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Models

Signal processing follows these steps:

m Physics
= Model

m Method
m Algorithm

m Implementation
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Models

Signal processing follows these steps:

m Physics
= Model

m Method
m Algorithm

m Implementation
A model simplifies the physics to capture the essentials.

m Algorithms try to estimate model parameters: fewer is better!

m For the same physics, which model is suitable depends on the
application.

m Whatever we don’'t model is put under the noise.
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Spatial filtering

Using multiple antennas, we we can cancel an incoming interfering
signal via null steering:

y(t) = wos(t) +wis(t—17)
Y(w) = S(w)(Wo + Wlefj‘”)

Assume we know 7, then Y(w) =0 at a
selected frequency wy if

;Lmym

wo

wp = —wpe/“°"
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Beamforming

A phased array does linear beamforming by computing a weighted sum:

beamformer
S(t) \ Py
\T‘)“) D@ (1) = 5(1)
XM_1(t)

Using constant weights (not frequency-dependent), we can cancel a
signal only at a specific frequency, but not at all frequencies.
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Modulation and demodulation

In digital communication systems, baseband signals s(t) are modulated
on a carrier before transmission:

z(t) = real{s(t)e/*°t} = x(t) cos(wot) — y(t)sin(wot)

The baseband signal s(t) = x(t) + jy(t) is the complex envelope of
z(t) and is recovered by demodulation

m Z(w) w demodulation:
* 0@ e

—wp 0 wo
B e—Jwot
5(w)
~ N
i f
—2wp 0
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The narrowband condition

The bandpass signal z(t) propagates through space. Suppose it is
delayed by 7:

z(t) :=z(t—7) = real{s(t—7)e/o(t=1

= real{s(t — 7)e Jw0T w0t}

sr(t)
m Let B be the bandwidth of s(t). Then
1 [B/2 B/2
s(t—r) = & / S(w)e 9T et dy ~ - / W)el#tdw = s(t)
27 —-B/2 B/2

if |wr| < 7 for all frequencies |w| < £, so that e /*7 ~ 1
m If the narrowband condition BT < 27 holds, then
s-(t) ~ s(t)eJwoT for Br < 27

For narrowband signals, time delays smaller than the inverse bandwidth
may be represented as phase shifts
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The narrowband condition
The maximal delay depends on the situation!

Propagation across the antenna array: the maximum delay depends on
the aperture D.

Let W = % be the bandwidth in Hz. Wavelength is A = ¢ /f.
Aperture is A = D /) wavelengths.

(1)

¥y ¥

Xo(t) Xl(t)

= Maximal delay across the array is 7 = D/c

m The narrowband condition is satisfied if

D f
Br<r & W—<1 & W<<ZO
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Examples

m Wireless communication: fy ~ 1 GHz, A ~ 30 cm, A ~ 5 wavelengths
= W < 30 MHz.

E.g., Bluetooth has fy = 2400 MHz, W = 1 MHz: narrowband across
the array.

m Radio astronomy: e.g., fy ~ 100 MHz, A ~ 3 m, D ~ 100 km,
A ~ 33,000 wavelengths = W < 3 kHz

If the narrowband condition is not satisfied, we can process signals in
sufficiently narrow subbands.

Alternative interpretation

Sample at Nyquist: . = W, or T, = 1/W. The narrowband condition
IS Tmax << Ts: instantaneous w.r.t. the sampling rate.
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The narrowband condition

Due to multipath, e.g. reflections on distant buildings, delays can be
much higher:

m QOutdoor multipath creates pathlength differences of ~ 1 km, delays
~ 3 ps, A ~ 3000 wavelengths = W < 300 kHz. This is barely
satisfied by GSM (2G)

In general we require a space-time equalizer structure (Ch. 4).

space-time equalizer
S(t)/\ b q

: — y(t) = 8(t)
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Array response

Consider a uniform linear array with M elements.

