ET4350 Applied Convex Optimization Lecture 11

ℓ_1 -norm heuristics for cardinality problems

- cardinality problems arise often, but are hard to solve exactly
- ullet a simple heuristic, that relies on ℓ_1 -norm, seems to work well
- used for many years, in many fields
 - sparse design
 - LASSO, robust estimation in statistics
 - support vector machine (SVM) in machine learning
 - total variation reconstruction in signal processing, geophysics
 - compressed sensing
- new theoretical results guarantee the method works, at least for a few problems

Cardinality

- the cardinality of $x \in \mathbb{R}^n$, denoted card(x), is the number of nonzero components of x
- card is separable; for scalar x, card $(x) = \left\{ \begin{array}{ll} 0 & x=0 \\ 1 & x \neq 0 \end{array} \right.$
- card is quasiconcave on Rⁿ₊ (but not Rⁿ) since

$$\operatorname{card}(x+y) \ge \min\{\operatorname{card}(x), \operatorname{card}(y)\}$$

holds for $x, y \succeq 0$

- but otherwise has no convexity properties
- arises in many problems

General convex-cardinality problems

a convex-cardinality problem is one that would be convex, except for appearance of card in objective or constraints

examples (with C, f convex):

convex minimum cardinality problem:

minimize
$$\mathbf{card}(x)$$
 subject to $x \in \mathcal{C}$

convex problem with cardinality constraint:

minimize
$$f(x)$$

subject to $x \in \mathcal{C}$, $\mathbf{card}(x) \leq k$

Solving convex-cardinality problems

convex-cardinality problem with $x \in \mathbf{R}^n$

- if we fix the sparsity pattern of x (i.e., which entries are zero/nonzero)
 we get a convex problem
- by solving 2^n convex problems associated with all possible sparsity patterns, we can solve convex-cardinality problem (possibly practical for $n \leq 10$; not practical for n > 15 or so . . .)
- general convex-cardinality problem is (NP-) hard
- can solve globally by branch-and-bound
 - can work for particular problem instances (with some luck)
 - in worst case reduces to checking all (or many of) 2^n sparsity patterns

Boolean LP as convex-cardinality problem

Boolean LP:

· can be expressed as

minimize
$$c^Tx$$
 subject to $Ax \leq b$, $\mathbf{card}(x) + \mathbf{card}(1-x) \leq n$ since $\mathbf{card}(x) + \mathbf{card}(1-x) \leq n \iff x_i \in \{0,1\}$

conclusion: general convex-cardinality problem is hard

Sparse design

minimize $\mathbf{card}(x)$ subject to $x \in \mathcal{C}$

- find sparsest design vector x that satisfies a set of specifications
- zero values of x simplify design, or correspond to components that aren't even needed
- examples:
 - FIR filter design (zero coefficients reduce required hardware)
 - antenna array beamforming (zero coefficients correspond to unneeded antenna elements)
 - truss design (zero coefficients correspond to bars that are not needed)
 - wire sizing (zero coefficients correspond to wires that are not needed)

Sparse modeling / regressor selection

fit vector $b \in \mathbf{R}^m$ as a linear combination of k regressors (chosen from n possible regressors)

minimize
$$||Ax - b||_2$$
 subject to $\mathbf{card}(x) \leq k$

- gives k-term model
- chooses subset of k regressors that (together) best fit or explain b
- ullet can solve (in principle) by trying all $inom{n}{k}$ choices
- variations:
 - minimize $\operatorname{card}(x)$ subject to $||Ax b||_2 \le \epsilon$
 - minimize $||Ax b||_2 + \lambda \operatorname{card}(x)$

Sparse signal reconstruction

- estimate signal x, given
 - noisy measurement y = Ax + v, $v \sim \mathcal{N}(0, \sigma^2 I)$ (A is known; v is not)
 - prior information $\mathbf{card}(x) \leq k$
- ullet maximum likelihood estimate $\hat{x}_{
 m ml}$ is solution of

minimize
$$||Ax - y||_2$$

subject to $\mathbf{card}(x) \leq k$

Estimation with outliers

- ullet we have measurements $y_i = a_i^T x + v_i + w_i$, $i=1,\ldots,m$
- noises $v_i \sim \mathcal{N}(0, \sigma^2)$ are independent
- only assumption on w is sparsity: $\mathbf{card}(w) \leq k$
- $\mathcal{B} = \{i \mid w_i \neq 0\}$ is set of bad measurements or *outliers*
- maximum likelihood estimate of x found by solving

