


OCEAN

British

Corsica v " \@ROME ) PODGORITA
Porto {» Barcelona Napies Ban TIRANA B N7 >
Caimb .MADRID_ _C\c, ALBANIA ) Thessgleni ° o ANKARA
Z D Valencl(a ,6(\ Y v W Vfo 5
Sardinia A N
\ o <

e IS T s Y o

Saint Petersburg v

N d
J Novgoro:

hY
laroslavl 22

e
\/\K Kaluga'.

o~ lMINSK< \
A=

Kharkiv o

o G
.
Dnipropetro:

) Donetsk,
{

%  Seaof
% Azov
Sevastopol)

BLACK SEA

Q

Rennes

; } . )

-~ FRANC: /éER “;:G& - AUSTRlA;é BUDAPE %
g KT A HUNGARY / ROMANIA
l}né\} AN OVENIA Z<_ ¢~

| SMilano UBJANA AGREB
BNy T BELGRADE

g . BUCHAREST
/ -é (‘; ° Floren’:: Rop&-‘ OSNIA & Hi = |
\ A s 2 Namevol S SERBIA (2 Danube
-7 1 maco %})

=
L ) 4 T LY QQ%MQ 80 __{ )gsorA

a Q | " ¢

- o er 4 o )
MEDITERRANEAN SEA e - ¢, 3 ’»\ S s \ g )
ALGIERS u NSicily PeloponRE:;E@E i Adana

o

Antalya’
8 VALETTA AEGEAN SEA

7
IA  MALTA Y:k{”,;‘ﬁ A Nlcosm(
Crete CYPR

MEDITERRANEAN SEA LEBANO

—CQ
- Chlef  Constantie )

RABAT & \’\j ALGERIA ¢ = }EIRUT
















Estimate channel
(room transfer function)

Adjust acoustic scene to
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Parameter estimation

A quantity 0 needs to be estimated

Given a (random) model, what is best achievable
accuracy on estimating unknown quantity?

11
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Parameter estimation

A quantity 0 needs to be estimated

Given a (random) model, what is best achievable
accuracy on estimating unknown quantity?

Best accuracy = minimum MSE = minimum
variance (unbiased estimator)

MSE(8, ) = var(0) + bias*(0, 6).

Sampling Distributions of Estimated Parameters

— Unbiased, high Variance
— Biased, low Variance

12



Cramer-Rao bound

Under regularity assumptions on probability
distribution p(x; 9),

. 1
0) > 110) = :
var(9) () B 02 Inp(x; 0)
002
Pic: gaussianwaves.com 13



Cramer-Rao bound

Under regularity assumptions on probability Curvature = - >[I L(9) ]

862
distribution p(x; ), nL(®) 9
1nL()

o 1
var(6) = I7(9) = _E[(?Z lnp(x;G)] ' /\ P

962 More Sharpness Less Sharpness
Less Varance More Vanance

High Fisher Information Low Fisher Information

If PDF p(x; @) is influenced by parameter
more, estimation will be more accurate

Pic: gaussianwaves.com 14
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Deterministic function of parameter

Suppose we want to estimate a function g(0)of the parameter

Example sensor measures a quantity 0, but the instantaneous power 6% is

needed: g(@) _

In this case,

15



Cramer-Rao bound - multiple parameters

16



Cramer-Rao bound - multiple parameters

The Fisher information matrix (FIM) is the negative expected Hessian of the log-
likelihood function:

Iy = —E[Vy V' Inp(x)] = — E[Vjnp(x)], (1)
where the expectation is taken with respect to p(x) and

[Vofli = 0f /00, (Vi fliz = 0.f/00;007.
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Cramer-Rao bound - multiple parameters

The covariance matrix R of any unbiased estimator 0 of 0 satisfies R, = I(,_l.

A > B means A — B is positive semidefinite with A and B Hermitian: A = A7,
B = B,

18



CRB - complex parameters

CRB described until now holds for real parameters.
How to extend to complex parameters z?

Bos, A. van den. “A Cramer-Rao Lower Bound for Complex Parameters.”, 1994
Brandwood, D. H. “A Complex Gradient Operator and Its Application in Adaptive Array Theory.”, 1983 19



CRB - complex parameters

CRB described until now holds for real parameters.
How to extend to complex parameters z?

Two equivalent approaches:
> Consider real Re(z) and imaginary part Im(z) separately (cumbersome)

> Consider complex number z and its conjugate z* (also cumbersome © but
generally easier)

Bos, A. van den. “A Cramer-Rao Lower Bound for Complex Parameters.”, 1994
Brandwood, D. H. “A Complex Gradient Operator and Its Application in Adaptive Array Theory.”, 1983

20
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Case study - channel estimation

f‘?\‘
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Sighal model - frequency domain

Let a point source emit sound. The sound is measured by an array of M sensors.
The received signal in the short-time Fourier transform (STFT) domain is

x(l) =s(l)+v(l) =s(l)a+v()eC”, I=1,...,L.

