Background: Linear Algebra

EE4CO03 Statistical Digital Signal Processing and Modeling

Delft University of Technology, The Netherlands

<3
TUDelft



Outline

® Vectors and matrices

® Linear independence, vector spaces, and basis vectors
® Linear equations

® Eigenvalue decomposition

® Optimization theory
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Vectors

® An N-dimensional vector is assumed to be a column vector:
X1
X2
x=|"
XN
* Complex conjugate (Hermitian) transpose

M= =" =[x % .3

* For a discrete-time signal x(n), we use the following vectors

x(0) x(n)
X(.].) x(n) = x(n‘— 1)
x(N=1) x(n-N+1)
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Vectors

® Vector norms:

1/2

N 2y
Euclidean (2-norm):||x| = |x]2 = (Z|x,-|2) = (Zx,-*x,-) = (x"x)1?
i p}

N
L-norm:|x[1 = > |xi|
P

co-norm: | x| e = max|x;|
!

® The inner product is defined as

N
(a,b)=a"b=>a'b;
i=1

® Two vectors are orthogonal if (b, b) = 0; if they are unit norm they are orthonormal
® Properties of inner product:

|(a, b)| < |a|| b]|(Cauchy-Schwarz)
2/(a, b)| < |a|® + | b
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Linear independence, vector spaces, and basis vectors

® A collection of N vectors vi,va,...,vy is called linearly independent if
aivi+aava+-+ayvy=0 < ar=ax=-=any=0
® The space V spanned by a collection of vectors vi,va,..., vy is called a vector
space

V= {041V1 + QoVo + -+ anXy | Qj € C, Vi}

® |If the vectors are linearly independent they are called a basis for that vector space
® The number of basis vectors is called the dimension of the vector space

® If the vectors are orthogonal — orthogonal basis

® If the vectors are orthonormal — orthonormal basis
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Matrices

® An nx m matrix has n rows and m columns:

dilr  di2 -t aim

a1 a2 - am
A=la]=|"7 7 .

anl an2 dnm

* Complex conjugate (Hermitian) transpose
AH _ (AT)* _ (A*)T

® Hermitian matrix
A=A"
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Matrix inverse

® The rank of A, denoted p(A), is the number of independent columns or rows
of A

Prototype rank-1 matrix: A= ab"

Prototype rank-2 matrix: A=ab" + cd"
© The ranks of A, A", AA", and A" A are the same
p(A) = p(A") = p(AA™) = p(A"A)

* If Ais square and full rank (p(A) = n), there is a unique inverse A™' such that

]_ 0 0
aatoataog-|9 L 0
0 0 1

* If Ais square and p(A) = n, A is invertible or nonsingular

° If Ais square and p(A) < n, A is noninvertible or singular
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Matrix inverse

® Properties
(AB) ' =B'A™
(A= (A"

® Matrix Inversion Lemma:
(A+BCD)'=A"'-A"'B(C'+DA'B)'DA™
* Woodbury’s Identity (special case of Matrix Inversion Lemma):

Altuval

Aruv)yt-pat 27 2
( ) 1+vHA Y
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Determinant and trace

® The determinant of an n x n matrix A is defined recursively by
det(A) = > (-1)" a; det(Ay)
i-1
where Aj; is the matrix obtained by removing the ith row and jth column from A

® An nx n matrix A is invertible or nonsingular < det(A) +0

® Properties:

det(AB) = det(A)det(B)
det(aA) = o det(A)
det(A™!) = —det}A)

® The trace of an n x n matrix A is given by

tr(A) = Z aji
i=1
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Linear equations

* A set of n linear equations in m unknowns (stacked in the vector x), can be
written as

Ax=b
where A is an m x n matrix and B is an m x 1 vector
 If m=nand p(A) = n (square invertible), then x = A™ b

® If m=n and p(A) < n (singular), then there is either no solution or many
solutions;

If xo is a solution, then
X =X0+ Q121 + -+ QpZg

is also a solution with {z;,i=1,2,... k} is a set of k = n— p(A) linearly
independent solutions of Az =0
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Linear equations

