EE 4715 Array Processing
 9. Joint diagonalization and Kronecker product structures

April 2022

Problem

We receive a signal over a multipath channel. Can we estimate jointly the angles, delays and fading parameters?

In this lecture, we look at Kronecker product structures to achieve this.

The vec operator

For a matrix, $\mathrm{vec}(\cdot)$ denotes the stacking of the columns of a matrix into a vector:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow \operatorname{vec}(\boldsymbol{A})=\left[\begin{array}{l}
\frac{a_{31}}{a_{12}} \\
a_{22} \\
a_{32} \\
\frac{a_{13}}{1} \\
a_{23} \\
a_{33}
\end{array}\right]
$$

The Kronecker product

For two matrices \boldsymbol{A} and B, the Kronecker product is defined a

$$
\boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{ccc}
a_{11} \boldsymbol{B} & \cdots & a_{1 N} \boldsymbol{B} \\
\vdots & & \vdots \\
a_{M 1} \boldsymbol{B} & \cdots & a_{M N} \boldsymbol{B}
\end{array}\right]
$$

Some properties:

$$
\begin{aligned}
(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D}) & =\boldsymbol{A C} \otimes \boldsymbol{B} \boldsymbol{D} \\
{[\boldsymbol{a} \otimes \boldsymbol{b}][\boldsymbol{c} \otimes \boldsymbol{d}]^{H} } & =\boldsymbol{a c ^ { H }} \otimes \boldsymbol{b} \boldsymbol{d}^{H}=\boldsymbol{a} \otimes \boldsymbol{b c}^{H} \otimes \boldsymbol{d}^{H} \\
\operatorname{tr}(\boldsymbol{A} \otimes \boldsymbol{B}) & =\operatorname{tr}(\boldsymbol{A}) \operatorname{tr}(\boldsymbol{B})
\end{aligned}
$$

$\operatorname{tr}(\cdot)$ is the trace operator: sum of the diagonal elements

The Kronecker product

A rank-one matrix has the form $\boldsymbol{a} \boldsymbol{b}^{\top}$.

- An important property:

$$
\operatorname{vec}\left(\boldsymbol{a}^{\top}\right)=\boldsymbol{b} \otimes \boldsymbol{a} \quad \Leftrightarrow \quad \operatorname{vec}\left[\begin{array}{ll}
a_{1} b_{1} & a_{1} b_{2} \\
a_{2} b_{1} & a_{2} b_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1} b_{1} \\
a_{2} b_{1} \\
\hline a_{1} b_{2} \\
a_{2} b_{2}
\end{array}\right]
$$

■ For complex matrices:

$$
\operatorname{vec}\left(\boldsymbol{a} \boldsymbol{b}^{H}\right)=\boldsymbol{b}^{*} \otimes \boldsymbol{a}
$$

The Kronecker product

More in general, for 3 matrices:

$$
\operatorname{vec}(\boldsymbol{A} B \boldsymbol{C})=\left(\boldsymbol{C}^{\top} \otimes \boldsymbol{A}\right) \operatorname{vec}(\boldsymbol{B})
$$

- Prove by writing $A B C^{\top}=\sum_{i j} b_{i j} a_{i} c_{j}^{\top}$ and using the previous result.
- Interpretation: $A B C$ is linear in the entries of A, B and C.

This implies that we can write $\operatorname{vec}(\boldsymbol{A B C})$ in terms of a matrix times $\operatorname{vec}(\boldsymbol{A}), \operatorname{vec}(\boldsymbol{B})$ or $\operatorname{vec}(\boldsymbol{C})$, respectively:

$$
\begin{aligned}
\operatorname{vec}(\boldsymbol{A} B \boldsymbol{C}) & =\left[(\boldsymbol{B C})^{\top} \otimes \boldsymbol{I}\right] \operatorname{vec}(\boldsymbol{A}) \\
\operatorname{vec}(\boldsymbol{A} B \boldsymbol{C}) & =[\boldsymbol{I} \otimes \boldsymbol{A} \boldsymbol{B}] \operatorname{vec}(\boldsymbol{C})
\end{aligned}
$$

The Khatri-Rao product

- denotes the Khatri-Rao product, i.e., a column-wise Kronecker product:

$$
\boldsymbol{A} \circ \boldsymbol{B}:=\left[\begin{array}{lll}
\boldsymbol{a}_{1} \otimes \boldsymbol{b}_{1} & \boldsymbol{a}_{2} \otimes \boldsymbol{b}_{2} & \cdots
\end{array}\right]
$$

- This forms a submatrix of $\boldsymbol{A} \otimes B$.