>
/ so(t)
' / so(t): transmitted

baseband signal,
modulated at wg

Xm(t): received
baseband signal, after
demodulation by wq
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Array response

Xm(t) = am(0) - so(t — Tpm)e S0 Tm

m T, bulk delay, set T, = To + ™

Let s(t) = so(t — To)e 700 be the signal received at the first

antenna. Then
Xm(t) = am(0) - s(t)e”«0™m

® a,(0): direction-dependent antenna response. We usually assume all
antennas are identical (“uniform array”).
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Array response
Stack the received signals in a vector x(t):

Xo(t) 1
X e_JUJOTl
=] o] T oo
XM—l(t) e—jWOTM—l

m For a uniform linear array, all antennas have the same spacing d, so
that 7, = m7

i 2
woT = _w0d5|(r:1(0) = —;dsin(e) = —27Asin(0)
where A = d/\ is the spacing in wavelengths.
1
ej27rAsin(0)
x(t) = _ ao(0)s(t) =: a(0)s(t)

ej27r(l\/lf.1)A sin(0)
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Array response
a(0) is called the array response vector.

More in general,

1
el
al)=| . |al(0)
i1
With antenna positions x,,
2
Gm = —wWoTm = *ﬂc " Xm = *iC “Xm
c A
. o . sin(0)
m With a direction vector in 2D ¢ = — , the phase factors are
cos(f)

Om = 27rX7m sin(0) + 27ry7m cos(0)
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Array manifold

= Vary s(t), then x(t) traces a line in CV
m Two independent sources: x(t) = a(f1)s1(t) + a(f2)s»(t) spans a

plane

The array manifold A is the curve that a(f) describes in the
M-dimensional complex vector space C" when @ is varied over the
domain of interest:

A=1{a(0):0<6<2n).
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Array manifold

1 signal

2 signals

x(t)

) a(0)

= we can find 0 from the intersections!
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Array manifold

However, this has limitations:

m One source with multipath:
x(t) = a(01)s(t) + a(62)Bs(t) = {a(61) + pa(b2)}s(t) = as(t)
In general a is not on the manifold!

s(t)

Xl(f) Xz(t)
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Bea mforming
51 O/\.. Y

5:(t)
/ Y xa(t) ><

§2(t)

52(1.“) [e]

w

Consider two narrowband sources:

X(t) = alSl(t) + 8252(t) = As(t)7 A= [al 32]7 S(t) _ [Sl(t)]

52(1.')

m Source separation: estimate beamformers wy, w, to separate and
recover the sources:

n(t) =wix(t) =4(t),  ya(t) = wyx(t) = &(t)
This is beamforming: (linearly) combine the antenna outputs
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Beamforming

m With W = [w;  wy]

(O] _ e o i
B//;(t)]—Wx(t)—s(t) s W'A=1 < W=AMAA)"!

The separating beamformers are found from a pseudo-inverse of A, as
the rows of W".

If we know A, we can find the beamformers by inversion. This is a
“zero-forcing beamformer”.

With noise added, we might have noise enhancement. MMSE (Wiener)
beamformers take this into account (Ch.5).
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Beamforming

Take a single unit-power source from direction 6, and look at the
beamformer output y(t) = w'x(t) = w"a(0)s(t)

Compute the output power P, () = E[|y(t)[?] = |w"a(0)[?

m First consider a fixed beamformer w = [1---1]".

spatial response for fixed w
spatial response for fixed w spatial response for fixed w ; i P

M=2 M=3 M=7

Delta = 0.5 Delta = 0.5

Delta = 0.5

0.5

-50 50 -50 50 -50

0 0 0
angle [deg] angle [deg] angle [deg]

This beamformer is tuned to receive from ¢ = 0° (broadside).
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Beamforming

spatial response for fixed w spatial response for fixed w spatial response for fixed w
7 7 7
M=7 M=7 M=7
6 6 6
Delta = 0.5 elta = 1 Delta = 2
5 5
4 4
3 3
2 2
1 1
0
-50 0 50 -50 0 - 0
angle [deg] angle [deg] angle [deg]

Grating lobes appear if the antenna spacing is larger than A\/2. Then
there can be a response also for sources from directions # 0°.
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Beamforming

Let's take w = a(30°):

spatial response for fixed w

M=7
Delta=0.5

0
angle [deg]

The array now has a maximal response to signals from 30°.
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Beamforming

To do direction finding, we take a varying beamformer of the form
w(0) = a(0) and we vary 0 to scan space.

m With one source in direction 1, this peaks at the source direction.

m With two sources, x(t) = a(01)s1(t) + a(62)s2(t), the output power

has peaks at 67 and 6,

response for scanning w

M=7
Delta= 0.5
alpha = [0 30]

- M w8 oo N @

-50 50

0
angle [deg]

response for scanning w

- N w8 oo N @

M=7
Delta = 0.5
alpha = [0 12]

