ET4350 Applied Convex Optimization Lecture 10

Subgradients

- subgradients
- strong and weak subgradient calculus
- optimality conditions via subgradients
- directional derivatives

Basic inequality

recall basic inequality for convex differentiable f:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

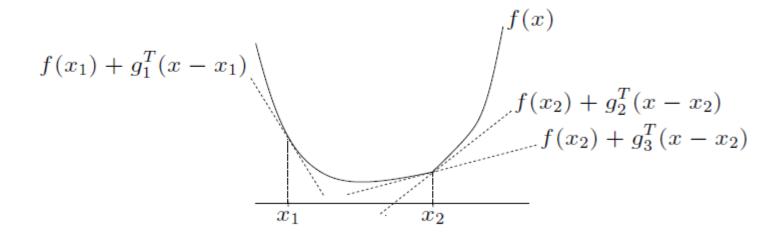
- ullet first-order approximation of f at x is global underestimator
- $(\nabla f(x), -1)$ supports $\mathbf{epi} f$ at (x, f(x))

what if f is not differentiable?

Subgradient of a function

g is a **subgradient** of f (not necessarily convex) at x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y



 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

- g is a subgradient of f at x iff (g,-1) supports $\operatorname{\mathbf{epi}} f$ at (x,f(x))
- g is a subgradient iff $f(x) + g^T(y x)$ is a global (affine) underestimator of f
- ullet if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x

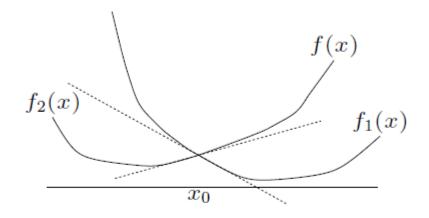
subgradients come up in several contexts:

- algorithms for nondifferentiable convex optimization
- convex analysis, e.g., optimality conditions, duality for nondifferentiable problems

(if $f(y) \le f(x) + g^T(y - x)$ for all y, then g is a **supergradient**)

Example

 $f = \max\{f_1, f_2\}$, with f_1 , f_2 convex and differentiable



- $f_1(x_0) > f_2(x_0)$: unique subgradient $g = \nabla f_1(x_0)$
- $f_2(x_0) > f_1(x_0)$: unique subgradient $g = \nabla f_2(x_0)$
- $f_1(x_0) = f_2(x_0)$: subgradients form a line segment $[\nabla f_1(x_0), \nabla f_2(x_0)]$

Subdifferential

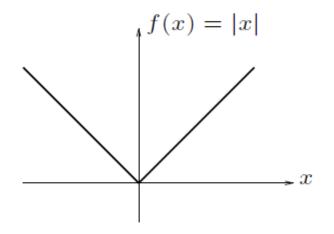
- set of all subgradients of f at x is called the **subdifferential** of f at x, denoted $\partial f(x)$
- $\partial f(x)$ is a closed convex set (can be empty)

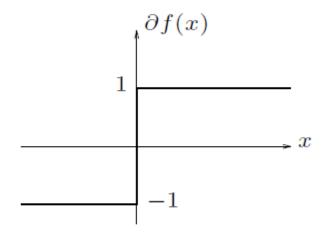
if f is convex,

- $\partial f(x)$ is nonempty, for $x \in \mathbf{relint} \, \mathbf{dom} \, f$
- $\partial f(x) = {\nabla f(x)}$, if f is differentiable at x
- if $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$

Example

$$f(x) = |x|$$





righthand plot shows $\bigcup \{(x,g) \mid x \in \mathbf{R}, \ g \in \partial f(x)\}$

Subgradient calculus

- weak subgradient calculus: formulas for finding *one* subgradient $g \in \partial f(x)$
- strong subgradient calculus: formulas for finding the whole subdifferential $\partial f(x)$, *i.e.*, all subgradients of f at x
- many algorithms for nondifferentiable convex optimization require only one subgradient at each step, so weak calculus suffices
- some algorithms, optimality conditions, etc., need whole subdifferential
- ullet roughly speaking: if you can compute f(x), you can usually compute a $g\in\partial f(x)$
- ullet we'll assume that f is convex, and $x \in \operatorname{\mathbf{relint}} \operatorname{\mathbf{dom}} f$

