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Introduction: Subspace estimation
Classical data model

Consider Q sources s[n], a P × Q mixing matrix A, and white noise
n[n]:

x [n] = As[n] + n[n]

R := E[xxH] = AΣsA
H + σ2I

x2(t)
s2(t)

s1(t)

x1(t)
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Introduction: Subspace estimation

R = AΣsA
H + σ2I

Eigenvalue decompositions are used to estimate the column span of A:

No noise:

R =: UΛUH =
[

U0 U1

] [ Λ0

0

] [
UH

0

UH

1

]

With additive white noise:

R =
[

U0 U1

] [ Λ0 + σ2I
σ2I

] [
UH

0

UH

1

]

In both cases, U0 is a basis for the column span of A. This is used in
subspace-based techniques, e.g. in MUSIC.
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Subspace estimation

With spatially colored noise: Rn = D (some diagonal)

R = AΣsA
H + D

The eigenvalue decomposition does not give the correct subspace.

We need to do prewhitening: work with R−1/2
n x [n].

R−1/2
n RR−1/2

n = (R−1/2
n A)Σs(AHR−1/2

n ) + I

=
[

U0 U1

] [ Λ0 + I
I

] [
UH

0

UH

1

]
After prewhitening, U0 is a basis for the column span of R−1/2

n A.

This can be done if Rn is known (requires calibration). What if it isn’t?
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Factor Analysis
Data model

We work with the model

R = AAH + D [low rank plus diagonal]

The goal in FA is, given R, estimate A and D.

FA is an old problem (1920?), usually for real factors. It is used in many
domains where data has arbitrary scalings.

Uniqueness

A is unique only up to a rotation Q: if A fits the model, then also
AQ. This is solved by placing constraints on A.

The subspace ran(A) is invariant anyway.
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Factor Analysis
If Q ≥ P then the problem is not identifiable: we can set D = 0. What
is the maximum Q (number of sources?)

Counting number of equations and number of unknowns:

For a complex R, we have P2 real-valued “observations”

Number of real-valued unknowns in A is 2PQ, in D is P

Need Q2 constraints to make A unique (e.g., constraining AHD−1A
to be diagonal and the first row of A real)

Total degrees of freedom:

s = P2 − (2PQ + P − Q2) = (P − Q)2 − P

Identifiability requires s > 0 (more equations than unknowns)

s > 0 ⇔ Q < P −
√
P
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FA algorithms
Ad hoc algorithm

In practice we do not have R, but an estimate R̂.

We can formulate Factor Analysis as a covariance fitting problem (least
squares):

min
A,D
‖R̂ − AAH −D‖2F

Solve using Alternating Least Squares: estimate A, then estimate D,
etc.

This converges very slowly.
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FA algorithms
Closed-form approximate solution

We can also view this as a matrix extension problem: replace the main
diagonal of R̂ such that it becomes low rank (= AAH).

Rank-1 factor model:

a = αb

|a1|2 = αr12

R ′ = R −D = aaH =

Property: each submatrix not involving the main diagonal is rank-1.
The ratios can be used to estimate the diagonal entries of aaH.
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Intermezzo
Recap: the Kronecker product

For a matrix, vec(·) denotes the stacking of the columns of a matrix
into a vector.

For two matrices A and B, the Kronecker product is defined as

A⊗ B =

 a11B · · · a1NB
...

...
aM1B · · · aMNB

 ,
Some properties:

(A⊗ B)(C ⊗D) = AC ⊗ BD
vec(abH) = b∗ ⊗ a

vec(ABC ) = (CT ⊗ A)vec(B)
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Intermezzo
The variance of a sample covariance matrix

Consider an i.i.d. zero mean random sequence xn.

Let R = E[xnxH

n ]. We estimate R from N data samples as

R̂ =
1

N

N−1∑
n=0

xnx
H

n

Then E[R̂] = R: unbiased. But what is the variance of this estimate?

To define this, consider r = vec(R), r̂ = vec(R̂). Then

r̂ = r + e

where r̂ is a random variable, r is its expected value (mean), and e zero
mean “finite sample noise”. We define

cov[R̂] =: cov[r̂ ] = E[eeH]
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Intermezzo
The variance of a sample covariance matrix

Recall

R̂ =
1

N

∑
x [n]x [n]H ⇒ r̂ =

1

N

∑
x∗
n ⊗ xn

Use the fact that xi is independent of xj for i 6= j to derive

cov[R̂] = E

[
(

1

N

∑
(x∗

i ⊗ xi )− E[x∗
i ⊗ xi ])(

1

N

∑
(x∗

j ⊗ xj)− E[x∗
j ⊗ xj ])

H

]
=

1

N2

∑∑
E
[
(x∗

i ⊗ xi − E[x∗
i ⊗ xi ])(x∗

j ⊗ xj − E[x∗
j ⊗ xj ])

H
]

=
1

N2

∑
E
[
(x∗

i ⊗ xi − E[x∗
i ⊗ xi ])(x∗

i ⊗ xi − E[x∗
i ⊗ xi ])

H
]

=
1

N

(
E[(x∗ ⊗ x)(x∗ ⊗ x)H]− E[x∗ ⊗ x ]E[x∗ ⊗ x ]H

)
=

1

N
C

where C = E[(x∗
k ⊗ xk)(x∗

k ⊗ xk)H] − E[x∗
k ⊗ xk ]E[x∗

k ⊗ xk ]H
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Intermezzo
The variance of a sample covariance matrix

The covariance of R̂ involves fourth-order correlations. These can often
be described in simpler terms using cumulants.