Our goal: recover transfer function a from noisy recording x

23



Deriving CRB for channel estimation

var(f) = I74(6) = _E{a2 hy;(za:;e)] |

24



Likelihood function

Collect 11D measurements in data matrix X

Assume noise v is complex circular Gaussian process

Unknown parameters 6 = [a’a”]T € C*M

Conditional likelihood is
L

p(X: 6, 5(1)) = ﬁp ( (x(1) — s(1)a) "R (x(1) - s<Z>a>> ,

=1

Stoica, P., and A. Nehorai. “Performance Study of Conditional and Unconditional Direction-of-Arrival Estimation.” 1990

25



Log-likelihood and its derivatives

Define log-likelihood

L(#) =Inp(X;0) = —LIn|rR| — Z(X(l) —s(Da) R (x(1) — s(])a)
=1
We then have




Fisher information matrix

With this, the Fisher information matrix is

E,LJR™! 0
The block-diagonal matrix can be easily be inverted, leading to
1
R 0
T N (2)
EL
Variance is finally bounded as:
R [R]:s
i > 5 — 1, . ,M.
var(a;) > BL i (3)

27



Deterministic function of parameter

ATFs are often estimated in relation to a reference microphone r, as in g(f) =
g(a,a*) = a/a,. In this case,

R, — (Vog)I, ' (Vi'g) >0, (1)

where Ry gy is the covariance matrix of g(¢). Choosing r = 1, Jacobian is

28



Deterministic function of parameter

ATFs are often estimated in relation to a reference microphone r, as in g(f) =
g(a,a*) = a/a,. In this case,

Ry0) — (Vog)I; ' (Vi'g) > 0, (1)

where R gy is the covariance matrix of g(¢). Choosing r = 1, Jacobian is

Vog = [vag Va*g} (2)
[0 0 0 0 |
—0y/1002 1/, O ... 0
— —93/'91|2 0 1/01 0 Onrx s 7 (3)
—on/12 0 ... 0 1/6 |
where [ng]w = 8/’2/39; 29



Experiments

Settings

> 3 microphones,
random ATF,
covariance matrices estimated N snapshots,
results averaged over 1000 experiments

Performance metric

> Mean-squared error (in dB) between actual and estimated RTFs

30



Experiments

MSE [dB]

RTF est. error vs # frames (10dB SNR)

=5 1 % =& Narrowband
: é& —A— Bound cond.
~-101 ¢
\
5
154 %
—20 1 N
%,
B,
\.\.\
—25 A \\\
T T T T T T T T T T T T T T T T T "?
0 20 40 60 80 100

Number of frames
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MSE [dB]

Experiments

RTF est. error vs # frames (10dB SNR)

=5 1 % =& Narrowband
: é& —A— Bound cond.
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5
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MSE [dB]

RTF est. error vs SNR (50 frames)
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“The dark blue background”

Amplitude

1.25 1.67

0.83

0.00 0.42
Time [s]



“The dark blue background”
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G. Bologni, R. Heusdens, and R. C. Hendriks “Harmonics to the rescue: Why voiced speech is not a WSS process”, submitted for consideration at the 18th International Workshop on Acoustic Signal
Enhancement (IWAENC 2024)



Inter-frequency correlations

Signal processing algorithms (Wiener
filter, MVDR) operate on
frequency-by-frequency basis.

Frequency bins often assumed
mutually uncorrelated.

Is assumption verified?

37
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[1] S. J. Park, “Towards Understanding Voice Discrimination Abilities of Humans and Machines,” PhD thesis, 2019.




C4 {written pitch)

Inter-frequency correlations found in
Speech, wind instruments

Windowed signals (“frequency
leakage" effect)

Non-stationary signals

Benesty, Jacob, Jingdong Chen, and Emanuél A. P. Habets. “The Bifrequency Spectrum in Speech Enhancement.” 2012.



Can acoustic parameter estimation be improved by
exploiting “hidden” correlations across frequencies?




Can acoustic parameter estimation be improved by
exploiting “hidden” correlations across frequencies?

Varying SNR, 500 frames
80% target corr., 20% noise corr.

0 1 A' —&— Wideband (prop. 1)
R - NarrOWband

> -—~-Bound unc.

MSE [dB]

SNR [dB]




Channel estimation
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Sighal model - all frequencies

Noisy coefficients corresponding to single time frame [, at K different frequencies,
can be stacked in a column as

X1

X2 KM
C )

XK

Clean speech coefficients s and noise coefficients v can be obtained in the same
way.