Some basic rules

- $\partial f(x) = {\nabla f(x)}$ if f is differentiable at x
- scaling: $\partial(\alpha f) = \alpha \partial f$ (if $\alpha > 0$)
- addition: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$ (RHS is addition of point-to-set mappings)
- affine transformation of variables: if g(x) = f(Ax + b), then $\partial g(x) = A^T \partial f(Ax + b)$
- finite pointwise maximum: if $f = \max_{i=1,...,m} f_i$, then

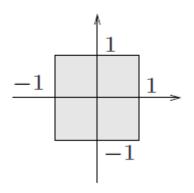
$$\partial f(x) = \mathbf{Co} \bigcup \{ \partial f_i(x) \mid f_i(x) = f(x) \},$$

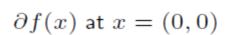
i.e., convex hull of union of subdifferentials of 'active' functions at x

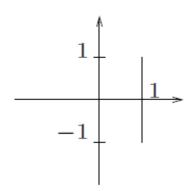
$$f(x) = \max\{f_1(x), \dots, f_m(x)\}\$$
, with f_1, \dots, f_m differentiable

$$\partial f(x) = \mathbf{Co}\{\nabla f_i(x) \mid f_i(x) = f(x)\}\$$

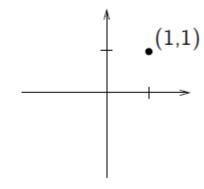
example: $f(x) = ||x||_1 = \max\{s^T x \mid s_i \in \{-1, 1\}\}$







at
$$x = (1, 0)$$



at
$$x = (1, 1)$$

Pointwise supremum

if
$$f = \sup_{\alpha \in \mathcal{A}} f_{\alpha}$$
,

$$\operatorname{cl} \operatorname{Co} \bigcup \{ \partial f_{\beta}(x) \mid f_{\beta}(x) = f(x) \} \subseteq \partial f(x)$$

(usually get equality, but requires some technical conditions to hold, e.g., \mathcal{A} compact, f_{α} cts in x and α)

roughly speaking, $\partial f(x)$ is closure of convex hull of union of subdifferentials of active functions

Weak rule for pointwise supremum

$$f = \sup_{\alpha \in \mathcal{A}} f_{\alpha}$$

- find any β for which $f_{\beta}(x) = f(x)$ (assuming supremum is achieved)
- choose any $g \in \partial f_{\beta}(x)$
- then, $g \in \partial f(x)$

example

$$f(x) = \lambda_{\max}(A(x)) = \sup_{\|y\|_2=1} y^T A(x)y$$

where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$, $A_i \in S^k$

- f is pointwise supremum of $g_y(x) = y^T A(x) y$ over $||y||_2 = 1$
- g_y is affine in x, with $\nabla g_y(x) = (y^T A_1 y, \dots, y^T A_n y)$
- hence, $\partial f(x) \supseteq \mathbf{Co} \{ \nabla g_y \mid A(x)y = \lambda_{\mathsf{max}}(A(x))y, \ \|y\|_2 = 1 \}$ (in fact equality holds here)

to find **one** subgradient at x, can choose **any** unit eigenvector y associated with $\lambda_{\max}(A(x))$; then

$$(y^T A_1 y, \dots, y^T A_n y) \in \partial f(x)$$

Composition

- $f(x) = h(f_1(x), \dots, f_k(x))$, with h convex nondecreasing, f_i convex
- find $q \in \partial h(f_1(x), \dots, f_k(x)), g_i \in \partial f_i(x)$
- then, $g = q_1g_1 + \cdots + q_kg_k \in \partial f(x)$
- reduces to standard formula for differentiable h, f_i proof:

