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Models
Signal processing follows these steps:

Physics

Model

Method

Algorithm

Implementation

A model simplifies the physics to capture the essentials.

Algorithms try to estimate model parameters: fewer is better!

For the same physics, which model is suitable depends on the
application.

Whatever we don’t model is put under the noise.
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Spatial filtering

Using multiple antennas, we we can cancel an incoming interfering
signal via null steering:

τ

y(t)
w0

w1

s(t)

x0(t) x1(t)

y(t) = w0s(t) + w1s(t − τ)

Y (ω) = S(ω)
(
w0 + w1e

−jωτ
)

Assume we know τ , then Y (ω) = 0 at a
selected frequency ω0 if

w1 = −w0e
jω0τ
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Beamforming

A phased array does linear beamforming by computing a weighted sum:

w

y(t) = ŝ(t)

s(t)
beamformer

xM−1(t)

x0(t)

Using constant weights (not frequency-dependent), we can cancel a
signal only at a specific frequency, but not at all frequencies.
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Modulation and demodulation
In digital communication systems, baseband signals s(t) are modulated
on a carrier before transmission:

z(t) = real{s(t)e jω0t} = x(t) cos(ω0t)− y(t) sin(ω0t)

The baseband signal s(t) = x(t) + jy(t) is the complex envelope of
z(t) and is recovered by demodulation

demodulation:

Lowpass s(t)

e−jω0t

z(t)

−2ω0

−ω0

B

ω0

S(ω)

0

Z(ω)

0
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The narrowband condition
The bandpass signal z(t) propagates through space. Suppose it is
delayed by τ :

zτ (t) := z(t − τ) = real{s(t − τ)e jω0(t−τ)}
= real{s(t − τ)e−jω0τ︸ ︷︷ ︸

sτ (t)

e jω0t}

Let B be the bandwidth of s(t). Then

s(t−τ) =
1

2π

∫ B/2

−B/2
S(ω)e−jωτe jωtdω ≈ 1

2π

∫ B/2

−B/2
S(ω)e jωtdω = s(t)

if |ωτ | � π for all frequencies |ω| ≤ B
2 , so that e−jωτ ≈ 1

If the narrowband condition Bτ � 2π holds, then

sτ (t) ≈ s(t)e−jω0τ for Bτ � 2π

For narrowband signals, time delays smaller than the inverse bandwidth
may be represented as phase shifts
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The narrowband condition
The maximal delay depends on the situation!

Propagation across the antenna array: the maximum delay depends on
the aperture D.

Let W = B
2π be the bandwidth in Hz. Wavelength is λ = c/f0.

Aperture is ∆ = D/λ wavelengths.

s(t)

x0(t) x1(t)

τ

Maximal delay across the array is τ = D/c

The narrowband condition is satisfied if

Bτ � 2π ⇔ W
D

c
� 1 ⇔ W � f0

∆
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Examples

Wireless communication: f0 ∼ 1 GHz, λ ∼ 30 cm, ∆ ∼ 5 wavelengths
⇒ W � 30 MHz.

E.g., Bluetooth has f0 = 2400 MHz, W = 1 MHz: narrowband across
the array.

Radio astronomy: e.g., f0 ∼ 100 MHz, λ ∼ 3 m, D ∼ 100 km,
∆ ∼ 33, 000 wavelengths ⇒ W � 3 kHz

If the narrowband condition is not satisfied, we can process signals in
sufficiently narrow subbands.

Alternative interpretation

Sample at Nyquist: fs = W , or Ts = 1/W . The narrowband condition
is τmax � Ts : instantaneous w.r.t. the sampling rate.
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The narrowband condition
Due to multipath, e.g. reflections on distant buildings, delays can be
much higher:

Outdoor multipath creates pathlength differences of ∼ 1 km, delays
∼ 3 µs, ∆ ∼ 3000 wavelengths ⇒ W � 300 kHz. This is barely
satisfied by GSM (2G)

In general we require a space-time equalizer structure (Ch. 4).

wxM−1(t)

x0(t)
s(t)

y(t) = ŝ(t)

space-time equalizer
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Array response

Consider a uniform linear array with M elements.

s0(t)

xM−1(t)x1(t)x0(t)