■ If $\boldsymbol{B}=\operatorname{diag}(\boldsymbol{b})$ is a diagonal matrix formed from \boldsymbol{b}, then

$$
\operatorname{vec}(\boldsymbol{A B C})=\left(\boldsymbol{C}^{\top} \circ \boldsymbol{A}\right) \boldsymbol{b}
$$

The extended ESPRIT algorithm

Consider M triplets: three identical but displaced subarrays.

The extended ESPRIT algorithm

Data model (d narrowband point sources):

$$
\left\{\begin{array}{l}
\boldsymbol{X}=\boldsymbol{A}_{x} \boldsymbol{S}=\boldsymbol{A} \boldsymbol{S} \\
\boldsymbol{Y}=\boldsymbol{A}_{\boldsymbol{y}} \boldsymbol{S}=\boldsymbol{A} \Phi \boldsymbol{S} \\
\boldsymbol{Z}=\boldsymbol{A}_{\boldsymbol{z}} \boldsymbol{S}=\boldsymbol{A} \Theta \boldsymbol{S}
\end{array} \Leftrightarrow\left[\begin{array}{c}
\boldsymbol{X} \\
\boldsymbol{Y} \\
\boldsymbol{Z}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{A \Phi} \\
\boldsymbol{A} \Theta
\end{array}\right] \boldsymbol{S} .\right.
$$

Φ and Θ are diagonal matrices with entries

$$
\phi_{k}=e^{-j \frac{\omega_{0}}{c} \boldsymbol{d}_{x y} \cdot \boldsymbol{\zeta}_{k}} \quad \theta_{k}=e^{-j \frac{\omega_{0}}{c} \boldsymbol{d}_{x z} \cdot \boldsymbol{\zeta}_{k}}
$$

The DOA problem is to estimate Φ and Θ from $(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z})$. This can be done from $(\boldsymbol{X}, \boldsymbol{Y})$ and $(\boldsymbol{X}, \boldsymbol{Z})$ separately, but how to find the pairs of angles $\left(\theta_{i}, \phi_{i}\right)$?

The extended ESPRIT algorithm

■ Preprocessing: compute (truncated) SVD

$$
K=\left[\begin{array}{l}
X \\
\boldsymbol{Y} \\
Z
\end{array}\right]=\boldsymbol{U} \Sigma V^{H}
$$

- Partition U similar to K :

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{l}
U_{x} \\
U_{y} \\
U_{z}
\end{array}\right] \Sigma V^{H} \quad \text { but also }\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
A \\
A \Phi \\
A \Theta
\end{array}\right] S .
$$

The column spans must match: there is an invertible matrix T such that

$$
\left[\begin{array}{c}
\boldsymbol{U}_{x} \\
\boldsymbol{U}_{y} \\
\boldsymbol{U}_{z}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{A} \\
\boldsymbol{A \Phi} \\
\boldsymbol{A} \Theta
\end{array}\right] \boldsymbol{T}
$$

Joint diagonalization

$\boldsymbol{A}=\boldsymbol{U}_{x} \boldsymbol{T}^{-1}$ implies

$$
\left\{\begin{array}{l}
\boldsymbol{U}_{y}=\boldsymbol{U}_{x} \boldsymbol{T}^{-1} \boldsymbol{\Phi} \boldsymbol{T} \\
\boldsymbol{U}_{z}=\boldsymbol{U}_{x} \boldsymbol{T}^{-1} \boldsymbol{\Theta} \boldsymbol{T}
\end{array}\right.
$$

Define $\boldsymbol{M}_{\boldsymbol{y}}=\boldsymbol{U}_{x}^{\dagger} \boldsymbol{U}_{y}$ and $\boldsymbol{M}_{z}=\boldsymbol{U}_{x}^{\dagger} \boldsymbol{U}_{z}$, then

$$
\left\{\begin{array}{l}
\boldsymbol{M}_{y}=\boldsymbol{T}^{-1} \boldsymbol{\Phi} \boldsymbol{T} \\
\boldsymbol{M}_{z}=\boldsymbol{T}^{-1} \boldsymbol{\Theta} \boldsymbol{T}
\end{array}\right.
$$

The matrix T diagonalizes both M_{y} and $M_{z}(d \times d$ matrices derived from the data)

This is a joint diagonalization problem.