$$f(y) = h(f_1(y), \dots, f_k(y))$$

$$\geq h(f_1(x) + g_1^T(y - x), \dots, f_k(x) + g_k^T(y - x))$$

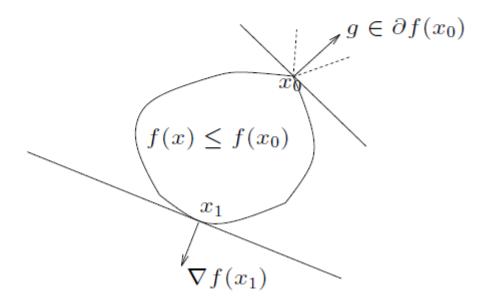
$$\geq h(f_1(x), \dots, f_k(x)) + q^T(g_1^T(y - x), \dots, g_k^T(y - x))$$

$$= f(x) + g^T(y - x)$$

Subgradients and sublevel sets

g is a subgradient at x means $f(y) \geq f(x) + g^T(y-x)$

hence
$$f(y) \le f(x) \Longrightarrow g^T(y-x) \le 0$$



- f differentiable at x_0 : $\nabla f(x_0)$ is normal to the sublevel set $\{x \mid f(x) \leq f(x_0)\}$
- ullet f nondifferentiable at x_0 : subgradient defines a supporting hyperplane to sublevel set through x_0

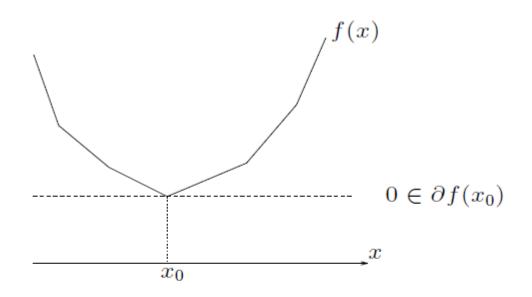
Optimality conditions — unconstrained

recall for f convex, differentiable,

$$f(x^*) = \inf_{x} f(x) \iff 0 = \nabla f(x^*)$$

generalization to nondifferentiable convex f:

$$f(x^*) = \inf_x f(x) \Longleftrightarrow 0 \in \partial f(x^*)$$



proof. by definition (!)

$$f(y) \ge f(x^*) + 0^T (y - x^*)$$
 for all $y \iff 0 \in \partial f(x^*)$

. . . seems trivial but isn't

Example: piecewise linear minimization

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

$$x^* \text{ minimizes } f \iff 0 \in \partial f(x^*) = \mathbf{Co}\{a_i \mid a_i^T x^* + b_i = f(x^*)\}$$

$$\iff \text{there is a } \lambda \text{ with}$$

$$\lambda \succeq 0, \qquad \mathbf{1}^T \lambda = 1, \qquad \sum_{i=1}^m \lambda_i a_i = 0$$

where $\lambda_i = 0$ if $a_i^T x^* + b_i < f(x^*)$

. . . but these are the KKT conditions for the epigraph form

with dual

maximize
$$b^T \lambda$$
 subject to $\lambda \succeq 0$, $A^T \lambda = 0$, $\mathbf{1}^T \lambda = 1$

Optimality conditions — constrained

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$

we assume

- f_i convex, defined on \mathbf{R}^n (hence subdifferentiable)
- strict feasibility (Slater's condition)

 x^* is primal optimal (λ^* is dual optimal) iff

$$f_i(x^*) \le 0, \quad \lambda_i^* \ge 0$$
$$0 \in \partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*)$$
$$\lambda_i^* f_i(x^*) = 0$$

. . . generalizes KKT for nondifferentiable f_i

Directional derivative

directional derivative of f at x in the direction δx is

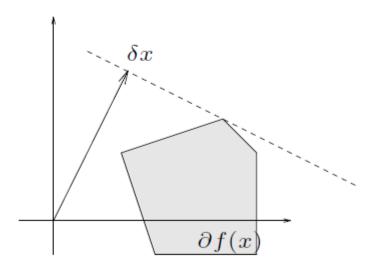
$$f'(x; \delta x) \stackrel{\Delta}{=} \lim_{h \searrow 0} \frac{f(x + h\delta x) - f(x)}{h}$$

can be $+\infty$ or $-\infty$

- f convex, finite near $x \Longrightarrow f'(x; \delta x)$ exists
- f differentiable at x if and only if, for some g (= $\nabla f(x)$) and all δx , $f'(x; \delta x) = g^T \delta x$ (i.e., $f'(x; \delta x)$ is a linear function of δx)

