EE 4715 Array Processing
 4. Wideband Models

April 2022

Models

Wideband models are used in wireless communication, acoustics (audio, ultrasound, underwater, geophysics), and elsewhere. In this lecture we take a communications perspective.

■ Physical channel

- Source model
- Receiver model

Multipath channel model

Jakes' multipath model

- scatterers local to mobile (nearby buildings, sensitive to motion)
- remote scatterers (remote buildings, hills: dominant scatterers)
- scatterers local to base (static effect)

Multipath channel model

$$
\boldsymbol{x}(t)=\left[\sum_{i=1}^{r} \boldsymbol{a}\left(\theta_{i}\right) \beta_{i} g\left(t-\tau_{i}\right)\right] * s(t)
$$

- $g(t)$ is a pulse shape function (where $s(t)$ contains dirac pulses)
- $a(\theta)$ is the array response vector
- Scattering local to mobile causes fluctuations in path gains β_{i} :
- Each ray has a (small) angular and delay spread: phase changes
- Adding the rays in/out of phase creates major effects on the gains: fading

Fading

■ General trend: $\approx 35-50 \mathrm{~dB} /$ decade (path loss)

- Slow fading: Caused by shadowing.

■ Fast Fading: Caused by local scatterers near mobile. Typically Rayleigh distributed

Fading

$\phi=\omega_{0} \tau$: a phase can change due to changes in frequency or delay

- Time-selective fading (due to motion/Doppler)
- Frequency-selective fading (due to long delays)

frequency 1: \mathfrak{N}
frequency 2: N
- Space-selective fading (large angles)

Typical channel parameter values

Environment	delay spread	angle spread	Doppler spread
Flat rural (macro)	$0.5 \mu \mathrm{~s}$	1°	190 Hz
Urban (macro)	$5 \mu \mathrm{~s}$	20°	120 Hz
Hilly (macro)	$20 \mu \mathrm{~s}$	30°	190 Hz
Mall (micro)	$0.3 \mu \mathrm{~s}$	120°	10 Hz
Indoors (pico)	$0.1 \mu \mathrm{~s}$	360°	5 Hz

Signal modulation

- Digital alphabets
- Modulation
- Linear modulation (e.g. with a raised-cosine pulse)
- Phase modulation (not discussed here)

Digital constellations

$b_{k} \in\{0,-1\} \rightarrow s_{k}$ chosen from (up to scaling):

BPSK	$\{1,-1\}$
QPSK $($ QAM-4 $)$	$\{1, j,-1,-j\}$
m-PSK	$\left\{1, e^{j 2 \pi / m}, e^{j 2 \pi 2 / m}, \cdots, e^{j 2 \pi(m-1) / m}\right\}$
m-PAM	$\{ \pm 1, \pm 3, \cdots, \pm(2 m-1)\}$
m-PAM	$\{ \pm 1, \pm 3, \cdots, \pm(2 m-1)\}$
MSK	$\{\{1,-1\}, k$ even $;\{j,-j\}, k$ odd

Linear modulation

- Amplitude is modulated (possibly complex):

$$
s_{\delta}(t)=\sum_{k} s_{k} \delta(t-k) \quad s(t)=p(t) * s_{\delta}(t)=\sum_{k} s_{k} p(t-k)
$$

- Optimum waveform is localized in time and frequency (contradiction)

■ One possible choice: sinc pulse shape

$$
p(t)=\frac{\sin \pi t}{\pi t}, \quad P(f)= \begin{cases}1, & |f|<\frac{1}{2} \\ 0, & \text { otherwise }\end{cases}
$$

Linear modulation

■ Modification: raised-cosine pulseshapes

$$
p(t)=\frac{\sin \pi t}{\pi t} \cdot \frac{\cos \alpha \pi t}{1-4 \alpha^{2} t^{2}}, P(f)= \begin{cases}1, & |f|<\frac{1}{2}(1-\alpha) \\ \frac{1}{2}-\frac{1}{2} \sin \left(\frac{\pi}{\alpha}\left(|f|-\frac{1}{2}\right)\right), & \frac{1}{2}(1-\alpha)<|f|<\frac{1}{2}(1+\alpha) \\ 0, & \text { otherwise }\end{cases}
$$

