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Adjust acoustic scene to 
hearing impaired user

Estimate channel
(room transfer function)
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Estimate channel
(room transfer function)

Adjust acoustic scene to 
hearing impaired user

Why are hearing-aids not so good?

1. Signals change fast (non-stationarity)

2. Variety of reverberant environments

3. Real-time constraints

4. Battery constraints
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Applications



Cramér-Rao bound for 
acoustic transfer function 
estimation

Giovanni Bologni (G.Bologni@tudelft.nl), Richard C. Hendriks, Richard Heusdens
31 May, 2024

9G. Bologni, R. C. Hendriks, and R. Heusdens, “Wideband Relative Transfer Function (RTF) Estimation Exploiting Frequency Correlations”, under review at IEEE Transactions on Audio, Speech, and 
Language Processing
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On the menu today
Part 1 - Cramér-Rao bound for acoustic transfer function estimation
1. Parameter estimation & Cramér-Rao bound (CRB)
2. Case study – ATF estimation

Part 2 - Acoustic transfer function estimation with inter-frequency correlation
1. Channel estimation algorithm
2. Experiments
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Parameter estimation
A quantity 𝜃 needs to be estimated

Given a (random) model, what is best achievable 
accuracy on estimating unknown quantity?
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Parameter estimation
A quantity 𝜃 needs to be estimated

Given a (random) model, what is best achievable 
accuracy on estimating unknown quantity?

Best accuracy = minimum MSE = minimum 
variance (unbiased estimator)

Pic: quora.com

MSE(θ, θ̂) = var(θ̂) + bias
2(θ̂, θ).
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Cramér-Rao bound

Pic: gaussianwaves.com

var(θ̂) ≥ I−1(θ) =
1

−E

[

∂2 ln p(x; θ)

∂θ2

] .

Under regularity assumptions on probability 
distribution 𝑝(𝑥; 𝜃),
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Cramér-Rao bound

Pic: gaussianwaves.com

var(θ̂) ≥ I−1(θ) =
1

−E

[

∂2 ln p(x; θ)

∂θ2

] .

Under regularity assumptions on probability 
distribution 𝑝(𝑥; 𝜃),

If PDF p(𝑥; 𝜃) is influenced by parameter 
more, estimation will be more accurate



Suppose we want to estimate a function      of the parameter

Example sensor measures a quantity 𝜃, but the instantaneous power 𝜃! is 
needed: 

In this case,

Deterministic function of parameter

var(θ̂) ≥

(

∂g

∂θ

)2

−E

[

∂2 ln p(x; θ)

∂θ2

] .

g(θ) = θ2

15
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Cramér-Rao bound – multiple parameters
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Cramér-Rao bound – multiple parameters
The Fisher information matrix (FIM) is the negative expected Hessian of the log-
likelihood function:

Iθ = −E
[

∇θ ∇
H
θ ln p(x)

]

= −E
[

∇2

θ ln p(x)
]

, (1)

where the expectation is taken with respect to p(x) and

[∇θf ]i = ∂f/∂θi, [∇2

θ f ]ij = ∂f/∂θi∂θ
∗

j .

The covariance matrix Rθ̂ of any unbiased estimator θ̂ of θ satisfies Rθ̂ ≽ I
−1

θ .

A ≽ B means A−B is positive semidefinite with A and B being Hermitian.
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Cramér-Rao bound – multiple parameters
The Fisher information matrix (FIM) is the negative expected Hessian of the log-
likelihood function:

Iθ = −E
[

∇θ ∇
H
θ ln p(x)

]

= −E
[

∇2

θ ln p(x)
]

, (1)

where the expectation is taken with respect to p(x) and

[∇θf ]i = ∂f/∂θi, [∇2

θ f ]ij = ∂f/∂θi∂θ
∗

j .

The covariance matrix Rθ̂ of any unbiased estimator θ̂ of θ satisfies Rθ̂ ≽ I
−1

θ .

A ≽ B means A−B is positive semidefinite with A and B Hermitian: A = AH ,
B = BH .
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CRB – complex parameters
CRB described until now holds for real parameters. 
How to extend to complex parameters 𝑧?

Bos, A. van den. “A Cramer-Rao Lower Bound for Complex Parameters.”, 1994
Brandwood, D. H. “A Complex Gradient Operator and Its Application in Adaptive Array Theory.”, 1983
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CRB – complex parameters
CRB described until now holds for real parameters. 
How to extend to complex parameters 𝑧?