∆

θ

s0(t): transmitted
baseband signal,
modulated at ω0

xm(t): received
baseband signal, after
demodulation by ω0

3. narrowband models 10 / 32



Array response

xm(t) = am(θ) · s0(t − Tm)e−jω0Tm

Tm: bulk delay, set Tm = T0 + τm

Let s(t) = s0(t − T0)e−jω0T0 be the signal received at the first
antenna. Then

xm(t) = am(θ) · s(t)e−ω0τm

am(θ): direction-dependent antenna response. We usually assume all
antennas are identical (“uniform array”).
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Array response
Stack the received signals in a vector x(t):

x(t) =


x0(t)
x1(t)

...
xM−1(t)

 =


1

e−jω0τ1

...
e−jω0τM−1

 a0(θ)s(t)

For a uniform linear array, all antennas have the same spacing d , so
that τm = mτ

ω0τ = −ω0
d sin(θ)

c
= −2π

λ
d sin(θ) = −2π∆ sin(θ)

where ∆ = d/λ is the spacing in wavelengths.

x(t) =


1

e j2π∆ sin(θ)

...

e j2π(M−1)∆ sin(θ)

 a0(θ)s(t) =: a(θ)s(t)
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Array response
a(θ) is called the array response vector.

More in general,

a(θ) =


1

e jφ1

...
e jφM−1

 a0(θ)

With antenna positions xm,

φm = −ω0τm = −ω0

c
ζ · xm = −2π

λ
ζ · xm

With a direction vector in 2D ζ = −
[

sin(θ)
cos(θ)

]
, the phase factors are

φm = 2π
xm
λ

sin(θ) + 2π
ym
λ

cos(θ)
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Array manifold

x(t) = a(θ)s(t)

Vary s(t), then x(t) traces a line in |CM

Two independent sources: x(t) = a(θ1)s1(t) + a(θ2)s2(t) spans a
plane

The array manifold A is the curve that a(θ) describes in the
M-dimensional complex vector space |CM when θ is varied over the
domain of interest:

A = {a(θ) : 0 ≤ θ < 2π} .
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Array manifold

2 signals
1 signal

a(θ)a(θ)

x(t)

x(t)

⇒ we can find θ from the intersections!
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Array manifold
However, this has limitations:

One source with multipath:

x(t) = a(θ1)s(t) + a(θ2)βs(t) = {a(θ1) + βa(θ2)} s(t) = a s(t)

In general a is not on the manifold!

x2(t)

s(t)

θ1 θ2

x1(t)
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Beamforming

ŝ1(t)

ŝ2(t)

W

x1(t)

x2(t)s2(t)

s1(t)

Consider two narrowband sources:

x(t) = a1s1(t) + a2s2(t) = As(t) , A = [a1 a2], s(t) =

[
s1(t)
s2(t)

]

Source separation: estimate beamformers w1,w2 to separate and
recover the sources:

y1(t) = wH

1 x(t) = ŝ1(t) , y2(t) = wH

2 x(t) = ŝ2(t)

This is beamforming: (linearly) combine the antenna outputs
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Beamforming

With W = [w1 w2][
y1(t)
y2(t)

]
= W Hx(t) = s(t) ⇔ W HA = I ⇔ W = A(AHA)−1

The separating beamformers are found from a pseudo-inverse of A, as
the rows of W H.

If we know A, we can find the beamformers by inversion. This is a
“zero-forcing beamformer”.

With noise added, we might have noise enhancement. MMSE (Wiener)
beamformers take this into account (Ch.5).
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Beamforming

Take a single unit-power source from direction θ, and look at the
beamformer output y(t) = wHx(t) = wHa(θ)s(t)

Compute the output power Py (θ) = E[ |y(t)|2] = |wHa(θ)|2

First consider a fixed beamformer w = [1 · · · 1]T.
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This beamformer is tuned to receive from θ = 0◦ (broadside).
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Beamforming
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Grating lobes appear if the antenna spacing is larger than λ/2. Then
there can be a response also for sources from directions 6= 0◦.
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Beamforming

Let’s take w = a(30◦):
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The array now has a maximal response to signals from 30◦.
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Beamforming
To do direction finding, we take a varying beamformer of the form
w(θ) = a(θ) and we vary θ to scan space.

With one source in direction θ1, this peaks at the source direction.