® If n< m, there are many solutions (the problem is underdetermined)
We often take the solution with the minimal norm

min||x|| such that Ax=b

The solution is given by xo = A"(AA™)™b, where A" = A"(AA") ™" is the
pseudo-inverse of A for the underdetermined problem (p(A) = n)

® If n> m, there is generally no solution (the problem is overdetermined). We
often take the least squares solution

min ||b - Ax|

The solution is given by xo = (A"A) ™ A"b, where A" = (A"A)* A" is the
pseudo-inverse of A for the overdetermined problem (p(A) = m)
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Special matrix forms

® Diagonal and block diagonal matrix:

au 0 - 0 Ai 0 - 0
A- 0 a:22 0 7 A- 0 A:22 0
0 0 - am 0 0 - A

* Toeplitz and Hankel matrix (constant along (anti-)diagonal):

A=

~N W

~N oW
N A~ O
=N A~

1 3
21
4 2
6 4 4

* A square matrix A is called unitary if AA" =1 and A"A =1, or in other words,
the columns and rows of A are orthonormal

5 )
TUDelft 12/17



Hermitian forms

® The quadratic form of an nx n Hermitian matrix A is

Qa(x) = x"Ax = Zn: anxi*a,-jxj

=1 =1
where x = [x1, 2, ... 7x,,]T
® The matrix A is
positive definite, A>0, if Qa(x)>0, Vx=0,

positive semidefinite, ~A>0, if Qa(x)>0, Vx+0

negative definite, A<0, if Qa(x)<0, Vx=0,
negative semidefinite, A <0, if Qa(x)<0, Vx=0

® For any nx n matrix A and any nx m (m < n) matrix B with full rank m, the
definiteness of A and B"AB are the same
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Eigenvalues and eigenvectors

® For an n x n matrix A there are n eigenvalues \; and n eigenvectors v; satisfying
AV,' = A,‘V,'
® The eigenvalues are the roots of the characteristic polynomial

p(\) =det(A-)\I)

® The eigenvectors have a scaling ambiguity and are often normalized, |v;| =1

® The eigenvectors corresponding to distinct eigenvalues are linearly independent

® If A has rank p(A), then A has p(A) nonzero eigenvalues and n - p(A) zero
eigenvalues

® For a Hermitian matrix,

® the eigenvalues are real
® the eigenvectors are orthonormal
® matrix positive (negative) definite <> all eigenvalues positive (negative)
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Eigenvalue decomposition

® For an nx n matrix A with a set of n linearly independent eigenvectors we can
perform an eigenvalue decomposition of A

A=vAv

where v contains the eigenvectors and A is a diagonal matrix holding the
eigenvalues

® Since for a Hermitian matrix there always exists a set of n orthonormal
eigenvectors, the eigenvalue decomposition can be written as

H H H H
A=vAv' =)1vivy + Xavavy + -+ AV,

where \; are the eigenvalues and v; is a set of orthonormal eigenvectors
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Optimization theory

® The local and global minima of an objective function f(x), with x real, satisfy

df(x) d*f(x)
ax 0 a0

If f(x) is convex, there is only one minimum, which is the global one.
* For an objective function f(z), with z complex,
® we rewrite f(z) as f(z,z") and treat z and z* as two independent variables
® minimize f(z,z*) w.rt. z and z*
® the stationary points of f(z,z*) are found by setting the derivative of
f(z,z") w.r.t. to z or z* to zero
® but, the direction of the maximum rate of change is the gradient w.r.t. z*
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Optimization theory

* For an objective function in two or more real variables, f(xi,x2,...,x,) = f(x),
the first-order derivative (gradient) and second-order derivative (Hessian) are
required

If (x) d*f(x)
xf [~ Hx ij=
{v (x)} aX,' { }J 8X,8XJ

® The local and global minima of an objective function 7(x), with x real, satisfy

Vef(x)=0  Hy>0
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