Two equivalent approaches:
▷ Consider real 𝑅𝑒(𝑧) and imaginary part 𝐼𝑚(𝑧) separately (cumbersome)
▷ Consider complex number 𝑧 and its conjugate 𝑧∗ (also cumbersome J but 

generally easier)

Bos, A. van den. “A Cramer-Rao Lower Bound for Complex Parameters.”, 1994
Brandwood, D. H. “A Complex Gradient Operator and Its Application in Adaptive Array Theory.”, 1983
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Cramér-Rao bound for acoustic transfer function estimation
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Acoustic transfer function estimation with inter-frequency correlation
1. Channel estimation algorithm
2. Experiments
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Case study – channel estimation

𝑎!(1)

𝑎!(2
)

𝑎 !
(𝑀
)

𝑠!



23

Signal model – frequency domain
Let a point source emit sound. The sound is measured by an array of M sensors.
The received signal in the short-time Fourier transform (STFT) domain is

x(l) = s(l) + v(l) = s(l)a+ v(l) ∈ C
M , l = 1, . . . , L.

Our goal: recover transfer function a from noisy recording x

𝑎!(1)

𝑎!(2
)

𝑎 !
(𝑀
)

𝑠!
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Deriving CRB for channel estimation

var(θ̂) ≥ I−1(θ) =
1

−E

[

∂2 ln p(x; θ)

∂θ2

] .
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Likelihood function
Collect IID measurements in data matrix 𝑿
Assume noise 𝒗 is complex circular Gaussian process
Unknown parameters
Conditional likelihood is 

p(X; θ, s(l)) =
1

|πR|L
exp

(

−
L
∑

l=1

(x(l)− s(l)a)HR
−1(x(l)− s(l)a)

)

,

θ = [aTaH ]T ∈ C
2M

Stoica, P., and A. Nehorai. “Performance Study of Conditional and Unconditional Direction-of-Arrival Estimation.” 1990
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Log-likelihood and its derivatives
Define log-likelihood 

We then have

∇a
∗L(θ) = R

−1

L
∑

l=1

(s(l)∗x(l)− |s(l)|2a)

∇aL(θ) = (∇a
∗L(θ))∗

−E
[

∇a
∗∇H

a
∗L(θ)

]

= −E
[

∇a
∗∇T

a
L(θ)

]

= E

[

R
−1

L
∑

l=1

|s(l)|2
]

= EsLR
−1

−E
[

∇a
∗∇H

a
L(θ)

]

= 0

L(θ) = ln p(X; θ) = −L ln |πR|−
L∑

l=1

(x(l)− s(l)a)HR
−1(x(l)− s(l)a)
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Fisher information matrix
With this, the Fisher information matrix is

Iθ =

[

EsLR
−1 0

0 EsLR
−∗

]

. (1)

The block-diagonal matrix can be easily be inverted, leading to

I
−1

θ
=

⎡

⎢

⎣

1

EsL
R 0

0
1

EsL
R∗

⎤

⎥

⎦

(2)

Variance is finally bounded as:

var(âi) ≥
[R]ii
EsL

, i = 1, . . . ,M. (3)
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Deterministic function of parameter
ATFs are often estimated in relation to a reference microphone r, as in g(θ) =
g(a,a∗) = a/ar. In this case,

Rg(θ) − (∇θg)I
−1
θ (∇H

θ g) ≥ 0, (1)

where Rg(θ) is the covariance matrix of g(θ). Choosing r = 1, Jacobian is

∇θg =
[

∇ag ∇a
∗g

]

(2)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0M×M

−θ2/|θ1|2 1/θ1 0 . . . 0
−θ3/|θ1|2 0 1/θ1 . . . 0

...
. . .

...
−θM/|θ1|2 0 . . . 0 1/θ1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

where [∇θf ]ij = ∂fi/∂θj .



29

Deterministic function of parameter
ATFs are often estimated in relation to a reference microphone r, as in g(θ) =
g(a,a∗) = a/ar. In this case,

Rg(θ) − (∇θg)I
−1
θ (∇H

θ g) ≥ 0, (1)

where Rg(θ) is the covariance matrix of g(θ). Choosing r = 1, Jacobian is

∇θg =
[

∇ag ∇a
∗g

]

(2)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0M×M

−θ2/|θ1|2 1/θ1 0 . . . 0
−θ3/|θ1|2 0 1/θ1 . . . 0

...
. . .

