|^{2}} = \frac{\mathbf{a}(\theta)^{\mathrm{H}}\mathbf{\hat{U}}_{n}\mathbf{\hat{U}}_{n}^{\mathrm{H}}\mathbf{a}(\theta)}{\mathbf{a}(\theta)^{\mathrm{H}}\mathbf{a}(\theta)}$$

- In a graph, we plot the inverse of $J_{MUSIC}(\theta)$.
- If number of sources smaller than number of sensors (d < M), we get the *exact* DOAs for $N \rightarrow \infty$ or SNR $\rightarrow \infty \Rightarrow$ *statistically consistent* estimates.

Let us consider the general single-user model (see introduction)

$$\mathcal{X} = \begin{bmatrix} \mathbf{x}_{0} & \mathbf{x}_{1} & \dots & \mathbf{x}_{N-1} \\ \mathbf{x}_{-1} & \mathbf{x}_{0} & \dots & \mathbf{x}_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{-m+1} & \mathbf{x}_{-m+2} & \dots & \mathbf{x}_{N-m} \end{bmatrix}$$
$$:= \begin{bmatrix} \mathbf{H} & \mathbf{0} \\ \mathbf{H} \\ \vdots \\ \mathbf{0} & \mathbf{H} \end{bmatrix} \begin{bmatrix} s_{0} & s_{1} & \dots & s_{N-1} \\ s_{-1} & s_{0} & \dots & s_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ s_{-L-m+2} & s_{-L-m+3} & \dots & s_{N-L-m+1} \end{bmatrix} = \mathcal{HS}$$

Adding also a white noise matrix \mathcal{N} , we get $\mathcal{X} = \mathcal{HS} + \mathcal{N}$.

We can also view the ISI as noise

$$\mathcal{X} = \mathbf{hs} + \mathcal{H}'\mathcal{S}' + \mathcal{N} = \mathbf{hs} + \mathcal{N}', \qquad \mathbf{h} = \mathcal{H}\mathbf{e}, \quad \mathcal{H}' = \mathcal{H}\mathbf{e}'$$

h is a specific column of \mathcal{H} (**s** is the corresponding row of \mathcal{S})

 \mathcal{H}' contains all other columns of \mathcal{H} (\mathcal{S}' constains the corresponding rows of \mathcal{S})

Receivers

- Matched filter:
 - ISI viewed as noise: $\mathbf{w} = \mathbf{R}_{N'}^{-1}\mathbf{h} = (\mathcal{H}'\mathcal{H}'^{H} + \sigma^{2}\mathbf{I})^{-1}\mathbf{h}$
 - ISI not viewed as noise: $\mathbf{w} = \mathcal{H}\mathbf{e} = \mathbf{h}$
 - These two matched filters are NOT THE SAME
- ZF receiver:
 - ISI viewed as noise: $\mathbf{w} = \mathbf{R}_{N'}^{-1}\mathbf{h}(\mathbf{h}^{H}\mathbf{R}_{N'}^{-1}\mathbf{h})^{-1} \sim \mathbf{R}_{N'}^{-1}\mathbf{h}$ (same as MF)
 - ISI not viewed as noise: $\mathbf{w} = \mathcal{H}(\mathcal{H}^{H}\mathcal{H})^{-1}\mathbf{e} = (\mathcal{H}\mathcal{H}^{H})^{\dagger}\mathcal{H}\mathbf{e} = (\mathcal{H}\mathcal{H}^{H})^{\dagger}\mathbf{h}$
 - These two ZF receivers are NOT THE SAME
- Wiener filter:
 - ISI viewed as noise: $\mathbf{w} = \mathbf{R}_{\mathcal{X}}^{-1}\mathbf{r}_{\mathcal{X}s} = (\mathbf{h}\mathbf{h}^{\mathrm{H}} + \mathbf{R}_{\mathcal{N}'})^{-1}\mathbf{h} \sim \mathbf{R}_{\mathcal{N}'}^{-1}\mathbf{h}$ (same as MF)
 - ISI not viewed as noise: $\mathbf{w} = \mathbf{R}_{\mathcal{X}}^{-1}\mathbf{R}_{\mathcal{XS}}\mathbf{e} = (\mathcal{H}\mathcal{H}^{\mathrm{H}} + \sigma^{2}\mathbf{I})^{-1}\mathcal{H}\mathbf{e} = (\mathcal{H}\mathcal{H}^{\mathrm{H}} + \sigma^{2}\mathbf{I})^{-1}\mathbf{h}$
 - These two Wiener receivers are THE SAME

Joint Angle-Delay estimation

Suppose only a single ray is present: $\mathbf{h}(t) = \mathbf{a}(\theta) \beta g(t - \tau)$.

This means that \mathcal{H} and **h** depend on θ and τ .

