## ET4350: Applied Convex Optimization

Delft University of Technology

#### **Course Information**

- ► Book(s) are freely available online
  - Stephen Boyd and Lieven Vandenberghe, "Convex Optimization",
     Cambridge University Press, 2004.
  - Slides/lecture notes for subgradient methods.

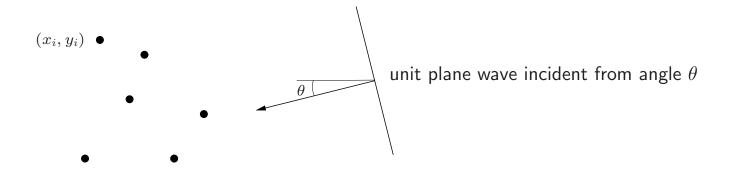
#### ► Assessment

- Open-book written exam.
- Compulsory lab assignment worth 1 EC (20%); report and short presentation. Enroll via Brightspace.

#### ► Course information:

http://ens.ewi.tudelft.nl/Education/courses/ee4530/index.php

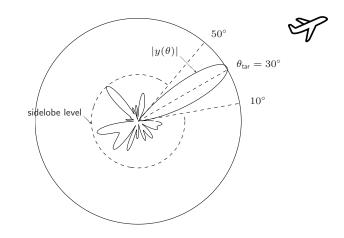
### Mathematical optimization


### (mathematical) optimization problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq b_i, \quad i = 1, \dots, m$ 

- $x = (x_1, \dots, x_n)$ : optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$ : objective function
- $f_i: \mathbb{R}^n \to \mathbb{R}$ ,  $i=1,\ldots,m$ : constraint functions

**optimal solution**  $x^*$  has smallest value of  $f_0$  among all vectors that satisfy the constraints


### **Array processing**

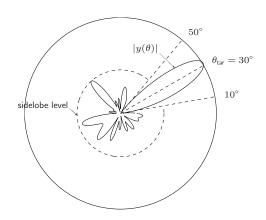


- ullet omnidirectional antenna elements at positions  $(x_1,y_1)$ , . . . ,  $(x_n,y_n)$
- linearly combine with complex weights  $w_i$ :

$$y(\theta) = \sum_{i=1}^{n} w_i e^{j(x_i \cos \theta + y_i \sin \theta)}$$

- $y(\theta)$  is (complex) antenna array gain pattern
- ullet |y( heta)| gives sensitivity of array as function of incident angle heta
- depends on design variables  $\mathbf{Re}\ w$ ,  $\mathbf{Im}\ w$  (called antenna array weights or shading coefficients)




 $\operatorname{design}$  problem: choose w to achieve desired gain pattern

## **Array processing**

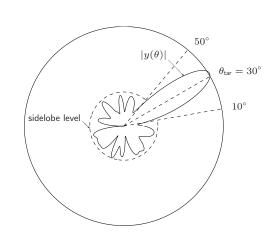
#### Sidelobe level minimization

make 
$$|y(\theta)|$$
 small for  $|\theta - \theta_{tar}| > \alpha$ 

( $\theta_{tar}$ : target direction;  $2\alpha$ : beamwidth)



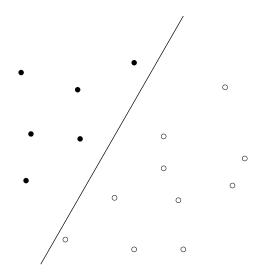
via least-squares (discretize angles)


$$\begin{array}{ll} \text{minimize} & \sum_i |y(\theta_i)|^2 \\ \text{subject to} & y(\theta_{\text{tar}}) = 1 \end{array}$$

(sum is over angles outside beam)

minimize sidelobe level (discretize angles)

$$\begin{array}{ll} \text{minimize} & \max_i |y(\theta_i)| \\ \text{subject to} & y(\theta_{\text{tar}}) = 1 \end{array}$$

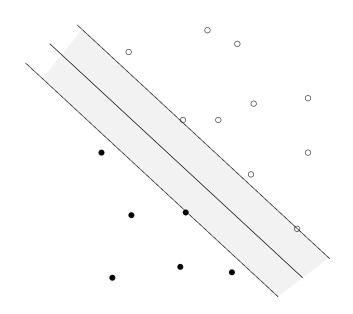

(max over angles outside beam)



