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Z1-norm heuristics for cardinality problems
cardinality problems arise often, but are hard to solve exactly

a simple heuristic, that relies on £;-norm, seems to work well

used for many years, in many fields

— sparse design

— LASSO, robust estimation in statistics

— support vector machine (SVM) in machine learning

— total variation reconstruction in signal processing, geophysics
— compressed sensing

new theoretical results guarantee the method works, at least for a few
problems



Cardinality

the cardinality of z € R", denoted card(z), is the number of nonzero
components of x

0 z=0
1 z#0

card is quasiconcave on R’} (but not R™) since

card is separable; for scalar z, card(z) = {

card(z + y) > min{card(z), card(y)}

holds for z,y > 0
but otherwise has no convexity properties

arises in many problems



General convex-cardinality problems

a convex-cardinality problem is one that would be convex, except for
appearance of card in objective or constraints

examples (with C, f convex):

e convex minimum cardinality problem:

minimize card(z)
subjectto z€C

e convex problem with cardinality constraint:

minimize  f(z)
subjectto z€(C, card(z)<k



Solving convex-cardinality problems
convex-cardinality problem with z € R"
e if we fix the sparsity pattern of z (i.e., which entries are zero/nonzero)

we get a convex problem

e by solving 2™ convex problems associated with all possible sparsity
patterns, we can solve convex-cardinality problem
(possibly practical for n < 10; not practical forn > 150rso ... )

e general convex-cardinality problem is (NP-) hard

e can solve globally by branch-and-bound

— can work for particular problem instances (with some luck)
— in worst case reduces to checking all (or many of) 2" sparsity patterns



Boolean LP as convex-cardinality problem

e Boolean LP:

minimize c¢fz

subject to Az <Xb, =z;€{0,1}
includes many famous (hard) problems, e.g., 3-SAT, traveling salesman

e can be expressed as

minimize ¢lz

subject to Ax <b, card(z)+card(l—z)<n
since card(z) + card(1 —z) <n <= =z; € {0,1}

e conclusion: general convex-cardinality problem is hard



Sparse design

minimize card(z)
subjectto z€C

e find sparsest design vector z that satisfies a set of specifications

e zero values of = simplify design, or correspond to components that
aren't even needed

e examples:

— FIR filter design (zero coefficients reduce required hardware)
— antenna array beamforming (zero coefficients correspond to unneeded

antenna elements)
— truss design (zero coefficients correspond to bars that are not needed)

— wire sizing (zero coefficients correspond to wires that are not needed)



Sparse modeling / regressor selection

fit vector b € R™ as a linear combination of k regressors (chosen from n
possible regressors)

minimize  ||Az — b||2
subject to card(z) <k
e gives k-term model

e chooses subset of k regressors that (together) best fit or explain b

n

k) choices

e can solve (in principle) by trying all (

e variations:

— minimize card(z) subject to ||[Az — b||; < €
— minimize |Az — b||2 + A card(z)



Sparse signal reconstruction

e estimate signal z, given

— noisy measurement y = Az +v, v ~ N(0,0°I) (A is known; v is not)
— prior information card(z) < k

e maximum likelihood estimate Z,, is solution of

minimize ||Az — y||2
subject to card(z) <k



Estimation with outliers

we have measurements y; = a?:z: +vi+w,it=1,...,m

noises v; ~ N(0,0?) are independent

only assumption on w is sparsity: card(w) < k

B = {i | w; # 0} is set of bad measurements or outliers

maximum likelihood estimate of z found by solving
minimize 37, 5(yi — af z)°
subject to |B| <k

with variables z and B C {1,...,m}

equivalent to
minimize |y — Az — w||3
subject to card(w) <k
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Minimum number of violations

e set of convex inequalities

fi(z) <0, ..., fm(z) <0, zeC

e choose x to minimize the number of violated inequalities:
minimize card(t)

subject to fi(z) <t;, i=1,...,m
zelC, t>0

e determining whether zero inequalities can be violated is (easy) convex
feasibility problem
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Portfolio investment with linear and fixed costs

we use budget B to purchase (dollar) amount z; > 0 of stock %

trading fee is fixed cost plus linear cost: Scard(z) + o’z

budget constraint is 17z + fcard(z) + o’z < B

mean return on investment is pulz; variance is z7 Xz

minimize investment variance (risk) with mean return > Ryin:
minimize z7¥z

subjectto pfz >R, >0
17z + Becard(z) + o'z < B
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¢1-norm heuristic

e replace card(z) with «||z||1, or add regularization term ~||z||; to
objective

e v > 0 is parameter used to achieve desired sparsity
(when card appears in constraint, or as term in objective)

e more sophisticated versions use ) . w;|2;| or Y. w;(2:)+ + X vi(2i) -,
where w, v are positive weights
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Example: Minimum cardinality problem

e start with (hard) minimum cardinality problem

minimize card(z)
subjectto z €C

(C convex)
e apply heuristic to get (easy) £;-norm minimization problem

minimize  ||z||;
subjectto z €C
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Example: Cardinality constrained problem

e start with (hard) cardinality constrained problem (f, C convex)
minimize  f(z)
subjectto z €(C, card(z)<k
e apply heuristic to get (easy) £;-constrained problem
minimize  f(x)
subjectto ze€C, |z|1<p
or £1-regularized problem
minimize  f(z) + 7v||z]|1
subjectto z€C

