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Problem

We receive a signal over a multipath channel. Can we estimate jointly
the angles, delays and fading parameters?
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In this lecture, we look at Kronecker product structures to achieve
this.
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The vec operator

For a matrix, vec(·) denotes the stacking of the columns of a matrix
into a vector:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ⇒ vec(A) =



a11
a21
a31
a12
a22
a32
a13
a23
a33
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The Kronecker product

For two matrices A and B, the Kronecker product is defined a

A⊗ B =

 a11B · · · a1NB
...

...
aM1B · · · aMNB

 ,
Some properties:

(A⊗ B)(C ⊗D) = AC ⊗ BD
[a ⊗ b][c ⊗ d ]H = acH ⊗ bd H = a ⊗ bcH ⊗ d H

tr(A⊗ B) = tr(A)tr(B)

tr(·) is the trace operator: sum of the diagonal elements
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The Kronecker product

A rank-one matrix has the form abT.

An important property:

vec(abT) = b ⊗ a ⇔ vec

[
a1b1 a1b2
a2b1 a2b2

]
=


a1b1
a2b1
a1b2
a2b2



For complex matrices:

vec(abH) = b∗ ⊗ a
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The Kronecker product
More in general, for 3 matrices:

vec(ABC ) = (CT ⊗ A)vec(B)

Prove by writing ABCT =
∑

ij bijaic
T

j and using the previous result.

Interpretation: ABC is linear in the entries of A, B and C .

This implies that we can write vec(ABC ) in terms of a matrix times
vec(A), vec(B) or vec(C ), respectively:

vec(ABC ) = [(BC )T ⊗ I ]vec(A)

vec(ABC ) = [I ⊗ AB]vec(C )
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The Khatri-Rao product

◦ denotes the Khatri-Rao product, i.e., a column-wise Kronecker
product:

A ◦ B := [a1 ⊗ b1 a2 ⊗ b2 · · · ]

This forms a submatrix of A⊗ B.

If B = diag(b) is a diagonal matrix formed from b, then

vec(ABC ) = (CT ◦ A)b
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The extended ESPRIT algorithm

dxy
x1 y1

x3 y3

z1
dxz

dxy

dxy

z3
dxz

dxz z2

y2x2

Consider M triplets: three identical but displaced subarrays.
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The extended ESPRIT algorithm

Data model (d narrowband point sources):
X = AxS = AS
Y = AyS = AΦS
Z = AzS = AΘS

⇔

 X
Y
Z

 =

 A
AΦ
AΘ

S .

Φ and Θ are diagonal matrices with entries

φk = e−j
ω0
c

dxy ·ζk θk = e−j
ω0
c

dxz ·ζk

The DOA problem is to estimate Φ and Θ from (X ,Y ,Z ). This can be
done from (X ,Y ) and (X ,Z ) separately, but how to find the pairs of
angles (θi , φi )?
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The extended ESPRIT algorithm

Preprocessing: compute (truncated) SVD

K =

 X
Y
Z

 = UΣV H

Partition U similar to K : X
Y
Z

 =

 Ux

Uy

Uz

ΣV H but also

 X
Y
Z

 =

 A
AΦ
AΘ

S .

The column spans must match: there is an invertible matrix T such
that  Ux

Uy

Uz

 =

 A
AΦ
AΘ

T
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Joint diagonalization

A = UxT−1 implies {
Uy = Ux T−1ΦT
Uz = Ux T−1ΘT .

Define My = U†xUy and Mz = U†xUz , then{
My = T−1ΦT
Mz = T−1ΘT .

The matrix T diagonalizes both My and Mz (d × d matrices derived
from the data)

This is a joint diagonalization problem.
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Computing the joint diagonalization

Already one matrix specifies T (usual eigenvalue problem). The joint
diagonalization problem gives redundancy ⇒ more accurate results.

We could solve one problem to find (T ,Φ) and apply T to My to
find Θ.

This fails if two values of Φ are the same (T not uniquely defined) ⇒
another reason for joint processing

There are numerical algorithms to solve the joint (approximate)
problem, e.g. using Jacobi rotations.
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Connection to the Khatri-Rao product structure

 X
Y
Z

 =

 A
AΦ
AΘ

S

Define a matrix F from the diagonals of Φ and Θ as

F =

 1 1 · · · 1
φ1 φ2 · · · φd
θ1 θ2 · · · θd


then we can write this compactly as X

Y
Z

 = (F ◦ A)S and likewise

 Ux

Uy

Uz

 = (F ◦ A)T
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Connection to the Khatri-Rao product structure

This Khatri-Rao product structure is the only property that was needed
to derive the joint diagonalization model

Whenever we have this structure, we can transform it into joint
diagonalization.

We expanded on the rows of F , but we can also expand on the rows
of A; even on T .

This is an example of a canonical polyadic decomposition (CPD)
⇒ tensor decomposition framework
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Joint angle-delay estimation

(αi , τi , βi )

equalizer

space
time
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h(t) =
r∑

i=1

a(αi )βig(t − τi ) .