### **Machine learning**

separate two sets of points  $\{x_1,\ldots,x_N\}$ ,  $\{y_1,\ldots,y_M\}$  by a hyperplane:

$$a^{T}x_{i} + b > 0, \quad i = 1, \dots, N, \qquad a^{T}y_{i} + b < 0, \quad i = 1, \dots, M$$




homogeneous in a, b, hence equivalent to

$$a^{T}x_{i} + b \ge 1, \quad i = 1, \dots, N, \qquad a^{T}y_{i} + b \le -1, \quad i = 1, \dots, M$$

a set of linear inequalities in a, b

## **Machine learning**



(Euclidean) distance between hyperplanes

$$\mathcal{H}_1 = \{z \mid a^T z + b = 1\}$$
 $\mathcal{H}_2 = \{z \mid a^T z + b = -1\}$ 

is 
$$\mathbf{dist}(\mathcal{H}_1, \mathcal{H}_2) = 2/\|a\|_2$$

to separate two sets of points by maximum margin,

minimize 
$$(1/2)\|a\|_2$$
 subject to  $a^Tx_i + b \ge 1, \quad i = 1, \dots, N$   $a^Ty_i + b \le -1, \quad i = 1, \dots, M$ 

### **Examples**

#### portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

#### device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

#### data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

### Solving optimization problems

### general optimization problem

- very difficult to solve
- ullet methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

### **Least-squares**

minimize 
$$||Ax - b||_2^2$$

#### solving least-squares problems

- analytical solution:  $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to  $n^2k$   $(A \in \mathbf{R}^{k \times n})$ ; less if structured
- a mature technology

### using least-squares

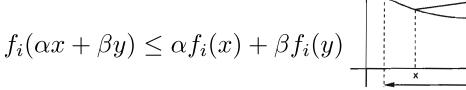
- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

### **Linear programming**

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i, \quad i = 1, \dots, m$ 

#### solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to  $n^2m$  if  $m \ge n$ ; less with structure
- a mature technology

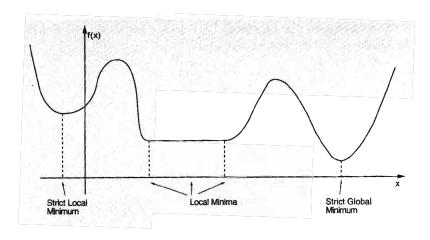

#### using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving  $\ell_1$  or  $\ell_\infty$ -norms, piecewise-linear functions)

## **Convex optimization problem**

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq b_i, \quad i = 1, \dots, m$ 

• objective and constraint functions are convex:




if 
$$\alpha + \beta = 1$$
,  $\alpha \ge 0$ ,  $\beta \ge 0$ 

• includes least-squares problems and linear programs as special cases

 $\alpha f(x) + (1 - \alpha)f(y)$ 

### The case of a convex cost function



**Local minima**:  $x^*$  is an unconstrained local minimum of  $f_0 : \mathbf{R}^n \mapsto \mathbf{R}$  if is no worse than its neighbors.

$$f_0(x^*) \le f_0(x), \quad \forall x \in \mathbf{R}^n \text{ with } ||x - x^*|| < \epsilon$$

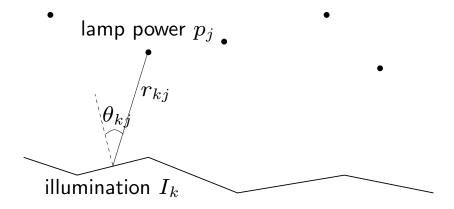
for  $\epsilon > 0$ .

**Global minima**:  $x^*$  is an unconstrained local minimum of  $f_0 : \mathbf{R}^n \mapsto \mathbf{R}$  if it is no worse than all other vectors.

$$f_0(x^*) \le f_0(x), \quad \forall x \in \mathbf{R}^n.$$

When the function is convex every local minimum is also global.

### solving convex optimization problems


- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to  $\max\{n^3, n^2m, F\}$ , where F is cost of evaluating  $f_i$ 's and their first and second derivatives
- almost a technology

#### using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

### **Example**

m lamps illuminating n (small, flat) patches



intensity  $I_k$  at patch k depends linearly on lamp powers  $p_j$ :

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

**problem**: achieve desired illumination  $I_{des}$  with bounded lamp powers

minimize 
$$\max_{k=1,...,n} |\log I_k - \log I_{\text{des}}|$$
 subject to  $0 \le p_j \le p_{\text{max}}, \quad j=1,\ldots,m$ 