$$\begin{array}{ll} \text{minimize} & \sum_{i \not\in \mathcal{B}} (y_i - a_i^T x)^2 \\ \text{subject to} & |\mathcal{B}| \leq k \end{array}$$

with variables x and $\mathcal{B} \subseteq \{1, \ldots, m\}$

equivalent to

minimize
$$||y - Ax - w||_2^2$$
 subject to $\mathbf{card}(w) \leq k$

Minimum number of violations

set of convex inequalities

$$f_1(x) \leq 0, \ldots, f_m(x) \leq 0, \qquad x \in \mathcal{C}$$

choose x to minimize the number of violated inequalities:

minimize
$$\mathbf{card}(t)$$
 subject to $f_i(x) \leq t_i, \quad i = 1, \dots, m$ $x \in \mathcal{C}, \quad t \geq 0$

 determining whether zero inequalities can be violated is (easy) convex feasibility problem

Portfolio investment with linear and fixed costs

- ullet we use budget B to purchase (dollar) amount $x_i \geq 0$ of stock i
- trading fee is fixed cost plus linear cost: $\beta \operatorname{\mathbf{card}}(x) + \alpha^T x$
- budget constraint is $\mathbf{1}^T x + \beta \operatorname{\mathbf{card}}(x) + \alpha^T x \leq B$
- ullet mean return on investment is $\mu^T x$; variance is $x^T \Sigma x$
- minimize investment variance (risk) with mean return $\geq R_{\min}$:

$$\begin{array}{ll} \text{minimize} & x^T \Sigma x \\ \text{subject to} & \mu^T x \geq R_{\min}, \quad x \succeq 0 \\ & \mathbf{1}^T x + \beta \operatorname{\mathbf{card}}(x) + \alpha^T x \leq B \end{array}$$

ℓ_1 -norm heuristic

- replace $\mathbf{card}(z)$ with $\gamma \|z\|_1$, or add regularization term $\gamma \|z\|_1$ to objective
- γ > 0 is parameter used to achieve desired sparsity
 (when card appears in constraint, or as term in objective)
- more sophisticated versions use $\sum_i w_i |z_i|$ or $\sum_i w_i (z_i)_+ + \sum_i v_i (z_i)_-$, where w, v are positive weights

Example: Minimum cardinality problem

· start with (hard) minimum cardinality problem

minimize
$$\mathbf{card}(x)$$
 subject to $x \in \mathcal{C}$

(C convex)

ullet apply heuristic to get (easy) ℓ_1 -norm minimization problem

minimize
$$||x||_1$$
 subject to $x \in \mathcal{C}$

Example: Cardinality constrained problem

start with (hard) cardinality constrained problem (f, C convex)

minimize
$$f(x)$$
 subject to $x \in \mathcal{C}$, $\mathbf{card}(x) \leq k$

• apply heuristic to get (easy) ℓ_1 -constrained problem

minimize
$$f(x)$$

subject to $x \in \mathcal{C}$, $||x||_1 \leq \beta$

or ℓ_1 -regularized problem

minimize
$$f(x) + \gamma ||x||_1$$
 subject to $x \in C$

 β , γ adjusted so that $\mathbf{card}(x) \leq k$

Interpretation as convex relaxation

start with

minimize
$$\operatorname{card}(x)$$
 subject to $x \in \mathcal{C}$, $||x||_{\infty} \leq R$

equivalent to mixed Boolean convex problem

minimize
$$\mathbf{1}^Tz$$
 subject to $|x_i| \leq Rz_i, \quad i=1,\ldots,n$ $x \in \mathcal{C}, \quad z_i \in \{0,1\}, \quad i=1,\ldots,n$

with variables x, z

ullet now relax $z_i \in \{0,1\}$ to $z_i \in [0,1]$ to obtain

minimize
$$\mathbf{1}^T z$$
 subject to $|x_i| \leq R z_i, \quad i=1,\ldots,n$ $x \in \mathcal{C}$ $0 \leq z_i \leq 1, \quad i=1,\ldots,n$

which is equivalent to

minimize
$$(1/R)||x||_1$$
 subject to $x \in C$

the ℓ_1 heuristic

optimal value of this problem is lower bound on original problem

Sparse signal reconstruction

convex-cardinality problem:

minimize
$$||Ax - y||_2$$
 subject to $\mathbf{card}(x) \leq k$

ℓ₁ heuristic:

