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Course Information

» Book(s) are freely available online

— Stephen Boyd and Lieven Vandenberghe, " Convex Optimization”,
Cambridge University Press, 2004.
— Slides/lecture notes for subgradient methods.

» Assessment

— Open-book written exam.
— Compulsory lab assignment worth 1 EC (20%); report and short
presentation. Enroll via Brightspace.

» Course information:

— http://ens.ewi.tudelft.nl/Education/courses/ee4530/index.php



Mathematical optimization

(mathematical) optimization problem

minimize  fo(x)
subject to  fi(x) <b;, 1=1,...,m

e v = (x1,...,x,): optimization variables
e fo:R" — R: objective function

e f,:R" = R,i=1,...,m: constraint functions

optimal solution x* has smallest value of f; among all vectors that
satisfy the constraints



Array processing

(i, yi) ®
[
unit plane wave incident from angle 6
. 0
°
° °
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linearly combine with complex weights w;:
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y(0) is (complex) antenna array gain pattern

ly(8)| gives sensitivity of array as function of incident angle 6

depends on design variables Re w, Im w
(called antenna array weights or shading coefficients)

design problem: choose w to achieve desired gain pattern




Sidelobe level minimization

Array processing
make |y(0)| small for |0 — Oiar| >

(Orar: target direction; 2a: beamwidth)

via least-squares (discretize angles)

\ Lo minimize Zz\y(01)|2
subject to  y(Oray) =1

,
. !
sidelobe level

N

(sum is over angles outside beam)

minimize sidelobe level (discretize angles)

minimize  max; |y(6;)|
subject to  y(brar) =

/
sidelobe level /

(max over angles outside beam)




Machine learning

separate two sets of points {z1,...,znx}, {y1,...,yn} by a hyperplane:

alx;, +b>0, i=1,..., N, aly,+b<0, i=1,....M

homogeneous in a, b, hence equivalent to
T - T -
axr;+b>1, +1=1,..., N, a Yy +b< -1, +=1,....M

a set of linear inequalities in a, b



Machine learning

(Euclidean) distance between hyperplanes

H, = {z]|a'z+b=1}
Ho = {z|aTz—|—b:—1}

is dist(H1, Ha) = 2/]|al|2

to separate two sets of points by maximum margin,

minimize  (1/2)]|al|2
subjectto a'x; +b>1, i=1,...,N
aly;+b< -1, i=1,....,. M



Examples

portfolio optimization

e variables: amounts invested in different assets
e constraints: budget, max./min. investment per asset, minimum return

e objective: overall risk or return variance

device sizing in electronic circuits
e variables: device widths and lengths
e constraints: manufacturing limits, timing requirements, maximum area

e objective: power consumption

data fitting
e variables: model parameters
e constraints: prior information, parameter limits

e objective: measure of misfit or prediction error



Solving optimization problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

e |east-squares problems
e linear programming problems

e convex optimization problems



Least-squares

minimize ||Az — b||3

solving least-squares problems

e analytical solution: z* = (AT A)~1AT}

e reliable and efficient algorithms and software

e computation time proportional to n2k (A € R**™); less if structured

e a mature technology

using least-squares

e least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)



Linear programming

minimize ¢l x

subject to alz <b;, i=1,...,m
solving linear programs

e no analytical formula for solution
e reliable and efficient algorithms and software
e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving ¢1- or {,,-norms, piecewise-linear functions)



Convex optimization problem

minimize  fo(x)
subject to  fi(z) <b;, i=1,....m

af(x) + (1- 0)f(y)

e objective and constraint functions are convex:

fi(aw + By) < Oéfz(:l?) + sz(y) \«z)

ifa+B8=1,a>0 8>0

e includes least-squares problems and linear programs as special cases

Ny



The case of a convex cost function

L

Strict Local Local Minima Strict Global
Minimum Minimum

Local minima: z* is an unconstrained local minimum of fy : R” — R if
is no worse than its neighbors.

fo(z™) < fo(z), Va e R™ with ||z —z¥|| <e

for e > 0.

Global minima: z* is an unconstrained local minimum of fy : R” — R if
it is no worse than all other vectors.

fo(z*) < fo(z), VzeR".

When the function is convex every local minimum is also global.



solving convex optimization problems

e no analytical solution
e reliable and efficient algorithms

e computation time (roughly) proportional to max{n?* n*m, F'}, where F
is cost of evaluating f;'s and their first and second derivatives

e almost a technology

using convex optimization

e often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization



Example

m lamps illuminating n (small, flat) patches

lamp power p;

ilumination Iy,

intensity [ at patch k depends linearly on lamp powers p;:
m
I, = Z akiD;, agj = 7“,;]2 max{cos 0,0}
j=1

problem: achieve desired illumination Iy with bounded lamp powers

minimize  maxyg—1_. . p |log [ — 10g e
subjectto 0<p; <pmax, J=1,...,m



how to solve?

1. use uniform power: p; = p, vary p

2. use least-squares:

minimize >, _ (Ix — Iges)?

round p; if pj > Pmax or p; <0

3. use weighted least-squares:

minimize ZZzl(Ik o IdeS>2 + Z;n:1 wj(pj N pmax/2>2

iteratively adjust weights w; until 0 < p; < pmax
4. use linear programming:

minimize  maxXg—1...n [Tk — Ldes|
subjectto 0<p; <pmax, J=1,...,m

which can be solved via linear programming

of course these are approximate (suboptimal) ‘solutions'’



5. use convex optimization: problem is equivalent to

minimize  fo(p) = maxg=1_.. n h(Ix/lges)
subjectto 0<p; <pmax, J=1,...,m

with h(u) = max{u,1/u}

5

fo is convex because maximum of convex functions is convex

exact solution obtained with effort ~ modest factor x least-squares effort



additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps

2. no more than half of the lamps are on (p; > 0)

e answer: with (1), still easy to solve; with (2), extremely difficult

e moral: (untrained) intuition doesn't always work; without the proper
background very easy problems can appear quite similar to very difficult
problems



Course goals and topics

Goals

1. recognize and formulate problems (such as the illumination problem,
classification, etc.) as convex optimization problems

2. Use optimization tools (CVX, YALMIP, etc.) as a part the lab
assignment.

3. characterize optimal solution (optimal power distribution), give
limits of performance, etc.

Topics
1. Background and optimization basics;
Convex sets and functions;
Canonical convex optimization problems (LP, QP, SDP);

Second-order methods (unconstrained and constrained optimization);

o1k WD

First-order methods (gradient, subgradient);



Project 1: Change Detection in Time Series Model

Time Signal AR Coefficients
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y(t+3) =a()y(t+2) +b(t)y(t + 1) + c(t)y(t) + v(t);

assumption: a(t), b(t), and c(t) are piecewise constant, change
infrequently

v(t) ~ N(0,0.5%).
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Project 2: Linear Support Vector Machines

Decision Boundary
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Project 3: Multidimensional Scaling for Localization.
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Project 4: MIMO Detection

Multiplexer
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entries of s, belong to the finite-alphabet set {+1+ j}



Project 5: Compressed Sensing

FFT

Frequency-domain signal

Time-domain signal
v

(Positivity, sparsity?)
Sampling Mask

Recover time-domain signal <:

Subsampled frequency-domain signal