#### how to solve?

- 1. use uniform power:  $p_j = p$ , vary p
- 2. use least-squares:

minimize 
$$\sum_{k=1}^{n} (I_k - I_{\text{des}})^2$$

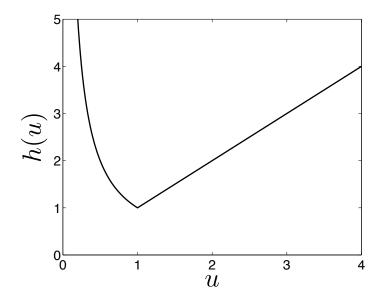
round  $p_j$  if  $p_j > p_{\text{max}}$  or  $p_j < 0$ 

3. use weighted least-squares:

minimize 
$$\sum_{k=1}^{n} (I_k - I_{\text{des}})^2 + \sum_{j=1}^{m} w_j (p_j - p_{\text{max}}/2)^2$$

iteratively adjust weights  $w_j$  until  $0 \le p_j \le p_{\text{max}}$ 

4. use linear programming:


minimize 
$$\max_{k=1,...,n} |I_k - I_{\text{des}}|$$
 subject to  $0 \le p_j \le p_{\text{max}}, \quad j = 1,...,m$ 

which can be solved via linear programming of course these are approximate (suboptimal) 'solutions'

### 5. use convex optimization: problem is equivalent to

minimize 
$$f_0(p) = \max_{k=1,...,n} h(I_k/I_{\text{des}})$$
  
subject to  $0 \le p_j \le p_{\text{max}}, \quad j = 1,...,m$ 

with  $h(u) = \max\{u, 1/u\}$ 



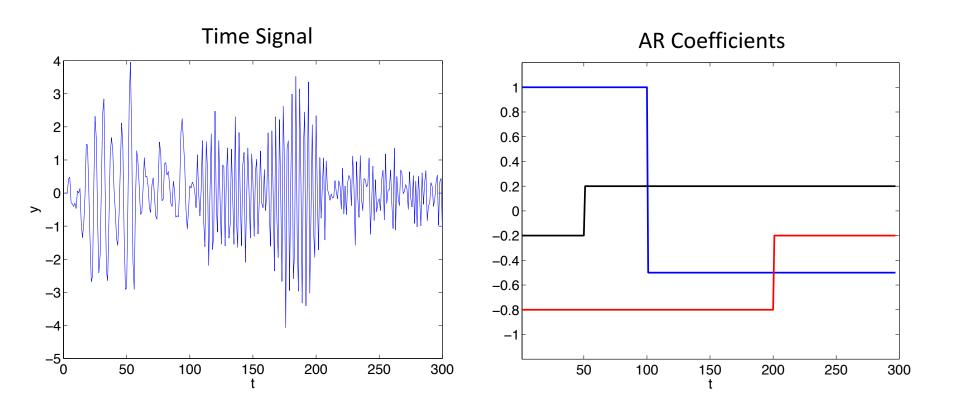
 $f_0$  is convex because maximum of convex functions is convex

**exact** solution obtained with effort  $\approx$  modest factor  $\times$  least-squares effort

additional constraints: does adding 1 or 2 below complicate the problem?

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on  $(p_i > 0)$
- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

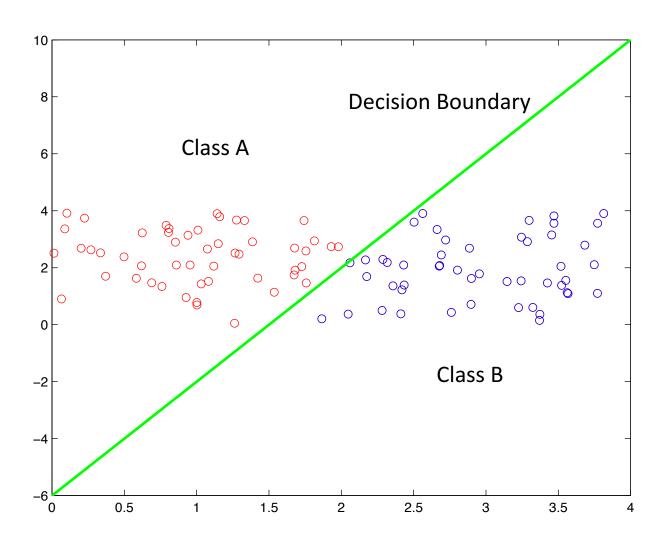
### **Course goals and topics**


#### Goals

- 1. recognize and formulate problems (such as the illumination problem, classification, etc.) as convex optimization problems
- 2. Use optimization tools (CVX, YALMIP, etc.) as a part the lab assignment.
- 3. characterize optimal solution (optimal power distribution), give limits of performance, etc.

