EE 4715 Array Processing

Geert Leus, Richard Hendriks, Alle-Jan van der Veen

fuDelft

What is array processing?

In array processing, we consider multiple antennas: sampling in space. We stack the output of antennas into a vector $x(t)$. In simple cases, we have a linear model

$$
\boldsymbol{x}(t)=\boldsymbol{A} \boldsymbol{s}(t)+\boldsymbol{n}(t)
$$

where $\boldsymbol{s}(t)$: vector of source signals; $\boldsymbol{n}(t)$: vector of noise.

What is array processing?

$$
\boldsymbol{x}(t)=\boldsymbol{A} \boldsymbol{s}(t)+\boldsymbol{n}(t)
$$

- Tools from linear algebra, in particular matrix inversion, SVD and eigenvalue decompositions.

$$
R_{x}=A R_{s} A^{\mathrm{H}}+R_{n}
$$

- Tools from statistics: usually covariance matrices and tools seen in Estimation \& Detection.
- Applications: we will focus on wireless communication, radio astronomy, and acoustics (microphone arrays).

Diversity combining

With multiple antennas, we can improve the SNR:

- For a single signal $s(t)$ in noise, received over M antennas:

$$
x_{m}(t)=s(t)+n_{m}(t), \quad m=1, \cdots, M
$$

Assume signal power σ_{s}^{2} and noise power σ_{n}^{2}, then the input SNR is

$$
\mathrm{SNR}_{\text {in }}=\frac{\sigma_{s}^{2}}{\sigma_{n}^{2}} \quad \text { (per antenna) }
$$

Diversity combining

With multiple antennas, we can improve the SNR:

- For a single signal $s(t)$ in noise, received over M antennas:

$$
x_{m}(t)=s(t)+n_{m}(t), \quad m=1, \cdots, M .
$$

Assume signal power σ_{s}^{2} and noise power σ_{n}^{2}, then the input SNR is

$$
\mathrm{SNR}_{i n}=\frac{\sigma_{s}^{2}}{\sigma_{n}^{2}} \quad \text { (per antenna) }
$$

■ Let's average the M received signals:

$$
x(t)=\frac{1}{M} \sum_{m=1}^{M} x_{m}(t)=s(t)+\frac{1}{M} \sum_{m=1}^{M} n_{m}(t)
$$

The output SNR is

$$
\mathrm{SNR}_{\text {out }}=M \frac{\sigma_{s}^{2}}{\sigma_{n}^{2}}=M \mathrm{SNR}_{\text {in }} \quad \text { (array gain) }
$$

Diversity combining (cont'd)

Written differently:

$$
\begin{gathered}
x(t)=\boldsymbol{a} s(t)+\boldsymbol{n}(t), \quad \text { where we had } \boldsymbol{a}=\mathbf{1}:=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] \\
\hat{s}(t)=\boldsymbol{w}^{\mathrm{H}} \boldsymbol{x}(t), \quad \boldsymbol{w}=\frac{\boldsymbol{a}}{\|\boldsymbol{a}\|^{2}}
\end{gathered}
$$

This also works for more general a.

Diversity combining (cont'd)

- The vector w is known as a beamformer: a spatial filter. In this case, it is a matched filter ("maximum ratio combining").
- In wireless communication, this is used to combine multiple antennas, where some antennas may have poor reception due to fading.

Wavefield sampling

Using an array, we sample in space. We measure signals propagating in space: wavefields.

- Estimate directions, propagation delays, propagation velocities.
- Applications in wavefield imaging: radar, radio astronomy, ultrasound imaging, underwater acoustics, seismic exploration

Source separation

If \boldsymbol{A} is square and invertible, then

$$
\boldsymbol{x}(t)=\boldsymbol{A} \boldsymbol{s}(t)+\boldsymbol{n}(t) \quad \Rightarrow \quad \hat{\boldsymbol{s}}(t)=\boldsymbol{A}^{-1} \boldsymbol{x}(t)
$$

Thus, we can separate a mixture of M incoming signals.

- Applications:
- wireless communication: MIMO
- acoustic arrays: speaker separation

Covariance models

For a stationary zero mean random process $x(t)$, define the correlation matrix $\boldsymbol{R}_{x}=\mathrm{E}\left[x(t) \boldsymbol{x}^{H}(t)\right]$. With signals independent from the noise,

$$
\boldsymbol{x}(t)=\boldsymbol{A} \boldsymbol{s}(t)+\boldsymbol{n}(t) \quad \Rightarrow \quad \boldsymbol{R}_{\boldsymbol{x}}=\boldsymbol{A} \boldsymbol{R}_{\boldsymbol{s}} \boldsymbol{A}^{H}+\boldsymbol{R}_{\boldsymbol{n}}
$$

From an estimate of R_{x}, we can try to identify

- A: e.g. direction finding,
$\square R_{s}$: e.g. image formation,
- R_{n} : noise power calibration

To enable estimation, we rely on structure present in $A, \boldsymbol{R}_{s}, \boldsymbol{R}_{\boldsymbol{n}}$, e.g. parametric models, diagonals (representing independence).
\Rightarrow Modeling is important, the algorithms are based on it

Course outline

Models:

- Wave propagation
- Narrowband models
- Wideband models

Methods and algorithms:

- Beamforming and direction finding
- Factor analysis

Applications:

- Wireless communication
- Radio astronomy
- Microphone arrays

Course organization

■ Reader: A.J. van der Veen, "Array signal processing, an algebraic approach", TU Delft, 2022 (in progress)

■ Handouts: related papers from literature

- Exam:
- Take-home matlab assignments \Rightarrow reports
- Oral discussion about the reports