Conventional: scan the output of $\mathbf{w} = \mathbf{h}(\theta, \tau)$ and maximize the power

MUSIC algorithm:

 $\mathbf{R}_{\mathcal{X}} = \mathbf{U}_{s} \mathbf{\Lambda}_{s} \mathbf{U}_{s}^{\mathrm{H}} \qquad \text{span} \{\mathbf{U}_{s}\} = \text{span} \{\mathcal{H}(\theta, \tau)\}$

 $\mathbf{h}(\theta, \tau)$ is in the span of \mathbf{U}_s , therefore,

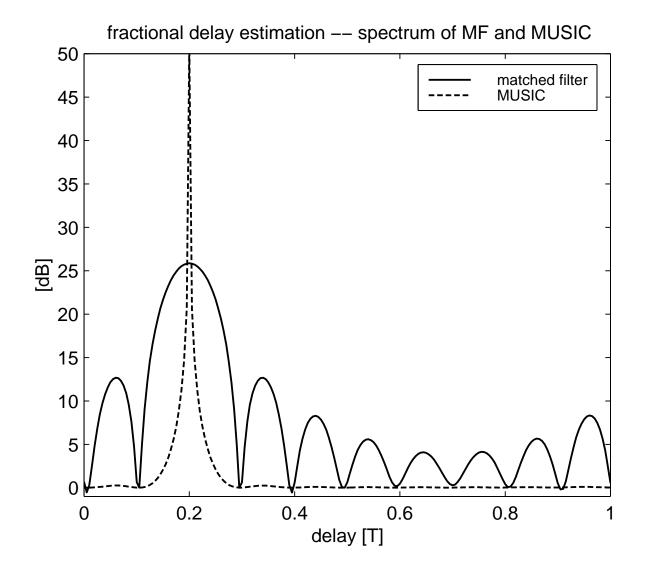
$$\mathbf{h}(\theta,\tau) \perp \mathbf{U}_n \equiv (\mathbf{U}_s)^{\perp}$$

Thus, the MUSIC cost

$$J_{MUSIC}(\theta,\tau) = \frac{\mathbf{h}(\theta,\tau)^{\mathrm{H}} \mathbf{\hat{U}}_{n} \mathbf{\hat{U}}_{n}^{\mathrm{H}} \mathbf{h}(\theta,\tau)}{\mathbf{h}(\theta,\tau)^{\mathrm{H}} \mathbf{h}(\theta,\tau)}$$

will be exactly zero when θ and τ match the true values.

Delay estimation



Channel estimation

We slightly change our single-user data model to

$$\begin{bmatrix} \mathbf{x}_{N-1} \\ \vdots \\ \mathbf{x}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_0 & \cdots & \mathbf{h}_{L-1} & \mathbf{0} \\ & \ddots & & \ddots \\ \mathbf{0} & \mathbf{h}_0 & \cdots & \mathbf{h}_{L-1} \end{bmatrix} \begin{bmatrix} s_{N-1} \\ \vdots \\ s_{-L+1} \end{bmatrix}$$

Using the commutativity of the convolution, this can be rewritten as

$$\begin{bmatrix} \mathbf{x}_{N-1} \\ \vdots \\ \mathbf{x}_0 \end{bmatrix} = \begin{bmatrix} s_{N-1}\mathbf{I} & \cdots & s_{N-L}\mathbf{I} \\ \vdots & & \vdots \\ s_0\mathbf{I} & \cdots & s_{-L+1}\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{h}_0 \\ \vdots \\ \mathbf{h}_{L-1} \end{bmatrix} \quad \Leftrightarrow \quad \mathbf{x} = (\mathbf{S} \otimes \mathbf{I})\mathbf{h}$$

where

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{N-1} \\ \vdots \\ \mathbf{x}_0 \end{bmatrix} \quad \mathbf{S} = \begin{bmatrix} s_{N-1} & \cdots & s_{N-L} \\ \vdots & & \vdots \\ s_0 & \cdots & s_{-L+1} \end{bmatrix} \quad \mathbf{h} = \begin{bmatrix} \mathbf{h}_0 \\ \vdots \\ \mathbf{h}_{L-1} \end{bmatrix}$$

If **S** is known, we can estimate **h** as $\hat{\mathbf{h}} = (\mathbf{S}^{\dagger} \otimes \mathbf{I})\mathbf{x}$

Channel estimation

For multiple users, we obtain

$$\mathbf{x} = (\mathbf{S}^{(1)} \otimes \mathbf{I})\mathbf{h}^{(1)} + \dots + (\mathbf{S}^{(d)} \otimes \mathbf{I})\mathbf{h}^{(d)}$$
(1)
$$= \left(\begin{bmatrix} \mathbf{S}^{(1)} & \dots & \mathbf{S}^{(d)} \end{bmatrix} \otimes \mathbf{I} \right) \begin{bmatrix} \mathbf{h}^{(1)} \\ \vdots \\ \mathbf{h}^{(d)} \end{bmatrix}$$
(2)

So if the pilot symbols from all users, i.e., S⁽¹⁾, ..., S^(d), are known, we can estimate all the channels jointly as

$$\begin{bmatrix} \hat{\mathbf{h}}^{(1)} \\ \vdots \\ \hat{\mathbf{h}}^{(d)} \end{bmatrix} = \left(\begin{bmatrix} \mathbf{S}^{(1)} & \dots & \mathbf{S}^{(d)} \end{bmatrix}^{\dagger} \otimes \mathbf{I} \right) \mathbf{x}$$