Computing the joint diagonalization

- Already one matrix specifies T (usual eigenvalue problem). The joint diagonalization problem gives redundancy \Rightarrow more accurate results.
- We could solve one problem to find ($\boldsymbol{T}, \boldsymbol{\Phi}$) and apply \boldsymbol{T} to \boldsymbol{M}_{y} to find Θ.
This fails if two values of Φ are the same (T not uniquely defined) \Rightarrow another reason for joint processing
- There are numerical algorithms to solve the joint (approximate) problem, e.g. using Jacobi rotations.

Connection to the Khatri-Rao product structure

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
A \\
A \Phi \\
A \Theta
\end{array}\right] S
$$

Define a matrix F from the diagonals of Φ and Θ as

$$
\boldsymbol{F}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\phi_{1} & \phi_{2} & \cdots & \phi_{d} \\
\theta_{1} & \theta_{2} & \cdots & \theta_{d}
\end{array}\right]
$$

then we can write this compactly as

$$
\left[\begin{array}{l}
\boldsymbol{X} \\
\boldsymbol{Y} \\
Z
\end{array}\right]=(\boldsymbol{F} \circ \boldsymbol{A}) \boldsymbol{S} \quad \text { and likewise } \quad\left[\begin{array}{l}
\boldsymbol{U}_{x} \\
\boldsymbol{U}_{y} \\
\boldsymbol{U}_{z}
\end{array}\right]=(\boldsymbol{F} \circ \boldsymbol{A}) \boldsymbol{T}
$$

Connection to the Khatri-Rao product structure

This Khatri-Rao product structure is the only property that was needed to derive the joint diagonalization model

- Whenever we have this structure, we can transform it into joint diagonalization.
- We expanded on the rows of F, but we can also expand on the rows of A; even on T.
- This is an example of a canonical polyadic decomposition (CPD) \Rightarrow tensor decomposition framework

Joint angle-delay estimation

Sample $h(t)$ and stack N samples in \boldsymbol{h} :

$$
\boldsymbol{h}=\left[\begin{array}{c}
\boldsymbol{h}_{0} \\
\boldsymbol{h}_{1} \\
\vdots \\
\boldsymbol{h}_{N-1}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{h}(0) \\
\boldsymbol{h}(T) \\
\vdots \\
\boldsymbol{h}((N-1) T)
\end{array}\right]=\sum_{i=1}^{r}\left[\boldsymbol{g}_{\tau_{i}} \otimes \boldsymbol{a}\left(\alpha_{i}\right)\right] \beta_{i}=[\boldsymbol{G} \circ \boldsymbol{A}] \boldsymbol{b}
$$

Joint angle-delay estimation

$$
\boldsymbol{h}=[\boldsymbol{G} \circ \boldsymbol{A}] \boldsymbol{b}
$$

We approach this as we did for delay estimation.

- Apply a DFT to h and deconvolve g to obtain z :

$$
\boldsymbol{z}=[\boldsymbol{F} \circ \boldsymbol{A}] \boldsymbol{b}
$$

with

$$
\boldsymbol{F}=\left[\boldsymbol{f}\left(\phi_{1}\right), \cdots, \boldsymbol{f}\left(\phi_{r}\right)\right], \quad \boldsymbol{f}(\phi)=\left[\begin{array}{l}
1 \\
\phi \\
\phi^{2} \\
\vdots \\
\phi^{N-1}
\end{array}\right], \quad \phi:=e^{-j \frac{2 \pi}{N} \frac{\tau}{T}}
$$

F contains the delay information.

Joint angle-delay estimation

We would like to apply joint diagonaliation to solve for $\left(\tau_{i}, \alpha_{i}\right)$. But we only have a single vector \boldsymbol{h}.

We can expand z to a matrix using shift-invariance ("smoothing") of A (if we have a ULA) or F (after a DFT):

- Partition \boldsymbol{z} and form block shifts: $\boldsymbol{Z}=\left[z^{(0)}, z^{(1)}, \cdots, z^{(m-1)}\right]$
$z=\left[\begin{array}{l}z_{0} \\ z_{1} \\ \vdots \\ z_{i} \\ \vdots \\ z_{N-m+i} \\ \vdots \\ z_{N-1}\end{array}\right] z^{(i)}$

Joint angle-delay estimation

- Model: $Z=\left[F^{\prime} \circ A\right] B$, with

$$
\boldsymbol{B}=\left[\begin{array}{lllll}
\boldsymbol{b} & \boldsymbol{\Phi} \boldsymbol{b} & \boldsymbol{\Phi}^{2} \boldsymbol{b} & \cdots & \boldsymbol{\Phi}^{m-1} \boldsymbol{b}
\end{array}\right], \quad \boldsymbol{\Phi}=\left[\begin{array}{lll}
\phi_{1} & & \\
& \ddots & \\
& & \phi_{r}
\end{array}\right]
$$

(The structure of B is not used.)