...
−θM/|θ1|2 0 . . . 0 1/θ1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

where [∇θf ]ij = ∂fi/∂θj .
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Settings
▷ 3 microphones,  

random ATF,
covariance matrices estimated 𝑁 snapshots,
results averaged over 1000 experiments

Performance metric
▷ Mean-squared error (in dB) between actual and estimated RTFs 



Experiments
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Experiments
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G. Bologni, R. Heusdens, and R. C. Hendriks “Harmonics to the rescue: Why voiced speech is not a WSS process”, submitted for consideration at the 18th International Workshop on Acoustic Signal
Enhancement (IWAENC 2024)



Inter-frequency correlations

Signal processing algorithms (Wiener 
filter, MVDR) operate on 
frequency-by-frequency basis.

Frequency bins often assumed 
mutually uncorrelated.

Is assumption verified?

37



38[1] S. J. Park, “Towards Understanding Voice Discrimination Abilities of Humans and Machines,” PhD thesis, 2019. 



Inter-frequency correlations found in
1. Speech, wind instruments
2. Windowed signals (“frequency 

leakage” effect)
3. Non-stationary signals

Inter-frequency correlations

39

Picture adapted from https://www.phys.unsw.edu.au/jw/brassacoustics.html

Benesty, Jacob, Jingdong Chen, and Emanuël A. P. Habets. “The Bifrequency Spectrum in Speech Enhancement.” 2012. 



Inter-frequency correlations found in
1. Speech, wind instruments
2. Windowed signals (“frequency 

leakage” effect)
3. Non-stationary signals

Inter-frequency correlations

40

Picture adapted from https://www.phys.unsw.edu.au/jw/brassacoustics.html

Benesty, Jacob, Jingdong Chen, and Emanuël A. P. Habets. “The Bifrequency Spectrum in Speech Enhancement.” 2012. 

Can acoustic parameter estimation be improved by 
exploiting “hidden” correlations across frequencies?



Inter-frequency correlations found in
1. Speech, wind instruments
2. Windowed signals (“frequency 

leakage” effect)
3. Non-stationary signals

Inter-frequency correlations
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Picture adapted from https://www.phys.unsw.edu.au/jw/brassacoustics.html

Benesty, Jacob, Jingdong Chen, and Emanuël A. P. Habets. “The Bifrequency Spectrum in Speech Enhancement.” 2012. 

Can acoustic parameter estimation be improved by 
exploiting “hidden” correlations across frequencies?
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Channel estimation

𝑎!(1)

𝑎!(2
)

𝑎 !
(𝑀
)

𝑠!
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Signal model – all frequencies
Noisy coefficients corresponding to single time frame l, at K different frequencies,
can be stacked in a column as

x =

⎡

⎢

⎢

⎢

⎣

x1

x2

...
xK

⎤

⎥

⎥

⎥

⎦

∈ C
KM

.

Clean speech coefficients s and noise coefficients v can be obtained in the same
way.
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Signal model – all frequencies
The spatio-frequency correlation matrix Rx can then be expressed as

Rx = E
[

xx
H
]

=

⎡

⎢

⎢

⎢

⎣

rx(1, 1) rx(1, 2) · · · rx(1,K)
rx(2, 1) rx(2, 2) · · ·

...
...

. . .
...

rx(K, 1) rx(K, 2) · · · rx(K,K)

⎤

⎥

⎥

⎥

⎦

∈ C
KM×KM , (1)

where the bifrequency spatial correlation rx(i, j) between noisy vectors at two ar-
bitrary frequencies, i and j, is the spatial correlation matrix

[Rx]ij = rx(i, j) = E[xixj ] ∈ C
M×M . (2)
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Signal model – second order
Rx = E

[

xx
H
]

(1)

= E
[

(As+ v)(As+ v)H
]

(2)

= AE
[

ss
H
]

A
H +E

[

vv
H
]

(3)

= ARsA
H +Rv (4)

= Rd +Rv (5)

A = diag(a) = diag(a11, . . . , a1M , a21, . . . aKM ) (6)
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Rx = E
[

xx
H
]

(1)

= E
[

(As+ v)(As+ v)H
]

(2)

= AE
[

ss
H
]

A
H +E

[

vv
H
]

(3)

= ARsA
H +Rv (4)

A = diag(a) = diag(a11, . . . , a1M , a21, . . . aKM ) (5)

𝑘 = 1

𝑘 = 2

𝑘 = 3

ARsA
H Rv

Rs

Signal model – second order
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RTF estimation – SVD direct

▷ We propose new RTF estimation algorithm that exploits inter-frequency 
correlations

▷ The algorithm is not ‘optimal’, but it sometimes achieve the CRB
○ Q: what would it take for ‘optimality’?
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When the number of frequencies is K = 2, the clean covariance matrix can be
decomposed as:

Rd =

[

σ2
s1
a1a1

H E[s1s∗2]a1a2
H

E[s2s∗1]a2a1
H σ2

s2
a2a2

H

]

=

[

R1
d

R2
d

]

, (1)

Notice that R1
d
is rank-1 matrix.