Directional derivative and subdifferential

general formula for convex $f \colon f'(x; \delta x) = \sup_{g \in \partial f(x)} g^T \delta x$

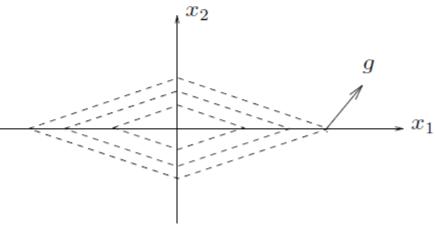


Descent directions

 δx is a **descent direction** for f at x if $f'(x;\delta x)<0$ for differentiable f, $\delta x=-\nabla f(x)$ is always a descent direction (except when it is zero)

warning: for nondifferentiable (convex) functions, $\delta x = -g$, with $g \in \partial f(x)$, need not be descent direction

example: $f(x) = |x_1| + 2|x_2|$



Subgradients and distance to sublevel sets

if f is convex, f(z) < f(x), $g \in \partial f(x)$, then for small t > 0,

$$||x - tg - z||_2 < ||x - z||_2$$

thus -g is descent direction for $||x-z||_2$, for **any** z with f(z) < f(x) $(e.g., x^*)$

negative subgradient is descent direction for distance to optimal point

proof:
$$||x - tg - z||_2^2 = ||x - z||_2^2 - 2tg^T(x - z) + t^2||g||_2^2 \le ||x - z||_2^2 - 2t(f(x) - f(z)) + t^2||g||_2^2$$

Descent directions and optimality

fact: for f convex, finite near x, either

- $0 \in \partial f(x)$ (in which case x minimizes f), or
- there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define
$$\delta x_{sd} = - \underset{z \in \partial f(x)}{\operatorname{argmin}} \|z\|_2$$

if $\delta x_{\rm sd} = 0$, then $0 \in \partial f(x)$, so x is optimal; otherwise $f'(x; \delta x_{\rm sd}) = -\left(\inf_{z \in \partial f(x)} \|z\|_2\right)^2 < 0$, so $\delta x_{\rm sd}$ is a descent direction

Subgradient Methods

- subgradient method and stepsize rules
- convergence results and proof
- optimal step size and alternating projections
- speeding up subgradient methods

Subgradient method

subgradient method is simple algorithm to minimize nondifferentiable convex function \boldsymbol{f}

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

- $x^{(k)}$ is the kth iterate
- $g^{(k)}$ is **any** subgradient of f at $x^{(k)}$
- $\alpha_k > 0$ is the kth step size

not a descent method, so we keep track of best point so far

$$f_{\text{best}}^{(k)} = \min_{i=1,\dots,k} f(x^{(i)})$$

Step size rules

step sizes are fixed ahead of time

- constant step size: $\alpha_k = \alpha$ (constant)
- constant step length: $\alpha_k = \gamma/\|g^{(k)}\|_2$ (so $\|x^{(k+1)} x^{(k)}\|_2 = \gamma$)
- square summable but not summable: step sizes satisfy

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty$$

• nonsummable diminishing: step sizes satisfy

$$\lim_{k \to \infty} \alpha_k = 0, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty$$

Convergence results

define $\bar{f} = \lim_{k \to \infty} f_{\text{best}}^{(k)}$

- constant step size: $\bar{f} f^* \leq G^2 \alpha/2$, i.e., converges to $G^2 \alpha/2$ -suboptimal (converges to f^* if f differentiable, α small enough)
- constant step length: $\bar{f} f^* \leq G\gamma/2$, i.e., converges to $G\gamma/2$ -suboptimal
- diminishing step size rule: $\bar{f} = f^*$, i.e., converges