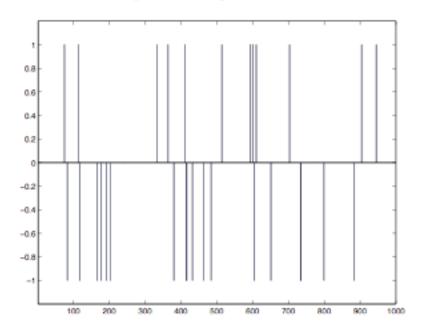
$$\begin{array}{ll} \text{minimize} & \|Ax - y\|_2 \\ \text{subject to} & \|x\|_1 \leq \beta \end{array}$$

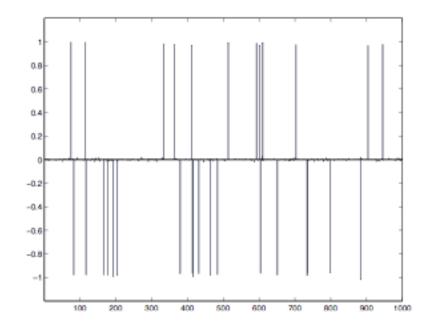
(called LASSO)

• another form: minimize $||Ax - y||_2 + \gamma ||x||_1$ (called basis pursuit denoising)

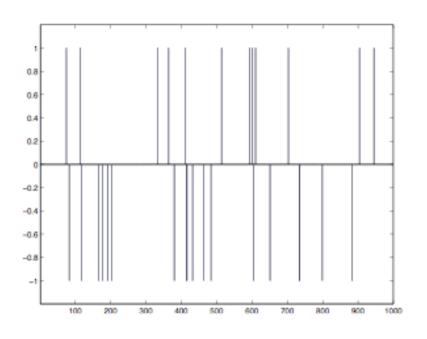
Example

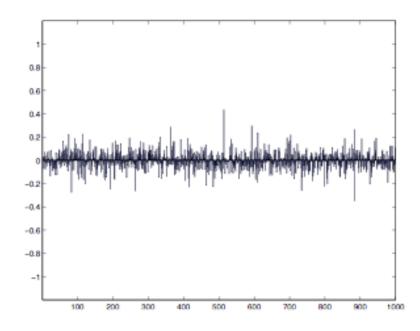
- signal $x \in \mathbb{R}^n$ with n = 1000, $\operatorname{card}(x) = 30$
- m=200 (random) noisy measurements: y=Ax+v, $v\sim\mathcal{N}(0,\sigma^2\mathbf{1})$, $A_{ij}\sim\mathcal{N}(0,1)$
- *left*: original; *right*: ℓ_1 reconstruction with $\gamma = 10^{-3}$





- ullet ℓ_2 reconstruction; minimizes $\|Ax-y\|_2+\gamma\|x\|_2$, where $\gamma=10^{-3}$
- left: original; right: ℓ_2 reconstruction





Some recent theoretical results

- suppose y = Ax, $A \in \mathbb{R}^{m \times n}$, $\operatorname{card}(x) \leq k$
- to reconstruct x, clearly need $m \geq k$
- ullet if $m \geq n$ and A is full rank, we can reconstruct x without cardinality assumption
- when does the ℓ_1 heuristic (minimizing $||x||_1$ subject to Ax = y) reconstruct x (exactly)?

recent results by Candès, Donoho, Romberg, Tao, . . .

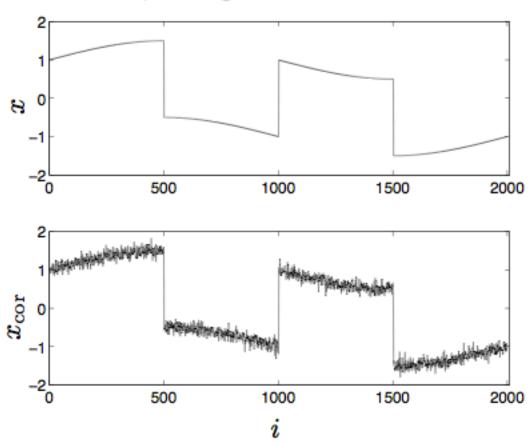
- (for some choices of A) if $m \ge (C \log n)k$, ℓ_1 heuristic reconstructs x exactly, with overwhelming probability
- C is absolute constant; valid A's include
 - $-A_{ij} \sim \mathcal{N}(0, \sigma^2)$
 - Ax gives Fourier transform of x at m frequencies, chosen from uniform distribution

