

Clock-Offset and Microphone Gain Mismatch Invariant Beamforming

A Generalised Eigenvalue Decomposition Approach

Sofia-Eirini Kotti , Richard Heusdens and Richard C. Hendriks

Beamforming (narrow band, stationary)

Clock synchronisation

Clock-offset

Clock-skew

Clock synchronisation

Clock skew:

- Not a problem for uniform hardware in general
- Negligible when buffers are read out at regular time instances (no error aggregation)

Clock offset:

 Inherently present due to different onset times of the devices and/or internal sensor delays

We will focus on clock-offset only

Gain mismatch

$$g_1 = g_2 = 1$$

 $g_1 = 1, \ g_2 = 1.5$

Outline

- Signal model
- Generalised eigenvalue decomposition (GEVD)
- GEVD-based optimal beamformers
- Clock-offset and gain invariance
- Experimental results

Received signal: $y_i(\omega) = x_i(\omega) + v_i(\omega)$ Target signal $s(\omega)$ 2 $\begin{pmatrix} x_1(\omega) \\ \vdots \\ x_m(\omega) \end{pmatrix} = \begin{pmatrix} d_1(\omega) \\ \vdots \\ d_m(\omega) \end{pmatrix} s(\omega)$ \mathcal{X} S

Netherlands Defence Academy June 15, 2020

Received signal: $y_i(\omega) = x_i(\omega) + v_i(\omega)$ Target signal $s(\omega)$ 1 Beamformer output: $w^H y = w^H x + w^H v$

We will consider the received signals y, x, v and s as realisations of zero mean, wide-sense stationary processes Y, X, V, and S, respectively. We have

$$Y = X + V.$$

Assuming the noise and target are uncorrelated, the cross-power spectral density (CPSD) matrix of the received process Y is given by

$$R_Y = R_X + R_V,$$

where $R_Y = E(YY^H)$ and R_X and R_V are defined similarly. The operator $E(\cdot)$ denotes the expectation operator

With this we have $R_X = E(XX^H) = E(dSS^Hd^H) = dd^H E|S|^2 = \sigma_S^2 dd^H$ If the noise is spatially uncorrelated $(R_V = \sigma_V^2 I_m)$, we have $R_Y = R_X + R_V = U\Lambda U^{-1} + \sigma_V^2 I_m = U(\Lambda + \sigma_V^2 I_m)U^{-1}$ Eigenvalue decomposition (EVD) of R_X

An estimate of R_X can be obtained by truncating the last m-1 eigenvalues of R_Y . What if $R_V \neq \sigma_V^2 I_m$?

Generalised eigenvalue decomposition

Given the Hermitian matrices $A, B \in \mathbb{C}^{n \times n}$ with $B \succ 0$, there exists a non-singular $U = (u_1, \ldots, u_n), u_i \in \mathbb{C}^n$, such that

$$U^H A U = \operatorname{diag}(a_1, \dots, a_n)$$
 and $U^H B U = \operatorname{diag}(b_1, \dots, b_n).$

Hence, we have $BU = U^{-H} \Lambda_B$ so that

$$AU = U^{-H}\Lambda_A = U^{-H}\Lambda_B\Lambda_B^{-1}\Lambda_A = BU\Lambda$$

That is, $Au_i = \lambda_i Bu_i$ for $i = 1, \ldots, n$ where $\lambda_i = a_i/b_i$.

This decomposition is known as the *generalised eigenvalue decomposition (GEVD)*.

Generalised eigenvalue decomposition

Note that since $B \succ 0$ (B is invertible), we have

$$B^{-1}Au_i = \lambda_i u_i$$

Hence, the generalised eigenvalues and eigenvectors of (A, B) are the (ordinary) eigenvalues and eigenvectors of the matrix $B^{-1}A$.

Application to R_X and R_V , and setting $b_i = 1$ for all i, we have

$$U^H R_X U = \Lambda$$
 and $U^H R_V U = I_M$,

where $\Lambda \succeq 0$. Hence, the pair (Λ, U) are the eigenvalues/vectors of the matrix $R_V^{-1}R_X$.

Generalised eigenvalue decomposition

Again, since $R_Y = R_X + R_V$, we have

$$U^H R_Y U = \Lambda + I_M \quad \Leftrightarrow \quad R_Y = U^{-H} (\Lambda + I_M) U^{-1}$$

Note that the matrix $R_V^{-1}R_X$ is *not* Hermitian, and as such $U^{-1} \neq U^H$.