- First, compute an SVD (truncate to rank r):

$$
\boldsymbol{Z}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{H}}
$$

- Model:

$$
\boldsymbol{U}=\left(\boldsymbol{F}^{\prime} \circ \boldsymbol{A}\right) \boldsymbol{T}
$$

■ Various approaches are possible, e.g., expand on the rows of F^{\prime}.

Joint angle-delay estimation

Assuming a ULA, we can use shifts on both A and F :

$$
\begin{array}{ll}
\boldsymbol{J}_{x \phi}:=\left[\begin{array}{ll}
\boldsymbol{I}_{N-m} & 0_{1}
\end{array}\right] \otimes \boldsymbol{I}_{M}, & \boldsymbol{J}_{x \theta}:=\boldsymbol{I}_{N-m+1} \otimes\left[\begin{array}{ll}
\boldsymbol{I}_{M-1} & 0_{1}
\end{array}\right] \\
\boldsymbol{J}_{y \phi}:=\left[\begin{array}{ll}
0_{1} & \boldsymbol{I}_{N-m}
\end{array}\right] \otimes \boldsymbol{I}_{M}, & \boldsymbol{J}_{y \theta \theta}:=\boldsymbol{I}_{N-m+1} \otimes\left[\begin{array}{ll}
0_{1} & \boldsymbol{I}_{M-1}
\end{array}\right]
\end{array}
$$

This will allow to estimate more sources than we have antennas.

- To estimate Φ, we take submatrices consisting of the first and last $M(N-m)$ rows of \boldsymbol{U} :

$$
\boldsymbol{U}_{x \phi}=\boldsymbol{J}_{x \phi} \boldsymbol{U}, \quad \boldsymbol{U}_{y \phi}=\boldsymbol{J}_{y \phi} \boldsymbol{U}
$$

- To estimate Θ we stack, for all $N-m+1$ blocks, its first and respectively last $M-1$ rows:

$$
\boldsymbol{U}_{x \theta}=\boldsymbol{J}_{x \theta} \boldsymbol{U}, \quad \boldsymbol{U}_{y \theta}=\boldsymbol{J}_{y \theta} \boldsymbol{U}
$$

Joint angle-delay estimation

- Structure:

$$
\left\{\begin{array} { l }
{ \boldsymbol { U } _ { x \phi } = \boldsymbol { A } ^ { \prime } \boldsymbol { T } } \\
{ \boldsymbol { U } _ { y \phi } = \boldsymbol { A } ^ { \prime } \boldsymbol { \Phi } \boldsymbol { T } }
\end{array} \quad \left\{\begin{array}{l}
\boldsymbol{U}_{x \theta}=\boldsymbol{A}^{\prime \prime} \boldsymbol{T} \\
\boldsymbol{U}_{y \theta}=\boldsymbol{A}^{\prime \prime} \boldsymbol{\Theta} \boldsymbol{T} .
\end{array}\right.\right.
$$

Resulting joint diagonalization problem:

$$
\begin{aligned}
\boldsymbol{U}_{x \phi}^{\dagger} \boldsymbol{U}_{y \phi} & =\boldsymbol{T}^{-1} \boldsymbol{\Phi} \boldsymbol{T} \\
\boldsymbol{U}_{x \theta}^{\dagger} \boldsymbol{U}_{y \theta} & =\boldsymbol{T}^{-1} \boldsymbol{\Theta} \boldsymbol{T}
\end{aligned}
$$

- From Φ and Θ, we find the pairs $\left(\tau_{i}, \alpha_{i}\right)$ of delays and angles.

■ Possible extension to d sources each with a superposition of rays.

Exploiting fading diversity

If the fading parameters β_{i} are fast fading (with angles/delays constant over the observing interval), then

$$
\left[\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \cdots\right]=[\boldsymbol{G} \circ \boldsymbol{A}] \boldsymbol{B}
$$

Each \boldsymbol{h}_{k} has the same model as before.
Due to fast fading, we do not need to use deconvolution by g followed by taking shifts to transform a single vector \boldsymbol{h} into a matrix.

■ Unvector each \boldsymbol{h}_{k} gives

$$
\boldsymbol{H}_{k}=\boldsymbol{A} \operatorname{diag}\left(\boldsymbol{b}_{k}\right) \boldsymbol{G}^{\top}, \quad k=1,2, \cdots
$$

■ Use joint diagonalization (non-symmetric) to solve for \boldsymbol{A} and G.

