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Course Information

I Book(s) are freely available online

– Stephen Boyd and Lieven Vandenberghe, ”Convex Optimization”,

Cambridge University Press, 2004.

– Slides/lecture notes for subgradient methods.

I Assessment

– Open-book written exam.

– Compulsory lab assignment worth 1 EC (20%); report and short 
presentation. Enroll via Brightspace.

I Course information:

– http://ens.ewi.tudelft.nl/Education/courses/ee4530/index.php
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Mathematical optimization

(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• x = (x1, . . . , xn): optimization variables

• f0 : R
n → R: objective function

• fi : R
n → R, i = 1, . . . ,m: constraint functions

optimal solution x⋆ has smallest value of f0 among all vectors that
satisfy the constraints

Introduction 1–2

4



Array	processing
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Phased-array antenna beamforming

(xi, yi)

θ

• omnidirectional antenna elements at positions (x1, y1), . . . , (xn, yn)

• unit plane wave incident from angle θ induces in ith element a signal
ej(xi cos θ+yi sin θ−ωt)

(j =
√
−1, frequency ω, wavelength 2π)

15

• demodulate to get output ej(xi cos θ+yi sin θ) ∈ C

• linearly combine with complex weights wi:

y(θ) =
n
∑

i=1

wie
j(xi cos θ+yi sin θ)

• y(θ) is (complex) antenna array gain pattern

• |y(θ)| gives sensitivity of array as function of incident angle θ

• depends on design variables Re w, Im w
(called antenna array weights or shading coefficients)

design problem: choose w to achieve desired gain pattern

16

θtar = 30◦

50◦

10◦

❅
❅
❅❘

|y(θ)|

❅❅❘

sidelobe level

18

Phased-array antenna beamforming

(xi, yi)

θ

• omnidirectional antenna elements at positions (x1, y1), . . . , (xn, yn)

• unit plane wave incident from angle θ induces in ith element a signal
ej(xi cos θ+yi sin θ−ωt)

(j =
√
−1, frequency ω, wavelength 2π)

15



θtar = 30◦

50◦

10◦

❅
❅
❅❘

|y(θ)|

❅❅❘

sidelobe level

18

Array	processing
Sidelobe level minimization

make |y(θ)| small for |θ − θtar| > α

(θtar: target direction; 2α: beamwidth)

via least-squares (discretize angles)

minimize
∑

i |y(θi)|2
subject to y(θtar) = 1

(sum is over angles outside beam)

least-squares problem with two (real) linear equality constraints

17

6

minimize sidelobe level (discretize angles)

minimize maxi |y(θi)|
subject to y(θtar) = 1

(max over angles outside beam)

can be cast as SOCP

minimize t
subject to |y(θi)| ≤ t

y(θtar) = 1
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Machine	learning
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Linear discrimination

separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane:

aTxi + b > 0, i = 1, . . . , N, aTyi + b < 0, i = 1, . . . ,M

homogeneous in a, b, hence equivalent to

aTxi + b ≥ 1, i = 1, . . . , N, aTyi + b ≤ −1, i = 1, . . . ,M

a set of linear inequalities in a, b

Geometric problems 8–8
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Machine	learning

Robust linear discrimination

(Euclidean) distance between hyperplanes

H1 = {z | aTz + b = 1}
H2 = {z | aTz + b = −1}

is dist(H1,H2) = 2/∥a∥2

to separate two sets of points by maximum margin,

minimize (1/2)∥a∥2
subject to aTxi + b ≥ 1, i = 1, . . . , N

aTyi + b ≤ −1, i = 1, . . . ,M
(1)

(after squaring objective) a QP in a, b

Geometric problems 8–9
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Examples

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, max./min. investment per asset, minimum return

• objective: overall risk or return variance

device sizing in electronic circuits

• variables: device widths and lengths

• constraints: manufacturing limits, timing requirements, maximum area

• objective: power consumption

data fitting

• variables: model parameters

• constraints: prior information, parameter limits

• objective: measure of misfit or prediction error

Introduction 1–3

9



Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

• least-squares problems

• linear programming problems

• convex optimization problems

Introduction 1–4
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Least-squares

minimize ∥Ax− b∥22

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)

Introduction 1–5
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Linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)

Introduction 1–6
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases

Introduction 1–7
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The case of a convex cost function

Local minima: x⋆ is an unconstrained local minimum of f0 : Rn !→ R if
is no worse than its neighbors.

f0(x
⋆) ≤ f0(x), ∀x ∈ Rn with ∥x− x⋆∥ < ϵ

for ϵ > 0.

Global minima: x⋆ is an unconstrained local minimum of f0 : Rn !→ R if
is no worse than all other vectors.

f0(x
⋆) ≤ f0(x), ∀x ∈ Rn.

When the function is convex every local minimum is also global.
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solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization

Introduction 1–8
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Example

m lamps illuminating n (small, flat) patches

lamp power pj

illumination Ik

rkj
θkj

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =
m
∑

j=1

akjpj, akj = r−2
kj max{cos θkj, 0}

problem: achieve desired illumination Ides with bounded lamp powers

minimize maxk=1,...,n | log Ik − log Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

Introduction 1–9

16



how to solve?