43



Sighal model - all frequencies

The spatio-frequency correlation matrix Ry can then be expressed as

(1. (1,1) r.(1,2) r (1, K) ]|
r.(2,1) ry(2,2) ---

R, = E[xx"] = : : 5 : € CHMxEM (1)
(K1) ro(K.2) o ro(KK)

where the bifrequency spatial correlation r, (i, j) between noisy vectors at two ar-
bitrary frequencies, ¢ and 7, is the spatial correlation matrix

[Rulij = 124, ) = E[xix;] € CHM, (2)

44



Signhal model - second order

R, :E[XXH]
=E[(As+vV)(As+ V)H]
= AE[SSH}AH —I—E[VVH]
= AR;A"” + R,
= R4+ R,

A = diag(a) = diag(a1s, .. -, A1M, G215 - - GK M)

w N

—~~ /N /N /N
(62 I~
~— ~— N — ~— ~—

45



= E[XXH}
=E[(As + v)(As + v)T]
= AE[SSH}AH + E[VVH}
= ARAY L+ R,
A = diag(a) = diag(a11, ..., a1, 21, . ..

a[&';\l)

AR AH

True wet

R,

True noise

uu

True dry

i

| =)
S

t
=)
Magnitude [dBm]



RTF estimation - SVD direct

> We propose new RTF estimation algorithm that exploits inter-frequency
correlations

> The algorithm is not ‘optimal’, but it sometimes achieve the CRB
O Q: what would it take for ‘optimality’?

47



SVD-direct - key observation

When the number of frequencies is K = 2, the clean covariance matrix can be
decomposed as:

2 H * H n1

R, — 081a1a1 E[8182]alaz o Rd

d — 1D} % H 2 T —
|S251|azay 05,222

Notice that R} is rank-1 matrix.
Left principal singular vector of R} is a;. Applying SVD,

R} =SDV# ~da;v"? (2)

48



SVD-direct - algorithm

1. Estimation of spatio-frequency covariance matrices: noisy R, noise R

A 1
Rx - -
L

A 1
RV —_ -
L

(1)

(3)
(4)
(5)

49



SVD-direct - algorithm

3. Partition in K “fat” M x KM blocks:

_R((il) ;
e
Rq = . (6)
Ry |
4. SVD on individual subblocks
= (k
REI ) — PrRIDEQE). (7)
5. Rescale left principal singular vectors
alk) = Normalize(pgk)). U



Two different CRBs

80% target corr., 20% noise corr.

bOLfnd (s-ee prev.. slides) _10 | Q\ =
True target received signal s is known RSN —r— Bound cond.
ol
. = Y
Unconditional bound = ™
88 N
received signal s is unknown, but its first- < _30 1 NS
. . 2 AN
and second-order statistics R are known _ ’&\
\\\
—40 N
-10 0 10 20

SNR [dB]
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To verify correctness of CRBs, we need access to the true signal statistics

We generate random covariance matrices
AR A R,

True wet True noise

Remember the signal model k=1{'~i ™
R, = AR, A L R, ems |’
A = diag(a) = diag(aii,...,a1m,a21,... 0K M) (2)



Controlling correlations

Example for K=2 frequencies, M=2 sensors. Variable power.

2 2 2
UU11 P 0-71110-1)12
2
Rboth _ 0'1)12

v

2

o

V21

2
PN O11 004

0‘2

/2 2
p 0’0221 Oas

o

V22

where 07 ~U(5e —4,5e —1),Vi=1,.., MK and p € [0,1].

(1)



Experiments

M = 2 microphones

K =5 frequency components,

Random RTF a/a;f, real and imaginary parts drawn from Uniform(—1,1)
Covariance matrix R, estimated over multiple snapshots

Oracle knowledge of R,

Target s(1) and noise v(1) signals drawn from complex Gaussian distributions with
given covariance matrices

Performance metric

> Mean-squared error (in dB) between actual and estimated RTFs

55



Synthetic data - varying target correlation

dB]

—

RMSE
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_20 4
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D L "

—=—- Bound unc.

=x-= Bound cond.

----------------
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_ Target frequency
~ correlation
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Synthetic data - varying target correlation
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Synthetic data - varying number of frames

Pf = O.75,Uf =0.25

.......

o) ]
. —10 -
- ]
n ]
2 .
rZ —20 A

1 —©— Wideband (prop. 1) <,
: = Narrowband

| ===- Bound unc. .
—30 >
] —x-= Bound cond.

10! 102 10°
Number of frames
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Synthetic data - varying number of frames

pr=0.75,v; = 0.25 pr=025v; =025
O NG 0 1
m 1 M
=, —10 - x . —10 -
€2 ] A, €2
N , N
e 90 >N & —20 -
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Hermitian angle
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Collection of binaural impulse response database in our brand-new audio lab

Wideband beamforming
Wideband MVDR with cue preservation [1]
ATF informed DNN [2]

Improve DNN-based speech enhancement by including frequency-shifted
waveforms as input

Do you have an idea to win the next Fields medal? Come talk to us!
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Cramer-Rao bound for
acoustic transfer function
estimation
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