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Applied Convex Optimization
Lecture 10



Subgradients

subgradients
strong and weak subgradient calculus
optimality conditions via subgradients

directional derivatives



Basic inequality

recall basic inequality for convex differentiable f:

fy) > f(x) + Vf(x) (y — )

e first-order approximation of f at x is global underestimator

e (Vf(x),—1) supports epi f at (z, f(x))

what if f is not differentiable?



Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

fly) > f(x)+g" (y—x) forally

\ /

f(z1) + gy (& —a1) | /
| [ A (x2) + g3 (x — x2)
7 f (@) + g3 (2 = x2)

go, (3 are subgradients at x9; g1 is a subgradient at x4



e gis a subgradient of f at x iff (g, —1) supports epi f at (z, f(x))

e g is a subgradient iff f(z)+ g% (y — x) is a global (affine)
underestimator of f

e if f is convex and differentiable, V f(x) is a subgradient of f at x

subgradients come up in several contexts:
e algorithms for nondifferentiable convex optimization

e convex analysis, e.q., optimality conditions, duality for nondifferentiable
problems

(if f(y) < f(z)+ g"(y — ) for all y, then ¢ is a supergradient)



Example

f = max{ f1, fo}, with fy, fo convex and differentiable

f(x)

> fo(xp): unique subgradient g = V f1(xp)
e fo(xg) > fi(xo): unique subgradient g = V fa(xg)
e fi(xg) = fa(xp): subgradients form a line segment [V f1(xq). V fa(xq)]



Subdifferential

e set of all subgradients of f at x is called the subdifferential of [ at x,
denoted Of(x)

e Jf(x) is a closed convex set (can be empty)

if f is convex,

e Jf(x) is nonempty, for = € relint dom f

e Of(x) =4V f(x)}, if fis differentiable at =

e if 0f(x) ={g}, then f is differentiable at x and g =V f(x)



Example

f(x) = |a| 01 (=)

righthand plot shows | J{(z,9) | z € R, g € Of(x)}



Subgradient calculus

weak subgradient calculus: formulas for finding one subgradient
g€ of(x)

strong subgradient calculus: formulas for finding the whole
subdifferential Jf(x), i.e., all subgradients of f at x

many algorithms for nondifferentiable convex optimization require only
one subgradient at each step, so weak calculus suffices

some algorithms, optimality conditions, etc., need whole subdifferential

roughly speaking: if you can compute f(x), you can usually compute a

g€ 0f(x)

we'll assume that f is convex, and x € relint dom f



Some basic rules

Of(x)={Vf(x)} if f is differentiable at x
scaling: d(af)=adf (if a > 0)

addition: O(f; + fo) = 0f1 + 9fo (RHS is addition of point-to-set
mappings)

affine transformation of variables: if g(x) = f(Ax + b), then
dg(x) = ATOf(Ax +b)

finite pointwise maximum: if f = max f;, then

1=1,....,m

Of(x) :CDU{ﬁﬁ;(;ﬁJ | filz) = f(x)}.

i.e., convex hull of union of subdifferentials of ‘active’ functions at =
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f(x) =max{fi(x),..., fin(x)} with fi,..., f,, differentiable

Of(x) = Co{Vfi(z) | filx) = f(z)}

example: f(z) = ||z|1 = max{s’x | s; € {-1,1}}

(1.1)

Of(x) at x = (0,0) at x = (1,0) at x = (1,1)
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Pointwise supremum

if f = sup fa,
ae A

clCo| J{0fs(x) | fa(x) = f(x)} C Of ()

