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Problem

We receive a signal over a multipath channel. Can we estimate jointly
the angles, delays and fading parameters?
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In this lecture, we look at Kronecker product structures to achieve
this.

'i"u Delft 9. joint diagonalization



The vec operator

For a matrix, vec(-) denotes the stacking of the columns of a matrix
into a vector:
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The Kronecker product
For two matrices A and B, the Kronecker product is defined a

3113 alNB
A® B = :
aMlB aMNB

Some properties:

(A2 B)C®D) — AC®BD
[a®bl[c®d]" = ac"®bd"=a®bc"®d"
tr(A® B) = tr(A)tr(B)

tr(-) is the trace operator: sum of the diagonal elements
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The Kronecker product

A rank-one matrix has the form ab".

m An important property:

albl

T aiby aib o axby
vec(ab )=b®a <& vec [ arby apby } = | a1h,
32b2

m For complex matrices:

vec(ab”) = b* ® a
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The Kronecker product

More in general, for 3 matrices:

vec(ABC) = (C" @ A)vec(B)

= Prove by writing ABC" = 3~ bja;c; and using the previous result.
m Interpretation: ABC is linear in the entries of A, B and C.

This implies that we can write vec(ABC) in terms of a matrix times
vec(A), vec(B) or vec(C), respectively:

vec(ABC) = [(BC)" ® I|vec(A)
vec(ABC) = [l ® AB]vec(C)
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The Khatri-Rao product

o denotes the Khatri-Rao product, i.e., a column-wise Kronecker
product:
AoB::[a1®b1 a @ b, ]

m This forms a submatrix of A ® B.

m If B = diag(b) is a diagonal matrix formed from b, then

vec(ABC) = (C" o A)b
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The extended ESPRIT algorithm
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Consider M triplets: three identical but displaced subarrays.
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The extended ESPRIT algorithm

Data model (d narrowband point sources):

X = AS = AS X
Y = AS = A®S & |Y |=|A%|S.
Z = AS = A®S 4 A®

® and O are diagonal matrices with entries

¢k — e_jifdxy'ck 9/( — e_j%dxz'ck

The DOA problem is to estimate ® and © from (X, Y, Z). This can be
done from (X, Y) and (X, Z) separately, but how to find the pairs of

angles (0;, ¢;)?
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The extended ESPRIT algorithm

m Preprocessing: compute (truncated) SVD

X
K=|Y |=uUzsV"
V4
m Partition U similar to K:
X Uy X A
Y |=| U |ZV" butalso Y |=| A® |S.
V4 U, V4 AG
The column spans must match: there is an invertible matrix T such
that
U, A
u |=1|A® | T
U, AG
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Joint diagonalization

A= U, T implies

u = U TleT
U, = U T'OeT.

Define M, = Ui U, and M, = U.U,, then

M, = T '@T
M, = T7'OT.

The matrix T diagonalizes both M, and M, (d x d matrices derived
from the data)

This is a joint diagonalization problem.
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Computing the joint diagonalization

m Already one matrix specifies T (usual eigenvalue problem). The joint
diagonalization problem gives redundancy = more accurate results.

m We could solve one problem to find (7, ®) and apply T to M, to
find ©.
This fails if two values of ® are the same (T not uniquely defined) =
another reason for joint processing

m There are numerical algorithms to solve the joint (approximate)
problem, e.g. using Jacobi rotations.
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Connection to the Khatri-Rao product structure

X A
Y |=| A® | S
V4 A0®

Define a matrix F from the diagonals of ® and © as

1 1 ... 1
F=1|¢1 ¢2 -+ ¢qg
0, 0o - Oy

then we can write this compactly as

X Ux
Y | =(FoA)S and likewise U | =(Fo AT
V4 U,
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Connection to the Khatri-Rao product structure

This Khatri-Rao product structure is the only property that was needed
to derive the joint diagonalization model

m Whenever we have this structure, we can transform it into joint
diagonalization.

m We expanded on the rows of F, but we can also expand on the rows
of A; evenon T.

m This is an example of a canonical polyadic decomposition (CPD)
= tensor decomposition framework
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Joint angle-delay estimation

(i, i, Bi)
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h(t) =" a(a;)Big(t — i)

i=1

Sample h(t) and stack N samples in h:

ho h(0)
h h(T "

N = Y lg- el = [GoAl
s nv-ur | T
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Joint angle-delay estimation

h=[GoAlb

We approach this as we did for delay estimation.

m Apply a DFT to h and deconvolve g to obtain z:

z=[FoAlb
with
L
¢2 .0
F=[f(o), Fo)]l, F@)=| 9 |, ¢=eli7
.