Example: Piecewise linear minimization

minimize
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

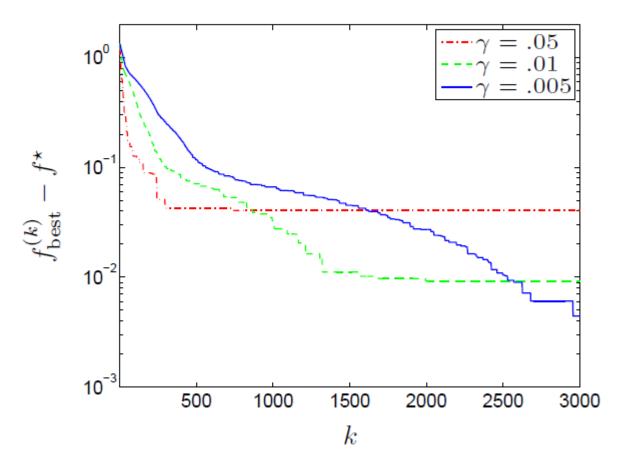
to find a subgradient of f: find index j for which

$$a_j^T x + b_j = \max_{i=1,...,m} (a_i^T x + b_i)$$

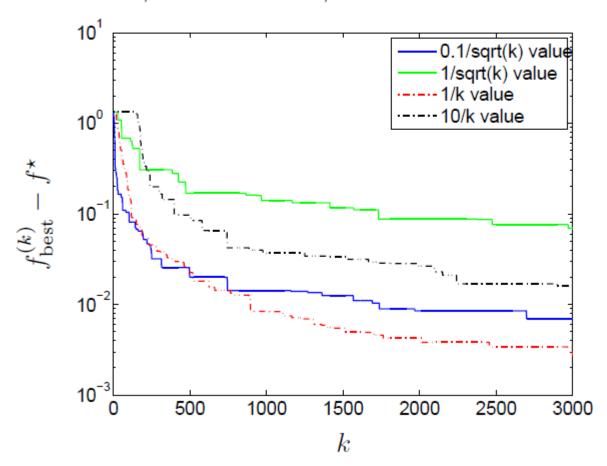
and take $g = a_j$

subgradient method: $x^{(k+1)} = x^{(k)} - \alpha_k a_j$

problem instance with n=20 variables, m=100 terms, $f^\star\approx 1.1$ $f_{\rm best}^{(k)}-f^\star$, constant step length $\gamma=0.05,0.01,0.005$



diminishing step rules $\alpha_k=0.1/\sqrt{k}$ and $\alpha_k=1/\sqrt{k}$, square summable step size rules $\alpha_k=1/k$ and $\alpha_k=10/k$



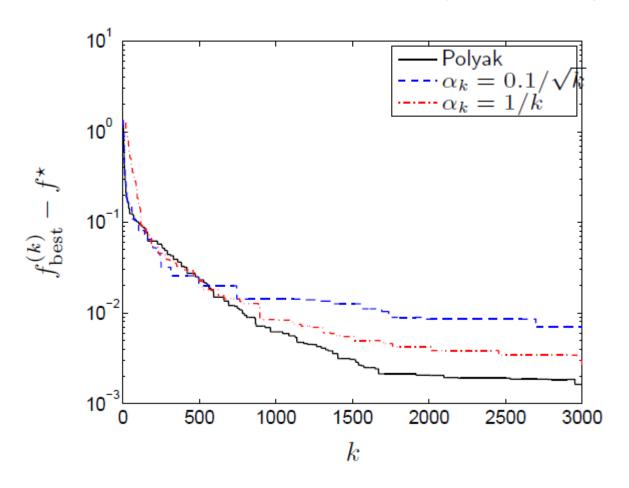
Optimal step size when f^* is known

choice due to Polyak:

$$\alpha_k = \frac{f(x^{(k)}) - f^*}{\|g^{(k)}\|_2^2}$$

(can also use when optimal value is estimated)

PWL example with Polyak's step size, $\alpha_k = 0.1/\sqrt{k}, \ \alpha_k = 1/k$



Finding a point in the intersection of convex sets

$$C = C_1 \cap \cdots \cap C_m$$
 is nonempty, $C_1, \ldots, C_m \subseteq \mathbf{R}^n$ closed and convex

find a point in C by minimizing

$$f(x) = \max\{\mathbf{dist}(x, C_1), \dots, \mathbf{dist}(x, C_m)\}\$$

with $\mathbf{dist}(x, C_j) = f(x)$, a subgradient of f is

$$g = \nabla \operatorname{dist}(x, C_j) = \frac{x - P_{C_j}(x)}{\|x - P_{C_j}(x)\|_2}$$

subgradient update with optimal step size:

