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Equality constrained minimization
minimize  f(x)
subject to Axr =10

e f convex, twice continuously differentiable
e A cRP" with rank A = p

e we assume p* is finite and attained

optimality conditions: 2" is optimal iff there exists a * such that

V(™) + ATy =0, Ar* =b



equality constrained quadratic minimization (with P € S7})

minimize  (1/2)2T Px +qTa +r
subject to Ax =D

optimality condition:

IR

e coefficient matrix is called KKT matrix

e KKT matrix is nonsingular if and only if

Ar =0, x+#0 — ' Pr >0

e equivalent condition for nonsingularity: P+ AT A = 0



Eliminating equality constraints

represent solution of {2 | Az = b} as

{z|Ar=b} ={Fz+12]|2€R"F}

e 1 is (any) particular solution

e range of ' € R™ (™7 P) is nullspace of A (rank ' =n—pand AF = 0)
reduced or eliminated problem
minimize f(Fz 4+ 2)

e an unconstrained problem with variable = € R"™7

e from solution z*, obtain #* and v* as

e v = —(AAT) LAV f(2¥)



example: optimal allocation with resource constraint

minimize  fi(21) + fa(22) + -+ + fu(2n)
subjectto xy + a9+ -+ a2, =D

eliminate 2,, = b—o2y — -+ — 2,1, i.e., choose

i b{?n‘ F: [ _-iT ] c Rﬂx{n—lj

reduced problem:
minimize fi(z1) + -+ fa1(@n_1) + falb—21 — - — 25 1)

(variables 2, . . ., 2,_1)



Newton step

Newton step Ax,; of f at feasible 2 is given by solution v of
V2f(x) AT v | | =Vf(x)
A 0 w | 0

interpretations

e Aur, solves second order approximation (with variable v)

minimize f{:}: +v) = f(z) + Vf(z)Tv+ (1/2)0TV2f(2)v
subject to A(r+v) =0

e A, equations follow from linearizing optimality conditions

Vie+v)+ATwa~ Vf(x)+ Vif(z)v+ ATw =0, Alx +v) =0



Newton’s method with equality constraints

given starting point # € dom [ with Ax = b, tolerance ¢ > 0.
repeat
1. Compute the Newton step and decrement Az, A(x).
2. Stopping criterion. quit if A*/2 < €.
3. Line search. Choose step size ¢ by backtracking line search.
4. Update. = := = + tAxy.

e a feasible descent method: z(¥) feasible and f(z(*+t1) < f(a(*®)

e affine invariant



Newton’s method and elimination

Newton’s method for reduced problem

minimize f(z) = f(Fz + &)

e variables z € R"™7
e 1 satisfies Ar =b; rankF =n —pand AF =0

e Newton's method for f started at »(9), generates iterates = (%)

Newton’s method with equality constraints

when started at 2(9) = F2(0) 1+ 4 iterates are

et — P (k) 4 5

hence, don't need separate convergence analysis



Solving KKT systems

solution methods

e LDLT factorization

e elimination (if H nonsingular)

AH *ATw =h— AH 'y, Hv=—(g+ ATw)

e elimination with singular H: write as

H+ ATA AT v | _ [ g+ATQh
A 0 w | h

with @ > 0 for which H + ATQA > 0, and apply elimination



Network flow optimization

minimize > ()
subject to Ax =10
directed graph with n arcs, p + 1 nodes
x;: flow through arc i; ¢;: cost flow function for arc ¢ (with ¢! (2) > 0)

node-incidence matrix A € RPTY*™ defined as

1 arc j leaves node i
A;; = ¢ —1 arcj enters node i
0 otherwise

reduced node-incidence matrix A € RP*™ is A with last row removed
b € R is (reduced) source vector

rank A = p if graph is connected

10



KKT system

I

o [ = diag(ody (1), ..., "

i ™71

(2,,)), positive diagonal
e solve via elimination:
AH *ATw =h— AH ¢, Hv=—(g+ ATw)
sparsity pattern of coefficient matrix is given by graph connectivity

(AH'AT); 40 <= (AAT);; #40

<> nodes i and j are connected by an arc
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Inequality constrained minimization

minimize  fo(x)
subject to  f;(z) <0, i=1,..., m
Ar =10

fi convex, twice continuously differentiable
A € RP*™ with rank A = p
we assume p* is finite and attained

we assume problem is strictly feasible: there exists 1 with
r € dom fo, filz) <0, i=1,..., m, Ar =10

hence, strong duality holds and dual optimum is attained
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Examples

e LP, QP, QCQP, GP
e entropy maximization with linear inequality constraints
minimize > ", x;logx;

subject to Fa <g
Ar =19

I TA

with dom fo = R" .

e differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or /,.-norm approximation via LP

e SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize  fo(x) + >0, I_(fi(x))
subject to Ax =10

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)
approximation via logarithmic barrier

minimize  fo(x) — (1/t) Y.~ log(—fi(x))
subject to Ax =10

10 - -
|
e an equality constrained problem
o fort >0, —(1/t)log(—u) is a | |
smooth approximation of 7_ N e
e approximation improves as t — o0
PR E— 0 1
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logarithmic barrier function

e convex (follows from composition rules)

e twice continuously differentiable, with derivatives

m 1
V{_ﬁ!(.’l‘) — Z f( )Vf’i:( )

Vi(z) = Z f )V fi(x +Z

iiiii

fz

f‘ﬂ'l

)VEE( r)

< 0}
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Central path

e for ¢ > 0, define 2*(t) as the solution of

minimize tfo(x) + ¢(x)
subject to Ax =10

(for now, assume »*(t) exists and is unique for each t > 0)

e central path is {2*(¢) | t > 0}

example: central path for an LP

minimize ¢l

subject to {L;-‘n:zr <b;, i=1,.... 6

hyperplane ¢T'2 = ¢T'2*(t) is tangent to
level curve of ¢ through x*(t)
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€T

ol A

Interpretation via KKT conditions

= 2%(t), A = \*(t), v = v*(t) satisfy

primal constraints: fi(z) <0,:=1...., m, Ar =
dual constraints: A = 0
approximate complementary slackness: —\; f;(x) =1/t, i =1,..., m

gradient of Lagrangian with respect to 2 vanishes:

V folx +Z>~.m L ATy =0

difference with KKT is that condition 3 replaces \; fi(z) =0
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Force field interpretation
centering problem (for problem with no equality constraints)

minimize tfo(2) — Zil log(—fi(x))

force field interpretation

e tfo(x) is potential of force field Fy(x) = —tV fo(x)
e —log(—f;(x)) is potential of force field F;(x) = (1/f:(2))V fi(x)

the forces balance at 2*(%):

Fo(x*(t)) + ) Fi(2*(t)) =0
1i=1
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example
T

minimize ¢ ’zr
subject to alx <b;, i=1,...,m
e objective force field is constant: Fy(x) = —tc

e constraint force field decays as inverse distance to constraint hyperplane:
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Barrier method

given strictly feasible =, ¢ := ¢(°) > 0, . > 1, tolerance ¢ > 0.

repeat

1. Centering step. Compute x*(¢) by minimizing t fy + ¢, subject to Az = b.
2. Update. = := x*(1).

3. Stopping criterion. quit if m /t < €.

4. Increaset. t := yut.

terminates with fo(2) — p* < € (stopping criterion follows from
folx*(t)) — p* < m/t)
centering usually done using Newton's method, starting at current

choice of 11 involves a trade-off: large ;1 means fewer outer iterations,
more inner (Newton) iterations; typical values: ;1 = 10-20

several heuristics for choice of ¢#(?)
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