Sample h(t) and stack N samples in h:

h =


h0

h1
...

hN−1

 =


h(0)
h(T )

...
h((N − 1)T )

 =
r∑

i=1

[gτi⊗a(αi )]βi = [G◦A]b
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Joint angle-delay estimation

h = [G ◦ A]b

We approach this as we did for delay estimation.

Apply a DFT to h and deconvolve g to obtain z :

z = [F ◦ A]b

with

F = [f (φ1) , · · · , f (φr )] , f (φ) =


1
φ
φ2

...
φN−1

 , φ := e−j
2π
N
τ
T

F contains the delay information.
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Joint angle-delay estimation
We would like to apply joint diagonaliation to solve for (τi , αi ). But we
only have a single vector h.

We can expand z to a matrix using shift-invariance (“smoothing”) of A
(if we have a ULA) or F (after a DFT):

Partition z and form block shifts: Z = [z (0) , z (1) , · · · , z (m−1)]

z =

z0

z1

...

zN−m+i
...

zN−1

zi

...

z (i)
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Joint angle-delay estimation

Model: Z = [F ′ ◦ A]B, with

B = [b Φb Φ2b · · · Φm−1b] , Φ =

 φ1
. . .

φr


(The structure of B is not used.)

First, compute an SVD (truncate to rank r):

Z = UΣV H

Model:
U = (F ′ ◦ A)T

Various approaches are possible, e.g., expand on the rows of F ′.
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Joint angle-delay estimation
Assuming a ULA, we can use shifts on both A and F :

Jxφ := [IN−m 01] ⊗ IM , Jxθ := IN−m+1 ⊗ [IM−1 01]
Jyφ := [01 IN−m] ⊗ IM , Jyθ := IN−m+1 ⊗ [01 IM−1]

This will allow to estimate more sources than we have antennas.

To estimate Φ, we take submatrices consisting of the first and last
M(N −m) rows of U :

Uxφ = JxφU , Uyφ = JyφU ,

To estimate Θ we stack, for all N −m + 1 blocks, its first and
respectively last M − 1 rows:

Uxθ = JxθU , Uyθ = JyθU .
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Joint angle-delay estimation

Structure: {
Uxφ = A′T
Uyφ = A′ΦT

{
Uxθ = A′′T
Uyθ = A′′ΘT .

Resulting joint diagonalization problem:

U†xφUyφ = T−1ΦT
U†xθUyθ = T−1ΘT

From Φ and Θ, we find the pairs (τi , αi ) of delays and angles.

Possible extension to d sources each with a superposition of rays.
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Exploiting fading diversity

If the fading parameters βi are fast fading (with angles/delays constant
over the observing interval), then

[h1,h2, · · · ] = [G ◦ A]B

Each hk has the same model as before.

Due to fast fading, we do not need to use deconvolution by g followed
by taking shifts to transform a single vector h into a matrix.

Unvector each hk gives

Hk = A diag(bk)GT
, k = 1, 2, · · ·

Use joint diagonalization (non-symmetric) to solve for A and G .
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Joint angle and frequency estimation

In a wide frequency band, there are a number of narrowband sources,
received by an antenna array. Find the angles and carrier frequencies.

Assume narrowband signal can be sampled with T = 1 at Nyquist

Sample the entire band at rate P. Without multipath:

x(t) =
d∑
1

a(θi )βie
j 2π
P
fi tsi (t) ⇔ x(t) = AθBΦts(t)
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Joint angle and frequency estimation

If P is large, then subsample: take m samples at high rate, then wait:

X =


x(0) x(1) · · · x(N − 1)
x( 1

P ) x(1 + 1
P ) · · · x(N − 1 + 1

P )
...

...
...

x(m−1P ) x(1 + m−1
P ) · · · x(N − 1 + m−1

P )


Model:

X =


AθBs(0) AθBΦPs(1) · · ·
AθBΦs( 1

P ) AθBΦP+1s(1 + 1
P ) · · ·

...
...

AθBΦm−1s(m−1P ) AθBΦP+m−1s(1 + m−1
P ) · · ·
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Joint angle and frequency estimation

If m� P, then s(k) ≈ s(k + m−1
P ):

X ≈


Aθ

AθΦ
...
AθΦ

m−1

B [s0 ΦPs1 · · · Φ(N−1)PsN−1]

= (Fφ ◦ Aθ) B (FP � S)

We can now apply the same joint diagonalization algorithm as before.
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Summary
If we have data with a Khatri-Rao structure

X = (F ◦ A)S

we can convert the problem to joint diagonalization, by expansion over
the rows of F (or A, or S).

Joint diagonalization problems are of the form

Mk = ADkA
H

(by congruence) but also Mk = T−1ΦkT (by similarity) or
Mk = ADkBH (nonsymmetric).

This is an example of a canonical polyadic decomposition, a tensor
decomposition.

Applications are joint estimation of azimuth-elevation, angle-delay,
angle-frequency, multiple resolutions.
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