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

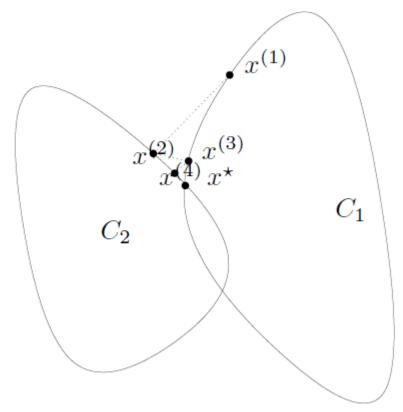
$$= x^{(k)} - f(x^{(k)}) \frac{x - P_{C_j}(x)}{\|x - P_{C_j}(x)\|_2}$$

$$= P_{C_j}(x^{(k)})$$

- a version of the famous alternating projections algorithm
- at each step, project the current point onto the farthest set
- \bullet for m=2 sets, projections alternate onto one set, then the other
- convergence: $\mathbf{dist}(x^{(k)},C) \to 0$ as $k \to \infty$

Alternating projections

first few iterations:



. . . $x^{(k)}$ eventually converges to a point $x^\star \in C_1 \cap C_2$

Subgradient Methods for Constrained Problems

- projected subgradient method
- projected subgradient for dual
- subgradient method for constrained optimization

Projected subgradient method

solves constrained optimization problem

minimize
$$f(x)$$
 subject to $x \in \mathcal{C}$,

where $f: \mathbf{R}^n \to \mathbf{R}$, $\mathcal{C} \subseteq \mathbf{R}^n$ are convex

projected subgradient method is given by

$$x^{(k+1)} = \Pi(x^{(k)} - \alpha_k g^{(k)}),$$

 Π is (Euclidean) projection on \mathcal{C} , and $g^{(k)} \in \partial f(x^{(k)})$

same convergence results:

- for constant step size, converges to neighborhood of optimal (for f differentiable and h small enough, converges)
- for diminishing nonsummable step sizes, converges

key idea: projection does not increase distance to x^{\star}

Linear equality constraints

minimize
$$f(x)$$
 subject to $Ax = b$

projection of z onto $\{x \mid Ax = b\}$ is

$$\Pi(z) = z - A^{T} (AA^{T})^{-1} (Az - b)$$
$$= (I - A^{T} (AA^{T})^{-1} A)z + A^{T} (AA^{T})^{-1} b$$

projected subgradient update is (using $Ax^{(k)} = b$)

$$x^{(k+1)} = \Pi(x^{(k)} - \alpha_k g^{(k)})$$

$$= x^{(k)} - \alpha_k (I - A^T (AA^T)^{-1} A) g^{(k)}$$

$$= x^{(k)} - \alpha_k \Pi_{\mathcal{N}(A)}(g^{(k)})$$

Example: Least l_1 -norm

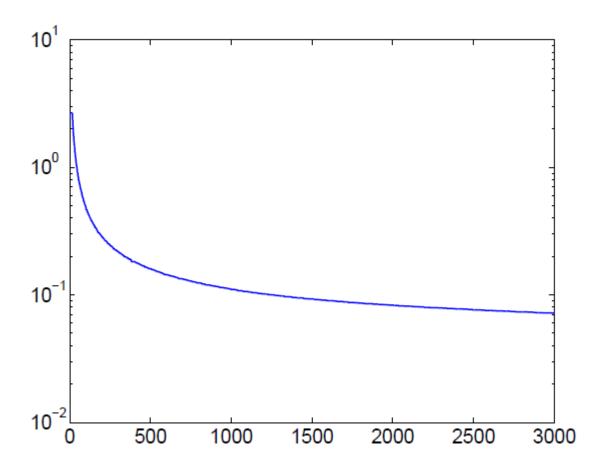
minimize
$$||x||_1$$
 subject to $Ax = b$

subgradient of objective is g = sign(x)

projected subgradient update is

$$x^{(k+1)} = x^{(k)} - \alpha_k (I - A^T (AA^T)^{-1}A) \operatorname{sign}(x^{(k)})$$

problem instance with $n=1000,\ m=50,$ step size $\alpha_k=0.1/k,\ f^\star\approx 3.2$