Joint angle and frequency estimation

In a wide frequency band, there are a number of narrowband sources, received by an antenna array. Find the angles and carrier frequencies.

- Assume narrowband signal can be sampled with $T=1$ at Nyquist
- Sample the entire band at rate P. Without multipath:

$$
\boldsymbol{x}(t)=\sum_{1}^{d} \boldsymbol{a}\left(\theta_{i}\right) \beta_{i} e^{j \frac{2 \pi}{P} f_{i} t} \boldsymbol{s}_{i}(t) \quad \Leftrightarrow \quad \boldsymbol{x}(t)=\boldsymbol{A}_{\theta} \boldsymbol{B} \boldsymbol{\Phi}^{t} \boldsymbol{s}(t)
$$

Joint angle and frequency estimation

- If P is large, then subsample: take m samples at high rate, then wait:

$$
\boldsymbol{X}=\left[\begin{array}{llll}
\boldsymbol{x}(0) & \boldsymbol{x}(1) & \cdots & \boldsymbol{x}(N-1) \\
\boldsymbol{x}\left(\frac{1}{P}\right) & \boldsymbol{x}\left(1+\frac{1}{P}\right) & \cdots & \boldsymbol{x}\left(N-1+\frac{1}{P}\right) \\
\vdots & \vdots & & \vdots \\
\boldsymbol{x}\left(\frac{m-1}{P}\right) & \boldsymbol{x}\left(1+\frac{m-1}{P}\right) & \cdots & \boldsymbol{x}\left(N-1+\frac{m-1}{P}\right)
\end{array}\right]
$$

Model:

$$
\boldsymbol{X}=\left[\begin{array}{lll}
\boldsymbol{A}_{\theta} \boldsymbol{B}(0) & \boldsymbol{A}_{\theta} \boldsymbol{B} \boldsymbol{\Phi}^{P} \boldsymbol{s}(1) & \cdots \\
\boldsymbol{A}_{\theta} \boldsymbol{B} \boldsymbol{\Phi} \boldsymbol{s}\left(\frac{1}{P}\right) & \boldsymbol{A}_{\theta} \boldsymbol{B} \boldsymbol{\Phi}^{P+1} \boldsymbol{s}\left(1+\frac{1}{P}\right) & \cdots \\
\vdots & \vdots & \\
\boldsymbol{A}_{\theta} \boldsymbol{B} \Phi^{m-1} \boldsymbol{s}\left(\frac{m-1}{P}\right) & \boldsymbol{A}_{\theta} \boldsymbol{B} \Phi^{P+m-1} \boldsymbol{s}\left(1+\frac{m-1}{P}\right) & \cdots
\end{array}\right]
$$

Joint angle and frequency estimation

- If $m \ll P$, then $\boldsymbol{s}(k) \approx \boldsymbol{s}\left(k+\frac{m-1}{P}\right)$:

$$
\begin{aligned}
\boldsymbol{X} & \approx\left[\begin{array}{l}
\boldsymbol{A}_{\theta} \\
\boldsymbol{A}_{\theta} \boldsymbol{\Phi} \\
\vdots \\
\boldsymbol{A}_{\theta} \boldsymbol{\Phi}^{m-1}
\end{array}\right] \boldsymbol{B}\left[\begin{array}{llll}
\boldsymbol{s}_{0} & \boldsymbol{\Phi}^{P} \boldsymbol{s}_{1} & \cdots & \boldsymbol{\Phi}^{(N-1) P} \boldsymbol{s}_{N-1}
\end{array}\right] \\
& =\left(\boldsymbol{F}_{\phi} \circ \boldsymbol{A}_{\theta}\right) \boldsymbol{B}\left(\boldsymbol{F}_{P} \odot \boldsymbol{S}\right)
\end{aligned}
$$

We can now apply the same joint diagonalization algorithm as before.

Summary

If we have data with a Khatri-Rao structure

$$
X=(F \circ A) S
$$

we can convert the problem to joint diagonalization, by expansion over the rows of F (or A, or S).

Joint diagonalization problems are of the form

$$
M_{k}=A D_{k} A^{H}
$$

(by congruence) but also $M_{k}=T^{-1} \Phi_{k} T$ (by similarity) or $M_{k}=A D_{k} B^{H}$ (nonsymmetric).

This is an example of a canonical polyadic decomposition, a tensor decomposition.

Applications are joint estimation of azimuth-elevation, angle-delay, angle-frequency, multiple resolutions.