2r

50 0
angle [deg]

The resolution is determined by the beam width, 7.
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Narrowband correlation models
Consider again the model x(t) = As(t), and sample x(t):

x, = As,, n=0,--- ,N—1
We consider a stochastic model:
E[sn] =0, Rs = E[sps)]
Then the data satisfies

E[x,] =0, R, = E[x,x,] = AR;A"

m With d sources, generally, R is a full d x d matrix.

m if M > d then Ry is rank deficient (rank d)
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Narrowband correlation models

Two important special cases are:

m Independent sources: the source covariance is diagonal,

Rs =35 =

m Independent sources with equal variances:

Rs = o2l = R, = 02AA"

1@(U Delft 3. narrowband models



Narrowband correlation models

With additive noise (zero mean, WSS, independent from the signals):

Xn = ApSy + Ny, = R, = ARA" + R,

m Independent noise: the noise covariance R, is diagonal

= Spatially white noise: R, = o2/
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Sample correlation matrices
The sample covariance matrix is

L1 y
R, = N Zx,,xn
n
It estimates the data covariance matrix Ry. Then

R, = AR;A" + R, + (cross terms)

This is an unbiased estimate:

E[R] = R« = AR;A" + R,

m Often we stack the samples x, in a matrix X = [xo, -, xy_1]:
X =AS
Then R, = 1 XX"
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Application: radio astronomy

Recall the measurement equation in radio astronomy:

Viw.b) = [ 1(w.¢)e 7260

m V(w, b): received cross power spectral density over baseline b

m /(w,(): sky brightness in look direction ¢

10 MHz 100 kHz 10s
10 us

x(n, k) x(n, k)x(n, k)" R,
©

to —| filter

BB bank
iMl(t)‘KEF
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Application: radio astronomy

Data acquisition

m The received signals X,,(t) are moved to baseband (x,,(t)), sampled
and split into narrow subbands (x,,[n, k])

Stack these into a vector x[n, k] with n: time index, k: frequency bin

m Correlate over short time intervals with index p (order seconds):

1 pN—1
kp,k = Z x[n, k]x"[n, k]
n=(p—1)N

N is about 1,000 to 1,000,000. The maximum correlation time
depends on stationarity: rotation of the earth vs baseline length.
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Application: radio astronomy

Basic covariance data model

m One source without noise:
x[n, k] = aqg[n, k]sq[n, k|
where the array response vector aq[n, k| has entries

Xm: antenna position

; w
am = e/ =—(g-x S
" ’ Om ccq m { ¢q4: source direction

Q
m Full point source model: x[n, k] = Z aq[n, k|sq[n, k] + n[n, k]
q=1
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Application: radio astronomy

The sky sources and the noise are modeled as independent zero mean
complex Gaussians (WSS). We drop the frequency index k.

Let R, = E [x[n] x"[n]]
R, = ASA) + %, p=0,1,2,---
where ¥ and X, are diagonal matrices with the sky source and noise

powers, resp.

Y is a diagonal containing the source brightness /({,)
A, has columns a,(p) with entries e /Zn(P)¢a
Zm(p): the normalized location of antenna m at time interval p

Cq: the direction of the gth source
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Application: radio astronomy

Image formation

Direct beamforming (matched filter): to measure power in direction ¢,
take w(¢, p) with entries e /zn(P)¢

m Output power of the beamformer:

Ib(¢) = w(¢ p)"Row(¢, p)

p

m Insert the model:

Ib(¢) = Z w(¢,p)"ApEsA,w(C, p)
= ZZ w(C. p)"aq(p) 1(¢q) aq(p) ' w(C. p)
= Z/(cq)B ¢~ ¢q)
q

where B(¢) == >, eJ(z(P)=2/(P))C is the dirty beam.

)
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Summary

m The narrowband condition allows to translate delays into phases
If it does not hold, we could split the received data into narrow
subbands, or consider space-time processing

m The narrowband data model X = AS + N represents an
instantaneous mixture of sources

m The corresponding covariance model is R, = AR;A" + R,

m A beamformer computes y(t) = w'x(t).
The output power is P, (w) = E[|y()]?] = w"Ryw
If we scan w we obtain a spatial spectrum.

A variety of beamforming methods exist to compute various spectrum
estimates. They are used for image formation and direction finding.
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