5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , ν

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- ullet to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \implies x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of ν

lower bound property: $p^* \ge -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b, \quad x \succeq 0 \\ \end{array}$$

dual function

Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

L is affine in x, hence

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \begin{cases} -b^T \nu & A^T \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property: $p^* \geq -b^T \nu$ if $A^T \nu + c \succeq 0$

Two-way partitioning

- \bullet a nonconvex problem; feasible set contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets

dual function

$$\begin{split} g(\nu) &= \inf_x (x^T W x + \sum_i \nu_i (x_i^2 - 1)) &= \inf_x x^T (W + \mathbf{diag}(\nu)) x - \mathbf{1}^T \nu \\ &= \begin{cases} -\mathbf{1}^T \nu & W + \mathbf{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

lower bound property: $p^* \ge -\mathbf{1}^T \nu$ if $W + \operatorname{diag}(\nu) \succeq 0$ example: $\nu = -\lambda_{\min}(W)\mathbf{1}$ gives bound $p^* \ge n\lambda_{\min}(W)$

Lagrange dual and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \leq b$, $Cx = d$

dual function

$$g(\lambda, \nu) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \text{dom } f} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$

- finds best lower bound on p^* , obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d*
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{\mathbf{dom}} g$ explicit

example: standard form LP and its dual (page 5-5)

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^T\nu \\ \text{subject to} & Ax = b & \text{subject to} & A^T\nu + c \succeq 0 \\ & x \succ 0 & \end{array}$$

Weak and strong duality

weak duality: $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize
$$-\mathbf{1}^T \nu$$
 subject to $W + \mathbf{diag}(\nu) \succeq 0$

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Ax = b$

if it is strictly feasible, i.e.,

$$\exists x \in \mathbf{int} \, \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

- also guarantees that the dual optimum is attained (if $p^* > -\infty$)
- can be sharpened: e.g., can replace $int \mathcal{D}$ with $relint \mathcal{D}$ (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

minimize
$$c^T x$$
 subject to $Ax \prec b$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^T \lambda)^T x - b^T \lambda \right) = \begin{cases} -b^T \lambda & A^T \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0, \quad \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^* = d^*$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^n$)

minimize
$$x^T P x$$
 subject to $Ax \leq b$

dual function

$$g(\lambda) = \inf_{x} \left(x^T P x + \lambda^T (Ax - b) \right) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

dual problem

maximize
$$-(1/4)\lambda^TAP^{-1}A^T\lambda - b^T\lambda$$
 subject to $\lambda \succeq 0$

- from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^* = d^*$ always

A nonconvex problem with strong duality

$$\begin{array}{ll} \text{minimize} & x^TAx + 2b^Tx \\ \text{subject to} & x^Tx \leq 1 \end{array}$$

 $A \not\succeq 0$, hence nonconvex

dual function:
$$g(\lambda) = \inf_{x} (x^{T}(A + \lambda I)x + 2b^{T}x - \lambda)$$

- unbounded below if $A + \lambda I \not\succeq 0$ or if $A + \lambda I \succeq 0$ and $b \not\in \mathcal{R}(A + \lambda I)$
- minimized by $x=-(A+\lambda I)^{\dagger}b$ otherwise: $g(\lambda)=-b^T(A+\lambda I)^{\dagger}b-\lambda$

dual problem and equivalent SDP:

$$\begin{array}{lll} \text{maximize} & -b^T(A+\lambda I)^\dagger b - \lambda & \text{maximize} & -t - \lambda \\ \text{subject to} & A+\lambda I \succeq 0 & \\ & b \in \mathcal{R}(A+\lambda I) & \text{subject to} & \begin{bmatrix} A+\lambda I & b \\ b^T & t \end{bmatrix} \succeq 0 \\ \end{array}$$

strong duality although primal problem is not convex (not easy to show)

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$ (known as complementary slackness):

$$\lambda_i^* > 0 \Longrightarrow f_i(x^*) = 0, \qquad f_i(x^*) < 0 \Longrightarrow \lambda_i^* = 0$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \ldots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$

if **Slater's condition** is satisfied:

x is optimal if and only if there exist λ , ν that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- ullet generalizes optimality condition $abla f_0(x)=0$ for unconstrained problem

example: water-filling (assume $\alpha_i > 0$)

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $x \succeq 0$, $\mathbf{1}^T x = 1$

x is optimal iff $x \succeq 0$, $\mathbf{1}^T x = 1$, and there exist $\lambda \in \mathbf{R}^n$, $\nu \in \mathbf{R}$ such that

$$\lambda \succeq 0, \qquad \lambda_i x_i = 0, \qquad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu$$

- if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$
- if $\nu \ge 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$
- determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu \alpha_i\} = 1$

interpretation

- $\bullet \ n$ patches; level of patch i is at height α_i
- flood area with unit amount of water
- resulting level is $1/\nu^*$

Semidefinite program

primal SDP $(F_i, G \in S^k)$

minimize
$$c^T x$$

subject to $x_1 F_1 + \cdots + x_n F_n \preceq G$

- Lagrange multiplier is matrix $Z \in \mathbf{S}^k$
- Lagrangian $L(x,Z) = c^T x + \mathbf{tr} \left(Z(x_1 F_1 + \dots + x_n F_n G) \right)$
- dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\mathbf{tr}(GZ) & \mathbf{tr}(F_i Z) + c_i = 0, & i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual SDP

maximize
$$-\mathbf{tr}(GZ)$$

subject to $Z \succeq 0$, $\mathbf{tr}(F_iZ) + c_i = 0$, $i = 1, \dots, n$

 $p^* = d^*$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n \prec G$)