5. Duality

Lagrange dual problem

weak and strong duality

geometric interpretation

optimality conditions

perturbation and sensitivity analysis
examples

generalized inequalities



Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  fi(x) <0, i=1,..., m
hi(x) =0, i=1,.... P

variable # € R", domain D, optimal value p*
Lagrangian: L : R" x R™ x R” -+ R, with dom L = D x R™ x R?,
m p
L(x, A\, v) = folx) + Z Aifi(x) + Z vihi(x)
i=1 i=1

e weighted sum of objective and constraint functions
e )\, is Lagrange multiplier associated with f;(2) < 0

e v; is Lagrange multiplier associated with h;(2) = 0



Lagrange dual function

Lagrange dual function: g : R™ x R — R,

g\ v) = 1161%;15(:1?.)\.1;)
T P
= inf L Aifilx il (@
élelp(fu(?%r; f(l)Jr;ve(;))

¢ is concave, can be —oo for some A, v
lower bound property: if A = 0, then g(\.v) < p*

proof: if 7 is feasible and A = 0, then

folz) > L(z,\,v) > il’l%L(:IT. A v)=g(A\v)
Tre

minimizing over all feasible = gives p* > g(\,v)



Least-norm solution of linear equations

minimize 2l

subject to Ax =10
dual function
o Lagrangianis L(z.v) = 2T +vT(Ax — b)

e to minimize L over x, set gradient equal to zero:

VoL(z,v)=20+ATv=0 = 2=—(1/2)ATv

e plug in in L to obtain g:
1
g(v) = L((—=1/2)ATv.v) = —EIITAHTIF — vy

a concave function of v

lower bound property: p* > —(1/4)vT AATY — bTw for all v



Standard form LP

minimize clx

subject to Ax =0, x>0
dual function
e Lagrangian is
Lz A\v) = cTae+vi(Ade—0b)— A2
= —bv+(c+ATv—\NTz
e [ is affine in 2z, hence

_pT AT, o
.u(M):11-1t'L{;;_=.A.;;):{ Ty ATy —A+c=0

—o0  otherwise
g is linear on affine domain {(\,) | AT — X\ + ¢ = 0}, hence concave

lower bound property: p* > —bTv if ATy +¢ =0



Two-way partitioning

minimize 2L Wax

subject to 2 =1, i=1..... n

e 2 nonconvex problem; feasible set contains 2™ discrete points

e interpretation: partition {1,.... n} in two sets; W;; is cost of assigning
i, J to the same set; —W;; is cost of assigning to different sets

dual function

r

gw) =inf(@TWa +Y "vi(x} —1)) = inf2T(W +diag(v))z — 17w
{ —1Ty W +diag(v) = 0

—00 otherwise

lower bound property: p* > —17v if W + diag(v) = 0
example: v = —Ain(W)1 gives bound p* > nA (W)



Lagrange dual and conjugate function

minimize  fola)
subject to Ax <D, Cxr=d

dual function

g\ v) = xeclllfn / (J‘}](.’r) + AT N+ Tl — TN — (ETL—*)

= —fr(—ATA=CTv) =X —dTv

e recall definition of conjugate f*(y) = 51_1pTEdmnf(yT:r — f(x))

e simplifies derivation of dual if conjugate of f is known

example: entropy maximization

T n
fﬂ(m) — Z £y I'Dg r;, ](CT(‘U) — Z {}'-yi_l
1=1 i=1



The dual problem

Lagrange dual problem

maximize g(\,v)

subject to A = 0
e finds best lower bound on p*, obtained from Lagrange dual function
e 2 convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (A\.7) € domg

e often simplified by making implicit constraint (A, 7) € dom g explicit

example: standard form LP and its dual (page 5-5)

minimize ¢l a maximize —bTv

subject to Ax =10 subject to ATv4¢ >0
r =0



Weak and strong duality
weak duality: d* < p*
e always holds (for convex and nonconvex problems)
e can be used to find nontrivial lower bounds for difficult problems
for example, solving the SDP

maximize —1Tv
subject to W + diag(r) = 0

gives a lower bound for the two-way partitioning problem on page 57

strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications



Slater’s constraint qualification

strong duality holds for a convex problem

minimize  fo(x)
subject to fl( <0, i=1,..., m
r=2>0

if it is strictly feasible, i.e

Jr €eintD : file) <0, 1=1...., m. Ar=0>0

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

e there exist many other types of constraint qualifications
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Inequality form LP