Left principal singular vector of R1
d
is a1. Applying SVD,

R
1
d = SDV

H
≈ da1v

H (2)

SVD-direct – key observation

! = 1

! = 2

! = 3

ARsA
H Rv

Rs
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1. Estimation of spatio-frequency covariance matrices: noisy R̂x, noise R̂v.

R̂x =
1

L

L∑

l=1

x(l)x(l)H (1)

R̂v =
1

L

L∑

l=1

v(l)v(l)H (2)

2. Estimation of R̂d from generalized eigenvector:

R̂xU = R̂vUΛ (3)

(R̂d + R̂v)U = R̂vUΛ (4)

R̂d ≈ R̂vU1(Λ1 − I)U−1

1
(5)

SVD-direct – algorithm
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3. Partition in K “fat” M ×KM blocks:

R̂d =

⎡

⎢

⎢

⎢

⎢

⎣

R̂
(1)
d

R̂
(2)
d

...

R̂
(K)
d

⎤

⎥

⎥

⎥

⎥

⎦

. (6)

4. SVD on individual subblocks

R̂
(k)
d

= P(k)D(k)Q(k)
. (7)

5. Rescale left principal singular vectors

â(k) = Normalize(p(k)
1 ).

SVD-direct – algorithm
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Two different CRBs
Conditional bound (see prev. slides)
True target received signal 𝒔 is known

Unconditional bound 
received signal 𝒔 is unknown, but its first-
and second-order statistics 𝑹# are known
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How to simulate data

Rx = ARsA
H +Rv (1)

A = diag(a) = diag(a11, . . . , a1M , a21, . . . aKM ) (2)

▷ To verify correctness of CRBs, we need access to the true signal statistics
▷ We generate random covariance matrices

Remember the signal model 𝑘 = 1

𝑘 = 2

𝑘 = 3

ARsA
H Rv



54

Example for K=2 frequencies, M=2 sensors. Variable power.

R
both
v

=

⎡

⎢

⎢

⎢

⎣

σ2
v11

ρ
√

σ2
v11

σ2
v12

· · · ρ
√

σ2
v11

σ2
v22

σ2
v12

· · ·
...

σ2
v21

ρ
√

σ2
v21

σ2
v22

σ2
v22

⎤

⎥

⎥

⎥

⎦

, (1)

where σ2
vii

∼ U(5e− 4, 5e− 1), ∀i = 1, ...,MK and ρ ∈ [0, 1].

Controlling correlations



Experiments
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𝑀 = 2 microphones 
𝐾 = 5 frequency components,
Random RTF 𝒂/𝑎$%&, real and imaginary parts drawn from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1)
Covariance matrix 𝑹' estimated over multiple snapshots
Oracle knowledge of 𝑹(
Target 𝒔(𝑙) and noise 𝒗(𝑙) signals drawn from complex Gaussian distributions with 
given covariance matrices

Performance metric
▷ Mean-squared error (in dB) between actual and estimated RTFs 
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Open questions - theses projects

• Collection of binaural impulse response database in our brand-new audio lab

• Wideband beamforming
• Wideband MVDR with cue preservation [1]
• ATF informed DNN [2]

• Improve DNN-based speech enhancement by including frequency-shifted 
waveforms as input

Do you have an idea to win the next Fields medal? Come talk to us!

[1] R. Chopra, D. Ghosh, and D. K. Mehra, “Spectrum Sensing for Cognitive Radios Based on Space-
Time FRESH Filtering,” IEEE Transactions on Wireless Communications, vol. 13, no. 7, pp. 3903–3913, 
Jul. 2014, doi: 10.1109/TWC.2014.2314125.

[2] A. Briegleb, M. M. Halimeh, and W. Kellermann, “Exploiting Spatial Information with the Informed 
Complex-Valued Spatial Autoencoder for Target Speaker Extraction,” ICASSP 2023
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2. Case study – ATF estimation

Acoustic transfer function estimation with inter-frequency correlation
1. Channel estimation algorithm
2. Experiments



Cramér-Rao bound for 
acoustic transfer function 
estimation

Giovanni Bologni (G.Bologni@tudelft.nl), Richard Hendriks, Richard Heusdens
31 May, 2024

67