For the special case where the entries xi of x are zero-mean and jointly
Gaussian distributed, it is known that (for arbitrary indices
a, b, c , d = 0, · · · ,M − 1)

E[xa x
∗
b xc x

∗
d ] = E[xax

∗
b ]E[xcx

∗
d ] + E[xax

∗
d ]E[x∗bxc ] + E[xaxc ]E[x∗bx

∗
d ]

“Proper” (or circularly symmetric) complex variables are such that
E[xxT] = 0. In this case, the last term vanishes.

Thus, for Gaussians, higher-order moments reduce to a function of
second-order moments.
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Intermezzo
The variance of a sample covariance matrix

Stacking in a matrix with row-index a + M b and column-index
c + M d , we can write this expression compactly as

E[(x∗ ⊗ x)(x∗ ⊗ x)H] = E[x∗ ⊗ x ]E[x∗ ⊗ x ]H + E[x∗x∗H]⊗ E[xxH]
+E[(x∗ ⊗ 1)(1⊗ x)H]� E[(1⊗ x)(x∗ ⊗ 1)H]

For proper complex variables, the last term vanishes, and thus, for zero
mean proper complex-valued Gaussian random variables,

cov[R̂] =
1

N
R∗ ⊗ R
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FA algorithms
Parametrization

We parametrize R = R(θ) = AAH + D using parameters

θ =

 θA
θA∗

θD

 =

 vec(A)
vec(A∗)
diag(D)


These are redundant, but the constraints can be implemented later
(after estimating θ).

The parameters are complex and we use Wirtinger calculus to
differentiate. Essentially: treat θ and θ∗ as independent.

The Jacobian J(θ) for R(θ) is given by

J =
∂vec(R)

∂θT
= [JA, JA∗ , JD ] = [A∗ ⊗ I , (I ⊗ A)K , I ◦ I ]

where ◦ denotes the Khatri-Rao product (column-wise Kronecker
product), and vec(AT) = Kvec(A).
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FA algorithms
Non-Linear Weighted Least Squares

Define r = vec(R), then we can formulate a covariance matching
problem

θ̂ = arg min
θ

‖W 1/2[r̂ − r(θ)]‖2 = arg min
θ

[r̂ − r(θ)]HW [r̂ − r(θ)]

where W is a weighting matrix. The optimum weight is the inverse of
the covariance matrix of r̂ , for proper Gaussian-distributed data
estimated as

W = R̂−T ⊗ R̂−1

NOte that we use R̂ instead of R. Asymptotically (for large N), this
converges to the ML solution.
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FA algorithms
Gauss-Newton for solving Non-Linear WLS

The Gauss-Newton technique for solving nonlinear WLS is the iteration

θ(k+1) = θ(k) + µ(k)δ

where the direction of descent δ is found by solving

B(θ(k)) δ = g(θ(k))

g(θ) is the gradient of the cost function, and B(θ) is the Gramian of
the Jacobians (approximating the Hessian):

B(θ) = JH(θ)WJ(θ) , g(θ) = JH(θ)W [r̂ − r(θ)]
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FA algorithms
Closed-form solution for direction of descent

B(θ) can be very large: hard to construct and invert.

A complicated derivation shows how we can solve for δD inside δ in
closed form. Define

W̃ = R̂−1 − R̂−1A(AHR̂−1A)−1AHR̂−1 [W̃A = 0]

B̃D = JH

D

(
W̃ T ⊗ W̃

)
JD = W̃ T � W̃ [JD = I ◦ I ]

g̃D = JH

D

(
W̃ T ⊗ W̃

)
vec[R̂ − R(θ)]

Then the computation of

δ =

 vec(∆A)
vec(∆A∗)

δD


reduces to the computation of δD from B̃DδD = g̃D , while

∆A =
1

2
(I + R̂W̃ )(R̂ − R(θ)− diag(δD))R̂−1A(AHR̂−1A)−1

and ∆A∗ = ∆∗
A.
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FA algorithms
Alternating WLS method

If we take step size µ = 1, then the closed-form result simplifies.

[· · · ]
The result is the Alternating Weighted Least Squares (AWLS) algorithm
(cf the Ad-Hoc algorithm), where W = R̂−1:

UΛUH := D−1/2
(k) R̂D−1/2

(k) [EVD; prewhitening of R̂]

A(k+1) := D1/2
(k) U0(Λ0 − I )1/2

W̃ := W −WA(k+1)(A
H

(k+1)WA(k+1))
−1AH

(k+1)W

d(k+1) :=
[
W̃ T � W̃

]−1
vecdiag(W̃ )

D(k+1) := diag(d(k+1))
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Extensions
Extended FA

Let M with mij ∈ {0, 1} be a “masking matrix”. Then

R = AAH + Ψ , Ψ = M �Ψ

This generalizes D to a more general structure.