With two sources, x(t) = a(θ1)s1(t) + a(θ2)s2(t), the output power
has peaks at θ1 and θ2
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The resolution is determined by the beam width, 2π
M .
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Narrowband correlation models
Consider again the model x(t) = As(t), and sample x(t):

xn = Asn , n = 0, · · · ,N − 1

We consider a stochastic model:

E[sn] = 0 , Rs = E[sns
H

n ]

Then the data satisfies

E[xn] = 0 , Rx = E[xnx
H

n ] = ARsA
H

With d sources, generally, Rs is a full d × d matrix.

if M > d then Rx is rank deficient (rank d)

3. narrowband models 23 / 32



Narrowband correlation models

Two important special cases are:

Independent sources: the source covariance is diagonal,

Rs = Σs =

 σ2
1 0

. . .

0 σ2
d



Independent sources with equal variances:

Rs = σ2
s I ⇒ Rx = σ2

sAAH
,
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Narrowband correlation models

With additive noise (zero mean, WSS, independent from the signals):

xn = Ansn + nn ⇒ Rx = ARsA
H + Rn

Independent noise: the noise covariance Rn is diagonal

Spatially white noise: Rn = σ2
nI
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Sample correlation matrices
The sample covariance matrix is

R̂x =
1

N

∑
n

xnx
H

n

It estimates the data covariance matrix Rx . Then

R̂x = AR̂sA
H + R̂n + (cross terms)

This is an unbiased estimate:

E[R̂x ] = Rx = ARsA
H + Rn .

Often we stack the samples xn in a matrix X = [x0, · · · , xN−1]:

X = AS

Then R̂x = 1
NXX H
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Application: radio astronomy

Recall the measurement equation in radio astronomy:

V (ω,b) =

∫
I (ω, ζ)e−j ω

c
ζ·bdζ

V (ω,b): received cross power spectral density over baseline b

I (ω, ζ): sky brightness in look direction ζ

to
BB

10 MHz

x̃0(t)

x̃M−1(t)

filter
bank

100 kHz
10 µs

∑

10 s

R̂p,kx(n, k)x(n, k)Hx(n, k)x(t)RF
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Application: radio astronomy
Data acquisition

The received signals x̃m(t) are moved to baseband (xm(t)), sampled
and split into narrow subbands (xm[n, k])

Stack these into a vector x [n, k] with n: time index, k: frequency bin

Correlate over short time intervals with index p (order seconds):

R̂p,k =
1

N

pN−1∑
n=(p−1)N

x [n, k]xH[n, k]

N is about 1,000 to 1,000,000. The maximum correlation time
depends on stationarity: rotation of the earth vs baseline length.
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Application: radio astronomy
Basic covariance data model

One source without noise:

x [n, k] = aq[n, k]sq[n, k]

where the array response vector aq[n, k] has entries

am = e jφm , φm = −ω
c
ζq · xm

{
xm: antenna position
ζq: source direction

Full point source model: x [n, k] =
Q∑

q=1

aq[n, k]sq[n, k] + n[n, k]
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Application: radio astronomy

The sky sources and the noise are modeled as independent zero mean
complex Gaussians (WSS). We drop the frequency index k.

Let Rp = E
[
x [n] xH[n]

]
Rp = ApΣsA

H

p + Σn , p = 0, 1, 2, · · ·

where Σs and Σn are diagonal matrices with the sky source and noise
powers, resp.

Σs is a diagonal containing the source brightness I (ζq)

Ap has columns aq(p) with entries e−jzm(p)·ζq

zm(p): the normalized location of antenna m at time interval p

ζq: the direction of the qth source
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Application: radio astronomy
Image formation

Direct beamforming (matched filter): to measure power in direction ζ,
take w(ζ, p) with entries e−jzm(p)·ζ

Output power of the beamformer:

ÎD(ζ) =
∑
p

w(ζ, p)HR̂pw(ζ, p)

Insert the model:

ID(ζ) =
∑
p

w(ζ, p)HApΣsA
H

pw(ζ, p)

=
∑
p

∑
q

w(ζ, p)Haq(p) I (ζq) aq(p)Hw(ζ, p)

=
∑
q

I (ζq)B(ζ − ζq)

where B(ζ) :=
∑

i ,j ,p e−j(zi (p)−zj (p))·ζ is the dirty beam.
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Summary

The narrowband condition allows to translate delays into phases

If it does not hold, we could split the received data into narrow
subbands, or consider space-time processing

The narrowband data model X = AS + N represents an
instantaneous mixture of sources

The corresponding covariance model is Rx = ARsAH + Rn

A beamformer computes y(t) = wHx(t).

The output power is Py (w) = E[|y(t)|2] = wHRxw
If we scan w we obtain a spatial spectrum.

A variety of beamforming methods exist to compute various spectrum
estimates. They are used for image formation and direction finding.
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