Total variation reconstruction

- ullet fit $x_{
 m cor}$ with piecewise constant \hat{x} , no more than k jumps
- convex-cardinality problem: minimize $\|\hat{x} x_{cor}\|_2$ subject to $\mathbf{card}(Dx) \leq k$ (D is first order difference matrix)
- heuristic: minimize $\|\hat{x} x_{\rm cor}\|_2 + \gamma \|Dx\|_1$; vary γ to adjust number of jumps
- $||Dx||_1$ is total variation of signal \hat{x}
- method is called total variation reconstruction
- unlike \(\ell_2 \) based reconstruction, TVR filters high frequency noise out while preserving sharp jumps

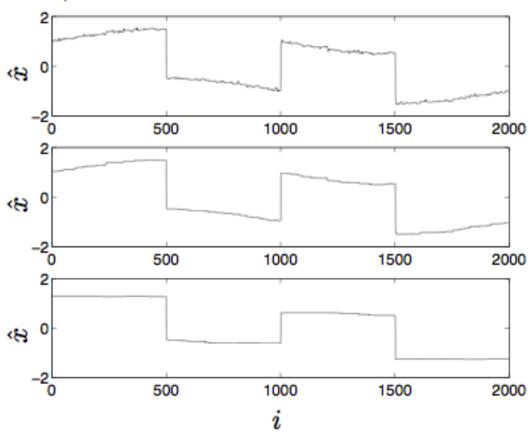
Example (§6.3.3 in BV book)

signal $x \in \mathbf{R}^{2000}$ and corrupted signal $x_{\mathrm{cor}} \in \mathbf{R}^{2000}$



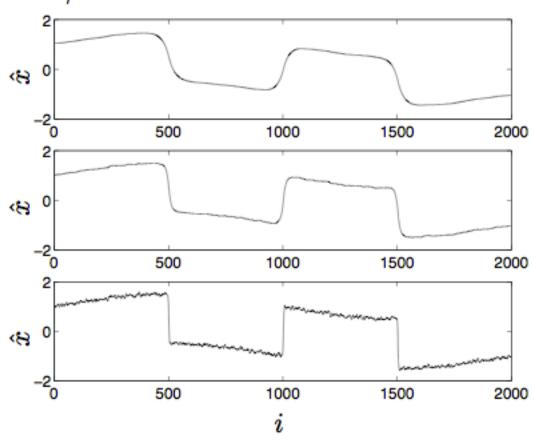
Total variation reconstruction

for three values of γ



ℓ_2 reconstruction

for three values of $\boldsymbol{\gamma}$



Example: 2D total variation reconstruction

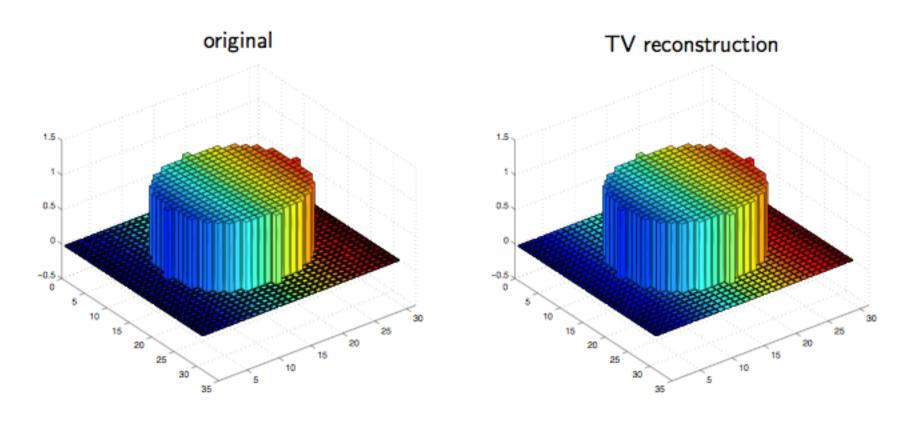
- $x \in \mathbb{R}^n$ are values of pixels on $N \times N$ grid (N = 31, so n = 961)
- assumption: x has relatively few big changes in value (i.e., boundaries)
- ullet we have m=120 linear measurements, y=Fx $(F_{ij}\sim \mathcal{N}(0,1))$
- as convex-cardinality problem:

minimize
$$\operatorname{card}(x_{i,j}-x_{i+1,j})+\operatorname{card}(x_{i,j}-x_{i,j+1})$$
 subject to $y=Fx$