α : excess bandwidth (or rolloff) parameter; common choice is $\alpha=0.35$

FIR channel model

- We collect all temporal effects in $\boldsymbol{h}(t)$
- Filtering effects at the transmitter and the receiver
- Propagation channel (array response, multipath delays)
- Optional: pulse shape $g(t)$ for linear modulation

■ Resulting data model (M antennas):

$$
\boldsymbol{x}(t)=\boldsymbol{h}(t) * s(t), \quad \boldsymbol{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{M}(t)
\end{array}\right], \quad \boldsymbol{h}(t)=\left[\begin{array}{c}
h_{1}(t) \\
\vdots \\
h_{M}(t)
\end{array}\right]
$$

Oversampling

If the symbol rate is below the Nyquist rate, we can oversample beyond the symbol rate, by a factor P. Often, $P=2$.

Define $P \times 1$ vectors spanning 1 symbol period:

$$
\boldsymbol{x}[n]=\left[\begin{array}{c}
x(n) \\
x\left(n+\frac{1}{P}\right) \\
\vdots \\
x\left(n+\frac{P-1}{P}\right)
\end{array}\right], \quad \boldsymbol{h}[k]=\left[\begin{array}{c}
h(k) \\
h\left(k+\frac{1}{P}\right) \\
\vdots \\
h\left(k+\frac{P-1}{P}\right)
\end{array}\right]
$$

In the received signal, over 1 symbol period, the same L transmitted symbols play a role:

$$
\boldsymbol{x}[n]=\boldsymbol{h}[n] * s[n]=\sum_{k=0}^{L-1} \boldsymbol{h}[k] s[n-k]
$$

- This is the same as we had before, but now using sample vectors consisting of the P samples that fall within one sample period.

Matrix representation of convolution

Collect samples in a matrix $\boldsymbol{X}=\left[\begin{array}{llll}{[0]} & x[1] & \cdots & x[L-1]\end{array}\right]$.

The convolution model $\boldsymbol{x}[n]=\boldsymbol{h}[n] * s[n]$ gives

$$
X=H S
$$

with

$$
\begin{aligned}
& \boldsymbol{H}=\left[\begin{array}{llll}
\boldsymbol{h}[0] & \boldsymbol{h}[1] & \cdots & \boldsymbol{h}[L-1]
\end{array}\right] \\
& \boldsymbol{S}=\left[\begin{array}{ccc|cccc|ccc}
s_{0} & s_{1} & \cdots & s_{L-1} & \cdots & s_{N_{s}-2} & s_{N_{s}-1} & & & \mathbf{0} \\
& s_{0} & \cdots & \cdots & \cdots & \cdots & s_{N_{s}-2} & s_{N_{s}-1} & & \\
& & \ddots & s_{1} & \cdots & \cdots & \cdots & \ddots & \ddots & \\
\mathbf{0} & & & s_{0} & \cdots & \cdots & s_{N_{s}-L} & \cdots & s_{N_{s}-2} & s_{N_{s}-1}
\end{array}\right]
\end{aligned}
$$

Stacking

Create an augmented data matrix by stacking m samples of $x[n]$:

$$
\mathcal{X}=\left[\begin{array}{llll}
\boldsymbol{x}[0] & \boldsymbol{x}[1] & . & \boldsymbol{x}[N-m] \\
\boldsymbol{x}[1] & \boldsymbol{x}[2] & \therefore & \dot{\cdot} \\
\cdot & \cdot \cdot & \cdot & \boldsymbol{x}[N-2] \\
\boldsymbol{x}[m-1] & \cdot & \boldsymbol{x}[N-2] & \boldsymbol{x}[N-1]
\end{array}\right]
$$

