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Vectors

● An N-dimensional vector is assumed to be a column vector:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮
xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

● Complex conjugate (Hermitian) transpose

xH = (xT)∗ = (x∗)T = [x∗1 x∗2 . . . , x∗N]

● For a discrete-time signal x(n), we use the following vectors

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(0)
x(1)
⋮

x(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

x(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(n)
x(n − 1)

⋮
x(n −N + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Vectors

● Vector norms:

Euclidean (2-norm):∥x∥ = ∥x∥2 = (
N

∑
i=1

∣xi ∣2)
1/2

= (
N

∑
i=1

x∗i xi)
1/2

= (xHx)1/2

1-norm:∥x∥1 =
N

∑
i=1

∣xi ∣

∞-norm:∥x∥∞ = max
i

∣xi ∣

● The inner product is defined as

⟨a,b⟩ = aHb =
N

∑
i=1

a∗i bi

● Two vectors are orthogonal if ⟨b,b⟩ = 0; if they are unit norm they are orthonormal
● Properties of inner product:

∣⟨a,b⟩∣ ≤ ∥a∥∥b∥(Cauchy-Schwarz)

2∣⟨a,b⟩∣ ≤ ∥a∥2 + ∥b∥2
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Linear independence, vector spaces, and basis vectors

● A collection of N vectors v 1, v 2, . . . , vN is called linearly independent if

α1v 1 + α2v 2 +⋯ + αNvN = 0 ⇔ α1 = α2 = ⋯ = αN = 0

● The space V spanned by a collection of vectors v 1, v 2, . . . , vN is called a vector
space

V = {α1v 1 + α2v 2 +⋯ + αNxN ∣ αi ∈ C , ∀i}

● If the vectors are linearly independent they are called a basis for that vector space
● The number of basis vectors is called the dimension of the vector space
● If the vectors are orthogonal → orthogonal basis
● If the vectors are orthonormal → orthonormal basis
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Matrices

● An n ×m matrix has n rows and m columns:

A = [aij] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1m

a21 a22 ⋯ a2m

⋮ ⋮ ⋮
an1 an2 ⋯ anm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

● Complex conjugate (Hermitian) transpose

AH = (AT)∗ = (A∗)T

● Hermitian matrix
A = AH
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Matrix inverse

● The rank of A, denoted ρ(A), is the number of independent columns or rows
of A

Prototype rank-1 matrix: A = abH

Prototype rank-2 matrix: A = abH + cdH

● The ranks of A, AH, AAH, and AHA are the same

ρ(A) = ρ(AH) = ρ(AAH) = ρ(AHA)

● If A is square and full rank (ρ(A) = n), there is a unique inverse A−1 such that

AA−1 = A−1A = I =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

● If A is square and ρ(A) = n, A is invertible or nonsingular

● If A is square and ρ(A) < n, A is noninvertible or singular
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Matrix inverse

● Properties

(AB)−1 = B−1A−1

(AH)−1 = (A−1)H

● Matrix Inversion Lemma:

(A +BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

● Woodbury’s Identity (special case of Matrix Inversion Lemma):

(A + uvH)−1 = A−1 − A−1uvHA−1

1 + vHA−1u
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Determinant and trace

● The determinant of an n × n matrix A is defined recursively by

det(A) =
n

∑
i=1

(−1)i+jaij det(Aij)

where Aij is the matrix obtained by removing the ith row and jth column from A
● An n × n matrix A is invertible or nonsingular ⇔ det(A) ≠ 0

● Properties:
det(AB) = det(A)det(B)
det(αA) = αn det(A)
det(A−1) = 1

det(A)
● The trace of an n × n matrix A is given by

tr(A) =
n

∑
i=1

aii
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Linear equations

● A set of n linear equations in m unknowns (stacked in the vector x), can be
written as

Ax = b

where A is an m × n matrix and B is an m × 1 vector

● If m = n and ρ(A) = n (square invertible), then x = A−1b
● If m = n and ρ(A) < n (singular), then there is either no solution or many

solutions;
If x0 is a solution, then

x = x0 + α1z1 +⋯ + αkzk

is also a solution with {z i , i = 1,2, . . . , k} is a set of k = n − ρ(A) linearly
independent solutions of Az = 0
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Linear equations