Similar to what we did before, we can estimate R_X by truncating the last m-1 generalised eigenvalues of R_Y

Consider the mean squared-error (MSE) between the beamformer output and the desired target signal at the reference microphone, which we will assume, without loss of generality, to be microphone 1.

We have

$$E|w^{H}Y - X_{1}|^{2} = E|w^{H}X + w^{H}V - X_{1}|^{2}$$
$$= E|w^{H}X - X_{1}|^{2} + E|w^{H}V|^{2},$$

where we used the property $E(XV^H) = 0$. The term $E|w^H X - X_1|^2$ represents the *signal distortion*, whereas the term $E|w^H V|^2$ represents the *residual noise variance*

We can compromise between signal distortion and noise reduction by defining the constraint optimisation problem

minimise $E|w^H X - X_1|^2$ subject to $E|w^H V|^2 \le c$,

where $0 \le c \le \sigma_{V_1}^2$ and $\sigma_{V_1}^2$ the noise variance at the reference microphone before beamforming.

Express the beamformer weights in terms of the generalised eigenvectors:

$$w = Ua$$
 with $a \in \mathbb{C}^m$.

Let $e_1 = (1, 0, ..., 0)^T \in \mathbb{C}^m$. With this we have $x_1 = e_1^H x$ so that we can express the objective function as

$$E|w^{H}X - X_{1}|^{2} = E|a^{H}U^{H}X - e_{1}^{H}X|^{2}$$
$$= a^{H}\Lambda a + \sigma_{X_{1}}^{2} - 2Re\{a^{H}U^{H}R_{X}e_{1}\},\$$

and the feasible set becomes $\{a \in \mathbb{C}^m : a^H a \leq c\}$.

Hence, the constraint optimisation problem can be expressed as

minimise
$$a^H \Lambda a - 2 \operatorname{Re} \{ a^H U^H R_X e_1 \}$$

subject to $a^H a \leq c$.

The optimal solution, say a^* , is given by

$$a^* = (\Lambda + \mu I_m)^{-1} U^H R_X e_1,$$

where $\mu \ge 0$ is a Lagrange multiplier. As a consequence, we have

$$w^* = U(\Lambda + \mu I_m)^{-1} U^H R_X e_1.$$

Low-rank multichannel Wiener filter

Let $U^{-H} = Q = (q_1, \ldots, q_m), q_i \in \mathbb{C}^m$. With this, we can express R_X as

$$R_X = U^{-H} \Lambda U^{-1} = Q \Lambda Q^H,$$

so that

$$w^* = U(\Lambda + \mu I_m)^{-1} \Lambda Q^H e_1.$$

since $U^H Q = I_m$.

If rank $(R_X) = r < m \ (\lambda_{r+1}, \ldots, \lambda_m = 0)$, we can select the first r vectors q_1, \ldots, q_r . That is, $R_X = Q_r \Lambda_r Q_r^H$, and the optimal filters become

$$w^* = U_r (\Lambda_r + \mu I_r)^{-1} \Lambda_r Q_r^H e_1.$$

Remarks:

- The case $\mu = 1$ and r = m gives the classical *multi-channel Wiener filter*.
- If r = 1, we have $w^* = \alpha u_1$, $\alpha \neq 0$, which leads to the *maximum* SNR beamformer. This holds for every $\mu \ge 0$.
- If $rank(R_X) = r \le m$ and we choose $\mu = 0$, the result will be the *MVDR beamformer*.

Let τ_i denote the clock offset of the *i*th microphone with respect to the reference microphone, so that $\tau_1 = 0$. Moreover, let g_i denote the gain of microphone *i* and assume, without loss of generality, that the gain of the reference microphone is $g_1 = 1$.

With this, the received microphone signals can be expressed as $\tilde{y}=Ty$ where

$$T = \operatorname{diag}(1, g_2 e^{j\omega\tau_2}, \cdots, g_m e^{j\omega\tau_m}).$$

As a consequence, since y = x + v, we have $\tilde{y} = T(x + v) = \tilde{x} + \tilde{v}$.

Let \tilde{R}_X and \tilde{R}_V denote the CPSD matrices of the *unsynchronised* target and noise process, respectively. Since $\tilde{X} = TX$ and $\tilde{V} = TV$, we have

$$\tilde{R}_X = \mathcal{E}(\tilde{X}\tilde{X}^H) = T\mathcal{E}(XX^H)T^H = TR_XT^H,$$

and similarly we find $\tilde{R}_V = TR_VT^H$. Hence,

$$\tilde{R}_V^{-1}\tilde{R}_X = (TR_VT^H)^{-1}(TR_XT^H) = T^{-H}R_V^{-1}R_XT^H,$$

and we conclude that $\tilde{R}_V^{-1}\tilde{R}_X$ is similar to $R_V^{-1}R_X$ and, therefore, share the same eigenvalues.