(usually get equality, but requires some technical conditions to hold, e.g.,
A compact, f, ctsin z and «)

roughly speaking, df(x) is closure of convex hull of union of
subdifferentials of active functions
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Weak rule for pointwise supremum

f = sup fa

ac A

e find any (3 for which fg(z) = f(x) (assuming supremum is achieved)
e choose any g € 0fg(x)
e then, g € 0f(x)
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example
f(2) = Amax(A(z)) = sup 'QTA(I'}'Q

lyll2=1
where A(x) = Ag+ 2141+ ---+x,A,, A; € gk

e [ is pointwise supremum of g,(z) = yT A(x)y over |ly|l2 =1
e g, is affine in z, with Vg, (z) = (v" A1y, ..., yT Any)

e hence, 0f(x) 2 Co{Vyg, | A(z)y = Amax(A(2))y, ||yll2 =1}
(in fact equality holds here)

to find one subgradient at o, can choose any unit eigenvector y associated

with Apax(A(x)); then
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Composition

e find g € Oh(f1(x),..., fu(x)), g; € Ofi(x)
e then, g =q1g1 + -+ qrgx € Of (7)

e reduces to standard formula for differentiable A, f;

proof:

f(y)

AV,

h(f1(y)s -, fr(y))
h(fi(x) + g1 (v —x),..., ful®) + g5 (y — )
h(fi(z). ... fru(x) + 4" (g1 (y— )., g8 (y — x))

flx)+g"(y — )
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Subgradients and sublevel sets

g is a subgradient at # means f(y) > f(x)+ g

hence f(y) < f(z) = g"(y—2) <0
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e f differentiable at xg: V f(x() is normal to the sublevel set

{z | f(z) < f(xo)}

e [ nondifferentiable at xg: subgradient defines a supporting hyperplane
to sublevel set through g
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Optimality conditions — unconstrained

recall for f convex, differentiable,
f(z")=inf f(r) &= 0=V f(z7)
generalization to nondifferentiable convex f:

f(z*) =inf f(r) <= 0€ 0f(z")
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------------------- s 0 € df(xp)

%5
proof. by definition (!)
fly) = f(z™) + UT(-y —x%) forally <= 0€0f(a")

.. seems trivial but isn't
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Example: piecewise linear minimization

flx) = 1113Xi:1,...,m.(f1;i’- +b;)
x* minimizes f <= 0 € 0f(2*) = Co{a; | r_].;;r* +b; = f(x*)}

<= there is a A\ with

Tre

A= 0. 17\ =1. Z Nia; =0
1=1

where \; = 0 if ala* +b; < f(a*)
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.. . but these are the KK'T conditions for the epigraph form

minimize
subject to afex+b, <t, i=1.....m

with dual

maximize b1\
subject to A = 0, ATA =0, 1T\ =1
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Optimality conditions — constrained

minimize  fo(x)
subject to  f;(x) <0,2=1,...,m

we assume

e f; convex, defined on R™ (hence subdifferentiable)

e strict feasibility (Slater’'s condition)

x* is primal optimal (A* is dual optimal) iff
fi(i‘-*) E U, /\: 2 0
0 € dfo(x*) + 2212, AfOfi(x™)
Affi(x*) =0

.. . generalizes KKT for nondifferentiable f;
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Directional derivative

directional derivative of [ at = in the direction dx is

f’(':r-; 0r) — }{1{% flx+ hd‘;:) — f(z)

can be +00 or —oco

e f convex, finite near ¥ = f'(x;0x) exists

e [ differentiable at = if and only if, for some ¢ (=V f(x)) and all oz,

f'(x;6z) = gt oz (i.e., f'(z;0x) is a linear function of dx)
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Directional derivative and subdifferential

general formula for convex f: f'(x;0x) = sup g¢lox
gedf(x)
. 0T
\ df(x)
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Descent directions

dx is a descent direction for f at = if f'(z:0x) <0

for differentiable f, 0 = —V f(x) is always a descent direction (except

when it is zero)

warning: for nondifferentiable (convex) functions, dx = —g, with

g € df(x), need not be descent direction

example: f(z) = |x1| + 2|x9| o -
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Subgradients and distance to sublevel sets

if fis convex, f(z) < f(x), g € df(x), then for small ¢t > 0,
|z —tg —z[l2 < |lz — z||2

thus —g is descent direction for ||z — z||9, for any z with f(z) < f(x)
(e.q., )