F contains the delay information.
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Joint angle-delay estimation
We would like to apply joint diagonaliation to solve for (7;, ;). But we
only have a single vector h.

We can expand z to a matrix using shift-invariance (“smoothing”) of A
(if we have a ULA) or F (after a DFT):

= Partition z and form block shifts: Z = [2(?) z(1) ... = z(m=1)]
o _
7
z
7 = Z()
ZN—m+i
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Joint angle-delay estimation

m Model: Z = [F’ o A]B, with

$1
B=[b ® &b --- " 'b], &=

br

(The structure of B is not used.)

m First, compute an SVD (truncate to rank r):
Z=UzVv"

m Model:

= Various approaches are possible, e.g., expand on the rows of F’.
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Joint angle-delay estimation
Assuming a ULA, we can use shifts on both A and F:

Jo =In-m 01] ® v, Jo:=In-my1 @ [Iu—1 O1]
Jy¢ = [01 IN—m] ® Iy, Jyg =Iy_mi1 ® [01 IM—1]

This will allow to estimate more sources than we have antennas.
m To estimate ®, we take submatrices consisting of the first and last
M(N — m) rows of U:
Ui = JU, Uy =JyU,

m To estimate © we stack, for all N — m + 1 blocks, its first and
respectively last M — 1 rows:
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Joint angle-delay estimation

m Structure:

Uy, = AT Uy = A'T
U, = A®T Uy = A'OT.

Resulting joint diagonalization problem:
1 B _
U,Uy = T'8T
u,u, = T'OT

m From ® and ©, we find the pairs (7}, «;) of delays and angles.

m Possible extension to d sources each with a superposition of rays.
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Exploiting fading diversity

If the fading parameters [3; are fast fading (with angles/delays constant
over the observing interval), then

[h1,ho,---]=[G o A|B

Each hj has the same model as before.

Due to fast fading, we do not need to use deconvolution by g followed
by taking shifts to transform a single vector h into a matrix.

m Unvector each hy gives

H, = Adiag(b,)G", k=1,2,---

m Use joint diagonalization (non-symmetric) to solve for A and G.
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Joint angle and frequency estimation

In a wide frequency band, there are a number of narrowband sources,
received by an antenna array. Find the angles and carrier frequencies.

m Assume narrowband signal can be sampled with T = 1 at Nyquist

m Sample the entire band at rate P. Without multipath:

d
x(t) =3 a(0)Bid Fitsi(t) & x(t) = AgB®'s(t)
1
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Joint angle and frequency estimation

m If P is large, then subsample: take m samples at high rate, then wait:

x(0) x(1) o x(N=1)
x_ | X®) x0EE) e x(N-14 )
X(THh) k(14 Zh) (N1 2
Model:
AyBs(0) AyB®"s(1)
. AyBds(3) AgB®PH1s(1+ 1)

AgB®™1s(m5l)  A)BRPTM1s(1+ ML)
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Joint angle and frequency estimation

m If m < P, then s(k) ~ s(k + T51):

3
Ay

X = A:\O(I) B [so s - <I>(N_1)’DSN,1]
A

= (Fy0Ap)B(Fp©S)

We can now apply the same joint diagonalization algorithm as before.
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Summary
If we have data with a Khatri-Rao structure

X =(FoA)S
we can convert the problem to joint diagonalization, by expansion over

the rows of F (or A, or S).

Joint diagonalization problems are of the form

M, = AD, A"
(by congruence) but also M, = T 1®, T (by similarity) or
M, = AD;B" (nonsymmetric).

This is an example of a canonical polyadic decomposition, a tensor
decomposition.

Applications are joint estimation of azimuth-elevation, angle-delay,
angle-frequency, multiple resolutions.
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