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Unconstrained minimization

minimize f(z)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(z) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z¥) € dom f, k =0,1,... with

f(z®) — p*

e can be interpreted as iterative methods for solving optimality condition

Vf(z*)=0



Descent methods

2®HD) — 20 L 4B AZ ) with f(z*+D) < f(z®)

e other notations: z+ =z + tAz, z .=z + tAzx
e Az is the step, or search direction; t is the step size, or step length

e from convexity, f(z*) < f(z) implies Vf(z)TAz <0
(i.e., Az is a descent direction)

General descent method.

given a starting point z € dom f.

repeat
1. Determine a descent direction Az.

2. Line search. Choose a step size t > 0.
3. Update. = := = + tA=zx.
until stopping criterion is satisfied.



Line search types

exact line search: { = argmin, ., f(z + tAz)

backtracking line search (with parameters a € (0,1/2), 8 € (0,1))
e starting at £t = 1, repeat t := St until

flz +tAz) < f(z) + otV f(z)T Az

e graphical interpretation: backtrack until ¢ < %

f(xz + tAzx)

f(z) +tVf(z) Az { (z) + atVf(z)' Az
t=0 £



Gradient descent method

general descent method with Az = —V f(z)

given a starting point € dom f.

repeat
1. Az := -V f(z).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. = := = + tA=z.

until stopping criterion is satisfied.

e stopping criterion usually of the form ||V f(z)|[2 < €

e convergence result: for strongly convex f,

f(@®) —p* < H(f(2?) - p)

¢ € (0,1) depends on m, (%), line search type

e very simple, but often very slow; rarely used in practice



quadratic problem in R?

f(z) = (1/2)(a3 + v23) (v > 0)

with exact line search, starting at (%) = (v, 1):
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nonquadratic example

r143x9—0.1 r1—3x9—0.1 —x1-0.1
f(z1,x0) = 17972700 f gf1790270 1 4 71
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a problem in R
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‘linear’ convergence, i.e., a straight line on a semilog plot



Steepest descent method

normalized steepest descent direction (at z, for norm || - [|):
Az,sq = argmin{V f(z) v | ||v|| = 1}

interpretation: for small v, f(z +v) =~ f(z) + Vf(z) v
direction Az,gq is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
Azsq = ||V f(2)][+AZnsa

satisfies V f(z)" Azsa = —||Vf(2)|
steepest descent method

e general descent method with Az = Az

e convergence properties similar to gradient descent



examples

e Euclidean norm: Azyg = —V f(z)

e quadratic norm ||z||p = (z7Pz)}? (P € S.): Azsq = —P~ 'V f(z)
e /i-norm: Azgsg = —(0f(x)/0x;)e;, where |0f(z)/0z;| = ||V f(z)|

unit balls and normalized steepest descent directions for a quadratic norm
and the £;-norm:

-—V f(z)
-—Vf(z)
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choice of norm for steepest descent
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e steepest descent with backtracking line search for two quadratic norms

e ellipses show {z | ||z — z®||p = 1}

e equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables T = P1/2¢

shows choice of P has strong effect on speed of convergence
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Newton step

Azy = —Vif(z) 'V f(z)
interpretations

e = + Az, minimizes second order approximation
~ 1
flz+v) = f(z) + Vf(z)Tv+ évTVZf(a:)v

e = + Az, solves linearized optimality condition

Vf(z+v)~ Vflz+v)=Vf(z)+ V2f(z)v =0

f
fl
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(z, f(a’))‘ . '(:1:, f'(z))
(:B + Amnt; f(x + Amnt)). f

(:1: + Az, f,(x + Axnt))
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e Az, is steepest descent direction at z in local Hessian norm

1/2
|ull w22y = (u' V2 f(z)u)
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dashed lines are contour lines of f; ellipse is {z +v | vTV2f(z)v = 1}

arrow shows —V f(z)
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Newton’s method

given a starting point z € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Azy = —Vif(z) 'V f(z); A :=Vf(z)'Vif(z) 'Vf(z).
2. Stopping criterion. quit if A*/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update.  := = + tAxyy.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(T'y) with starting point y(© = 7120 are

y(k) — 7 1,(k)
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Examples

example in R? (page 10-9)
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e backtracking parameters a = 0.1, 8 = 0.7
e converges in only 5 steps

e quadratic local convergence
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example in R (with sparse a;)

10000 100000

flz) = — Z log(1 — z2) — Z log(b; — al z)
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e backtracking parameters a = 0.01, g = 0.5.

e performance similar as for small examples