1. use uniform power: pj = p, vary p

2. use least-squares:

minimize
∑n

k=1(Ik − Ides)2

round pj if pj > pmax or pj < 0

3. use weighted least-squares:

minimize
∑n

k=1(Ik − Ides)2 +
∑m

j=1wj(pj − pmax/2)2

iteratively adjust weights wj until 0 ≤ pj ≤ pmax

4. use linear programming:

minimize maxk=1,...,n |Ik − Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

which can be solved via linear programming

of course these are approximate (suboptimal) ‘solutions’

Introduction 1–10
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5. use convex optimization: problem is equivalent to

minimize f0(p) = maxk=1,...,n h(Ik/Ides)
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

with h(u) = max{u, 1/u}

0 1 2 3 4
0

1

2

3

4

5

u

h
(u
)

f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort

Introduction 1–11
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additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps

2. no more than half of the lamps are on (pj > 0)

• answer: with (1), still easy to solve; with (2), extremely difficult

• moral: (untrained) intuition doesn’t always work; without the proper
background very easy problems can appear quite similar to very difficult
problems

Introduction 1–12
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Course goals and topics

Goals

1. recognize and formulate problems (such as the illumination problem,
classification, etc.) as convex optimization problems

2. Use optimization tools (CVX, YALMIP, etc.) as a part the lab
assignment.

3. characterize optimal solution (optimal power distribution), give
limits of performance, etc.

Topics

1. Background and optimization basics;

2. Convex sets and functions;

3. Canonical convex optimization problems (LP, QP, SDP);

4. Second-order methods (unconstrained and constrained optimization);

5. First-order methods (gradient, subgradient);
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Project	1:	Change	Detection	in	Time	Series	Model
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TU Delft
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

ET4350 Applied Convex Optimization

ASSIGNMENT

Change Detection in Time Series Model

1 Context

In statistical signal processing, change point detection tries to identify time
instances when the probability distribution of a stochastic process or time
series changes. The problem in this assignment concerns both detecting
whether or not a change has occurred, or whether several changes might
have occurred, and identifying the times of any such changes.

This exercise consists of two parts: (a) formulate the step detection
problem as a suitable convex optimization problem; and (b) implement the
change detector. In a group of 2 students, make a short report (4-5 pages;
pdf file) containing the required Matlab scripts, plots, and answers. Also,
prepare a short presentation to explain your results and defend your choices.

Dataset explanation

Consider the following scalar autoregressive (AR) time-series model

y(t+ 3) = a(t)y(t+ 2) + b(t)y(t+ 1) + c(t)y(t) + v(t); v(t) s N (0, 0.52).

The assumption is that the AR coe�cients are piecewise constant and change
infrequently. Given y(t), t = 1, . . . , T, the problem is to estimate a(t), b(t),
and c(t), but by taking into account the structure of the AR coe�cients
(i.e., that they are piecewise constant). The dataset change detection.mat

includes observations for T = 300 samples as well as the true AR coe�cients.

assumption: a(t), b(t), and c(t) are piecewise constant, change
infrequently
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Project	2:	Linear	Support	Vector	Machines
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Project	3:	Multidimensional	Scaling	for	Localization.	
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Project	4:	MIMO	Detection
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TU Delft
Faculty of Electrical Engineering, Mathematics, and Computer Science
Circuits and Systems Group

ET4350 Applied Convex Optimization

ASSIGNMENT

MIMO Detection

1 Context

Multiple Input Multiple Output (MIMO) detection is a common problem
encountered in digital communications. In a MIMO system, several transmit
antennas simultaneously send di↵erent data streams. The receiver often ob-
serves a linear superposition of separately transmitted information symbols.
From the receiver’s perspective, the problem is then to separate the trans-
mitted symbols. This is basically an inverse problem with a finite-alphabet
constraint.

This exercise consists of two parts: (a) formulate the MIMO detection
problem as a suitable convex optimization problem; and (b) implement the
MIMO receiver. In a group of 2 students, make a short report (4-5 pages;
pdf file) containing the required Matlab scripts, plots, and answers. Also,
prepare a short presentation to explain your results and defend your choices.

Dataset explanation

Consider a generic N -input M -output model

yc = Hcsc + vc.

Here, yc 2 CM is the received vector, Hc 2 CM⇥N is the MIMO chan-
nel, sc 2 CN is the transmitted symbol vector, and vc 2 CM is an additive
white Gaussian noise vector. In this application example we assume that the
transmitted symbols follow a quaternary phase-shift-keying (QPSK) constel-
lation; i.e., the entries of sc belong to the finite-alphabet set {±1± j}. The
dataset MIMODetection.mat in the course webpage contains the received
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Project	5:	Compressed	Sensing

Sampling	Mask

Time-domain	signal	

FFT

Frequency-domain	signal	

Subsampled	frequency-domain	signal	

Recover	time-domain	signal

(Positivity,	sparsity?)