We have the following result.

Proposition 1. Let $\tilde{U}^H \tilde{R}_X \tilde{U} = \tilde{\Lambda}$ and $\tilde{U}^H \tilde{R}_V \tilde{U} = I_m$ be the GEVD of $(\tilde{R}_V, \tilde{R}_X)$. Then $\tilde{\Lambda} = \Lambda$ and $\tilde{U} = T^{-H}UB$, where $B = \text{diag}(B_1, \dots, B_k)$, $B_i \in \mathbb{C}^{m_i \times m_i}$ unitary, and m_i denotes the algebraic multiplicity of λ_i and k the number of distinct eigenvalues $(\sum_{i=1}^k m_i = m)$.

Proof:

Since $\tilde{R}_V^{-1}\tilde{R}_X = \tilde{U}\tilde{\Lambda}\tilde{U}^{-1}$ is similar to $R_V^{-1}R_X = U\Lambda U^{-1}$, we conclude that $\tilde{\Lambda} = \Lambda$. In addition, since $\tilde{R}_V^{-1}\tilde{R}_X = T^{-H}R_V^{-1}R_XT^H = T^{-H}U\Lambda(T^{-H}U)^{-1}$ and the fact that eigenvectors associated to λ_i are unique up to an invertible transform $B_i \in \mathbb{C}^{m_i \times m_i}$, we conclude that $\tilde{U} = T^{-H}UB$ where $B = \operatorname{diag}(B_1, \cdots, B_k)$, $B_i \in \mathbb{C}^{m_i \times m_i}$ invertible. Moreover, since

$$I_m = \tilde{U}^H \tilde{R}_V \tilde{U} = (B^H U^H T^{-1}) (T R_V T^H) (T^{-H} U B) = B^H B,$$

we conclude that B is unitary, which completes the proof.

We calculate the optimal beamformers based on *unsynchronised* data. Application of Proposition 1 then yields

$$\tilde{w}^* = \tilde{U}_r (\tilde{\Lambda}_r + \mu I_r)^{-1} \tilde{\Lambda}_r \tilde{Q}_r^H e_1$$

= $T^{-H} U_r B_r (\Lambda_r + \mu I_r)^{-1} \Lambda_r B_r^H Q_r^H T^H e_1$
 $\stackrel{(a)}{=} T^{-H} U_r (\Lambda_r + \mu I_r)^{-1} \Lambda_r Q_r^H e_1$
= $T^{-H} w^*$,

where (a) follows from the fact that B_r and $(\Lambda_r + \mu I_r)^{-1} \Lambda_r$ commute and $T^H e_1 = e_1$.

The output of the beamformer, $\tilde{w}^{*H}\tilde{y}$, then becomes

$$\tilde{w}^{*H}\tilde{y} = w^{*H}T^{-1}Ty = w^{*H}y,$$

and we conclude that *the GEVD-based beamformers are invariant to clock offsets and gain variations* and produce the same target estimate as if the clocks were perfectly synchronised and gains were perfectly equalised.

There is no need for clock-offset compensation and microphone gain equalisation !!!

- Target and interferer (both speech) signals, sampled at a sampling frequency of 16 kHz, were taken form the TIMIT database.
- The signals had a duration of 5 seconds and the signal-to-interferer ratio (SIR) at the reference microphone (i = 1) was set to 0 dB.
- The microphone-self noise was white Gaussian noise with 40 dB SNR.
- Processing of the signals was done on a frame-by-frame basis using a 30 ms, 50% overlap, Hann window.
- The covariance matrices R_Y and R_V were estimated by their sample covariance matrix.

• The beamformer parameters were set to r = 1 and $\mu = 0$ which corresponds to the MVDR beamformer:

$$w_{\rm MVDR} = \frac{R_V^{-1}d}{d^H R_V^{-1}d}.$$

• The beamformer performance is evaluated in terms of both SNR and STOI scores as a function of the variance of the clock offset, where the SNR is defined as

SNR =
$$10 \log \left(\frac{\|x_1\|_2^2}{\|w^H y - x_1\|_2^2} \right)$$
 (dB).

Experir.....

Conclusions

- GEVD-based beamformers are invariant to clock offset and gain mismatch
- There is no need to calibrate the microphones
- The steering vector is implicitly estimated!
- Don't need to know the sensor nor target locations!
- Seems to be a good tool for ad-hoc networks