negative subgradient is descent direction for distance to optimal point

2

proof: ||z —tg — 2|3 |z — z[|3 — 2tg" (x — 2) + ]| 9|3

|l — 2|13 = 2t(f () — f(2)) +t*[lgl3

VA
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Descent directions and optimality

fact: for f convex, finite near x, either

e 0 € df(x) (in which case = minimizes f), or

e there is a descent direction for f at x

i.e., = is optimal (minimizes f) iff there is no descent direction for [ at x

proof: define dxy = — argmin [|z|»
2€0f (x)

if dxsq =0, then 0 € Of(x), so x is optimal; otherwise
f(:02sq) = — (inf.cppa) ||,3||g)2 < 0, so dxgq is a descent direction
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Subgradient Methods

subgradient method and stepsize rules
convergence results and proof
optimal step size and alternating projections

speeding up subgradient methods
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Subgradient method

subgradient method is simple algorithm to minimize nondifferentiable
convex function f

P D k) ()

o =(F) is the kth iterate
e ¢'%) is any subgradient of f at z*
e o > 0 is the kth step size

not a descent method, so we keep track of best point so far

© = min fz9)

.....
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Step size rules

step sizes are fixed ahead of time

e constant step size: «y. = « (constant)
e constant step length: oy = v/||lg"¥ |2 (so [|a*k+D) — 2(F)||, = 5)

e square summable but not summable: step sizes satisfy

[ e X0
E m-%ﬂ:ioo, E . = 00
k=1 k=1

e nonsummable diminishing: step sizes satisfy

> 9
lim ap =0, E W = 00
k— oo 1
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Convergence results

(k)

define [ = limp_s o f}oat

e constant step size: f — f* < G%a/2, i.e.,
converges to G?a/2-suboptimal
(converges to f* if f differentiable, o small enough)

e constant step length: f — f* < G~/2, i.e.,
converges to (v /2-suboptimal

e diminishing step size rule: f = f*, i.e., converges
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Example: Piecewise linear minimization

minimize f(xr) = 111?1.}{5:1?___=m(a-3ﬂ;1‘- +b;)
to find a subgradient of f: find index 3 for which

T, _ T, _
a; T+ b; = __ma}{m(a.é T+ b;)

i=1,

and take g = a;

subgradient method: x(*+1) = z(k) _ g0
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problem instance with n = 20 variables, m = 100 terms, f* =~ 1.1

(k)

best

— f*

(k)
hest

f

10

— f*, constant step length v = 0.05,0.01, 0.005

500

1000

1500
k

2000

2500

3000
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diminishing step rules aj. = U.l/\/@ and ap = l/\/E square summable

step size rules ap = 1/k and ap = 10/k

— f*

(k)
best

f

10

1

ML =

0.1/sqgrt(k) valus
1/sqri(k) value |
1/k value

10/k value

g h ]
10_3 L 1 L L L
0 500 1000 1500 2000 2500 3000
k
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Optimal step size when f* is known

e choice due to Polyak:

fa®) — s
lg™ 113

(can also use when optimal value is estimated)

(V. —
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PWL example with Polyak’s step size, a = 0.1/Vk, ap. = 1/k

1

10 ¢ . . . . . :
1 —— Polyak
----a = 0.1/}
...... ap = 1/""3 _
10"}
* l“
ﬂ.+____‘: 1
|
=
o7 ' ' ' ' - :
0 500 1000 1500 2000 2500 3000

k



Finding a point in the intersection of convex sets

C=C;nN---C,, is nonempty, C'1,....C,, € R" closed and convex

find a point in C' by minimizing
f(z) = max{dist(x, Cy), ..., dist(z,C),)}

with dist(xz,C;) = f(x), a subgradient of f is

= Vdist(z. () = T pCj(IJ
g= £r, L) = ||'I- . PCJ(I)“E
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subgradient update with optimal step size:

D) (k) ()

— Org
r— Pe. ()