primal problem
minimize ¢l

subject to Ax <b

dual function

g(A) = inf ({f + ATA)T:}-} — E‘;TA) —

H i

TN ATAN+¢=0
—00 otherwise

dual problem
maximize —bT A
subject to ATA+¢=0, A=0

e from Slater's condition: p* = d* if Ax < b for some =

e in fact, p* = d* except when primal and dual are infeasible

11



Quadratic program

primal problem (assume PP € ST )

minimize 2! Px
subject to Ax <b

dual function

g(\) = inf (2T Po+ AT (Az — b)) = —i)\mp—lﬂ)\ —bT' A

xr

dual problem

maximize —(1/4)ATAPTATX — b7\
subject to A = (

e from Slater’s condition: p* = d* if Ax < D for some =

e in fact, p* = d* always
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A nonconvex problem with strong duality

minimize 2L Ar + 2bT 2
subject to 2Tz <1

A # 0, hence nonconvex

dual function: g(\) = inf, (27 (A + A\ )z + 2672 — ))

e unbounded below if A+ Al Z0orif A+ Al =0and b & R(A+ \I)
e minimized by # = —(A 4+ A\I)Tb otherwise: g(A\) = —bT' (A + AI)Th — A

dual problem and equivalent SDP:

maximize —bT (A + A\I)Th — A maximize —t — A
subject to A+ A =0 A+AN b } . 0

be R(A+ ) subject to { b7

strong duality although primal problem is not convex (not easy to show)
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Complementary slackness

assume strong duality holds, 2™ is primal optimal, (A\*,7*) is dual optimal

m p
fo(x™) = g(A*.v*) = il;f (fn(.r) + Z A fi(z) + Z rf:'hﬁ-(:r))
i=1 i=1

iy yul
< fola*)+ ) N fiat) + Y vihi(a?)
1=1 1=1

< fo(a¥)

hence, the two inequalities hold with equality

*

e * minimizes L(x, \*,v*)

o \ifi(x*)=0fori=1,.... m. (known as complementary slackness):

AP > 0= fi(2*) =0, filz*) < 0=\ =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KK'T conditions (for a problem with
differentiable f;, h;):

1. primal constraints: f;(x) <0,i=1...., m, hi(z) =0,i=1.,..., P

2. dual constraints: A = 0

3. complementary slackness: A;f;(z) =0,1=1,..., m

4. gradient of Lagrangian with respect to 2 vanishes:

V folz +ZAV]‘ +wa 0

from page 5-17: if strong duality holds and 2, A, v are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

if &, \, I satisfy KKT for a convex problem, then they are optimal:
e from complementary slackness: fo(Z) = L(#. \. 77)

e from 4th condition (and convexity): g(\.77) = L(#. X, 77)

hence, fo(2) = g(\,7)

if Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fo(2) = 0 for unconstrained problem
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example: water-filling (assume a; > 0)

minimize — > 1  log(z; + o)
subjectto 2 >0, 1Tx=1

2 is optimal iff 22 = 0, 172 = 1, and there exist A € R", v € R such that

A=0.  Nap =0,

T+

o ifv<l/a;: y=0and 2, =1/v —qy
o ifv>1/a;: \ij=v—1/a; and 2; =0

e determine v from 172 = > max{0.1/v —a;} = 1

interpretation
e 1. patches; level of patch 7 is at height «; L
L’
. . @T;
e flood area with unit amount of water
g

e resulting level is 1/1v*
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Semidefinite program

primal SDP (F,.G € S%)
minimize ¢’ x
subject to 2 Fy + -+ 2, F, <G
e Lagrange multiplier is matrix Z € S*
e Lagrangian L(2.Z) = cta +tr (Z(e1Fy + - + 2, F, — G))
e dual function

—tr(GZ) tr(FZ)4+c; =0, i=1,..., n
—00 otherwise

g(Z)=inf L(z,7) = {

dual SDP

maximize —tr(GZ7)
subjectto Z =0, tr(F;Z)+c =0, i=1,..., n

p* = d* if primal SDP is strictly feasible (4= with 21 F} +--- + 2, F,, < G)
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