● If n < m, there are many solutions (the problem is underdetermined)
We often take the solution with the minimal norm

min
x

∥x∥ such that Ax = b

The solution is given by x0 = AH(AAH)−1b, where A+ = AH(AAH)−1 is the
pseudo-inverse of A for the underdetermined problem (ρ(A) = n)

● If n > m, there is generally no solution (the problem is overdetermined). We
often take the least squares solution

min
x

∥b −Ax∥

The solution is given by x0 = (AHA)−1AHb, where A+ = (AHA)−1AH is the
pseudo-inverse of A for the overdetermined problem (ρ(A) = m)
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Special matrix forms

● Diagonal and block diagonal matrix:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 ⋯ 0
0 a22 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 ⋯ 0
0 A22 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ Akk

⎤⎥⎥⎥⎥⎥⎥⎥⎦

● Toeplitz and Hankel matrix (constant along (anti-)diagonal):

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 3 5 7
2 1 3 5
4 2 1 3
6 4 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 3 5 7
3 5 7 4
5 7 4 2
7 4 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

● A square matrix A is called unitary if AAH = I and AHA = I , or in other words,
the columns and rows of A are orthonormal
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Hermitian forms

● The quadratic form of an n × n Hermitian matrix A is

QA(x) = xHAx =
n

∑
i=1

n

∑
j=1

x∗i aijxj

where x = [x1, x2, . . . , xn]T

● The matrix A is

positive definite, A > 0, if QA(x) > 0, ∀x ≠ 0,
positive semidefinite, A ≥ 0, if QA(x) ≥ 0, ∀x ≠ 0

negative definite, A < 0, if QA(x) < 0, ∀x ≠ 0,
negative semidefinite, A ≤ 0, if QA(x) ≤ 0, ∀x ≠ 0

● For any n × n matrix A and any n ×m (m ≤ n) matrix B with full rank m, the
definiteness of A and BHAB are the same
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Eigenvalues and eigenvectors

● For an n × n matrix A there are n eigenvalues λi and n eigenvectors v i satisfying

Av i = λiv i

● The eigenvalues are the roots of the characteristic polynomial

p(λ) = det(A − λI)

● The eigenvectors have a scaling ambiguity and are often normalized, ∥v i∥ = 1

● The eigenvectors corresponding to distinct eigenvalues are linearly independent

● If A has rank ρ(A), then A has ρ(A) nonzero eigenvalues and n − ρ(A) zero
eigenvalues

● For a Hermitian matrix,
● the eigenvalues are real
● the eigenvectors are orthonormal
● matrix positive (negative) definite ⇔ all eigenvalues positive (negative)
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Eigenvalue decomposition

● For an n × n matrix A with a set of n linearly independent eigenvectors we can
perform an eigenvalue decomposition of A

A = vΛv−1

where v contains the eigenvectors and Λ is a diagonal matrix holding the
eigenvalues

● Since for a Hermitian matrix there always exists a set of n orthonormal
eigenvectors, the eigenvalue decomposition can be written as

A = vΛvH = λ1v 1vH
1 + λ2v 2vH

2 +⋯ + λnv nvH
n

where λi are the eigenvalues and v i is a set of orthonormal eigenvectors
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Optimization theory

● The local and global minima of an objective function f (x), with x real, satisfy

df (x)
dx

= 0
d2f (x)
dx

> 0

If f (x) is convex, there is only one minimum, which is the global one.

● For an objective function f (z), with z complex,

● we rewrite f (z) as f (z , z∗) and treat z and z∗ as two independent variables
● minimize f (z , z∗) w.r.t. z and z∗

● the stationary points of f (z , z∗) are found by setting the derivative of
f (z , z∗) w.r.t. to z or z∗ to zero

● but, the direction of the maximum rate of change is the gradient w.r.t. z∗
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Optimization theory

● For an objective function in two or more real variables, f (x1, x2, . . . , xn) = f (x),
the first-order derivative (gradient) and second-order derivative (Hessian) are
required

{∇x f (x)}i =
∂f (x)
∂xi

{Hx}ij =
∂2f (x)
∂xi∂xj

● The local and global minima of an objective function f (x), with x real, satisfy

∇x f (x) = 0 Hx > 0

17 / 17