_ (k) (. _(FG)J
a I
|z — Pc. ()2

= Pg;(a™)
a version of the famous alternating projections algorithm
at each step, project the current point onto the farthest set
for m = 2 sets, projections alternate onto one set, then the other

convergence: dist(z*),C) — 0 as k — oo
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Alternating projections

first few iterations:

J
S

O |
!
o :

\'.
N
,

.. 2(F) eventually converges to a point z* € C'; N Cy
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Subgradient Methods for Constrained Problems

e projected subgradient method
e projected subgradient for dual

e subgradient method for constrained optimization
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Projected subgradient method

solves constrained optimization problem

minimize  f(x)
subject to x € C.

where f: R"™ — R, C C R"™ are convex

projected subgradient method is given by
O H(I_{ﬁc) _ ﬁ-;cg{k)},

I1 is (Euclidean) projection on C, and ¢'¥) € 9 f(x(*))
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same convergence results:

e for constant step size, converges to neighborhood of optimal
(for f differentiable and & small enough, converges)

e for diminishing nonsummable step sizes, converges

key idea: projection does not increase distance to x*
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Linear equality constraints

minimize  f(x)
subject to Ax =10

Ax =b}is

projection of z onto {x

[M(z) = z—AT(AAT)"Y(Az —b)
= (I —AT(AAT)"1A)2 4 AT(AAT)" 1

projected subgradient update is (using Az(F) = b)

2D = (e ® ™)

= W _ (I — AT(AAT)1A)g™

= 2 —apllya)(g™)



Example: Least /{-norm

minimize  ||z]|;
subject to Axr =10

subgradient of objective is g = sign(x)

projected subgradient update is

D — (k) v (I — AT(AAT)—lAJ sign(:{?{k})
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problem instance with n = 1000, m = 50, step size ap = 0.1/k, f* = 3.2

10

0 500 1000 1500 2000 2500 _ 3000



Projected subgradient for dual problem

(convex) primal:

minimize  fo(x)
subject to fi(%) <0, i=1,..., m

solve dual problem
maximize  g(\)
subject to A > 0

via projected subgradient method:

\(k+1) ()\(’“)—akh) . hed(—g)(\®)
+
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Subgradient of negative dual function

assume fq is strictly convex, and denote, for A = 0,

r* () = a.rgznin (fo(z) +Afi(2) + -+ A fm(2))

o

so g(A) = fo(z™(A)) + Arfi(z™(A)) + -+ + A fr(27(A))
a subgradient of —g at A is given by h; = — f;(2*(\))

projected subgradient method for dual:

2B = (AR, )‘?Hl} = ()‘Ek} + ﬂ:'kfz‘(f{m))
_|_
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Example

minimize strictly convex quadratic (P > 0) over unit box:

minimize (l/Z):rTPr—q T
subject to 2?2 <1, i=1,...,n

o L(z,\)=(1/2)zT (P + diag(2\))x — ¢qTz — 1T\
o 7*(\) = (P +diag(2)\)) " 1q
e projected subgradient for dual:

k) — (P +diag(2)\(k)))_1q! /\?‘H—l) _ (AEH

+ag((@)? - 1)

_|_
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7% is a nearby feasible point for x(F)

upper and lower bounds

0

I
—
-

-20

-30

-40

-50

problem instance with n = 50, fixed step size « = 0.1, f* =~ —5.3;
— g\
—he)
5 10 15 20 25 30 35 40
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Subgradient method for constrained optimization

solves constrained optimization problem

minimize  fo(x)
subject to  fi(x) <0, 1=1,...,m,

where f; : R" — R are convex

same update z*+t1) = 2(F) _ 4, g% but we have

g{ﬁ;} c { dfolz) fi(x) <0, i=1,...,m,
dfj(x)  fi(x) >0

define f{k} — min{ fo(z?) | 2 feasible, i = 1,... k}

best
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Convergence

assumptions:

e there exists an optimal x*; Slater's condition holds

o lg®ls < G [l2® = a*]l; < R

typical result: for oy, > 0, oy, — 0, 00, a; = 0o, we have %) — f*