B, v adjusted so that card(z) < k
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Interpretation as convex relaxation

e start with
minimize card(z)
subjectto z€C, |z| <R

e equivalent to mixed Boolean convex problem

minimize 17z
subjectto |z;| < Rz;, i=1,...,n
relC, z€{0,1}, i=1,...

with variables z, 2
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now relax z; € {0,1} to z; € [0, 1] to obtain
minimize 172
subject to |z;| < Rz, i=1,...,n
zeC
0<z<1, i=1,....,n

which is equivalent to

minimize  (1/R)||z|;
subjectto z €C

the £; heuristic

optimal value of this problem is lower bound on original problem



Sparse signal reconstruction

e convex-cardinality problem:

minimize ||Az — y||2
subject to card(z) <k

e /1 heuristic:
minimize  ||Az — y||2
subject to ||z||; £ 3

(called LASSO)

e another form: minimize ||Az — yl[2 + 7||z||1
(called basis pursuit denoising)
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Example

e signal z € R" with n = 1000, card(z) = 30

e m = 200 (random) noisy measurements: y = Az + v, v ~ N(0,0%1),

e left: original; right: £; reconstruction with v = 1073
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e {5 reconstruction; minimizes ||Az — y||2 + 7v||z||2, where v =103

e left: original; right: €5 reconstruction
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Some recent theoretical results

suppose y = Az, A € R™*", card(z) < k
to reconstruct z, clearly need m > k

if m > n and A is full rank, we can reconstruct = without cardinality
assumption

when does the ¢; heuristic (minimizing ||z||; subject to Az = y)
reconstruct = (exactly)?
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recent results by Candés, Donoho, Romberg, Tao, . ..

e (for some choices of A) if m > (C'logn)k, ¢, heuristic reconstructs z
exactly, with overwhelming probability

e ( is absolute constant: valid A's include

- Az’j ~ N(0,0’z)
— Ax gives Fourier transform of z at m frequencies, chosen from
uniform distribution
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Total variation reconstruction

e fit z.or With piecewise constant &, no more than k jumps

e convex-cardinality problem: minimize ||Z — z¢o||2 subject to
card(Dz) < k (D is first order difference matrix)

e heuristic: minimize ||Z — Zcor||2 + ¥||Dz||1; vary v to adjust number of
jumps

e | Dz||; is total variation of signal &
e method is called total variation reconstruction

e unlike 5 based reconstruction, TVR filters high frequency noise out
while preserving sharp jumps
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Example (§6.3.3 in BV book)

signal x € R2%90 apnd corrupted signal .o € R2000
2
i -
80 } W
-1 T~ J—
-2 -
0 500 1000 1500 2000
2 x x ,
1 e ‘ |
: w |
g0 .
) T
-1t " . S|
-2 1 :
0 500 1000 1500 2000



Total variation reconstruction
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for three values of ~

{5 reconstruction
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Example: 2D total variation reconstruction

e £ € R" are values of pixels on N x N grid (N = 31, so n = 961)
e assumption: z has relatively few big changes in value (i.e., boundaries)
e we have m = 120 linear measurements, y = Fz (F;; ~ N(0,1))

e as convex-cardinality problem:

minimize card(z; ; — Zit1,;) + card(z; ; — T j4+1)
subjectto y= Fz

e ¢y heuristic (objective is a 2D version of total variation)

minimize > |z — Tiv14]| + . |Ti — i1l
subjectto y = Fzx
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Extension to matrices

e Rank is natural analog of card for matrices

e convex-rank problem: convex, except for Rank in objective or
constraints

e rank problem reduces to card problem when matrices are diagonal:
Rank(diag(z)) = card(z)

e analog of £; heuristic: use nuclear norm, | X ||« =Y. 0:(X)
(sum of singular values; dual of spectral norm)

o for X = 0, reduces to Tr X (for z > 0, ||z||; reduces to 17'z)
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Factor modeling

e given matrix ¥ € S”, find approximation of form 3= FFT + D, where
F € R"*", D is diagonal nonnegative

e gives underlying factor model (with 7 factors)

r=Fz+v, v~N(0,D), z~N(0,I)

e model with fewest factors:

minimize Rank X
subjectto X >0, D > 0 diagonal
X+DeC

with variables D, X € §"
C is convex set of acceptable approximations to X
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Example
e z=Fz+w, z~N(0,I), v ~N(0,D), D diagonal; F € R***?
e 3 is empirical covariance matrix from N = 3000 samples

e set of acceptable approximations

C={Z||="V2(E-2)212| < B}

e trace heuristic

minimize Tr X
subjectto X >0, d>0
|£-1/2(X + diag(d) — £)E1/2] < 8
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