This can be further generalized to linear models of the form
vec(Ψ) = Gθψ, where G is a fixed basis (e.g. selected columns of a
Fourier matrix to model spatially lowpass noise).

Joint FA

Suppose we have multiple “snapshots” Rm, with different Am but a
common noise covariance matrix,

Rm = AmAH

m + D, m = 1, . . . ,M
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Simulations
Convergence

Convergence speed for P = 100 sensors, N = 1000 samples

Q = 20 sources: Q = 80 sources:
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Simulations
Subspace Estimation Performance

Subspace error as function of SNR for Ψ = I (white noise).

Qm = 2, P = 5, M = 5, N = 100
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For low SNR, there is some drop in performance in particular for
non-joint processing. For higher SNR, there is no performance penalty.
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Applications - 1 (FA)
Gain and noise power calibration at the Westerbork Radio Telescope

s(t)

gps(t)

np(t)

g1s(t)

n1(t)

correlator

atmosphere

rij (t)

x1(t) xp(t)

General calibration strategy: ob-
serve a single ‘strong’ sky source

Stack the p antenna signals in a
vector x and analyze R = E[xxH]
with model

R = gσ2s g
H + D

Need to estimate the complex
gains gi and noise powers in D.
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Applications - 1 (FA)
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Estimates of (a) gain magnitude, noise powers, and (b) gain phase, as
function of frequency, around f = 1420 MHz. Based on observation of
the astronomical source 3C48. Frequencies processed independently.
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Applications - 2 (JFA)
Narrowband interference subspace estimation at the Westerbork Radio Telescope

For each frequency f , we have a sequence of short-term correlation
matrices R̂k,f (averaged to 10 ms) with model

Rk,f = Ak,f A
H

k,f + Df , k = 1, 2, · · · , 1000

Ak,f : interference subspace at time k, frequency f (32 frequency bins)

Df : noise power estimate at a single frequency – to be calibrated

For each frequency, we use JFA to estimate the factors and noise
powers.
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Applications - 2 (JFA)

Amateur AM radio broadcast interference at 434 MHz, both continuous
and intermittent, recorded at the WSRT pointed at 3C48:
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Applications - 2 (JFA)
Estimated number of interferers
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Applications - 2 (JFA)
Correlation spectra after interference cancellation

The interference subspaces are projected out, and the results are further
averaged over time.
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Applications - 3 (EFA)
Suppression of the Milky Way at a LOFAR station

Using a LOFAR LBA station, we observe two strong sources, Cas A and
Cyg A, and the Milky Way (cloud-like emission).

The Milky way is modeled by Rn with mask M incorporating all
baselines shorter than 4 wavelengths.

After estimating Rn using Extended Factor Analysis, the residual
R̂0 = R̂ − Rn is imaged.

Mask Matrix M
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Applications - 3 (EFA)

Total sky image for 1 station using classical DFT beamforming (“dirty
image”) combining data from 24 156kHz subbands distributed between
45.3 and 67.3 MHz and 10 seconds of integration per channel.

DFT Imaging without FA DFT Imaging with Extended FA
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Next, it is possible to calibrate the gains of the individual antennas
using the (known) intensities of the point sources.
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Applications - 4
Spatial Filtering at a LOFAR station

Data from the LOFAR station RS409 in HBA mode 5 (100-200 MHz),
tracking the strong astronomical source Cyg A.
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Spectrum LOFAR HBA Mode 5

Above 174 MHz, the spectrum is heavily contaminated by wideband
DAB transmissions.
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Applications - 4
Snapshot image of the sky

Uncontaminated image RFI-contaminated data

subband 250 at 175.59 MHz subband 247 at 175.88 MHz
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Applications - 4

For spatial filtering, we take 6 of the 46 receiving elements as reference
array. The covariance model is

Rk = AkA
H

k + Ψ = AkA
H

k +

[
Ψ00 0

0 Σ1

]
, M =

[
11T 0

0 I

]
Ψ00 contains the astronomical covariances of interest. The mask M is
used to avoid a subspace model for these. Ak is the subspace of the
interference.

10. factor analysis 32 / 34



Applications - 4

EFA is used to estimate the subspace of the interference. This is then
used as spatial filter on the 40 remaining antennas (primary array).
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Summary

Factor Analysis is viewed as an extension of the eigenvalue
decomposition for nonwhite noise.

We proposed:

New algorithms based on Gauss-Newton iterations

Extensions of FA to multiple matrices and more general noise models

The algorithms show reliable and efficient convergence, feasible for
moderately large problem sizes (P = 100 sensors).

Even if the noise is white, the performance penalty with respect to EVD
is minor.
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