Projected subgradient for dual problem

(convex) primal:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

solve dual problem

maximize
$$g(\lambda)$$
 subject to $\lambda \succeq 0$

via projected subgradient method:

$$\lambda^{(k+1)} = \left(\lambda^{(k)} - \alpha_k h\right)_+, \qquad h \in \partial(-g)(\lambda^{(k)})$$

Subgradient of negative dual function

assume f_0 is strictly convex, and denote, for $\lambda \succeq 0$,

$$x^*(\lambda) = \operatorname*{argmin}_{z} \left(f_0(z) + \lambda_1 f_1(z) + \dots + \lambda_m f_m(z) \right)$$

so
$$g(\lambda) = f_0(x^*(\lambda)) + \lambda_1 f_1(x^*(\lambda)) + \dots + \lambda_m f_m(x^*(\lambda))$$

a subgradient of -g at λ is given by $h_i = -f_i(x^*(\lambda))$

projected subgradient method for dual:

$$x^{(k)} = x^*(\lambda^{(k)}), \qquad \lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k f_i(x^{(k)})\right)_+$$

Example

minimize strictly convex quadratic $(P \succ 0)$ over unit box:

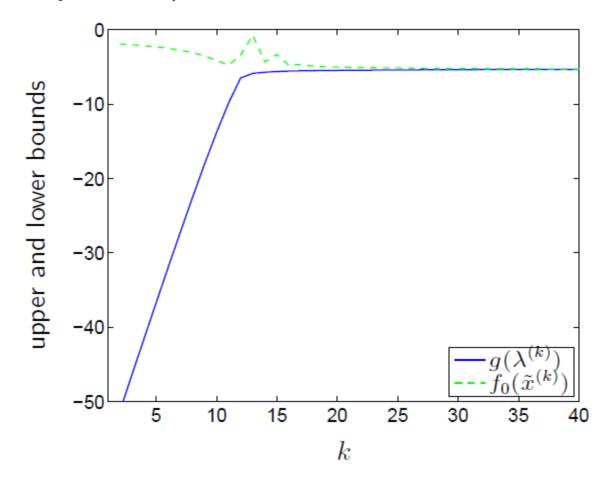
minimize
$$(1/2)x^TPx - q^Tx$$

subject to $x_i^2 \le 1, \quad i = 1, \dots, n$

- $L(x, \lambda) = (1/2)x^T(P + \mathbf{diag}(2\lambda))x q^Tx \mathbf{1}^T\lambda$
- $x^*(\lambda) = (P + \mathbf{diag}(2\lambda))^{-1}q$
- projected subgradient for dual:

$$x^{(k)} = (P + \mathbf{diag}(2\lambda^{(k)}))^{-1}q, \quad \lambda_i^{(k+1)} = (\lambda_i^{(k)} + \alpha_k((x_i^{(k)})^2 - 1))_+$$

problem instance with n=50, fixed step size $\alpha=0.1$, $f^{\star}\approx-5.3$; $\tilde{x}^{(k)}$ is a nearby feasible point for $x^{(k)}$



Subgradient method for constrained optimization

solves constrained optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m,$

where $f_i: \mathbf{R}^n \to \mathbf{R}$ are convex

same update $x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$, but we have

$$g^{(k)} \in \begin{cases} \partial f_0(x) & f_i(x) \le 0, \quad i = 1, \dots, m, \\ \partial f_j(x) & f_j(x) > 0 \end{cases}$$

define $f_{\text{best}}^{(k)} = \min\{f_0(x^{(i)}) \mid x^{(i)} \text{ feasible}, i = 1, \dots, k\}$

Convergence

assumptions:

- there exists an optimal x^* ; Slater's condition holds
- $||g^{(k)}||_2 \le G$; $||x^{(1)} x^*||_2 \le R$

typical result: for $\alpha_k > 0$, $\alpha_k \to 0$, $\sum_{i=1}^{\infty} \alpha_i = \infty$, we have $f_{\text{best}}^{(k)} \to f^*$