Due to the convolution model we can factor \mathcal{X} as

$$
\mathcal{X}=\mathcal{H S}=\left[\begin{array}{ccc}
\mathbf{0} & \left.\begin{array}{c}
\boldsymbol{H} \\
\cdots \\
\cdots \\
\boldsymbol{H} \\
\boldsymbol{H}
\end{array}\right]
\end{array}\left[\begin{array}{cccc}
s_{m-1} & \ddots & s_{N-2} & s_{N-1} \\
\ddots & \ddots & \ddots & s_{N-2} \\
s_{-L+2} & s_{-L+3} & \ddots & \ddots \\
s_{-L+1} & s_{-L+2} & \ddots & s_{N-L-m+1}
\end{array}\right]\right.
$$

Space-time equalizer

A space-time equalizer is a vector w which combines the rows of \mathcal{X} :

$$
\boldsymbol{w}^{\mathrm{H}} \mathcal{X}=\left[\begin{array}{lll}
\hat{s}_{k_{0}} & \hat{s}_{k_{0}+1} & \cdots
\end{array}\right]
$$

From the factorization $\mathcal{X}=\mathcal{H S}$ we see that

$$
\boldsymbol{w}^{\mathrm{H}} \mathcal{H}=[0, \cdots, 0,1,0, \cdots, 0]
$$

- w^{H} is one row of a left inverse \mathcal{H}^{\dagger} of \mathcal{H}.
- We can choose which row of \mathcal{S} we reconstruct.

Space-time equalizer

Connection to the multiray model

The multiray propagation model is (for specular multipath)

$$
\boldsymbol{h}(t)=\left[\begin{array}{c}
h_{1}(t) \\
\vdots \\
h_{M}(t)
\end{array}\right]=\sum_{i=1}^{r} \boldsymbol{a}\left(\theta_{i}\right) \beta_{i} g\left(t-\tau_{i}\right)
$$

where $g(t)$: pulse shape function (e.g., raised-cosine),
θ_{i} : direction-of-arrival (DOA),
τ_{i} : path delay,
$\beta_{i} \in \mathbb{C}$: complex path attenuation (fading).

Connection to the multiray model

Collect the samples of $g(t)$ into a row vector

$$
\boldsymbol{g}=\left[\begin{array}{llll}
g(0) & g\left(\frac{1}{P}\right) & \cdots & g\left(L-\frac{1}{P}\right)
\end{array}\right]
$$

Similar for $g\left(t-\tau_{i}\right)$: gives $g_{i}=\left[g\left(k-\tau_{i}\right)\right]_{k=0,1 / P, \cdots, L-1 / P}$
The channel model can be written as
$\boldsymbol{H}^{\prime}=\left[\begin{array}{c}-\boldsymbol{h}_{1}- \\ \vdots \\ -\boldsymbol{h}_{M}-\end{array}\right]=\left[\begin{array}{ccc}\mid & & \mid \\ \boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{r} \\ \mid & & \end{array}\right]\left[\begin{array}{cc}\beta_{1} & 0 \\ & \ddots \\ 0 & \\ \beta_{r}\end{array}\right]\left[\begin{array}{c}-\boldsymbol{g}_{1}- \\ \vdots \\ -\boldsymbol{g}_{r}-\end{array}\right]=\boldsymbol{A B G}$
where $\boldsymbol{a}_{i}=\boldsymbol{a}\left(\theta_{i}\right)$, and B is diagonal (fading matrix)

■ H and \boldsymbol{H}^{\prime} are "the same", but reorganized: \boldsymbol{H} is $M P \times L$ and H^{\prime} is $M \times L P$.

Summary of properties

$$
\mathcal{X}=\mathcal{H S}
$$

$$
H^{\prime}=A B G
$$

Properties		\mathcal{H}	\mathcal{S}
macro	matrix	block Hankel $\operatorname{col}(\mathcal{H})=\operatorname{col}(\mathcal{X})$	block Toeplitz row $(\mathcal{S})=\operatorname{row}(\mathcal{X})$
	modulation temporal	constellation, non-Gaussian cyclostationarity independence	
	temporal spatial	known $g(\tau)$ known $a(\theta)$	training: known $\left\{s_{k}\right\}$