• ℓ_1 heuristic (objective is a 2D version of total variation)

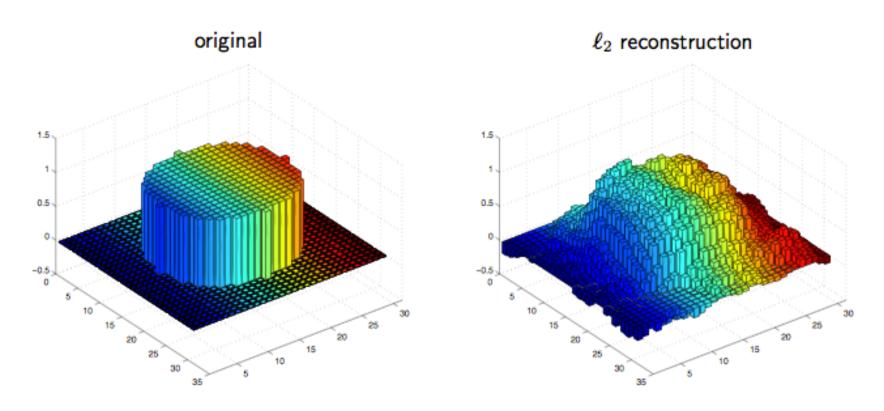
minimize
$$\sum |x_{i,j}-x_{i+1,j}|+\sum |x_{i,j}-x_{i,j+1}|$$
 subject to $y=Fx$

TV reconstruction



. . . not bad for $8\times$ more variables than measurements!

ℓ_2 reconstruction



. . . this is what you'd expect with $8\times$ more variables than measurements

Extension to matrices

- Rank is natural analog of card for matrices
- convex-rank problem: convex, except for Rank in objective or constraints
- rank problem reduces to card problem when matrices are diagonal: $\mathbf{Rank}(\mathbf{diag}(x)) = \mathbf{card}(x)$
- analog of ℓ_1 heuristic: use nuclear norm, $\|X\|_* = \sum_i \sigma_i(X)$ (sum of singular values; dual of spectral norm)
- for $X \succeq 0$, reduces to $\operatorname{Tr} X$ (for $x \succeq 0$, $||x||_1$ reduces to $\mathbf{1}^T x$)

Factor modeling

- given matrix $\Sigma \in \mathbf{S}^n_+$, find approximation of form $\hat{\Sigma} = FF^T + D$, where $F \in \mathbf{R}^{n \times r}$, D is diagonal nonnegative
- gives underlying factor model (with r factors)

$$x = Fz + v$$
, $v \sim \mathcal{N}(0, D)$, $z \sim \mathcal{N}(0, I)$

model with fewest factors:

minimize
$$\operatorname{\mathbf{Rank}} X$$
 subject to $X\succeq 0,\quad D\succeq 0$ diagonal $X+D\in \mathcal{C}$

with variables $D, X \in \mathbf{S}^n$ \mathcal{C} is convex set of acceptable approximations to Σ

Example

- x = Fz + v, $z \sim \mathcal{N}(0, I)$, $v \sim \mathcal{N}(0, D)$, D diagonal; $F \in \mathbf{R}^{20 \times 3}$
- ullet Σ is empirical covariance matrix from N=3000 samples
- set of acceptable approximations

$$\mathcal{C} = \{\hat{\Sigma} \mid \|\Sigma^{-1/2}(\hat{\Sigma} - \Sigma)\Sigma^{-1/2}\| \le \beta\}$$

trace heuristic

$$\begin{array}{ll} \text{minimize} & \mathbf{Tr}\,X\\ \text{subject to} & X\succeq 0,\quad d\succeq 0\\ & \|\Sigma^{-1/2}(X+\mathbf{diag}(d)-\Sigma)\Sigma^{-1/2}\|\leq \beta \end{array}$$

Trace approximation results