#### **Topics**

- 1. Background and optimization basics;
- 2. Convex sets and functions;
- 3. Canonical convex optimization problems (LP, QP, SDP);
- 4. Second-order methods (unconstrained and constrained optimization);
- 5. First-order methods (gradient, subgradient);

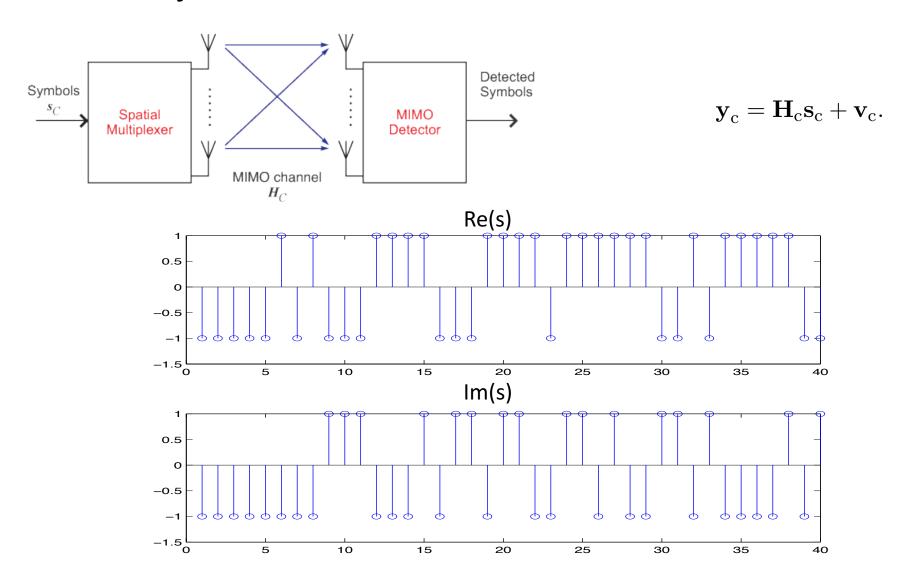

## Project 1: Change Detection in Time Series Model



$$y(t+3) = a(t)y(t+2) + b(t)y(t+1) + c(t)y(t) + v(t); \quad v(t) \sim \mathcal{N}(0, 0.5^2).$$

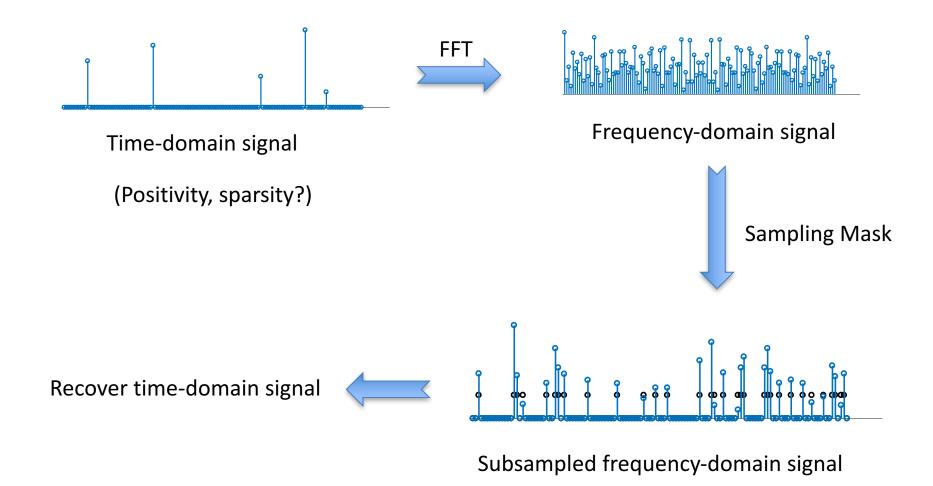
assumption: a(t), b(t), and c(t) are piecewise constant, change infrequently

## **Project 2: Linear Support Vector Machines**




# Project 3: Multidimensional Scaling for Localization.




$$t_{ij}^2 \propto \|\mathbf{x}_i - \mathbf{x}_j\|^2$$
  
 $\mathbf{T} = \mathbf{1} \operatorname{diag}(\mathbf{X}^T \mathbf{X}) - 2\mathbf{X}^T \mathbf{X} + \operatorname{diag}(\mathbf{X}^T \mathbf{X}) \mathbf{1}^T$ 

# Project 4: MIMO Detection



entries of  $\mathbf{s}_{\mathrm{c}}$  belong to the finite-alphabet set  $\{\pm 1 \pm j\}$ 

# **Project 5: Compressed Sensing**

